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Abstract

We present an implementation of the complete active space–self-consistent field

(CASSCF) method specifically designed to be used in four-component scalar relativis-

tic calculations based on the spin-free Dirac-Coulomb (SFDC) Hamiltonian. Our im-

plementation takes full advantage of the properties of the SFDC Hamiltonian that

allow us to use real algebra and to exploit point-group and spin symmetry to their

full extent while including in a rigorous way scalar relativistic effects in the treatment.

The SFDC-CASSCF treatment is more expensive than its non-relativistic counterpart

only in the orbital optimization step, while exhibiting the same computational cost

for the rate-determining full configuration interaction part. The numerical aspects are

discussed and the capabilities of the SFDC-CASSCF methodology are demonstrated

through a pilot application.
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1 Introduction

Relativistic effects play an important role in atomic and molecular systems.1–9 The inclusion

of relativity in a quantum chemical description is therefore an important aspect of modern

computational chemistry, especially when the target of the investigation is a system that

includes heavy elements.

The most rigorous way of achieving the inclusion of relativistic effects in a quantum

chemical description is to recast the electronic structure methods in a relativistic fashion

by formulating them for the full, four-component Dirac-Coulomb (DC) Hamiltonian, pos-

sibly with the inclusion of correction terms to the electron-electron interaction such as the

Breit contribution.10 In the last decades, many methods have been implemented for the DC

Hamiltonian, including those based on Hartree-Fock11–14 (HF), Kohn-Sham density func-

tional,15–18 and multiconfigurational self-consistent field19–21 (MCSCF) theories. Further-

more, many post-Hartree-Fock methods such as second-order Møller-Plesset perturbation

theory22,23 (MP2), configuration interaction24–26 (CI), and coupled cluster27–29 (CC) theory

have been implemented for the DC Hamiltonian.

Unfortunately, the use of the DC Hamiltonian introduces several computational over-

heads. This is mainly due to three concurrent factors. The DC Hamiltonian introduces

a four-component spinor and requires one to take into account the small component wave

function, it does not admit a real matrix representation, and it does not retain spin and

point-group spatial symmetry as in the non-relativistic case. Because of these characteris-

tics, in order to perform a DC quantum chemical calculation, complex algebra must be used.

Furthermore, the number of integrals that needs to be computed is highly increased due

to the presence of the small component wave function. The small component integrals are

evaluated as integral derivatives of the large component ones, which makes them more ex-

pensive. Also, because of the SO interaction, many more intermediate quantities need to be

assembled in order to compute the two electron integrals. The orthogonality of α and β spin

functions can no longer be exploited because of the lack of spin symmetry, which together

2



with the fact that the wave function can not be chosen to be real-valued and with the low-

ering of permutational symmetry of the MO integrals, causes a large increase in the number

of independent MO integrals. A detailed discussion of the various factors that increase the

computational cost of a DC relativistic calculation can be found in ref. 30.

For all these reasons, many alternative approaches to treat relativistic effects have been

suggested in the literature.31–40 Nevertheless, retaining a rigorous, four-component treatment

is desirable. A promising way to achieve a cost-effective, but rigorous, treatment of relativis-

tic effects is based on the observation that spin-orbit (SO) interactions are much smaller in

magnitude than scalar relativistic effects.1 As the most severe effects on the computational

cost of a four-component calculation stem from the presence of the spin-orbit interaction,

a viable strategy would be to decouple it from the spin-free (SF) relativistic effects by de-

composing the DC Hamiltonian into a sum of a purely SF and a purely SO term and then

discarding the latter term. Such a strategy can be based on the spin separation of the DC

Hamiltonian proposed by Dyall41 and leads to a spin-free Dirac-Coulomb (SFDC) Hamil-

tonian. The spin separation approach has been explored both at the self-consistent field

(SCF) and at correlated levels.30,42–45 In this contribution, we present an implementation

of the complete active space–self-consistent field46,47 (CASSCF) method specifically tailored

for the SFDC Hamiltonian. A relativistic, multireference quantum chemical method is, for

example, needed to provide a qualitatively correct description of heavy transition metal

complexes, where relativistic effects play an important role and which are characterized by a

complex electronic structure, with quasi-degenerate ground states, low lying excited states,

and open shell configurations.

A few full DC MCSCF implementations are already available.19–21,48,49 In principle, a

SFDC MCSCF calculation can be performed by using one of the existing DC implemen-

tations, for instance, with a quaternion-based DC implementation∗, by zeroing the various

∗Note that the results obtained by zeroing the quaternion-imaginary terms in a full DC calculation are not
numerically identical to the ones obtained with a genuine SF approach, although the difference is very small.
This difference lies in the fact that a quaternion-real contribution arising from the small component integrals
contains the products of quaternion-imaginary quantities, which are absent in a purely SFDC approach
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quaternion-imaginary terms.50 Here, we propose for the first time an approach specifically

intended for the SFDC Hamiltonian which fully exploits all the computational advantages

offered by the spin separation. Our SFDC-CASSCF scheme allows one to incorporate scalar

relativistic effects in a multireference description in a cost-effective, but rigorous way. Fur-

thermore, in the perspective of using a CASSCF wave function as a starting point for a

correlated treatment,51–55 a SFDC approach confines the computational overhead due to

relativity to the non-rate-determining CASSCF step.

Several implementations have been proposed so far for the CASSCF approach. The

various strategies can be grouped in two main families. First-order implementations56–60

tackle the optimization of the CI coefficients and of the MO separately and are based on the

generalized Brillouin theorem.61 From an optimization theory point of view, they are called

first-order as the convergence rate is linear in the number of iterations. Such methods, how-

ever, do not guarantee convergence and the lack of general mathematical results force their

implementations to be manually calibrated on test cases. The second family of implemen-

tations, second-order methods,62–68 represented therefore a major advancement in MCSCF

theory, as they allow for a much more robust convergence. Second-order optimization meth-

ods are quadratically convergent and take explicitly into account the coupling between the

CI and MO degrees of freedom. We pursue here a second-order implementation and follow

closely the norm-extended optimization (NEO) scheme by Jensen and coworkers.64,65 Our

choice is motivated by two main considerations. A second-order scheme is more expensive

than a first order one but, on the other hand, allows for tighter and more robust conver-

gence.46 This is particularly beneficial in the perspective of coupling our SFDC CASSCF

implementation to a correlated treatment such as, for instance, the one provided by inter-

nally contracted Coupled Cluster theory. Among the various second order schemes, the one

proposed by Meyer, Werner and Knowles63,68 (MWK) has been shown to be particularly

fast and robust, especially for systems where the computational cost is dominated by the

orbital optimization part. However, its extension to a four-component relativistic treatment,
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which requires one to generalize it to a high-order saddle point optimization, does not ap-

pear to be straightforward. On the contrary, the NEO scheme is immediately extensible to

the four-component relativistic case.19 Its guaranteed convergence64,69 and overall excellent

performances70 make it thus the most convenient choice for our scopes. A more detailed

comparison between the NEO and the MWK algorithms can be found in ref. 70.

