
– 1 –

Protected pointers in wireless sensor networks

Gianluca Dini, Lanfranco Lopriore
Dipartimento di Ingegneria dell’Informazione, Università di Pisa, via G. Caruso 16, 56126 Pisa, Italy

E-mail: {g.dini | l.lopriore}@iet.unipi.it

Abstract — With reference to a distributed architecture consisting of sensor nodes connected
by wireless links in an arbitrary network topology, we consider a segment-oriented
implementation of the single address space paradigm of memory reference. In our approach,
applications consist of active entities called components, which are distributed in the network
nodes. A component accesses a given segment by presenting a handle for this segment. A
handle is a form of pointer protected cryptographically. Handles allow an effective
implementation of communications between components, and key replacement. The number of
messages generated by the execution of the communication primitives is independent of the
network size. The key replacement mechanism is well suited to reliable application rekeying
over an unreliable network.

Keywords: cryptographic key, key replacement, sensor node, single address space, symmetric-
key cryptography.

1. INTRODUCTION

We shall refer to a distributed architecture consisting of sensor nodes connected by a wire-

less network [1]. In an architecture of this type, stringent restrictions exist in terms of the hard-

ware complexity, computational power and energy consumption of each node [13]. Memory is

a scarce resource, and hardware limitations prevent utilization of an intrinsically complex de-

vice such as a memory management unit. Efficiency of the networking protocols in both terms

of processing power and storage requirements is a significant parameter [6]. The number of

messages transmitted across the network must be kept low, as a consequence of the high energy

cost of wireless communications [18]. Consequently, the design of a wireless sensor network

is largely different from that of a classical wireless or wired-line network.

We shall model a distributed application as the result of the joint activities of components

distributed in the network nodes. A component is an active entity that generates memory ac-

cesses; thus, a component can be a scheduled computation [2], or, in an event-driven environ-

ment, the activity produced by a function activated by a hardware interrupt [8], [17]. Each net-

work node can host a single component. A peculiar problem of wireless sensor networks is the

distribution and management of the cryptographic keys, which are necessary for message trans-

mission among the network nodes [22], [28]. Lack of physical protection, unattended position-

ing and limited resources complicate the incorporation of effective key management solutions

[10]. We approach this problem from an application-based point of view: all the components

– 2 –

of a distributed application share a common application key that is used for communication

among these components according to a symmetric-key encryption scheme [26].

We shall refer to the single address space paradigm of memory reference [4], [12], [19].

In this paradigm, the meaning of an address is unique in the whole system and is independent

of the application that generates this address. In a distributed system, the main advantage of the

single address space approach is simplicity in remote accesses. The components of a distributed

application running on different nodes can refer a given information item using the address of

this information item, which is unique system-wide.

More specifically, we divide the single address space into partitions, each partition being

supported by the physical memory resources of a single sensor node. A component directly

accesses the whole partition of its own node, for both read and write. The accesses to the parti-

tion of a different node occur on a segment basis. A segment is a contiguous memory area that

is entirely contained within the boundaries of a single partition. The component in a given node

can access the contents of a segment that is part of the partition of a different node, to read or

modify these contents, by using a handle for that segment. A handle is a form of pointer that

references a segment and is protected cryptographically [20], [21].

The rest of this paper is organized as follows. Section 2 illustrates our application model

with special reference to partitions, segments and components. Section 3 analyses the concept

of a segment handle, and introduces a set of system primitives, the communication primitives,

which form the application interface of the distributed memory system. The problems con-

nected with application key replacement are investigated in special depth. Section 4 discusses

the proposed organization from a number of salient viewpoints including outdated key treat-

ment, handle forging and stealing, storage requirements, and the network traffic generated by

execution of the communication primitives. Section 5 gives concluding remarks.

2. THE APPLICATION MODEL

2.1. Partitions and segments

Let us consider a local network consisting of up to 2d nodes connected by wireless links.

The nodes share access to a single address space of size 2t bytes. This virtual space is divided

into 2d partitions, and the i-th partition is associated with the i-th node (Figure 1). The size of a

partition is 2t-d bytes. An address in the virtual space consists of a d-bit node identifier and a (t

- d)-bit offset in the partition of this node (Figure 2).

