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1. Introduction

In this paper the following class of low-rank nonconvex problems involving linear
and quadratic functions is studied from both a theoretical, an algorithmic and a
computational point of view:

1
inf f(z)= §9ETQ£U +q w4 (e + co)p(d" x + do),

where X C R" is a nonempty polyhedron, Q € R"*™ is symmetric and positive
definite, ¢,d,q € R", ¢ # 0, d # 0, ¢ and d linearly independent, ¢y, dy € R. The
scalar function ¢(§) is assumed to be continuous and to be defined for all the values
d"z + dy with 2 € X. Moreover, function ¢(¢) is assumed to eventually change its
increasing /decreasing behavior just a finite number of times (for example, ¢(&)
may be monotone, convex/concave, or a polynomial).

Notice that the class of problems described in P covers both multiplicative and
fractional rank-three programs (in the sense that function f actually depends on
the three variables y; = %:UTQ:L“+qTx, yo = ' x4co and y3 = d x+dp). Specifically
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speaking, the following functions are examples of objectives for problem P:

1
fx)==2TQx + Tz + (Tx + o) (dTx + do)* where k > 0 integer;

T2
1 T
@)= 52" Qa + ¢ a + (T + o)™
1 T
flx) = ixTQx + qTx + (dCT:E:_;O)k where dz + dop > 0 and k > 0;
€ 0
1 7 T 'z +c T

These examples point out the wideness of the class of problems P which, at the best
of our knowledge, have never been studied in the literature by means of a unifying
framework. Notice also that even in the particular case ¢(§) = £ the problems
considered in this paper differ from the rank-two ones studied in [8-11, 15].

The solution method proposed to solve this class of problems is based on the so
called “optimal level solutions” method (see [6, 9, 13-17, 26]). It is known that this
is a parametric method, which finds the optimum of the problem by determining
the minima of particular subproblems. In particular, the optimal solutions of these
subproblems are obtained by means of a sensitivity analysis which maintains the
optimality conditions. Notice that this method solves in an unifying approach both
multiplicative and fractional rank-three problems. In the literature various methods
have been proposed to solve either multiplicative or fractional problems, but none
of them (at the best of our knowledge) solves in an unifying way all of the problems
described by P (see for all [23, 24]).

In Section 2 the Optimal Level Solutions method is described in details, with
the aim to provide a new unifying algorithmic framework to approach several of
the different classes of problems studied so far by means of such a method. In
Section 3 the optimal level solutions method is applied to the class of rank-three
programs previously described, and an underestimation function is also studied to
improve the performance of the algorithm. Finally, some computational results are
summarized in Section 4.

2. The Optimal Level Solutions Approach

The aim of this section is twofold, that is to provide a clear general description of
the Optimal Level Solution Method and to give a new unifying algorithmic approach
for the different classes of functions studied so far by means of such a method. In
this light, and for the sake of clearness and completeness, a brief survey is provided
in the followings.

The optimal level solution method has been first proposed by A. Cambini, L.
Martein and C. Sodini in [1, 2] and some first algorithmic results have been given
in [3, 5, 20, 21, 28]. Such an approach has been applied to study various classes
of problems in [4, 7, 22, 25-27]. Later, the optimal level solution method has been
applied to study more general classes of problems, providing also computational
results obtained by extensive numerical experiences [8-11, 13-19].
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2.1. The basics

In order to describe the basics of this parametric approach let us consider the
following class of problems:

P {inf f(x) = g(x,d"x + do)
' reX CR® ’
where the feasible region X # () is a polyhedron, that is a set given by linear
equalities and/or inequalities, f : X — R and ¢ : (X x A) — R are continuous
functions, where A = {§ eER: E=dlz+dy, z € X}. The values £ € A are said
to be feasible levels. Notice that since X is convex the set of feasible levels A is
convex too, that is to say that it is an interval. In this light, the following further
notations can be introduced for the boundaries of A:

Emin = do + inf d'r and Emaz = do + sup dlz.
SCEX CL’EX

Clearly, if X is a compact set then &,,;, and &4, are finite and the set A of feasible
levels is compact too. For each feasible level £ € A we can define:

P, min ge(z) = g(,§)
S lzeXe={zeX: dlatdy=¢}"

where for all £ € A functions g¢ : X¢ — R are assumed to be quasiconvex and such
that arg mingex, ge(x) # 0. Given a feasible level £ € A, the optimal solutions of
the parametric subproblems P are called optimal level solutions; in this light the
following further notations can be introduced:

z(&) = min ge(z) , Sg=argmin ge(x) , S= Se.
(€) = min ge () ¢ = arg min g¢(a) 5LEJA .