This paper is organized as follows. In section 2, the theoretical foundations of our im-

plementation are presented. Section 3 describes the implementation of the SFDC-CASSCF

method with a focus on the computational cost of the various steps involved in the calcula-

tion. In section 4, numerical results are presented and a pilot application is shown. Section

5 ends the paper with some conclusions and perspectives.

2 Theory

In this section, the general tools needed in order to achieve a quadratically convergent

CASSCF implementation for the spin-free Dirac-Coulomb Hamiltonian are briefly presented.

First, the spin separation of the DC Hamiltonian is discussed in section 2.1 and the spin-

free Dirac Coulomb Hamiltonian is introduced. A parametrization suitable for the SFDC-

CASSCF wavefunction, which is needed in order to define the optimization procedure, is

then discussed in section 2.2, with a focus on the computational advantages offered by the

use of a spin-free Hamiltonian. The second-order optimization scheme we adopt for our

implementation is finally briefly summarized in section 2.3 and the issues specific to a four-

component relativistic description are analyzed.

2.1 The spin-free Dirac-Coulomb Hamiltonian

In this section, the main ideas underlying the exact spin separation of the Dirac-Coulomb

Hamiltonian as proposed by Dyall41 are shortly summarized. Using the formalism of second

quantization and atomic units, the DC Hamiltonian reads, in its standard (Dirac) represen-
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tation,

H DC =
∑
PQ

hDPQâ
†
P âQ +

1

2

∑
PQRS

GPQRS â
†
P â
†
QâS âR, (1)

where we denote by P,Q, . . . one-electron Dirac four components spinors ψP , which can be

expressed in terms of two two-component spinors usually referred to as large component ψLP

and small component ψSP

|ψP 〉 =

 ψLP

ψSP

 , (2)

with

|ψLP 〉 =

 ψL,αP

ψL,βP

 , |ψSP 〉 =

 ψS,αP

ψS,βP

 . (3)

hD is the one-particle Dirac operator, whose matrix elements are

hDPQ =

〈 ψLP

ψSP


∣∣∣∣∣∣∣
 V c~σ · ~p

c~σ · ~p V − 2c2


∣∣∣∣∣∣∣
 ψLQ

ψSQ

〉

= 〈ψLP |V |ψLQ〉+ c(〈ψLP |~σ · ~p|ψSQ〉+ 〈ψSP |~σ · ~p|ψLQ〉) + 〈ψSP |V − 2c2|ψSQ〉, (4)

where ~σ = (σx, σy, σz)
T is a vector collecting the three Pauli matrices, ~p is the momentum

operator, V is the nuclear electrostatic potential, c the speed of light and we have shifted the

energy by −c2 in order to match the non-relativistic energy scale. G is the (instantaneous)

Coulomb interaction operator, whose matrix elements are

GPQRS =

∫
dr1

∫
dr2

ψP (r1)
†ψR(r1)ψQ(r2)

†ψS(r2)

|r1 − r2|
= (PR|QS)

= (ψLPψ
L
R|ψLQψLS ) + (ψLPψ

L
R|ψSQψSS ) + (ψSPψ

S
R|ψLQψLS ) + (ψSPψ

S
R|ψSQψSS ), (5)

where we introduced Mulliken’s notation for the electron repulsion integrals (ERIs).

In order to achieve spin separation we apply the following metric change to the small
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component

ψSP =
~σ · ~p
2c

φLP , (6)

where φLP is named the “pseudo large” component, as it possesses the same symmetries

and, for positive energy solutions, the same order of magnitude as the large component.

Furthermore, in the non-relativistic limit, it converges to the large component. The matrix

elements of the Dirac-Coulomb Hamiltonian are then expressed in terms of the large and

pseudo-large component, thus folding eq. 6 into the operator.41 Finally, spin separation is

achieved by using the Dirac identity

(~σ · ~u)(~σ · ~v) = ~u · ~v + i~σ · (~u× ~v). (7)

Both the one- and two-body operators decompose exactly in the sum of a spin-free and

spin-orbit part

hDPQ = hD,SFPQ + hD,SOPQ ; GPQRS = GSF
PQRS +GSO

PQRS. (8)

The spin-free Dirac-Coulomb Hamiltonian is obtained by neglecting the SO terms

H SFDC =
∑
PQ

hD,SFPQ â†P âQ +
1

2

∑
PQRS

GSF
PQRS â

†
P â
†
QâS âR, (9)

where

hD,SFPQ = 〈ψLP |V |ψLQ〉+ 〈ψLP |T |φLQ〉+ 〈φLP |T |ψLQ〉+ 〈φLP |
~p · V ~p

4c2
− T |φLQ〉, (10)

GSF
PQRS = (ψLPψ

L
R|ψLQψLS ) +

1

4c2
([~pφLP ] · [~pφLR]|ψLQψLS )

+
1

4c2
(ψLPψ

L
R|[~pφLQ] · [~pφLS ]) +

1

16c4
([~pφLP ] · [~pφLR]|[~pφLQ] · [~pφLS ]). (11)

The SF approximation introduces two major computational advantages that can be imme-

diately deduced by looking at the SFDC Hamiltonian: neither hD,SFPQ nor GSF
PQRS depends on
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the spin operator, nor do they contain terms that require a complex representation. The

SFDC Hamiltonian retains therefore full spatial and spin symmetry and a real wave function

can be chosen. The same basis functions can be used to expand both the large and pseudo-

large component (in particular, this is equivalent to using a restricted-kinetic-balanced basis

set71). We can therefore write the SFDC Hamiltonian as

H SFDC =
∑
PQ

∑
σ

hD,SFPQ â†PσâQσ +
1

2

∑
PQRS

∑
στ

GSF
PQRS â

†
Pσâ

†
Rτ âSτ âQσ, (12)

where σ, τ are spin indices and the indices P,Q, ... run over 2Nb orthonormal spatial orbitals,

obtained for instance by solving the spin-free Dirac-Fock equations,30 of which Nb are asso-

ciated with positive energy states (PES) and Nb with negative energy states (NES). In order

to simplify the notation, we introduce the operators

ÊPQ =
∑
σ

â†PσâQσ, êPQRS =
∑
στ

â†Pσâ
†
Rτ âSτ âQσ. (13)

