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We study the problem of linking the terms of a web-search query to a semantic representation given by the

set of entities (a.k.a. concepts) mentioned in it. We introduce SMAPH, a system that performs this task using

the information coming from a web search engine, an approach we call “piggybacking.” We employ search

engines to alleviate the noise and irregularities that characterize the language of queries. Snippets returned

as search results also provide a context for the query that makes it easier to disambiguate the meaning of the

query. From the search results, SMAPH builds a set of candidate entitieswith high coverage. This set is filtered

by linking back the candidate entities to the terms occurring in the input query, ensuring high precision. A

greedy disambiguation algorithm performs this filtering; it maximizes the coherence of the solution by itera-

tively discovering the pertinent entities mentioned in the query. We propose three versions of SMAPH that

outperform state-of-the-art solutions on the known benchmarks and on the GERDAQ dataset, a novel dataset

that we have built specifically for this problem via crowd-sourcing and that we make publicly available.
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1 INTRODUCTION, MOTIVATION, AND PROBLEM DEFINITION

As conversational interfaces become more popular in web applications, human-computer inter-
action increasingly resembles natural language dialogue, and natural language understanding
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becomes a key problem. A deeper level of semantic understanding is necessary for improved pre-
cision, contextualization, and personalization of information exchange through natural language
in ubiquitous computing devices. An important aspect of capturing the semantics of a linguistic
document is entity-linking, the task of linking terms in a text to the entity they refer to. By “en-
tity,” we refer to a concept with distinct and independent existence. We rely on knowledge bases
as catalogs of entities. In this article, we consider three types of entities:

• A NamedEntity is a real-world object, e.g., a person, location, or organization, that can be
denoted with a proper name.
Examples: Neil_Armstrong, United_Nations, Chicago, September_11_attacks, Batman.1

• An AbstractEntity is an abstract concept.
Examples: peace, mathematics, centripetal_force.

• A CategoryOfEntities is a set of things sharing some properties.
Examples: astronaut, superhero, physical_force.

We use the word “entity” to refer to all three types of entities. When necessary for clarity, we will
use the term GenericEntities to refer to all three types; that is, NamedEntities, AbstractEntities,
and CategoriesOfEntities are all GenericEntities.
Knowledge bases (such as Wikidata) are repositories of structured information about Generi-

cEntities. For example, they may include the fact that Neil_Armstrongwas an astronaut, and that he
was born on August 5, 1930. For applications that need to retrieve these types of structured pieces
of information, entity-linking is the first necessary step (see, e.g., References [13, 35, 36, 50, 55]).

1.1 Problem Definition

Prior to defining the problems we tackle in the article, let us give two definitions:

• A mention is a span (encoded as the index of the first and last character) in a textual doc-
ument that explicitly refers to an entity;

• An annotation, indicated as m �→ e, indicates that mentionm refers to entity e .

We address the following two entity-linking tasks:

• Query-level entity-linking2 is the task of finding all entities mentioned in the query. The
entities are found for the entire query, without determining which tokens mention them.

• Token-level entity-linking3 is the task of finding all annotations in a query. In other
words, all entities mentioned in the query and their mentions.

To understand the difference between query-level and token-level entity-linking, consider the
following text:

d = After Armstrong stepped off the Apollo 11, he hummed ‘‘Hello, Dolly!’’ by

Armstrong,

which contains two occurrences of the word Armstrong that are mentions of different entities.
The output of query-level entity-linking is a set of entities:

{Neil_Armstrong, Louis_Armstrong, . . .}.

1Though Batman arguably does not exist in the real world, its character does.
2We used the name C2KB for query-level entity-linking in earlier work, i.e., Concept to Knowledge Base. See Cornolti

et al. [9], Usbeck et al. [53].
3We used the name A2KB for token-level entity-linking in earlier work, i.e., Annotation to Knowledge Base. See Cornolti

et al. [9], Usbeck et al. [53].

ACM Transactions on Information Systems, Vol. 37, No. 1, Article 13. Publication date: December 2018.