Notice that:

e Since g¢(x) is quasiconvex then Sg is a convex set for all feasible levels £ € A

o If ge(z) is strictly quasiconvex then Sg is a singleton for all feasible levels
EeA

e The optimal global solution of P can be found just by analyzing the set of
optimal level solutions S for all the feasible levels £ € A, that is to say:

inf f(z) = inf f(x) = inf 2(&).

z€X €S TN

Obviously, an optimal solution of problem P (if it exists) is also an optimal level
solution and, in particular, it is the optimal level solution with the smallest value.
The idea of this approach is then to scan all the feasible levels, studying the cor-
responding optimal level solutions, until either the minimizer of the problem is
reached or the infimum is obtained along an halfline. The optimal level solutions
method will be algorithmically described by means of the following procedures:

e “Main()” : this procedure initializes the algorithm by determining the set
of feasible levels and by computing a starting incumbent solution, then the
feasible region is partitioned and the various partitions are analyzed by means
of procedure “Visit()”;
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e “Visit()” : this procedure scans iteratively the given set of feasible levels, from
the smallest level up to the biggest one, providing the best visited optimal
level solution (or the infimum reached along an halfline);

e “LevelSolutions()” : this procedure is specifically dependent to the particular
class of functions to be optimized; basically, by means of a sort of sensitivity
analysis on Karush-Kuhn-Tucker conditions, this procedure determines the
set of optimal level solutions corresponding to a specific basis of the polyhe-
dron.

2.2. Parametric search of the optimal level solutions

From an algorithmic point of view, the idea of this method is to iteratively visit the
feasible levels by analyzing the corresponding optimal level solutions. In this light,
starting from a specific optimal level solution z’ it is necessary to determine the
optimal level solutions on the polyhedron X sharing with z’ the same basis. Notice
that this part of the algorithm is very dependent to the particular class of objec-
tive function of the problem and, generally speaking, it is based on a parametric
sensitivity analysis on the Karush-Kuhn-Tucker optimality conditions.

With this aim, some further assumptions on problem P are usually assumed
in order to let the Karush-Kuhn-Tucker conditions become both necessary and
sufficient. Specifically speaking, functions g¢(x) can be assumed to be pseudoconvex
or, following the lines proposed in [10], can be transformed to equivalent quadratic
convex functions v¢(x) such that argmingex, g¢(z) = argmingex, 7¢(z) (in this
last case problem P has been said to be “parametrically-convexifiable”).

In this light, the optimal level solutions of P¢ can be determined by verifying
the Karush-Kuhn-Tucker conditions for problems Pg.

The sensitivity analysis on such Karush-Kuhn-Tucker conditions allows to deter-
mine a set of points #(§) which result to be feasible for levels £ € [¢/, £r] and to be
optimal for levels £ € [£/,&p], so that they result to be optimal level solutions for
levels € € [¢/,&,,], with &, := min {{r, o }. This can be done in a procedure “Lev-
elSolutions()” which is dependent to the particular class of considered problems.

Procedure LevelSolutions(inputs: &', ©'; outputs: z(§), &, £0)

end proc.

Clearly, in order to have a working algorithm some properties need to be verified
by the objective function of the problem, that is to say properties which guarantee
the existence of a basis providing a value &,, > &’. See for example [8-11, 13-18]
for some particular classes of problems studied with this parametric approach.