– 3 –

A segment S is identified by triple {N, B, L}, where quantity N (d bits) specifies the node,

and consequently the partition, of that segment; quantity B (t - d bits) specifies the segment

base, i.e. the starting address of the segment in the partition; and quantity L expresses the

segment length (Figure 3). Segments can overlap. This means that a memory address can be

part of more than a single segment. As will be made clear shortly, segments are the basic units

of data transmission between the nodes.

Figure 1. Configuration of the single address space featuring a partition for each node.

Figure 2. Configuration of an address in the single address space.

Figure 3. A segment S in the single address space. The segment is identified by the name N of the node, the
segment base B and the segment length L.

.

– 4 –

2.2. Components

As anticipated in Section 1, an application consists of a set of components distributed in

the network nodes, and a given node may host a single component. At any given time, a

cryptographic key, the application key, is associated with each application, and is used for

communication among the components of this application. The application key may well be

changed, as is required, for instance, when a component leaves the application, to prevent that

component from taking advantage of the key any longer. Let k0, k1, … be the ordered sequence

of the keys assigned to application A. The order number of a given key in the sequence is called

the version of that key. Each given node holds an application key and the specification of the

version of this key; the application key will be used by the component running in that node.

Components communicate via the exchange of messages. Let cM and cN be two components

of application A being executed in nodes M and N, respectively. Suppose that cM holds key k’

of application A, and let u be the version of this key. Suppose also that cM sends a message m

to cN (Figure 4). The message consists of a control part and a data part. The control part is in

plaintext, the data part is encrypted by using a symmetric-key cipher and key k’. Besides the

necessary routing information, the control part includes application name A and the version u

of key k’. These information items will be used in the recipient node N to decrypt the data part.

Throughout this paper we assume that the cipher is used in an authenticated encryption mode

such as Counter with CBC MAC (CCM) mode, which has been designed to provide both

confidentiality and authentication [9].1

In detail, suppose that the recipient component cN holds key k” of application A, and let v

be the version of this key. When message m is received in node N, the version u of application

key k’ used to encrypt m is read in the control part of the message and is compared with the

version v of k”:

1 Intuitively, the same encryption key can be used for both confidentiality and authentication. At the sending side,
the header and the payload are first authenticated. The resulting Message Identification Code (MIC) is then
appended to the payload and the bundle is finally encrypted. At the receiving side, the ciphertext is decrypted into
a payload and a MIC. Then, the MIC is verified against the received header and payload.

Figure 4. Sending a message m from node M to node N. cM and cN are components of application A. The control
part of m includes application name A and the version u of the key used to encrypt the data part.

– 5 –

 If u = v then the key held by the recipient component cN matches the key that was used by

the sender cM to encrypt message m. cN is in the position of using this key to decrypt the

message.

 if u < v then the key used by cM to encrypt message m is outdated and the message should be

discarded. A negative reply is sent to node M.

 if u > v then cN holds an outdated key that should be replaced; this issue will be considered

in depth in the foregoing Section 3.3.

If the communication path from node M to node N includes other intermediate nodes, the

control part of message m will be generally read by these intermediate nodes. This will be

necessary for message routing, for instance. If an intermediate node includes a component of

application A, this component will be in the position of decrypting the data part and accessing

the message contents. This is not a protection violation, as we hypothesize that all the

components of the same application are mutually trustworthy. On the other hand, an

intermediate node that does not contain a component of application A will be precluded from

accessing the data part, as it does not possess the key that was used to encrypt the message.

Our implementation of a distributed memory model is supposed to be layered on a routing

service providing end-to-end connection between a sending component and a recipient

component. A service of this type may be subject to many attacks (e.g. Sybil, blackhole,

sinkhole, and HELLO flood [14]), which may endanger network integrity and availability, and

possibily, confidentiality of the transported data. While countermeasures have been devised to

implement forms of secure routing [14], the routing service is beyond the scope of this paper.

Instead, our design concentrates on preventing possible attacks against the memory

management layer from compromizing the integrity and the confidentiality of the single address

space.

3. THE COMMUNICATION MODEL

3.1. Handles

Let S = {N, B, L} be a segment, A be an application, and k be the key of this application. A

handle H referencing S has the form {N, V}, where node name N is in plaintext, and quantity V

is a validation field obtained by encrypting quadruple {N, B, L, E} with a symmetric-key cipher

and key k (Figure 5). Quantity E is a random number that is used as a “number used once”

(nonce) [26]. As will be shown later, the nonce is used to prevent forms of replay attacks; it

– 6 –

allows us to distinguish a fresh request of segment access performed by using handle H from

an illegitimate replay of a previous request performed by using the same handle.