SMAPH: A Piggyback Approach for Entity-Linking in Web Queries 13:3

In contrast, the output of token-level entity-linking is a set of annotations:

{m1 �→ Neil_Armstrong,m2 �→ Louis_Armstrong, . . .},

where mentionsm1 = (6, 14) andm2 = (73, 81) are the two occurrences of the term Armstrong.
Some queries are inherently ambiguous, for example, life of armstrong. In such cases, we

define both our problems as those of finding the entities according to the interpretation most
humans (speaking the language of the query) would make of the query.
There are also queries in which one token is part of two mentions that refer to distinct entities,

and the definition of one entity entails the other. For example, in the query president of us 2016,
the mention president of us refers to the institution President_of_the_United_States, while us
refers to United_States. In such cases, we define both our problems as those of finding the entailing
entity (in the example, President_of_the_United_States) only. The rationale behind this is that the
entailing entity has a more specific meaning and better captures the semantics of the query. Note
that the entailed entity can be retrieved from a knowledge base.

1.2 Motivation

Entity-linking in queries is a recent algorithmic challenge [5] that faces two main issues: (i) the
noisy language of queries, characterized by misspellings and unreliable tokenization, capitaliza-
tion, and word order, and (ii) their brevity, as queries typically consist of just a few terms. Issue (i)
makes it hard to find which entities a query term may refer to. This is a key task in entity-linking
and typically relies on a dictionary generated fromwell-edited texts, such asWikipedia articles. Is-
sue (ii) results in the lack of context that can be leveraged to assist the disambiguation of the query
terms and model the coherence of the interpretation. As a consequence, known entity-linking al-
gorithmswith good performance on longer and well-formed documents (such as books, blog posts,
or news; see, e.g., References [17, 22, 27, 42, 46]) are less effective when applied to queries.

Search engines, however, are very good at processing queries and pointing users to the infor-
mation most relevant to their needs. Users interact with search engines by means of a query or
a short sentence, that search engines have to interpret. Eventually, search engines return the list
of Web documents that are pertinent to a user query, but they also provide important accessory
information: for each retrieved Web document, they include a snippet of well-formed sentences
extracted from those documents in which the query terms appear in a cleaner, normalized form,
usually shown in bold.
We propose to deal with the challenges posed by open-domain web-search queries via a pig-

gyback approach that exploits a web-search engine and the Wikipedia knowledge graph. In our
terminology, piggybacking refers to the practice of building a system on top of the information
provided by a search engine, which is treated as a black box. The intuition behind the piggyback-
ing approach, first introduced in Reference [48], is that search engines can be viewed as the closest
available substitute for the world knowledge that is required for solving complex natural language
understanding tasks. Search engines tend to be robust to the two issues presented above, because
they have been designed to deal with queries, as this is the main form of interaction with the user.

1.3 SMAPH: An Entity-Annotator for Queries

In this article, we describe SMAPH, an entity-annotator (i.e., a system that performs entity-linking)
for web-search queries that employs piggybacking and the Wikipedia knowledge graph. We de-
scribe three versions of SMAPH, denoted as SMAPH-1, SMAPH-S, and SMAPH-3. Each one of
these versions has been developed to address a distinct research question that we state and discuss
in this section. Starting at Section 4, we will describe the three versions of SMAPH in detail and
present experimental results that support our claims.
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1.3.1 ResearchQuestion #1: Can Piggybacking Improve theQuality of Entity-linking onQueries?

This question is concerned with the performance of traditional entity-annotators when applied
to open-domain web-search queries. To answer this question, we compare traditional entity-
annotators, which are designed for natural language entity-linking, against SMAPH-1, which is
specifically designed for query entity-linking. SMAPH-1 relies on applying a robust natural lan-
guage entity-annotator (i.e., WAT [45]) on the snippets returned by a search engine, to obtain a set
of entities that are candidates for the annotation of the query. SMAPH-1 then chooses which of
the candidate entities to keep and which to discard based on a machine-learned binary classifier
that processes each entity individually and independently of the others, based on a set of features
extracted from the snippets.
To train and evaluate the classifier, we built (via crowd-sourcing) GERDAQ, a dataset consist-

ing of 992 queries and their ground-truth annotations. The entity knowledge base is the whole
Wikipedia. It includes all three types of GenericEntities (see Section 1). GERDAQ is split into three
portions: train (497 queries), development (249 queries), and test (246 queries).
Despite its simplicity, SMAPH-1 outperforms traditional entity-annotators designed for natu-

ral language text by a significant margin, with the idea of piggybacking being responsible for an
important gain in precision. As a historical note, we observe that SMAPH-1 was designed to par-
ticipate in the query-annotation track at ERD’14 [5], a challenge hosted by SIGIR 2014, that has
seen the participation of 19 teams competing to build an entity-annotator for queries. SMAPH-1
took the first place in the query annotation track.