2.3. Iterative visit

The iterative visit of the feasible region is left to procedure “Visit()”, which ana-
lyzes the feasible levels of the given problem P in increasing order from the level
Estart UP to the level &.,q. In each iteration of the while cycle the procedure starts
from the feasible level & and its optimal level solution 2/, then procedure “Lev-
elSolutions()” is invoked in order to determine a set of optimal level solutions
belonging to the same basis of the polyhedron and corresponding to the feasible
levels [/, &), with & < &,,. By means of subprocedure “MinRestriction()” the infi-
mum/minimum of the continuous single valued function z(§) in the interval [/, &)
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Procedure Visit(inputs: P, Esarts Eendy, Tapares T, UB; outputs: T, UB)
5/ = Estart; z' = xlsmrt;
# Optional : if & < &pg and (&) > UB then
(€', 2] .= Skip(¢, 7', Eena, UB);
end if;

while & < &eng

set [2(£),&r, &o] := LevelSolutions (&', x');

let &, := min {{r, o} and z(§) = f (2(£));

set [£, zing] = MinRestriction(z(§), [£, &m));

if Ziny = —o0 then
T:=[; UB:= —o0; { := 400
else
if ziny < UB then
UB := zjpy;
if £ =400 then T :=[] else T := &(£) end if;
end if;
set & =& if & < Eeng then o’ := (&' end if;
end if;

# Optional : if ¢ <min{&o,&nq} then
(€, 2') = Jump(€,a', €0, éunas UB);
end if;
# Optional : if £ < &pg and Y(£') > UB then
[5/7 JI/] = Skip(ﬁ’, x/’ Eends UB),
end if;
end while;
end proc.

is determined; the obtained value is used to to improve the incumbent optimal
solution T and its value UB. At the end of the iteration the starting level ¢ is
moved ahead and its optimal level solution z’ is updated. Notice that procedure
“MinRestriction()” can be implemented numerically, and eventually improved for
specific functions f(z) (see [9, 26]).

The computing performance of procedure “Visit()” can be improved by means
of the two optional subprocedures “Skip()” and “Jump()” which will be described
in details in the next subsection.

Procedure “Visit()” points out the reason the optimal level solution approach is
said to be a “simplex-like” method. In the very particular case g(z,d’z + do) =
d”z + dy problem P is nothing but a linear programming problem, moreover the
while cycle is nothing but the simplex iterative visit from vertex to vertex of the
polyhedron. In other words, the optimal level solution approach can be seen as
a generalization of the simplex algorithm and hence it has the same algorithmic
complexity of the simplex algorithm (it si very well known that in the worst case
all of the vertices need to be visited).

2.4. Implicit visit and algorithm improvements

As it has been shown in [8-11, 13-17], it is possible to greatly improve the perfor-
mance of the solution algorithm by implicitly visiting some of the feasible levels.
Specifically speaking, it is possible to avoid the visit of the feasible levels which are
not able to improve the incumbent optimal level solution. The main idea (see for
example [10]), is the use of a so called underestimation function, that is a function
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(&) which verifies the following property for all the feasible levels £ € A:

$(§) < min f(z) = 2(§).

reXe

Clearly, such an underestimation function is specifically dependent to the particular
class of functions to be optimized (see for example [9, 10, 13, 15, 17] where some
underestimation functions have been studied). In this light, some feasible levels can
be implicitly visited by means of the following two optional subprocedures:

e “Skip()” : evaluates the opportunity of avoiding the explicit visit of some
feasible levels by means of the underestimation function 1 (¢);

o “Jump()” : tries to implicitly visit some feasible levels in the case o > &p
by means of z(§) = f(2(£)) (which in the interval [{r,{p] results to be an
underestimation function too).

Procedure Skip(inputs: &', @', Eeng, UB; outputs: &', ')
let £ = ¢/, Eona] N {€ € R : (€) < UBY:
if L=0 then & :=E&.q else
¢ :=min{L};
if & < &ena then o’ = argmin{ P} end if;
end if
end proc.

Procedure “Skip()” starts from level & and tries to avoid the explicit visit of the
feasible levels such that UB < 1(§) < mingex, f(z) since they will not provide an
optimal level solution better than the incumbent one. The implementation of this
procedure can be optimized for particular classes of functions; generally speaking a
numerical approach is needed, while some classes of functions allow to analytically
determine min {L}.