Figure 6 shows the transformation of handle H = {N, V} into plaintext, and the validation

of the handle. Key k is used to decrypt validation field V and obtain quantities N*, B, L and E*.

Quantity N* is compared with partition name N and quantity E* is compared with nonce E to

validate H: if N* = N and E* = E, H is valid and it references segment S = {N, B, L}.

3.2. Communication primitives

A set of three primitives, the communication primitives, forms the application interface of

the distributed memory system (Table I). Execution of a communication primitive in a given

node (the current node) implies interactions with a recipient node, and the components of both

Figure 5. Generation of handle H = {N, V} referencing segment S = {N, B, L} with nonce E.

Figure 6. Validation of handle H = {N, V} referencing segment S = {N, B, L} with nonce E.

Table I. Communication primitives.

readSegment(S, addr)
Copies the contents of segment S from its present network position into a memory area at address addr of
the partition of the current node.
writeSegment(addr, S)
Replaces the contents of segment S with quantities taken from a memory area at address addr of the par-
tition of the current node.
replaceKey()
Reads a new application key and its version from the key segment reserved for the component running in
the current node, and uses these quantities to update the application key in the current node.

– 7 –

nodes should be part of the same application. Let A be the application and k be the application

key. Interactions consist of messages that are encrypted by using a symmetric-key cipher with

key k.

In the rest of this section, we shall analyse the actions caused by execution of each

communication primitive in detail. To simplify the presentation, we shall never mention the

actions illustrated in Section 2.2, which are necessary when a message is received by a given

node to validate the key used to encrypt the message against the key stored in that node. In the

presentation, we shall take advantage of an informal notation to indicate the messages that are

exchanged by the nodes involved in a communication. In this notation, M N : string is a

message sent by node M to node N, and the string suggests a specific message implementation.

Accessing segments

Let S = {N, B, L} be a segment in the partition of node N. A first example of a

communication primitive is readSegment(S, addr). This primitive copies the contents of

segment S from node N into a memory area of length L that starts at address addr of the partition

of the invoking node, say node M. Let A be the application of the component issuing

readSegment(), and let k be the key of this application. The actions caused by execution of this

primitive are as follows (Figure 7):

 Node M sends a message to node N asking for a random number that will be used as a

nonce (message M1).

 Node N generates a nonce E and sends it back to node M (message M2).

 Node M generates a nonce F, and uses key k to assemble a handle H = {N, V} referencing

segment S = {N, B, L} with nonce E (see Figure 1). Nonce F and handle H are sent to node

N (message M3).

 Node N uses key k to decrypt handle H into quadruple {N*, B, L, E*} (see Figure 2). Then,

quantity N* is compared with node name N, and quantity E* is compared with nonce E to

validate H: if N* = N and E* = E, H is valid and references segment S = {N, B, L}.

 If handle validation fails, node N returns a negative reply to node M that raises an exception

of violated protection and terminates execution of readSegment() unsuccessfully;

otherwise

 Node N assembles a message M4 including nonce F from message M3, the specification

{N, B, L} of segment S, and the contents of S. This message is encrypted by using

application key k and is sent to node M.

 Node M uses key k to decrypt message M4 into quantities F*, N*, B*, L*, and contents.

– 8 –

Quantity F* is compared with nonce F, and triple {N*, B*, L*} is compared with the

specification {N, B, L} of segment S; if matches are found, M4 is valid.

 If validation of M4 fails, node M raises an exception of violated protection and terminates

execution of readSegment() unsuccessfully; otherwise

 Node M copies contents from message M4 into a memory area of length L starting at ad-

dress addr of its own partition.

At points 3 and 6, in the transmission of messages M3 and M4, key k is only held by the

components of A; it follows that a component of a different application, being executed, for

instance, in an intermediate node in the path between node M and node N, will not be able to

decrypt the messages, as it does not possess the key. At point 6, in message M4, nonce F is

aimed at demonstrating freshness of this message, to avoid that an adversary can replay

contents, and segment specification {N, B, L} is compared with triple {N*, B*, L*} to allow the

invoking node M to get certain that the returned contents correspond to the specified segment.