1.3.2 ResearchQuestion #2: Can AnnotationQuality be Improved by Enforcing the Bond between

a Candidate Entity and theQuery Terms? An error analysis of SMAPH-1 highlighted an abundance
of false negative entities, which hurt recall. These are candidate entities that, despite being ex-
plicitly mentioned in the query, are associated to poor signals and thus get discarded by SMAPH-
1. This motivated the design of SMAPH-S, a query entity-annotator that performs token-level
entity-linking by generating a set of candidate annotations and evaluating each candidate inde-
pendently of the others via supervised machine-learning. Note that by solving token-level entity-
linking on queries efficiently, we will get a better solution for query-level entity-linking, too—a
token-level entity-linking for a query can be trivially simplified to a query-level entity-linking by
dropping the mentions and keeping the entities referenced by the query annotations.
The linking-back from entities to their mentions implemented by SMAPH-S lets it choose enti-

ties with higher confidence compared to SMAPH-1. This not only makes it better at finding more
entities mentioned in the query (increasing recall) but also at discarding entities that are not men-
tioned by the query (increasing precision). Our experiments will show that, by enforcing the link
between mention and entity, SMAPH-S increases the macro-F1 (i.e., the average F1 measure across
queries of the dataset; see Section 9.1) reached by SMAPH-1 on the GERDAQ dataset by 3.5% when
piggybacking on Bing, and by 4.2% when piggybacking on Google (results refer to NamedEntities
recognition). Results on ERD-dev, a dataset similar to GERDAQ released by the ERD Challenge
organizers (see description at Section 9.2.2), show a similar trend. When we consider GenericEn-
tities in the evaluation, SMAPH-S obtains a macro-R higher than SMAPH-1, though the macro-F1
is similar.

1.3.3 Research Question #3: Can the Quality of Token-level Entity-linking be Improved by

Modeling the Coherence Among the Entities Included in a Solution? The linking-back of entities to
mentions makes it easier to discard wrong entities, and thus improves precision. Analyzing the
annotations produced by SMAPH-S, we observed several incoherent solutions, i.e., annotations
containing two entities that are mutually exclusive from a semantic point of view. To solve this
issue, we propose SMAPH-3, the last and best performing version of SMAPH, that improves the
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previous versions by taking into account the coherence of the set of annotations forming the
solution. SMAPH-3 builds the solution by adding one annotation at a time. This way, it can take
into account the coherence between a new annotation and the others previously added. The
training process of SMAPH-3 has the objective function of maximizing directly the macro-F1
measure. This leads to the following improvements on GERDAQ. For query-level entity-linking,
when considering NamedEntities only, the improvement in macro-F1 is about 6% over SMAPH-1,
and about 2% over SMAPH-S; when considering GenericEntities, the improvement is in the range
3.6–7% over SMAPH-1 and SMAPH-S (depending on the search engine it piggybacks on, either
Bing or Google). For token-level entity-linking, the improvement in macro-F1 over SMAPH-S is
4% when piggybacking on Bing, and 5% when piggybacking on Google. With respect to natural
language entity-annotators, such as WAT, SMAPH-3 improves macro-F1 by 16.3%.

1.4 Entity-Linking for Queries: Our Contribution

In summary, this article makes four main contributions to the topic of entity-linking for queries.

• This article is the first one to investigate the problem of identifying GenericEntites (not just
NamedEntities) in a query. The detection of AbstractEntities and CategoriesOfEntities has
been recognized as a key feature of modern query-annotation tools [13].