Procedure Jump(inputs: £, 2, £o , €ena, UB; outputs: £, x')
€, Zing) = MinRestriction(=(€), €, min{€o, Ecna}]);
if Ziny >= UB then
¢ = €o;
if £ < &eng then o' := argmin{Py } end if;
end if;
end proc.

Procedure “Jump()” looks for the minimum value of z(§) = f(£(£)) in the in-
terval [£p, min{&o, &ena}], if this is greater than or equal UB then there is no need
to explicitly visit those feasible levels since they will not provide an optimal level
solution better than the incumbent one.

Procedures “Skip()” and “Jump()” result to be as more effective as smaller is
the value UB of the incumbent solution. For this very reason, in order to improve
the algorithm performance it is important in procedure “Main()” to initialize the
algorithm computing a “good” starting incumbent solution. Clearly, in the case
procedures “Skip()” and “Jump()” are not used, then the whole set of feasible
levels A is visited and all of the optimal level solutions are examined.
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Procedure Main(inputs: P; outputs: Opt, OptV al)
compute the values &in := do + infrex dXz and &nas = do + SUpP,¢c x dx;
if Emin = &max then Opt := arg IIllIl{mem}, OptVal := f(Opt);
else let gbig >> 0 and set 51 = max{—fbig, gmin}; 52 = min{gbz’ga fmax};
compute | := argmin{ P, } and 25 := argmin{ P, };
set Enp = % and compute 2y, := argmin{ P, };
if f(2h) < f(2h) then T := x| else T := 2)), end if;
if f(zhy) < f(T) then T := 2, end if;
Set UB := f(T);
if &2 < &maa then [T,UB| := Visit(P, &, Emax, 5, T, UB) end if;
if € > Emin then [T,UB] := Visit(P, =&, —Emin, 4, T, UB) end if;
[z, UB] := Visit(P, &1, &2, 2,7, UB);
Opt :=7T and OptVal := UB,;
end if ;
end proc.

2.5. Algorithm initialization

It is now possible to provide the procedure to be launched in order to solve problem
P, that is procedure “Main()”. Such a procedure has to manage both the case of
an unbounded region and the case of numerical problems given by feasible levels
which are very big in absolute value. For this very reasons, it is better to partition
the feasible region into at least three parts, a central compact one and two other
parts eventually unbounded. In this light, a value &;, >> 0 is set and the set
of feasible levels is partitioned in the intervals [Emin,&1], [€1,&2] and [€2, &max)-
Three optimal level solutions (2}, x4, 2/,) are computed in order to determine a
starting “good” incumbent optimal solution T and a “good” incumbent optimal
value “UB”. The three intervals [{min, 1], [€1,&2] and [€2, &mnax] are then visited by
means of procedure “Visit()”. In order to improve the performance of the algorithm
(subprocedures “Skip()” and “Jump()” are as more effective as smaller is the value
UB) the first partitions to be visited are [£in, &1] and [€2, &maz] since they are the
ones where the problem can reach the infimum in the case no mimimum exists. It is
now worth noticing that, for the sake of convenience, procedure “Visit()” scans the
feasible levels in increasing order. On the other hand, in the case &,,;;, = —inf it is
not possible from an algorithmic point of view to visit the feasible levels [€in, £1] in
increasing order. To manage this particular case the following problem equivalent
to P can be actually studied:

_ 5. Jinf f(x) = g(x,d"z + do)
P_P'{ reXCR® ’

where §(z,€) = g(x, —€), d = —d and dy = —dy. Notice that the feasible region is
untouched while the objective function has been simply rewritten in an equivalent
form. Since the new linear function d’z + dy allow the visit of the feasible levels
in increasing order, it correspond to the visit of the levels in decreasing order with
respect to d x + dp.

2.6. Final notes

The optimal level solutions approach is a simplex-like method, that is to say that
in each iteration given a certain basis of the polyhedron X a set of optimal level
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solutions is determined and visited until either the feasibility or the optimality is
lost. At that time, a new basis is determined and a new iteration starts. Generally
speaking, the correctness of these algorithms is given by the fact that the optimal
solution of P (if it exists) is also an optimal level solution and that all of the
optimal level solutions are visited. The convergence of these algorithms is given
by some assumptions on the objective function, assumptions aimed to guarantee
that &, > & and that a basis is visited at most a finite number of times (for
the problems studied in [8-11, 13-18] it is proved that a basis can be visited just
once); in this light the convergence follows noticing that a polyhedron has just a
finite number of basis. Clearly, since these are simplex-like algorithms, they have
the same complexity of simplex algorithm, that is to say that in the worst case
all of the vertices must be visited. Actually, the numerical experiences done so far
provide very good time performances (see [8-11, 13-18]).