Let S = {N, B, L} be a segment in the partition of node N. The writeSegment(addr, S)

communication primitive copies the contents of a memory area of length L starting at address

addr of the partition of the current node, say node M, into segment S. Let A be the application

of the component issuing writeSegment(), and let k be the key of this application. Execution of

this primitive is as follows (Figure 8):

 Node M sends a message to node N asking for a random number that will be used as a

nonce (message M1).

 Node N generates a nonce E and sends it back to node M (message M2).

 Node M generates a nonce F and a handle H = {N, V} referencing segment S = {N, B, L}

with nonce E. Message M3 is assembled including nonce F, handle H, and the contents of

a memory area of length L starting at address addr of the partition of M. This message is

encrypted by using key k, and is sent to node N.

 Node N uses key k to decrypt message M3 into handle H = {N*, B, L, E*} and contents

Then, quantity N* is compared with node name N, and quantity E* is compared with nonce

E to validate H: if N* = N and E* = E, H is valid and references segment S = {N, B, L}.

M1 M N : request

M2 N
 M N : F, N, {N, B, L, E}k

M4 N {F, N, B, L, contents}k

Figure 7. Messages exchanged in a successful execution of the readSegment() communication primitive.

– 9 –

 If handle validation fails, node N returns a negative reply to node M that raises an exception

of violated protection and terminates execution of writeSegment() unsuccessfully;

otherwise

 Node N replaces the contents of segment S with the new contents from message M3.

Finally, node N returns a positive reply to node M in the form of a message M4 encrypted

by using key k and containing nonce F and the specification {N, B, L} of segment S.

At point 3, the encryption of message M3 indissolubly links the segment contents to the

handle, and nonce E is aimed at proving that the message is not a replay. Similiarly, at point 6,

in message M4, nonce F and segment specification {N, B, L} prove that the reply is actually

relevant to the current execution of the primitive and is not a replay.

3.3. Key replacement

In each application, a component, called the application controller, is responsible for the

distribution of a new version of the application key to all the other components of that

application. To this aim, the application controller associates a cryptographic key, the base key,

and a segment, the key segment, with each given component. Key segments are all stored in the

partition of the node where the application controller is running. Each component receives its

own base key. It follows that while the components of a given application share the same

application key, each component holds its own base key. Base keys are used to replace the

application key as follows. The application controller generates a new key at random, and

copies this new key and its version into the key segment of each component. Both these items

are stored in ciphertext, and the encryption key is the base key of the given component.

Afterwards, the controller sends a key replacement message to all the components.

Consequently, each component assembles a handle referencing its own key segment, and uses

this handle to ask the controller for the contents of this segment. On receipt of the reply from

the controller, the component deciphers these contents by using its own base key, and uses the

results to update the application key.2

2 We wish to remark that we have a base key for each component (i.e. sensor node). Thus, different components
of the same application use different base keys for communication with the application controller. In contrast, the

M1 M N : request

M2 N
 M N : F, N, {N, B, L, E, contents}k

M4 N {F, N, B, L, ACK}k

Figure 8. Messages exchanged in a successful execution of the writeSegment() communication primitive.

– 10 –

In more detail, let ac be the controller of application A, and let C be the node where ac is

running. Let us refer to component cM of application A being executed in node M. Furthermore,

let bkM be the base key of cM (held by both the controller and cM), and let KSM = {C, BM, LM}

be the key segment that the controller has reserved for cM in the partition of node C, where BM

and LM are the base and the length of KSM. Now suppose that k’ is the current key of application

A, and the version of k’ is u. Suppose also this key should be replaced by a new key k” whose

version is v, where v > u. To replace the key, the controller generates k” at random, and inserts

this key and its version v into key segment KSM; both these quantities will be encrypted by using

base key bkM. Then, the controller issues a key replacement message. On receipt of this

message, component cM executes communication primitive replaceKey() producing the actions

that follow (Figure 9):

 Node M sends a message to node C asking for a random number that will be used as a

nonce (message M1).

 Node C generates a nonce E and sends it back to node M (message M2).

 Node M generates a nonce F, and uses base key bkM to assemble a handle H = {C, V}

referencing segment KSM = {C, BM, LM} with nonce E. Nonce F and handle H are sent to

node C (message M3).

 Node C uses base key bkM to decrypt handle H into quadruple {N*, BM, LM, E*}. Then,

quantity N* is compared with node name C, and quantity E* is compared with nonce E to

validate H: if N* = C and E* = E, H is valid and it references key segment KSM = {C, BM,

LM}.