• We build and release to the public the GERDAQ (General Entity Recognition, Disambigua-
tion, and Annotation in Queries) dataset that provides a ground truth for token-level entity-
linking on 992 annotated queries.

• We propose three versions of a query-annotator, called SMAPH, providing state-of-the-art
performance for open-domain query annotation. The core algorithm underlying the best
performing version of SMAPH, called SMAPH-3, makes a greedy choice of annotations
from a set of candidates, by using a model whose parameters are optimized on a training
set. In contrast to prior work, we directly optimize F1, the top-line metric of evaluation.

• We present an extensive set of experiments that evaluate the three SMAPH versions on
GERDAQ and, when possible, on the datasets of the ERD Challenge: ERD-dev and ERD-
online.

Part of this article was previously published in the proceedings of the ERD 2014 Workshop [5],
where we presented SMAPH-1 and the general idea of piggybacking on search engines. In the
proceedings of the WWW 2016 conference [10], we published our first proposal for link-back,
namely, SMAPH-S, and designed a preliminary approach to collective disambiguation, which we
called SMAPH-2. In these two papers, we experimented with these entity-annotators by piggy-
backing on Bing only.
Later on, we devised SMAPH-3, which, despite being designed to tackle the same issues as

SMAPH-2 (lack of solution coherence), employs a radically different algorithm to choose which
annotations to include in the solution. Since we consider SMAPH-3 a more elegant algorithmic
approach than SMAPH-2, and since it experimentally turns out to be more accurate and faster, we
decided to omit the description of SMAPH-2 from the present article.
With respect to the previously published material, this article presents five novel contributions:

(i) a formulation of entity-linking as the problem of selecting a coherent subset of annotations
from a pool of candidates, maximizing F1; (ii) our best performing algorithm SMAPH-3 and its
novel approach to selecting query annotations; (iii) an in-depth analysis of the contribution of
each iteration of SMAPH-3 to the construction of the final query annotation. In addition to these
algorithmic and methodological contributions, we present an extended experimental analysis of
all three SMAPH versions. In particular, (iv) we use Google, in addition to Bing, as a piggyback
search engine, which lets us test the robustness of SMAPH with respect to the search engine we
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piggyback on; (v) we perform a deeper analysis of results quality, including the robustness on
less popular queries. This article is also the first to present a coherent synthesis of the SMAPH
entity-annotators.

2 RELATEDWORK

In recent years, significant effort has been made to move beyond representing textual documents
as a bag of words. One important line of work toward semantic representations relies on entity-
annotators (see, e.g., References [12, 17–20, 31, 37, 38, 40, 45, 46]), with several interesting and
effective algorithmic approaches to solve the mention-entity match problem. Most of these entity-
annotators are developed for long documents. Recent works [50] adopt information drawn from
Wikipedia, possibly in structured forms such as DBpedia or Wikidata (which also includes data
from Freebase, a knowledge base widely used in the literature but now deprecated) to detect entity
mentions and disambiguate them.
While a comprehensive review of known entity-annotators for natural language is beyond the

scope of this article, we introduce one of them, WAT [45], as we employ it as a component of
SMAPH. WAT models entity disambiguation as a Learning-to-Rank task, in which candidate en-
tities for each mention are ordered by the likelihood of them being the pertinent entity for that
mention. As ranking algorithm, the author uses LambdaMART [4]. Features associated with a can-
didate entity and used for ranking are based on (i) the word embeddings of the mentions of the
candidate entity in the articles of Wikipedia, and (ii) a random walk on the Wikipedia graph sim-
ilar to DeepWalk [43]. The solution is generated by linking the top-ranking candidate entities to
their corresponding mentions.
Most research concerning entity-based query understanding focuses on NamedEntity Recogni-

tion [41] (the task of finding what terms are mentions of NamedEntities, without linking them to
the entity), possibly associated to query intent discovery [32] or query classification into pre-defined
classes [16, 21, 35]. Some work has also focused on linguistic analysis of queries, for example, by
POS tagging terms or tagging themwith a limited number of classes and other linguistic structures
[1, 2], or assigning a coarse-grained purpose to each segment [30]. Wei et al. [54] present a method
to do abbreviation disambiguation in queries.
As a source of information, these works may either use knowledge bases or information derived

from web search such as query logs (see, e.g., Reference [28]), click through information [33],
search sessions [14], top-k snippets from search engines [1], web phrase DBs [2, 23], or large
manually annotated collections of open-domain queries to extract robust frequency or mutual-
information features and contexts [16].