Omitting the SFDC labels, the SFDC Hamiltonian reads

H =
∑
PQ

hPQÊPQ +
1

2

∑
PQRS

(PQ|RS)êPQRS. (14)

Thanks to our choice of real basis functions, all the matrix elements in eq. 14 are real. We

stress again how crucial this is by pointing out that the Hamiltonian in eq. 14 is formally

identical to a non-relativistic Hamiltonian which means that, by working in the MO basis

and adopting the no-pair approximation,72 any post-HF treatment can be performed exactly

as in the non-relativistic case.30

8



2.2 Parametrization of the CASSCF wave function for the SFDC

problem

In this section, we introduce the CASSCF wave function and a parametrization suitable for

its variational optimization. We assume here that an initial guess for the MO coefficients

is available, for instance, the solution to the SF Dirac-Hartree-Fock equations. Thanks to

the properties of the SFDC Hamiltonian, the MOs can be chosen real. Furthermore, spin

conservation allows us to adopt a restricted approach and to build our wavefunction starting

from a set of 2Nb spatial molecular orbitals {ϕP}2NbP=1, i.e., Nb positive energy states (PES)

and Nb negative energy states (NES). In the following, we use the indices p, q, . . . to label a

generic PES and p̃, q̃ . . . to label NES. From now on, we use capital letters P,Q, . . . to label

a generic one-particle function (and not a four-component spinor).

The CASSCF method divides the orbital space in three sets, which are used to determine

which Slater determinants form the CASSCF wave function. Internal orbitals are doubly

occupied in every determinant, external orbitals are empty in every determinant and active

orbitals have no restriction on their occupation. For the relativistic case, a fourth set of

orbitals has to be considered, i.e., the NES, which, as the external orbitals, are always

unoccupied. The CASSCF ansatz is the linear combination of all the Slater determinants

obtained by varying the occupation of the active orbitals. The set of MOs used to build

the Slater determinants is optimized together with the coefficients of the determinants. A

convenient, global parameterization of the CASSCF wave function, introduced by Jensen et

al. as a starting point for their norm-extended optimization (NEO) algorithm,65–67 is

|Ψ〉 = e−κ
|0〉+ P̂ |c〉
‖|0〉+ P̂ |c〉‖

. (15)

In eq. 15, |0〉 =
∑Ndet

I=1 c0I |ΦI〉 is the current approximation to the CASSCF wave function, to

which we refer as current expansion point (CEP), P̂ = 1− |0〉〈0| is the orthogonal projector
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onto the orthogonal complement to |0〉 and

|c〉 =

Ndet∑
I=1

cI |ΦI〉

is a correction vector. A variation of the CI coefficients is therefore parametrized by adding

a linear combination of determinants orthogonal to the CEP. As this does not preserve the

wave function norm, normalization has to be carried out explicitly by dividing by the norm

‖|0〉+ P̂ |c〉‖ =

√
1 + 〈c|P̂ |c〉.

Spin symmetry plays an important role in the definition of the CASSCF CI space, as it

allows one to exclude a large number of terms from the CI expansion. The total number of

determinants is

Ndet =

(
Nact

mα

)(
Nact

mβ

)
, (16)

which is to be compared to
(

2Nact

mα+mβ

)
for the full DC case, where mα and mβ are the number

of α and β electrons, respectively. This means that the size of the SFDC-CASSCF CI

problem is the same as for its non-relativistic counterpart. As the full CI step dominates the

computational cost of a CASSCF calculation for large enough active spaces, this is a major

advantage of a SFDC approach. The effect of spin conservation is particularly dramatic for

open-shell systems, as the number of allowed determinants is greatly reduced for high-spin

molecules. As an example, we report in table 1 the number of determinants NSFDC
det needed in

the SF case for accommodating 10 electrons in 10 active orbitals (a CAS(10,10) calculation),

for various values of MS. The ratio between the number of determinants required in a full

DC calculation and NSFDC
det , which does not depend on MS, is also reported. The SFDC-

CASSCF CI expansion coefficients can be chosen real and point group symmetry can be

fully exploited by only considering the determinants that transform according the desired

irreducible representation (irrep).
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Table 1: Number of Slater determinants in the CI expansion for a CAS(10,10) calculation
and ratio with respect to the number needed in a full DC calculation, which is always 184756.

MS Ndet ratio

0 63504 3
1 44100 4
2 14400 13
3 2025 91
4 100 1848
5 1 184756

Variations in the orbital coefficients are parametrized in eq. 15 by introducing a unitary

transformation

Û = e−κ̂; κ̂ =
∑
P>Q

κPQ

(
ÊPQ − ÊQP

)
=
∑
P>Q

κPQÊ
−
PQ. (17)

Again, spin symmetry allows one to use a restricted approach, halving thus the size of the

MO coefficients matrix and reducing the number of degrees of freedom needed to parametrize

their variation. Point group symmetry can be used by enforcing that, as orbitals transforming

according to different irreps do not mix, all κPQ coefficients with P and Q belonging to dif-

ferent irreps vanish. Finally, real orbitals can be rotated with an orthogonal transformation,

i.e., the κ coefficients can be chosen real. Spin separation introduces therefore considerable

simplifications in the orbital optimization problem with respect to the full DC case. However,

orbital optimization is more complex for the SFDC case than for its non-relativistic counter-

part because of the presence of the NES. The first, major source of overhead stems from the

use of uncontracted basis sets, which is necessary when using restricted kinetic balanced basis

sets in order to avoid variational collapse issues. This increases significantly the number of

basis functions that one has to use with respect to what required for a non-relativistic com-

putation, which in turn increases both the computational cost and the memory requirements

of all the operations associated with orbital optimization. Furthermore, rotations between

PES and NES have to be taken into account, increasing thus the number of variational
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parameters. Finally, the SFDC-CASSCF energy needs to be maximized with respect to

PES-NES rotations, so that the variational problem is not a minimization, but a high-order

saddle point optimization. The orbital rotation operator mixes, in principle, every orbital

with every other orbital. However, it is easily proven that some of these rotations are redun-

dant, as they do not affect the energy. In particular, rotations mixing internal orbitals with

internal orbitals, external with external or negative with negative do not affect the energy.

Within the CASSCF ansatz, the active with active orbital rotations are also redundant.