 If handle validation fails, node C returns a negative reply to node M that raises an exception

of violated protection and terminates execution of replaceKey() unsuccessfully; otherwise

 Node C assembles message M4 including nonce F from message M3, the specification {C,

BKS, LKS} of key segment KSM, the new application key k” and its version v (quantities k”

and v are taken from KSM). This message is encrypted by using base key bkM and is sent to

node M.

 Node M uses base key bkM to decrypt message M4 into quantities F*, C*, B*, L*, k”, and

v. Quantity F* is compared with nonce F, and triple {C*, B*, L*} is compared with the

specification {C, BM, LM} of KSM. If matches are found, M4 is valid.

 If validation of M4 fails, node M raises an exception of violated protection and terminates

execution of replaceKey() unsuccessfully; otherwise

application key is shared by all the components of the same given application; this key make interactions possible
between the components.

– 11 –

 Node M uses the new key k” and its version v to replace the current key and the

corresponding version.

We wish to remark that each component executes the replaceKey() primitive as a

consequence of receipt of a key replacement message from the application controller. The

controller sends this message after inserting a new key (generated at random) and its new

version (generated by incrementing the previous version) into every key segment; these actions

are not part of replaceKey().

Base key bkM is only held by application controller ac and component cM, and is never

transmitted across the network, so it cannot be captured. It follows that any other component

will not be able to execute replaceKey() successfully to read the new key, as it does not possess

the base key. This is true even for the other components of application A. In this way, we prevent

a deviated component from taking advantage of an access to key segment KSM in a form of an

identity stealing.

4. DISCUSSION

4.1. Outdated keys

The mechanism for key replacement, introduced in Section 3.3, is able to deal with

situations in which a component omitted to comply with one or more requests of key

replacement. Let us consider application A, let ac be the controller of this application, and let

C be the node where ac is running. Suppose that the key of application A has been changed

from k’ (version u) to k” (version v > u), however component cM of application A in node M

has not updated the key. Suppose also that a new key replacement takes place, from k” (version

v) to k* (version w > v). In a situation of this type, cM is using the previous key k’ instead of the

more recent k”, and key segment KSM reserved for cM in node C contains the forthcoming key,

k*. When cM issues replaceKey(), a handle H referencing KSM will be sent to node C encrypted

by using the base key bkM of cM. Execution of replaceKey() accesses KSM in node C to read key

k*, and this key will be sent to node M encrypted by using bkM. Thus, cM will be in the position

to decrypt k* and update the key.

M1 M C : request

M2 C

 M C : F, C, {C, BM, LM, E}bkM

M4 C {F, C, BKS, LKS, k”, v}bkM

Figure 9. Messages exchanged in a successful execution of the replaceKey() communication primitive.

– 12 –

As seen in Section 2.2, if a component sends a message encrypted by using an outdated

key, the message is discarded by the recipient component, which generates a negative reply. On

receipt of the negative reply, the sender updates its own key and sends the message again. This

means that components are able to recover from losses of key replacement messages. This

feature is especially important for reliable group rekeying over an unreliable network [15], [16].

Furthermore, consider a system featuring a form of periodic rekeying [23], [24]. In a system of

this type, the cryptographic keys are renewed at regular intervals to safeguard secrecy and

maintain resilience to attacks and failures. In our system, if a component ignores one or more

periodic key replacement messages, and then obeys a subsequent key replacement message, no

negative effect follows on the communication ability of that component.

Suppose that component cM of application A in node M executes replaceKey() twice. The

second execution causes a new access to key segment KSM that controller ac has reserved for

that component; if the contents of the key segment have not been changed, the same application

key is read again from the key segment, and replaceKey() has no other effect. In this respect,

replaceKey() is idempotent; it can be executed multiple times without changing the result

beyond the first execution.

When a component cM leaves its own application A, it is necessary to change the application

key to prevent that component from taking advantage of the old key any longer [5], [7]. The

new key must be distributed to all the components of A except cM. We shall obtain a result of

this type as follows. The controller ac of application A will insert the new key in the key

segments of all the components of A except key segment KSM of cM. Then, ac will send a key

replacement message, thereby causing the components of A to execute replaceKey() and update

the key. It should be noted that, if component cM executes replaceKey(), this action produces

no other effect, as key segment KSM still contains the old, discarded key.