Another interesting line of research about queries is that of query segmentation. Its goal is to
find the lexical units, either compounds or single-token units, in a query. The authors of these
works show that a search engine can exploit such segmentation to increase result precision, since
documents that do not contain the lexical units in proximity or even in the exact same order can
be discarded (see, e.g., References [29, 47, 51]). More recently, a series of papers by Hagen et al.
(see, e.g., Reference [23]) proposed simple and effective scoring functions for lexical units that use
a weighted sum of normalized web-phrase frequencies (taken from the Google n-gram corpus),
and showed via a large experimental test that query segmentation based on titles of Wikipedia
articles is very effective.
The literature also features works that explicitly treat entity-linking in queries. Blanco et al. [3]

propose a fast and space-efficient entity-linking method leveraging information from query logs
and anchor texts. Their method solves a ranking version of token-level entity-linking by returning
a ranking of annotations. The entity-annotator was evaluated on the Webscope L24 (Yahoo Search
Query Log To Entities) dataset taking into account entities only (i.e., mentions are not evaluated).
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This way the authors did not determine the final set of annotations for a query but, rather, a
ranked list of (possibly several) entities, which was then evaluated by means of typical ranking
metrics. The authors did not evaluate their entity-annotator on the dataset of the ERD Challenge
nor against the entity-annotators participating in the ERD Challenge.
Another interesting work is that presented by Hasibi et al. [25] (a follow-up of the NTNU-UiS

entity-annotator presented at the ERD Challenge), where the authors describe a method to solve
the query-level entity-linking problem. The method is based on three phases: (i) candidate anno-
tations are generated aiming at maximum recall, by exploiting two sources: DBpedia and Google’s
Freebase Annotations of the ClueWeb Corpora (FACC); (ii) candidate annotations are assigned a
score by combining, via a generative model, the Mixture of Language Models (MLM) with a com-
monness score; (iii) interpretations are iteratively generated by picking non-overlapping annota-
tions, starting from the ones with higher score. The entity-annotator is evaluated on a cleaned
version of the Webscope L24 dataset, where only explicitly mentioned NamedEntities are kept
(i.e., GenericEntities that are not NamedEntities and implicit mentions are removed). This entity-
annotator outperforms TagMe, which is used as a baseline. Hasibi et al. [25] address the problem of
semantic mapping, i.e., finding the ranked list of pertinent entities, possibly without explicit men-
tions in the query (for example, Ann_Dunham for query obama mother). In a follow up [26], they
propose an annotator that employs supervised learning for the entity ranking step while tackling
disambiguation with an unsupervised algorithm. The annotator of [26] has a performance slightly
lower than SMAPH-2.
Finally, the problem of entity-linking on queries has been approached by Tan et al. [52]. The un-

derlying idea of this entity-annotator (we will refer to it as Tan et al.) is to searchWikipedia articles
for sentences similar to the query, and rank these articles using a linear model based on features
such as link-probability, contextmatching, word embeddings, and relatedness among candidate en-
tities. The entity-annotator has been tested on GERDAQ, where it reaches a performance slightly
lower than our SMAPH-3. Experiments have also been done on the dataset of the ERD Challenge,
though no direct fair comparison with prior work is provided, since the entity-annotator was
trained on a portion of the dataset that was never released to the public.
Unlike other approaches, SMAPH does not treat entity recognition and entity disambiguation as

two separate problems. Though SMAPH is the first method to do entity-linking on queries treat-
ing these problems jointly, this approach has already been explored for entity-linking on natural
language documents by Sil and Yates [49], who proposed to generate candidates with independent
NamedEntity recognition and multiple entity-annotators, and then re-rank candidates with a lin-
ear maximum entropy model trained to maximize the L2-regularized conditional log-likelihood.
This approach has also been explored for entity-linking on tweets by Guo et al. [22], who pro-
posed to generate candidate annotations with a base linking model and represent the set predicted
annotations as a binary vector, so that learning can use as loss function the Hamming distance
between the predicted vector and the gold vector.