Finally, rotations between NES and external orbitals leave the energy unchanged, too. In

conclusion, the (non-redundant) orbital rotation operator has the following expression

κ̂ =

Nint∑
i=1

Nact∑
u=1

κ+iuÊ
−
iu +

Nint∑
i=1

Next∑
a=1

κ+iaÊ
−
ia +

Nint∑
i=1

Nneg∑
p̃=1

κ−ip̃Ê
−
ip̃ +

Nact∑
u=1

Next∑
a=1

κ+uaÊ
−
ua +

Nact∑
u=1

Nneg∑
p̃=1

κ−up̃Ê
−
up̃,

(18)

where we label with the superscript + the rotation parameters that correspond to PES-

PES rotations and with a superscript − the ones that correspond to PES-NES rotations.

We remark again that the latter rotations are characteristic of a four-component relativistic

approach.

2.3 Optimization of the SFDC-CASSCF wave function

As already mentioned in section 2.2, a SF relativistic CASSCF calculation differs from a non-

relativistic one not only because of the presence of the κ− parameters, but also because the

optimal parameters are determined by minimizing the energy with respect to c and κ+ and

by maximizing it with respect to the κ− rotations. A high-order saddle-point optimization

problem has therefore to be solved. In this section, the optimization strategy, based on the

NEO method,65–67 will be presented and the issues arising from the relativistic saddle-point

problem addressed. A complete derivation of the NEO method can be found in ref. 73.

In a second-order scheme, the energy is expanded in a Taylor series up to second or-
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der around the CEP with respect to the parameters introduced in section 2.2. Let x =

(c,κ+,κ−) denote a point in the CASSCF parameter space, x0 = (c0, 0, 0) be the CEP, and

P = I − x0x
†
0 be the matrix representation of the projector P̂ . Expanding the CASSCF

energy up to second order, one gets

E(x) ≈ E0 + g†(x− x0) +
1

2
(x− x0)

†G(x− x0) := Q(x), (19)

where we have introduced the quadratic model Q(x), E0 = E(x0), g is the gradient of the

energy with respect to the variational parameters computed at the CEP

gcI =
∂E
∂cI

= 2〈ΦI |P̂H |0〉 (20a)

goPQ =
∂E
∂κPQ

= 〈0|[Ê−PQ,H ]|0〉 (20b)

and G is the Hessian computed at the CEP

Gcc
I,J =

∂2E
∂cI∂cJ

= 2〈ΦI |P̂ (H − E0)P̂ |ΦJ〉

Gco
I,PQ =

∂2E
∂cI∂κPQ

= 2〈ΦI |P̂ [Ê−PQ,H ]|0〉

Goo
PQ,RS =

∂2E
∂κPQ∂κRS

=
1

2
(1 + P̂PQ,RS)〈0|P̂ [Ê−PQ, [Ê

−
RS,H ]]|0〉. (21)

P̂PQ,RS permutes the indices pairs PQ and RS. Note that the Hessian couples the variations

of the CI coefficients to the ones of the orbitals and vice versa. Such a coupling is fundamental

to have a truly second-order procedure. Working expressions for the energy, gradient and

the product of the Hessian times a generic vector are provided in section 3. The simplest

second-order method is the Newton-Raphson (NR) method, which looks for a stationary

point of the quadratic model and uses it as a new expansion point in the following iteration.

The NR method converges only if the starting point is close enough to the desired stationary

13



point. For this reason, the concept of trust region is introduced and the NR step

δ = −(PGP)−1g, (22)

is accepted only if its norm is shorter than a user-defined trust radius Rt. Otherwise, a

constrained search is performed, looking for a step to the border of the trust region. By

introducing the constraint

‖δ‖ = Rt (23)

together with a Lagrange multiplier ν, the restricted step NR equations, also known as

Levenberg-Marquardt (LM) equations,69 are obtained:

(G− νI)δ = −g (24a)

‖δ(ν)‖ = Rt. (24b)

The NEO method is a computationally efficient and elegant method to solve the system of

equations 24. This is done by introducing a gradient-scaled augmented Hessian

L(α) = G + α(x0g
† + gx†0), (25)

where α is a positive, real number. The NEO step is computed as

δ =
1

siα
Pyi (26)

where

L(α)yi = λiyi. (27)

It can be shown65 that the NEO step solves eq. 24 with a level shift parameter ν = λi.

The level shift parameter has to be chosen such that the level-shifted Hessian G − λiI has
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the desired signature. For a saddle-point optimization problem, which is of interest for the

SFDC-CASSCF problem, we need

µNPN
< λi < µNPN+1, (28)

where NPN = NnegNint +NnegNact is the number of PES-NES rotations. As the NEO matrix

satisfies the Hylleraas-Undheim-MacDonald theorem,74,75 i.e.,

PL(α)P = L(0) = G,

the eigenvalues of the Hessian are interleaved between the eigenvalues of L(α), which means

that the (NPN + 1)-th eigenvalue of L automatically satisfies eq. 28. In order to enforce

the restricted-step condition, a solution to eq. 24b needs to be found. While a solution to

such an equation can always be found for ν < µ1 and ν > µn, i.e., for minimization and

maximization problems, this is not in general the case for saddle points. It is possible to

show that, in the interval defined by eq. 28, ‖δ(ν)‖ is a positive function which goes to

infinity for ν approaching an eigenvalues of the Hessian and which has a unique, positive

minimum. A solution to eq. 24b can therefore be found only if such a minimum is smaller

than Rt. A rough estimate of the value of the minimum between two eigenvalues µi and µi+1

is given by a constant times (µi+1 − µi)
−1.69 Therefore, if the two eigenvalues that define

the saddle point we are interested in are well separated, finding a solution to eq. 24b is not

a problem in practice. This is fortunately the case, as µNPN+1
− µNPN

≈ 2mc2. A pictorial

representation of the behavior of ‖δ(ν)‖ in such a case is shown in figure 1. In practice, the

norm of the NEO step depends on the parameter α introduced in eq. 25. To solve eq. 24a,

a root of the function

f(α) = ‖δ(α)‖2 −R2
t (29)

is found numerically. The choice of the trust radius is an important aspect of the optimization
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Figure 1: Norm of the Levenberg-Marquardt step δ(ν) as a function of the level shift pa-
rameter ν for a simple example. The function goes from zero to infinity for ν < λ1 and
ν > λ2, which means that a solution to eq. 24a can always be found. The function has a
positive minimum for λ1 < ν < λ2, which is the interval to be targeted for a saddle-point
optimization. However, such a minimum is close to zero if the eigenvalues are well separated,
so that in practice, a solution to eq. 24a can be found if the eigenvalues are distant enough.
This is the case for relativistic calculations, where the interesting saddle point lies between
two eigenvalues of the Hessian which are roughly 2c2 ≈ 37500 a. u. apart.
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procedure. The concept of trust region originates from the limited agreement between the

quadratic model of the energy and the energy itself. This idea was formalized by Fletcher,69

who used it to define an adaptive trust radius by evaluating, at each step of the optimization

procedure, the ratio between the predict change in the energy and the actual one, i.e., by

defining

r =
E(x)− E0
Q(x)− E0

. (30)