4.2. Handle forging and stealing

Let us suppose that component cM of application A being executed in node M forges handle

H = {N, V} for a segment in the partition of node N that hosts a component of a different

application A’. cM will have to use an arbitrary value for validation field V, as it does not possess

the application key of A’. Let us now suppose that cM performs an attempt to use H, for instance,

to read the contents of the corresponding, unknown segment. To this aim, cM executes the

readSegment() communication primitive. In the execution of this primitive, node N uses the

application key of A’ to decrypt the V field of handle H into quadruple {N*, B, L, E*}. Then, N

validates H by verifying that N* = N and E* is a fresh nonce. Of course, if we assume that the

– 13 –

cipher is in an authenticated encryption mode and that the size of the nonce is sufficiently large

(e.g. 64 bits), the probability of casual matches is vanishingly low, and readSegment() is

destined to terminate unsuccessfully.

Let us now consider the case that a component of a given application steals a handle from

the legitimate owner, which is a component of a different application. In our system, an action

of this type can be carried out at little effort, for instance, in the transmission of a handle

between nodes: any intermediate node in the path from the sender node to the recipient node

may well keep a copy of the handle. Let A’ and A” be two applications, let k’ and k” be the

corresponding cryptographic keys, and let c’ and c” be components of A’ and A”, respectively.

Suppose that c’ sends handle H = {N, V} referencing segment S = {N, B, L} with nonce E, and

c” steals a copy of this handle. In order to take advantage of H and read the contents of S, c”

will issue communication primitive readSegment(). Execution of this primitive sends handle H

to node N. However, node N is part of application A’ (it hosts a segment of this application).

Consequently, it will return the contents of segment S encrypted by using application key k’,

and component c” will not be able to decrypt these contents.

Let us now assume that a component cM of application A is captured. This means that both

the application key and the base key of cM are compromised. As soon as the intrusion is de-

tected, the controller acA of application A generates a new application key and inserts this key

into the key segments of all components except cM. The controller issues a key replacement

message causing all genuine components to execute the replaceKey() primitive to get the new

key; the compromised component cM keeps the old key and consequently is logically evicted

from the system.

4.3. Considerations concerning performance

Storage costs

In sensor nodes, memory is a scarce resource. Related issues are the key distribution

scheme and the memory requirements for key storage. If a single master key is shared by all

nodes, the memory requirements are kept to a minimum [27]. In this approach, we have a form

of perfect key connectivity, but a node that discloses the master key compromises the whole

network; revocation of the master key is hard if not impossible, owing to the need to rekey all

remaining nodes without using the compromised key.

An alternative approach is the full pairwise scheme, whereby each node receives a

cryptographic key for each other node [25]. This means that, in a network consisting of n nodes,

each node stores n - 1 keys (and many of them will never be used). The resulting high memory

– 14 –

cost makes this approach only suitable for small networks featuring a predictably low number

of nodes.

In the wide class of the probabilistic key sharing schemes, each node receives a number of

keys that is much smaller than the total number of nodes that form the network [3]. In the so-

called basic scheme [11], a large set of keys K is initialized with random keys and their

identifiers. Each node is loaded with k keys, which are chosen at random from K. Two adjacent

nodes (connected by a direct network link) are in the position of communicating if they share

at least one key. The probability that this is indeed true is a function of both the cardinality of

K and quantity k, e.g. if k = 75 and K contains 10,000 keys the probability is 0.5 [11]. A node

will be disconnected from the network if it has no key in common with every adjacent node;

for adequate levels of network density, the probability that a node be actually disconnected is

negligible.

In our approach, the given node stores the key of the application of the component being

executed in that node. Further memory costs are connected with storage of the base keys and

the key segments (see Section 3.3). The controller of a given application stores a base key and

a key segment for each component of that application. This means that more memory space is

required in the controller of a complex application featuring a large number of components

distributed across the network. Even in a situation of this type, for each component that is not

an application controller the memory cost is equal to a single base key, and is negligible. We

may conclude that the total memory requirements are independent of the network size, and are

much lower than those necessary to guarantee a suitable degree of connectivity in a probabilistic

key sharing scheme.

Network traffic

Execution of the readSegment() communication primitive causes the transmission of four

messages across the network (two messages for the request and delivery of the first nonce, one

message to send the second nonce and the handle for the segment being accessed, and one

message to transmit the segment contents). This is similar to the communication cost of the

writeSegment() primitive. Thus, for these primitives the network cost is kept to a minimum.