3. Solving a class of rank-three programs

Let us now consider the following class of low-rank nonconvex problems involving
linear and quadratic functions:

p. Jinf f(2)=52"Qu+ ¢ "z + ("2 + co)¢(d"w + do)
' reX={zxeR": Az<b} ’

where A € R™" b € R Q € R"" is symmetric and positive definite,
c,d,g € R", ¢ #0,d # 0, ¢ and d linearly independent, co,dy € R and X # 0
(notice that if ¢ = ad, a € R, then problem P reduces to a rank-two problem
belonging to the class of programs already studied in [15]). The scalar func-
tion ¢(&) is assumed to be continuous and to be defined for all the values in
A= {f eER: ¢=dloz+dy, z € X}. Moreover, function ¢(&) is assumed to even-
tually change its increasing /decreasing behavior just a finite number of times (for
example, ¢(£) may be monotone, convex/concave, or a polynomial).

The aim of this section is to show how problem P can be solved by means of
the optimal level solutions approach. Let us recall that in order to find a global
minimum (assuming that one exists) it would be necessary to solve problems P
for all the feasible levels £ € A. In this section we will show that this can be done
by means of a finite number of iterations, taking into account the results and the
detailed description provided in the previous section. In this light, we just need
to determine for this specific problem the procedure “LevelSolutions()” and the
underestimation function ().

3.1. Determining the optimal level solutions

The following parametric subproblem can be obtained just by adding to problem
P the constraint d'z + dg = &:

P inf fe(x)
& rE€Xe={zeR": Az <b, dla+dy=¢}"

where:

fe(z) = %xTQx +qlz+ (CT£E +co)o(§) = %:pTQa: + (¢ + ¢(§)C)Tx + o(&)co.
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Subproblem F% is strictly convex and quadratic, hence it always admits an unique
minimum point, which is the so called optimal level solution.

Given a specific feasible level £ € A the corresponding optimal level solution x’
is the optimal solution for the quadratic programming problem P :

min 327Qx + (g + ¢(&)e) T + ¢(&)co
ng : ACL‘ S b
ATz = ¢ — dy

Being Py strictly convex the following necessary and sufficient Karush-Kuhn-
Tucker optimality conditions hold:

(Qz+q+ ¢(&)e= ATp +dx
dlz =¢ —dy
Az<b feasibility (1)
n=0 optimality
pl'(Az —b) =0 complementarity
peR™ AeR

These conditions admit at least one solution (2, i/, \'), where 2/ is unique due to
the strict convexity of Pe. Let us denote with A;, ¢ € {1,...,m}, the i-th row of
matrix A; we can define B’ = {i : A2’ =0b;, i =1,...,m} as the set of binding
constraints, hence it is possible to determine the largest subset B C B’ such that
the rows A;, ¢ € B, and the vector d are linearly independent. It is then possible
to define N = {1,...,m} \ B and denote with Ap and Ay the submatrices of A
made by the rows in B and N, respectively; analogously, the vectors bg, by, iz
and py can be defined too.
The Karush-Kuhn-Tucker optimality conditions become:

Qx' —Afplp —dN = —q — ¢(&')e
Apa’ =bp , (2)
dT ! =¢ —dy

which can be rewritten in the following matrix form:

2! (L Q —A% —d
S /‘L/B = bp , with S=|Ag 0 0
N ¢ —dy -0 0

Ap
dT
be nonsingular. This allows to show that:

Notice that the rows of are linearly independent so that matrix .S results to

x! —q 0 —c
e | =571 bs | +€STHO | +oE)STH| 0
N —dy 1 0

For the sake of simplicity, it is worth introducing the following notations:

Uy —q Vg 0 Wy —C
u, | =8 bg |, v | =5 0], lw, | =50 |,
Uy —dy V) 1 w) 0
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so that
.CC/ Uy Vg Wy
e | = uu | +& | vu | +0(&) | wp
)\/ (I3 U W)

Let us now perform a sensitivity analysis by increasing the feasible level from
¢ up to & > ¢, with (£ — &) > 0 small enough to guarantee that the optimal
level solutions share the same basis B. Let us denote with (Z(§), p5(§), N (€§)) be
the solutions of the corresponding Karush-Kuhn-Tucker necessary and sufficient
optimality conditions. It results:

z(&) x Vg Wy
@) | = Wy | +(E=&) | v | +(6(8) — (&) | wu (3)
N(€) N vy Wy

It is worth noticing that from #(§) = 2’ 4+ (£ — &)vy + (¢(&) — H(£)) w, it yields
that the optimal level solutions lie in a straight segment in the two following cases:

o w; =0,
e $(&) is a linear function,

otherwise a curve is produced.

From S[vg, vy, valT = (0,0, 1T and S[wy, wy, wy]T = [—¢,0,0]T it yields:
Qu, = Ar‘gvu + dvy (4)
Apv, =0 (5)
d"v, =1 (6)
Quy = ALw, + dwy —c (7)
Apwy, =0 (8)
dTw, =0 (9)

By means of simple calculations, the following implications hold:

i) d # 0 and (6) imply v, # 0
ii) in the case w, # 0, (6), (9) and i) imply that v, and w, are linearly inde-
pendent
iii) (4), (5), (6) and Q positive definite imply vy = vIQu, >0
iv) (4), (8) and (9) imply wlQuv, =0
v) (5), (6), (7) and iii) imply wy = vlc

Ap
dT
is a square nonsingular matrix, then (8) and (9) imply w, = 0, so that the optimal
level solutions sharing the same basis lie in a segment (segment which belongs to
an edge of the polyhedron X).

Notice also that i) and i) imply that for all £ > &', with (£ —¢’) > 0 small
enough, it is:

In the case card(B) = n—1, that is to say that Ap has n—1 rows and hence

o' #2(8) = 2"+ (§ — e + (d(€) — d(€))) wa.

10



April 5, 2017

Optimization Rank3'RAOTA2016 revised BIS

Procedure LevelSolutions(inputs: £, 2'; outputs: z(§), {r, £0)
let § > 0, be the step parameter; determine x5 := arg min{ P4 5};
let B’ := {Z D Ar = b, A,a:g =b,1=1,... ,m};

determine B C B’ such that rank [137?} = rank [/jﬁl] = card(B) + 1;

Q —AL —da
set S:=|Ap 0 0 [;compute S~! and:
-0 0

Uy —q Vg 0 Wy —c
[uu‘| 2571 [ bB ‘| 7 lvu‘| . 571 [0‘| , [MH] . 571 [ 0 ‘|’
U) —dy U 1 wy 0

set &p 1= sup{{ > &1 A (ug + evp + d(e)ws) <b Ve € (£,€)};
if B =10 then set £o := + inf
else set {o :=sup{€ > & : (uy + ev, + dle)w,) <0 Ve € (¢, }
end if;
set 2(£) := (2" + (£ = vz + () — d(£)) wa);

end proc.

Clearly, the Karush-Kuhn-Tucker conditions are verified for levels ¢ > ¢’ such that:

feasibility conditions : Az(§)<b ,

optimality conditions : p'5(£)<0

In this light, the following values can be defined:

£p = sup{€ > € - AB(e)<b Ve € (¢,€)} < sup{€ > ¢ - A2(£)<b)

€0 = sup{é > € ¢ pl(€)<0 Ve € (€,€)} < sup{€ > € : yifp(€)<0},
as well as the value &, = min {{p, o }. Obviously, in the case B = (), that is to say
that the optimal level solutions are interior points, it is o = + inf.

Notice that for £ € [¢,6,,] both the optimality and the feasibility of Z(&) are
guaranteed, so that () represents a set of optimal level solutions. Starting from
#(&m) we can iterate the process determining a new set of optimal level solutions.
The objective function can be evaluated over the optimal level solutions in order
to determine the global optimal solution of problem P. This leads to the use of the
following function:

2(&) = f(£(8)) -

By means of the results obtained in this subsection, a procedure “LevelSolu-
tions()” can then be described.