The closer r is to one, the better the agreement. Fletcher suggests to update the trust radius

as follows:

• if r < 0 reject the step, reduce the trust radius from Rt to aRt, a < 1 and restart

• if 0 < r < 0.25 accept the step, but still reduce the trust radius from Rt to aRt

• if 0.25 < r < 0.75 accept the step and leave the trust radius unchanged
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• if r > 0.75 accept the step and increase the trust radius from Rt to bRt, b > 1.

Fletcher claims that the method is not sensitive to the specific values of a and b, which

can be chosen depending on the specific problem. In our implementation, we use a = 0.66

and b = 1.2. In any case, Rt is not allowed to be larger than 1.2 or smaller than 0.1. An

important result holds: the Fletcher-LM method always converges to the closest minimum

for a regular enough function.

We conclude this section by summarizing the main characteristics of the SFDC-CASSCF

problem. With respect to a non-relativistic CASSCF, there are two main differences that are

due to the presence of the NES. First, more orbital rotations need to be taken into account,

which means that the number of parameters needed in the orbitals is increased (roughly,

doubled). Second, such rotations complicate the wave function optimization which needs to

aim at a high-order saddle point and not at a minimum. The CI problem which, we remark,

is the cost-determining part of a CASSCF calculation is identical to the non-relativistic

CASSCF-CI problem. On the contrary, a full DC-CASSCF implementation implies a much

more computationally demanding CI problem, as the lack of spin symmetry increases the

number of determinants that need to be included in the wave function. Complex algebra

and the use of double groups instead of point-group symmetry further increase the cost of a

full DC-CASSCF treatment.

3 Implementation

In this section, the implementation of SFDC-CASSCF method described in section 2 in the

CFOUR76 suite of programs is presented. The infrastructure for SFDC calculations present

in CFOUR,30 and in particular the relativistic integrals, constitutes the starting point of

our implementation. First, working equations for the energy and gradient are given and

the additional terms stemming from a relativistic treatment are underlined. An efficient

and robust procedure to solve the NEO eigenvalue problem is then presented, together with
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a strategy to compute the (NPN + 1)-th eigenvalue which is needed for the saddle-point

optimization.

3.1 Energy, gradient, and linear transformations

The NEO procedure requires at each iteration the computation of the current energy and

gradient. The energy can be obtained as the expectation value of the Hamiltonian

E0 = 〈0|H |0〉 =
∑
PQ

hPQγPQ +
1

2

∑
PQRS

(PQ|RS)ΓPQRS, (31)

where we have introduced the one- and two-body reduced density matrices (1- and 2-RDM)

γPQ = 〈0|ÊPQ|0〉, ΓPQRS = 〈0|êPQRS|0〉. (32)

There are five classes of MO rotations with respect to which a MO gradient contribution has

to be assembled, as explicitly pointed out in eq. 17. Three are standard PES-PES rotations,

which are common to non-relativistic implementations

giu =
∂E
∂κ+iu

= 2(Fiu − Fui), gia =
∂E
∂κ+ia

= 2Fia, gua =
∂E
∂κ+ua

= 2Fua. (33)

The other two terms

gip̃ =
∂E
∂κ−ip̃

= 2Fip̃, gup̃ =
∂E
∂κ−up̃

= 2Fup̃ (34)

correspond to PES-NES rotations and are peculiar to four-component relativistic calcula-

tions. In eqs. 33 and 34 we have introduced the generalized Fock matrix FPQ, whose elements

are given by

FiP = 2(F I
iP + FA

iP ), FuP =
∑
u

γuvF
I
vP +

∑
vxy

Γuvxy(Pv|xy), FaP = Fp̃P = 0, (35)
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where

F I
PQ = hPQ +

∑
i

(2(PQ|ii)− (Pi|Qi)) , (36)

FA
PQ =

∑
uv

γuv

(
(PQ|uv)− 1

2
(Pv|Qu)

)
. (37)

Note that only the active 1- and 2-RDM, i.e., the 1- and 2-RDM with all indices running

over the active orbitals manifold, are referenced. A four-component relativistic treatment

has two main effects on the evaluation of the MO rotation gradient, which both concern

the transformation of the electron repulsion integrals from the atomic orbitals (AO) to the

MO basis. First, integrals involving the pseudo-large component need to be taken into

account. This requires one to accumulate the transformed integrals as the result of four

subsequent integral transformations, involving (LL|LL), (LL|SS), (SS|LL), (SS|SS) integrals,

respectively, where L stands for large component and S for pseudo-large, with the pseudo-

large component representing here the small component. Second, transformed integrals with

indices belonging to the NES are required to assemble the PES-NES gradient contributions

in eq. 34. With respect to the non-relativistic counterpart, the integral transformations

involved in a SFDC-CASSCF calculation are roughly 10 times more expensive. Nevertheless,

thanks to spin separation, the integral transformation is significantly less expensive than in

a full DC calculation, as the number of independent integrals can be reduced by using spin

symmetry and the possibility of using a restricted approach. Furthermore, full permutation

symmetry is retained, real algebra is used, and point group symmetry can be fully exploited.