As far as key replacement is concerned, one message is necessary from the application

controller to each controlled component to trigger the key replacement activity. Each

component will then issue the replaceKey() primitive. The cost of this primitive in terms of

memory traffic is four messages (two messages for the first nonce, one message to send the

second nonce and the handle for the key segment from the controlled component to the

– 15 –

application controller, and one message for transmission of the new key from the application

controller back to the component). Thus, the total number of messages generated by a key

replacement activity is a function of the complexity of the given application in terms of the

number of its components, and is independent of the network size.

5. CONCLUDING REMARKS

With reference to a distributed architecture consisting of sensor nodes connected by

wireless links in an arbitrary network topology, we have considered a single address space

paradigm of memory reference. In a segment-oriented, distributed implementation of this

paradigm, a salient problem is the mapping of segment names into physical addresses to identify

the network node that gives physical support to the given segment. In our solution, the address

space is divided into partitions. Each partition is physically supported by the memory resources

of a single sensor node. An application component accesses a given segment by presenting a

handle for this segment, which includes the name of the corresponding node. The following is

a brief summary of the main results we have obtained:

 Handles are protected cryptographically. The meaning of a handle is confined within the

boundaries of the application that created this handle, and this nullifies any action of handle

stealing. Any attempt to forge a handle from scratch and use this handle for memory access

is destined to fail if this handle references a segment in a node of a different application.

 The replacement of the key of a given application is initiated by the application controller

that sends a key replacement message to all the application components. Consequently, each

component executes the replaceKey() communication primitive and updates its own key.

This key replacement mechanism results to possess a number of interesting properties. If a

key replacement message is lost, the key replacement activity is initiated by the first message

that is received encrypted with the new key. If a key replacement message is obeyed twice,

e.g. as a consequence of a transmission error leading to repeated message delivery, the

second key replacement activity produces no effect. If a component ignores one or more key

replacement messages and then obeys a subsequent message, no negative consequence

follows on the communication ability of that component. These features are especially

important for reliable group rekeying over an unreliable network.

 The memory requirements of the activities of application key replacement are a function the

number of the components that form the application whose key is replaced, and are

independent of the network size.

– 16 –

 The number of messages generated by the execution of the communication primitives is

independent of the network size.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their insightful comments and constructive

suggestions.

This work has been partially supported by the TENACE PRIN Project (Grant no.

20103P34XC_008) funded by the Italian Ministry of Education, University and Research, and

by the PLANET Integrated Project (Grant no. FP7-2009-5-257649) funded by the European

Commission under the 7th Framework Programme.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “A survey on sensor networks,” IEEE

Communications Magazine, vol. 40, no. 8 (August 2002), pp. 102–114.

[2] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, C. Yoon, “RETOS: resilient, expandable, and

threaded operating system for wireless sensor networks,” Proceedings of the 6th International

Conference on Information Processing in Sensor Networks, Cambridge, Massachusetts, USA,

April 2007, pp. 148–157.

[3] H. Chan, A. Perrig, D. Song, “Random key predistribution schemes for sensor networks,”

Proceedings of the 2003 IEEE Symposium on Security and Privacy, Oakland, California, USA,

May 2003, pp. 197–213.

[4] J. S. Chase, H. M. Levy, M. J. Feeley, E. D. Lazowska, “Sharing and protection in a single-

address-space operating system,” ACM Transactions on Computer Systems, vol. 12, no. 4

(November 1994), pp. 271–307.

[5] O. Cheikhrouhou, A. Koubâa, G. Dini, M. Abid, “RiSeG: a ring based secure group

communication protocol for resource-constrained wireless sensor networks,” Personal and

Ubiquitous Computing, vol. 15, no. 8 (December 2011), pp. 783–797.

[6] L. H. A. Correia, D. F. Macedo, A. L. dos Santos, A. A. F. Loureiro, J. M. S. Nogueira,

“Transmission power control techniques for wireless sensor networks,” Computer Networks, vol.

51, no. 17 (December 2007), pp. 4765–4779.

[7] G. Dini, I. M. Savino, “LARK: a lightweight authenticated rekeying scheme for clustered wireless

sensor networks,” ACM Transactions on Embedded Computing Systems, vol. 10, no. 4

(November 2011).

[8] A. Dunkels, B. Grönvall, T. Voigt, “Contiki - a lightweight and flexible operating system for tiny

networked sensors,” Proceedings of the First IEEE Workshop on Embedded Networked Sensors,

Tampa, Florida, USA, November 2004, pp. 455–462.