In order to find a basis B guaranteeing a value &, > &', a numerical approach
is used. Specifically speaking, at the beginning of procedure “LevelSolutions()”
an optimal level solution z (belonging to the feasible level ¢ + §) is computed,
with a step parameter § > 0 small enough to guarantee that both 2’ and zf share
the same basis. Notice also that B C B’ can be easily determined by looking
ilﬁ/ or by selecting iteratively

Ap Ap
rank <[ }) — 1 rows of Aps such that rank <[ }) = card(B) + 1.

for the biggest nonsingular square submatrix of

dr dr
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Notice finally that in the case £ < &o the function z(§) for & € [€r, {o] represents
an underestimation function for the objective function f(x) over the region {z €
X: ép<dloz+dy < €0} (see Subsection 2.4).

3.2. Correctness and convergence

The correctness of the proposed algorithm follows since all the feasible levels are
scanned (either explicitly or implicitly) and the optimal solution, if it exists, is also
an optimal level solution.

It remains to discuss the convergence (finiteness) of the algorithm, that is to say
that the procedure stops after a finite number of steps. In this light, first notice that
in procedure “Visit()” at the beginning of every iteration of the while cycle the
procedure “LevelSolutions()” determines a new basis (set of binding constraints)
which results to be different with respect to the one of the previous iteration. In
particular:

o if £ < &p a new binding constraint enters the basis;
o if £o < &F one of the binding constraints leaves the basis.

Recall also that the use of a step parameter guarantees that &' < &,, = min {¢p, o }.
Even if every feasible level is visited just once, the same basis of binding constraints
may be obtained in different nonconsecutive iterations of the while cycle. In any
case, the same basis can be obtained a number of times not bigger than the finite
(recall the assumptions) number of times that function ¢(§) changes its increasing
/decreasing behavior. For this very reason, taking into account that in a polyhedron
there is a finite number of possible basis, every function ¢(§) which changes its
increasing /decreasing behavior a finite number of times guarantees the convergence
of the method. As particular cases, notice that a monotone, or a convex/concave,
or a polynomial function ¢(§) guarantees the convergence of the method.

Finally, recall that the optimal level solution method is a simplex-like one, hence
from a computational point of view it has the same complexity of the simplex
algorithm.

3.3. Underestimation function

A key role in the computational resolution of problem P, that is in procedure
“Skip()”, will be played by the use of a proper underestimation function, that is a
function (&) which verifies the following property for all the feasible levels &:

min f(z) > ¢(§).

$€X5

In order to determine such an underestimation function the following notations can
be introduced:

oi=d'Q '¢q—dy , o.=c"'Q g co.

In this light, it is worth studying the objective function f(z) over R™ with just the
constraint d”'z = & — dg, instead of the whole region X. This leads to the following

12
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strictly convex problem:

min 127Qz + (¢ + ¢(&)c) Tz + ¢(&)co
dTr = ¢ — dy
reR"

The solutions can be determined by solving the corresponding necessary and suf-
ficient Lagrange optimality conditions. Specifically speaking it results:

Qr+q+ o(&)c= XM
deL‘Zg—do s
AeER

so that

{ x=Q ' (=g —¢()c+ )
d"Q7 (g~ ¢(€)c+Ad) =€ —do

By means of simple calculations we get

£+ 0(8)dTQ e+ 0y

AE) O

Qfl

= rgrg 64+ 6O (TQ e d —dTQ7d ) + (0ad — g)].

#(§)

The following underestimation function can then be used for £ € A:

) 1. 1 . 1,
V() = F(3(€) = SMOP Q7 — Lo(©T Qe ~ oe0(6) — 1a"Q .
that is
v©) = 3 S 1 Lo |0 Q| + 00 + o) Sras — oe(6) — 307

Clearly, the points () belonging to the feasible region X of problem P are optimal
level solutions corresponding to levels €. This happens for the levels € € A such that
Az (&) <b; these are in general nonlinear inequalities, that can be solved analytically
just for particular cases (for example when function ¢ is linear or quadratic).