The CI gradient

gI =
∂E
∂cI

= 2〈ΦI |
∑
uv

F I
uvÊuv +

1

2

∑
uvxy

êuvxy|0〉 − 2c0I(E0 − EI), (38)

where

EI =
∑
i

(
hii + F I

ii

)
, (39)

is assembled by computing a direct-CI step, i.e., by computing the action of the Hamiltonian
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on |0〉. Note that only indices of active orbitals are referenced in eq. 38. The computation

requires the active portion of F I and MO integrals with all indices referring to active orbitals,

which are already available from the MO gradient computation. As we already remarked

in section 2, there is no difference in the CI step between a SFDC and a non-relativistic

CASSCF calculation. The same routines can be used in both cases, the same number

of CI coefficients is required and the same symmetries can be exploited to increase the

efficiency of the computation. As the CI part is the rate-determining step of a CASSCF

computation, the SFDC approximation introduces an important computational gain with

respect to a full DC calculation. Our direct CI implementation uses Handy’s α and β

strings formalism,77 therefore adopting a determinant CI strategy,78,79 and follows the vector

implementation suggested by Bendazzoli and Evangelisti80 using a direct-list algorithm as

described by Gagliardi et al.81

We conclude this section by reporting the expressions needed to compute the product

of the NEO matrix with a trial vector, which are needed in order to solve iteratively the

NEO equations. The NEO matrix, given in eq. 25, consists of the Hessian plus a rank-1

contribution. It has therefore the same block structure as the Hessian

L =

 Lcc Lco

Loc Loo

 , (40)

where the superscript are consistent with the ones in eq. 21. In our implementation, we

assemble explicitly the oo block. Working expressions for such a block were given for the

first time by Siegbahn et al. in ref. 62 and are reported in supporting information. For the

other blocks, the direct approach proposed by Jensen et al.67 is pursued. We report here the
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final expressions for the cc, co and oc blocks:

∑
J

LI,JvJ =2(〈ΦI |H |vc〉 − E0vI) + (α− 1)

[
c0I

(∑
J

vJgJ

)
+ gI

(∑
J

vJxJ

)]
(41)

∑
PQ

LI,PQvPQ =2〈0|H̃ |ΦI〉+ (α− 2)c0I

(∑
PQ

gPQvRS

)
(42)

∑
I

LPQ,IvI =2gTPQ + (α− 2)gPQ

(∑
I

c0IvJ

)
, (43)

where |vc〉 =
∑

I vc,I |ΦI〉. In eq. 42 we have introduced a one-index transformed Hamiltonian

H̃ =
∑
uv

h̃uvÊuv +
1

2

∑
uvxy

g̃uvxyêuvxy, (44)

where

h̃uv =
∑
P

(vuPhPv + vvPhuQ) (45)

and

g̃uvxy =
∑
P

(vuP (Pv|xy) + vvP (uP |xy) + vxP (uv|Py) + vyP (uv|xP )) . (46)

In eq. 43, we have introduced a transition orbital gradient gT , which is computed exactly

as described at the beginning of this section, but using the transition density matrices

γTuv = 〈0|Êuv|v〉+ 〈v|Êuv|0〉 (47)

Γ T
uvxy = 〈0|êuvxy|v〉+ 〈v|êuvxy|0〉. (48)

to assemble the generalized Fock matrix.

3.2 Macro and microiterations

In this section, the iterative optimization procedure and the iterative diagonalization method

used to solve the NEO equations are described. The CASSCF program requires as an input,
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besides the definition of the active space, a set of starting MO coefficients and a guess for

the CI expansion coefficients. The main iterative procedure proceeds as follows:

1. Set the main iteration (macroiteration) counter k = 1. Read or assemble an inital

guess (the HF wave function is currently used in our implementation).

2. Compute the 1- and 2-body reduced density matrices (1- and 2-RDM) γuv and Γuvxy

with all indices active.

3. Perform a partial integral transformation to assemble the (PQ|Ri) and (PQ|Ru) inte-

grals.

4. Compute the generalized Fock matrix. Compute the energy and assemble the MO

rotation gradient and Hessian. These operations are performed just after the partial

integral transformations in order to avoid unnecessary disk I/O.

5. If k > 1, compute the ratio as in eq. 30 and check whether the step computed in

the previous iteration is acceptable. If not, reduce the trust radius, compute a new

step and go back to step 2, otherwise, adjust the trust radius according to Fletcher’s

prescriptions. The trust radius equation is solved numerically using Brent’s method,82

all the details on how to compute the step in practice can be found in ref. 67.

6. Compute the CI gradient (eq. 38).

7. Check for convergence. If the CAS-SCF wavefunction has converged, exit.

8. Iteratively solve the NEO equations (microiterations) and compute the step.

9. Rotate the MO coefficients and update the CEP. Increment the iteration count k :=

k + 1.

Convergence is achieved when the root-mean-square norm of both the MO and CI gradient

is smaller than a user-given threshold ε.
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The heart of the quadratically convergent CASSCF implementation is step 8, i.e., the

iterative solution to the NEO equations in order to compute the step that solves the LM

equations. The CI and mixed blocks of the NEO matrix can be very large, but they are sparse

and the CI block is diagonally dominant. On the other hand, the MO block is dense, usually

not diagonally dominant and it can be very ill-conditioned, with its eigenvalues spanning

many orders of magnitude. Furthermore, we are interested in the (NPN + 1)-th eigenvalue

and not in the lowest. Our procedure to solve the NEO equations is based on the Davidson

diagonalization83,84 and involves a further correction proposed by Olsen.85 In order to select

the proper eigenvalue, we divide the test vectors in three types: vc,vκ and vκ̃, i.e., purely

CI vectors, purely PES/PES and purely PES/NES orbital rotation vectors, respectively.

When a vκ̃ vector is added, a large, negative eigenvalue appears in the reduced matrix. To

converge towards the (NPN+1)-th eigenvalue it is therefore sufficient to look for the (Nκ̃+1)-

th eigenvalue and eigenvector of the reduced matrix, where Nκ̃ is the number of vκ̃ vectors

in the expansion subspace.19 This choice for the test vectors allows one to concentrate the

effort on the difficult part of the problem, i.e., the one associated with orbital rotations.

Davidson’s method is particularly efficient for diagonally dominant matrices. Unfortu-

nately, because of the MO rotation Hessian block of the NEO matrix, this is not the case

for CASSCF and convergence of the diagonalization procedure can be slow. Jensen et al.

suggested70 to use localized orbitals in order to increase the diagonal dominant character

of the Hessian. Here, we propose two different strategies. In the Davidson method, a new

expansion vector ṽ is computed as follows

ṽ = (D− λkI)−1r, (49)

where D is the diagonal of L, λk is the current approximation to the desired eigenvalue and

r the residual of the current approximation to the eigenvector u. Our first strategy is a

preconditioned Davidson diagonalization, where we replace D with a sparse approximation
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to L:

Mij =


Lij |Lij| > tol or i = j

0 otherwise.

(50)

The linear system

(M− λkI)ṽ = r (51)

is then solved by using the sparse LU decomposition86 implementation by Saunders et al.87

In eq. 50, we use a threshold tol of 0.5, which we lower to 0.1 close to convergence. Standard

Davidson updates are used for CI test vectors. Such a strategy is efficient, as M is indeed

sparse and its inversion can be achieved with a very limited computational cost, and effective,

allowing for robust convergence in a limited number of iterations. However, the use of the

“ideal” preconditioner, i.e., the (L − λkI)
−1 matrix, would have the paradoxical result of

making the iterative procedure stagnate.88 Therefore, the preconditioner should be good,

but not too good. This evanescent statement makes a rigorous approach to preconditioning

difficult and requires a case-specific calibration. Our choices for the M matrix reflect this

kind of approach.