[9] M. J. Dworkin, Recommendation for Block Cipher Modes of Operation: the CCM Mode for

Authentication and Confidentiality, Technical Report, National Institute of Standards and

Technology, Special Publication 800-38C, May 2004, Gaithersburg, MD, USA.

– 17 –

[10] M. Eltoweissy, M. Moharrum, R. Mukkamala, “Dynamic key management in sensor networks,”

IEEE Communications Magazine, vol. 44, no. 4 (April 2006), pp. 122–130.

[11] L. Eschenauer, V. D. Gligor, “A key-management scheme for distributed sensor networks,”

Proceedings of the 9th ACM Conference on Computer and Communications Security,

Washington, DC, USA, November 2002, pp. 41–47.

[12] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, J. Liedtke, “The Mungi single-address-space

operating system,” Software — Practice and Experience, vol. 28, no. 9 (July 1998), pp. 901–928.

[13] F. Hu, N. K. Sharma, “Security considerations in ad hoc sensor networks,” Ad Hoc Networks, vol.

3, no. 1 (January 2005), pp. 69–89.

[14] C. Karlof, D. Wagner, “Secure routing in wireless sensor networks: attacks and countermeasures,”

Ad Hoc Networks, vol. 1, no. 2–3 (September 2003), pp. 293–315.

[15] F. Kausar, S. Hussain, J. H. Park, A. Masood, “Secure group communication with self-healing

and rekeying in wireless sensor networks,” Proceedings of the 3rd International Conference on

Mobile Ad-Hoc and Sensor Networks, Beijing, China, December 2007, pp. 737–748.

[16] H. Kurnio, R. Safavi-Naini, H. Wang, “A secure re-keying scheme with key recovery property,”

Information Security and Privacy; in Lecture Notes in Computer Science, vol. 2384/2002, pp. 1–

51.

[17] P. Levis et al., “TinyOS: an operating system for wireless sensor networks,” in: W. Weber, J.

Rabaey and E. H. L. Aarts, editors, Ambient Intelligence. New York: Springer-Verlag, 2005, pp.

115–148.

[18] Y. Liang, W. Peng, “Minimizing energy consumptions in wireless sensor networks via two-modal

transmission,” ACM SIGCOMM Computer Communication Review, vol. 40, no. 1 (January 2010),

pp. 12–18.

[19] L. Lopriore, “Access control mechanisms in a distributed, persistent memory system,” IEEE

Transactions on Parallel and Distributed Systems, vol. 13, no. 10 (October 2002), pp. 1066–

1083.

[20] L. Lopriore, “Encrypted pointers in protection system design,” The Computer Journal, vol. 55,

no. 4 (April 2012), pp. 497–507.

[21] L. Lopriore, “Object protection in distributed systems,” Journal of Parallel and Distributed

Computing, vol. 73, no. 5 (May 2013), pp. 570–579.

[22] A. Perrig, J. Stankovic, D. Wagner, “Security in wireless sensor networks,” Communications of

the ACM, vol. 47, no. 6 (June 2004), pp. 53–57.

[23] T. Pham, P. A. Watters, “The efficiency of periodic rekeying in dynamic group key management,”

Proceedings of the Fourth European Conference on Universal Multiservice Networks, Toulouse,

France, February 2007, pp. 425–432.

[24] S. Rafaeli, D. Hutchison, “A survey of key management for secure group communication,” ACM

Computing Surveys, vol. 35, no. 3 (September 2003), pp. 309–329.

[25] M. A. Simplício, P. S. L. M. Barreto, C. B. Margi, T. C. M. B. Carvalho, “A survey on key

management mechanisms for distributed wireless sensor networks,” Computer Networks, vol. 54,

no. 15 (October 2010), pp. 2591–2612.

– 18 –

[26] M. Stamp, Information Security: Principles and Practice, 2nd Edition. Hoboken, New Jersey:

Wiley, 2011.

[27] Y. Xiao et al., “A survey of key management schemes in wireless sensor networks,” Computer

Communications, vol. 30, no. 11–12 (September 2007), pp. 2314–2341.

[28] J. Zhang, V. Varadharajan, “Wireless sensor network key management survey and taxonomy,”

Journal of Network and Computer Applications, vol. 33, no. 2 (March 2010), pp. 63–75.