3.4. A particular case

In this section we aim to discuss the particular case of problems P having a linear
function ¢(¢), that is ¢(¢) = €. Clearly, if Q + cd” + dc’ is a positive semidefinite
matrix then problem P results to be a convex quadratic problem and can be solved
by means of any method looking for a local minimum. In the case matrix Q +cd” +
dc” is not positive semidefinite the problem can be solved by specializing the results
obtained in the previous sections.

First of all notice that (3) reduces to:

Z(&) z’ Vg + Wy
(&) | = | wp | + (€~ £ Uy + Wy
N(€) N U\ + Wy

13
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This points out that in this particular case the set of optimal level solutions is
given by the union of segments. Moreover, it is not possible in procedure “Visit()”
to obtain the same basis of binding constraints in two different iterations of the
while cycle, thus trivially guaranteeing the convergence of the method. Values &p
and £o can be easily computed by means of the following linear inequalities:

§r = SUP{g > él (€ - g)(”m + wy ) <b — Ax'},

o =sup{{ > ¢ (€ — &) (vu +wp)< — ppt

Functions z(§) and () result to be single valued quadratic functions, so that
both the minimum of z(§) over an interval in procedure “LevelSolutions()” and
the set {£€ € R : ¢(§) < UB} in procedure “Skip()” can be very easily computed in
an analytical way.

Finally, it is worth noticing that in this particular case problem P can be ap-
proached also by means of branch and bound techniques (see for example [12]).
In this light, notice that branch and bound methods allow to solve “small” di-
mension problems (due to their exponential complexity) and that they determine
an “e-optimal” solution with respect to a tolerance parameter ¢ > 0 (needed to
guarantee the convergence in a reasonable time). On the other hand, the method
proposed in this paper determines the exact global optimal solution.

4. Computational test

The previously described procedures have been fully implemented with the soft-
wares MATLAB 9.1 R2016b and Gurobi 6.5.2 on a Mac OSX computer having 16
Gb RAM and one i7 quad core processor at 3,5 GHz. For the sake of convenience, in
the computational test we considered the case ¢(£) = £. Problems with a number
of variables from n = 10 to n = 100 and a number of inequality constraints equal
tom = [%n} have been considered. The problems have been randomly created by
using the “randi()” MATLAB function (deeply speaking, random integer numbers
in the interval [-10,10] generated with uniform distribution). In particular, matrix
@ € R™ "™ has been determined by generating a random symmetric matrix and by
letting it diagonal dominant, matrix A € R™*™, vectors ¢,d,q € R" and scalars
o, dp € R have been generated directly with the “randi()” function, vector b € R™
has been generated taking into account to guarantee the feasibility of three random
vectors (deeply speaking, given three random vectors vy, va, v3 the componentwise
maximum w = max{Avy, Avy, Avs} is computed and b determined as b = w + wy
where wy is another random nonnegative vector). Clearly, the randomly created
polyhedrons results to be not necessarily compact. Within the procedures, the
quadratic problems have been solved with the Gurobi engine. Various instances
have been randomly generated and solved. In particular, for the values of n equal
to 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, we solved a number of random problems
equal to 1000, 1000, 600, 300, 160, 80, 60, 40, 20, 20, respectively. The average
number of iterations (that is, number of solved subproblems) and the average CPU
times spent by the algorithm to solve the instances are summarized in the following
table and given as the results of the test.
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n | Iterations | Seconds
10 29.674 1.0862
20 83.331 4.1502
30 153.25 11.158
40 234.35 24.368
50 325.24 50.111
60 434.37 93.824
70 539.39 156.69
80 658.08 251.53
90 762.97 374.42
100 828.05 501.92
Conclusions

The “optimal level solutions” method has been used in the literature to solve vari-
ous classes of problems. In this paper a new unifying algorithmic scheme is provided
to implement it and to apply it to various classes of programs. The “optimal level
solutions” method is then used to solve a wide class of rank-three problems involv-
ing linear and quadratic functions. The correctness of the method guarantees that
the global minimum is found even in the case of unbounded feasible regions.
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