A completely different strategy, which avoids such ambiguity in the preconditioned David-

son method, is offered by the Jacobi-Davidson88 (JD) method. JD replaces the Davidson

update by a vector which is orthogonal to the current approximation u and solves the fol-

lowing linear system:

(I− uu†)(L− λkI)(1− uu†)ṽ = −r. (52)

If the linear system in eq. 52 is solved exactly, the JD method is equivalent to the Rayleigh-

Quotient inverse iteration,88 which exhibits cubic convergence. Superlinear convergence can

still be achieved by solving eq. 52 approximately with a (preconditioned) Krylov subspace

solver for the linear system, such as GMRES.89 Albeit more expensive than the incomplete

LU preconditioned Davidson scheme, the Jacobi-Davidson method has the advantage of

moving the computational effort to the solution of a linear system of equations, for which
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preconditioning techniques are well established and iterative methods can be considered

almost black box. In our implementation, we use the LU decomposition of a sparse approx-

imation to L as a preconditioner, as in eq. 50. However, we use a tighter threshold of 0.01

to select the matrix elements of M. While this makes the sparse LU decomposition more

expensive, the preconditioner does not change during the iterative solution of eq. 52, so the

LU decomposition only has to be computed once per JD iteration. As the convergence of

the JD scheme depends on the quality of the guess for the eigenvalue, it is a good strat-

egy to perform a few initial Davidson iterations and switch to JD only when a preliminary

convergence criterion has been met.

4 Numerical results

In this section, we present some numerical results obtained with our SFDC-CASSCF imple-

mentation. We start by showing the convergence behavior of the second-order optimization

scheme and of the microiteration solvers described in section 3. As a pilot application, we

computed the equilibrium geometry of the unsaturated monocarbonyls of nickel, palladium

and platinum using both our non-relativistic and SFDC-CASSCF implementation.

4.1 Convergence properties of the macro and microiterations

The NEO scheme’s quadratic convergence properties have been formally proved by Jensen

et al.65 As an example of the convergence behavior of the NEO scheme for a SFDC calcu-

lation, we report in figure 2 the convergence profile of both a SFDC and a non-relativistic

CASSCF calculation for the 7Πu state of Cr(CO)2. The uncontracted cc-pVTZ90,91 basis

set was used. 10 electrons (8 α and 2 β) were correlated in an active space consisting of

12 orbitals as suggested by Kim et al.92 The Cr-C and C-O distances were taken from the

same reference and are, respectively, 2.077 Å and 1.110 Å. A tight convergence threshold

of 10−10 in the RMS gradient was required. The SFDC calculation exhibits a convergence
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Figure 2: Convergence profile of both a SFDC and a non-relativistic CASSCF calculation
for the 7Πu state of Cr(CO)2 correlating 10 electrons in 12 orbitals and using the uncon-
tracted cc-pVTZ basis set. The NEO step norm is reported as a function of the number of
macroiterations.
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behavior very similar to its non-relativistic counterpart. In both cases, the first optimization

steps are required to search for the quadratic region, the constraint on the step norm is

active and large energy changes are observed. The norm of the step oscillates, but remains

large and constant. Once the quadratic region is reached, convergence is rapidly achieved

in a few iterations. The relativistic calculation requires one macroiteration more than the

non-relativistic one, which is expected due the larger number of degrees of freedom involved

in the SFDC optimization. In our experience, the example here reported reproduces the

typical behavior of a SFDC-CASSCF calculation, both in terms of convergence pattern and

of number of iterations required to achieve convergence as compared to the non-relativistic

case. In order to show the convergence behavior of the microiteration solvers, we focus on

the 12th iteration of the example reported in figure 2 for the SFDC calculation and report

in figure 3 the convergence pattern observed by using a standard Davidson diagonalization,

the preconditioned Davidson introduced in section 4, and the JD method. The convergence

threshold for the microiterations is chosen depending on the norm of the gradient so that the

quadratic convergence of the macroiterations is retained. In particular, it is fixed at 0.1‖g‖2.
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Figure 3: Convergence profile for the macroiteration associated with the last macroiteration
for the SFDC-CASSCF calculation on Cr(CO)2 using a (10,12) active space and the uncon-
tracted cc-pVTZ basis set. The norm of the residual is reported as a function of the number
of iteration.
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For the case shown here, the convergence criterion was set to 10−9. It is apparent from fig.

3 that the preconditioned Davidson scheme converges much quicker than the original and

unmodified Davidson scheme, as it needs roughly one half of the iterations to compute an

eigenvector with the required precision. The JD calculation shares the first four iterations

with the preconditioned Davidson scheme. This is due to an implementation choice, as we

compute four steps using the preconditioned Davidson scheme before switching to JD in

order to provide a more stable guess. As a consequence, figure 3 contains one single JD

iteration, which, due to the superlinear convergence of JD, is sufficient to reduce the residual

to far less than the required threshold. The impressive efficiency of JD comes at a price,

as in order to solve the linear system in eq. 52, 15 iterations of GMRES were needed. As

a consequence, the JD scheme is slightly more expensive than the preconditioned Davidson

as it requires more matrix-vector multiplications. Nevertheless, the more rigorous grounds

on which the JD scheme is based render it a viable and not-too-expensive alternative for

difficult cases. As a final remark, we point out that the convergence of the microiterations

for the SFDC case is similar to the one observed for the non-relativistic case. The additional
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PES-NES rotation are well decoupled from the PES-PES rotations and the CI coefficients,

and usually only one or two vκ̃ trial vectors are sufficient to achieve convergence. As a con-

sequence, no significant difference in the number of iterations is observed between a SFDC

and a non-relativistic CASSCF calculations.

4.2 Structural properties of the monocarbonyls of the nickel group

Transition metal unsaturated monocarbonyls represent a good test case for our SFDC-

CASSCF implementation, as they exhibit both multireference character and, for heavy

transition metals, pronounced scalar relativistic effects. In particular, we aim at repro-

ducing the trends in the metal-carbon distance and stretching frequency within the nickel

group. Nickel,93–98 palladium99–101 and platinum102–104 monocarbonyls have been exten-

sively studied in the literature and both theoretical and experimental results are available.105

Quantitative results have been obtained on the structures and electronic properties of such

compounds,93–97,99,102 especially on NiCO.106 Here, we focus mainly on the impact of scalar

relativistic effects on the structure and properties of the metal monocarbonyls, which are

determined by comparing SFDC and non-relativistic results.

The uncontracted ANO-RCC basis set107 was used for all systems. The CO molecule

acts as a σ-donor, π-acceptor ligand, so we included in the active space the valence σ and π

orbitals, together with a weakly occupied σ orbital and two π antibonding orbitals. The

δ orbitals which originate from the metal’s dx2−y2 and dxy orbitals have a non-bonding

character and were not included in the active space, as suggested by Xu et al.97 In total,

8 electrons were correlated in 7 orbitals. Working in C2v symmetry, this corresponds to

3 a1, 2 b1 and 2 b2 orbitals. Numerical differentiation was used to compute the gradients

for geometry optimizations, double numerical differentiation for the harmonic frequencies.

The ground state of these carbonyls is a linear 1Σ+ state. Among the three carbonyls,

NiCO has the most pronounced multireference character. The principal configurations are

the HF one (weight 0.89), the four obtained by exciting one electron from a π to a π∗
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orbital (weight 0.15) and the two obtained exciting a σ electron to the low-lying σ virtual

orbital (weight 0.15). We report in table 2 the geometrical parameters and the metal-

carbon stretching harmonic frequencies obtained by both the SFDC and the non-relativistic

CASSCF calculations. Experimental results are reported for comparison. To better compare

Table 2: Geometrical parameters (rMC : metal-carbon distance, rCO: carbon-oxygen dis-
tance, both in Å) and harmonic metal-carbon stretching frequencies (ωMC , in cm−1) for
the monocarbonyl. The gradients for geometry optimizations and the harmonic frequencies
were computed via numerical derivatives. A CAS(7,8) wave function and the uncontracted
ANO-RCC basis set were used for all the calculations. The SFDC and non-relativistic (NR)
CASSCF results are reported together with the experimental (Exp) data. Experimental data
are taken from ref. 98 for NiCO, from refs. 100,101 for PdCO and from refs. 103,104 for
PtCO.

NiCO PdCO PtCO

NR SFDC Exp NR SFDC Exp NR SFDC Exp
rMC 1.6887 1.6728 1.669 1.9467 1.8629 1.843 2.0225 1.7754 1.760
rCO 1.1292 1.1300 1.153 1.1144 1.1180 1.140 1.1129 1.1255 1.146
ωMC 600 611 591 388 457 472 354 572 581

the trends, the metal-carbon distances (left panel) and stretching frequencies (right panel)

are also reported in figure 4. The CASSCF results are not expected to be in a perfect

Figure 4: Metal-carbon distances and harmonic stretching frequencies for NiCO, PdCO,
and PtCO. Non-relativistic and SFDC CASSCF results were obtained using a CAS(7,8)
wavefunction and the uncontracted ANO-RCC basis set.
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agreement with the experimental ones, due to the lack of dynamic correlation treatment.

Nevertheless, a semi-quantitative agreement can be observed if the CASSCF wave function
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is flexible enough to correctly represent the molecular electronic ground state. The results for

nickel, where relativistic effects are expected to be small, confirm that the CASSCF scheme

provides a satisfactory description. Both the SFDC and the non-relativistic results are in

good agreement with the experimental data. The comparison of SFDC and non-relativistic

results is more interesting for the heavier PdCO and PtCO. In particular, comparing the

same level of theory allows one to attribute the discrepancies in the results entirely to the

relativistic treatment and therefore to better understand the quantitative effects of relativity

on the structure and properties of a system. It is particularly interesting to compare the

trends in both the metal-carbon distance and in the metal-carbon stretching frequency.

Moving from nickel to palladium, an increase in the distance is observed, due to the larger

covalent radius of the metal atom. However, such an increase is partly compensated by the

contraction of the electronic shells in palladium, which is due to scalar relativistic effects. The

discrepancy between the non-relativistic and SFDC results is therefore due to the fact that

while the non-relativistic description only reproduces the first effect, a relativistic treatment

is required to correctly describe the latter. The same observations are made for platinum,

were the relativistic contraction effect is particularly strong. The non-relativistic description

gives a metal-carbon bond length which is larger than the one for palladium and completely

fails to reproduce the experimental trend, which shows a Pt-C distance shorter than the Pd-

C one. On the contrary, the SFDC-CASSCF description correctly captures the contraction

effect and gives a Pt-C bond length in good agreement with the experimental value. A very

similar trend can be observed for the metal-carbon stretching frequency, which exhibits,

as expected the opposite trend than the metal-carbon distance. In particular, it is lower

for palladium than for both nickel and platinum. Again, a non-relativistic treatment fails

to capture such a trend and gives a qualitatively wrong description. On the contrary, the

SFDC-CASSCF treatment successfully reproduces the correct behavior, giving results in

qualitative agreement with the experimental data.
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5 Conclusions

In this article we have presented an implementation of the CASSCF method specifically

tailored for a scalar relativistic treatment based on the spin-free Dirac-Coulomb Hamilto-

nian. Our implementation fully exploits all the computational advantages offered by the

spin-separation of the DC Hamiltonian, namely, real algebra, spin symmetry, and point-

group symmetry. This results in a method with a computational cost close to the one of a

non-relativistic treatment, especially when large active spaces are used. The quadratic con-

vergence of the scheme and an innovative numerical strategy to solve the optimization equa-

tions have been documented through an example. The applicability of the SFDC-CASSCF

method has been demonstrated in a first application on the unsaturated monocarbonyls of

the nickel group metals. It has been shown that the inclusion of SF relativistic effects is

sufficient to correctly describe the behavior of the geometric parameters through the group

and how such a behavior is mainly due to relativistic effects.

There are two main ingredients that are still lacking in our approach in order to achieve

quantitative results. The first one is the inclusion of dynamic electronic correlation, using the

CASSCF wavefunction as a starting point for a correlated treatment. A SFDC approach is

particularly convenient for such a task, as no overhead is introduced in the rate-determining

correlated post-treatment due to relativity. The second ingredient is the treatment of SO

interactions. A perturbative treatment seams appropriate for not-too-heavy elements, such

as the ones belonging to the first 5 rows of the periodic tables.30 This direction is currently

being explored in our group.

Supporting Information

Explicit expressions for the MO rotation Hessian. The Supporting Information is available

free of charge on the ACS Publications website http://pubs.acs.org
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