3 GERDAQ, A DATASET FOR TRAINING AND TESTING QUERY

ENTITY-ANNOTATORS

In this section, we explain how we built the GERDAQ dataset. GERDAQ provides ground-truth
annotations for 992 queries. It can be used as a source of examples to do supervised machine
learning or to test the quality of query entity-annotators.
GERDAQ is the result of a cooperation between the University of Pisa, University ofMunich, and

Google. The cost of creating this dataset was roughly $2000, funded by a Google Research award in
2013. Queries are derived from the KDDCup 2005 dataset [34] and have been annotated byworkers
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Fig. 1. Some queries extracted from the KDD-Cup 2005 competition that became instances of GERDAQ.

on Crowdflower,4 an on-line meta-crowdsourcing engine. The dataset has been released5 for free
to the community, under a Creative Commons license, to assist the development entity-annotators
and support research on query entity-linking.
Even for experts on the subject, it is often hard to find correct annotations for a query. Human

annotation requires an understanding of what the user had in mind when she typed the query. The
human has to spot the mention of an entity and pick the entity it references from a knowledge
base. No single worker has knowledge of the whole catalog of entities provided by a knowledge
base; and no worker can interpret queries typed by any user, each with different background and
culture.
To get as close as possible to the goal of finding high-quality annotations, we had multiple

human workers annotate the same query. After selecting the queries to include in GERDAQ, the
first phase was aimed at maximizing coverage, the second at refining precision. In the rest of this
section, we give details on the dataset construction workflow.

3.1 Phase 0:Query Selection

The queries forming GERDAQ instances have been sampled from the KDD-Cup 2005 competition
dataset, which consists of 800,000 queries. These queries are taken from MSN search logs with
some preliminary filtering.
First, we cleaned the dataset by discarding the queries that looked like web addresses (i.e.,

those containing www or http), then we randomly sampled 992 queries.6 Figure 1 presents example
queries from the random sample.

3.2 Phase 1: Maximizing Coverage

This phase aimed atmaximizing the coverage of the annotation process for the queries of GERDAQ,
without considering the precision of the annotations.We set up a job on Crowdflower and, for each
query, asked workers to spot annotations in queries, namely, a mention and the entity referenced
by it, in the form of a Wikipedia URL. Workers were instructed to not be conservative and to
spot as many annotations as they could, up to 10 annotations per query. The job was set up so to
accept only mentions that were actual substrings of the query and URLs that were existing English
Wikipedia articles.
The quality of annotations was covertly tested during the execution of the job. Queries of the

GERDAQ dataset to be annotated were issued to the workers, but, among them, we inserted a
set of 70 additional quality-control queries, in a way that workers could not distinguish them.
Quality-control queries were chosen to be of simple interpretation and not ambiguous. For those
queries, we also built a ground truth. Aworker response for a quality-control querywas considered

4www.crowdflower.com.
5Dataset at http://acube.di.unipi.it/datasets/.
6The number of queries was originally 1,000, eight were later removed, because they featured illegal or potentially offensive

content.
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Table 1. Annotations Proposed by Workers in Phase 1
for ThreeQueries

Query: south st philly stores
stores �→ Retail 3/11
south st philly �→ South_Street_(Philadelphia) 6/11
philly �→ Philadelphia 2/11

Query: cooking school ’’mont st. michel
cooking school �→ Cooking_school 7/10
mont st. michel �→ Mont_Saint-Michel 8/10

Query: photos of stary night
photos �→ Photograph 6/11
stary �→ Star 2/11
night �→ Night 4/11
stary night �→ The_Starry_Night 6/11

Right column indicates how many workers spotted an annotation.

Table 2. Distribution of Judgments Over
the 3,197 Distinct Annotations

1 2 3 4 5 6 7 8 9 ≥10
1,048 384 291 229 215 190 189 234 218 199

Read the first column as “1,048 annotations were found by a single worker.”

acceptable if the worker spotted at least one annotation of the ground truth built by us. When
workers issued wrong responses for quality-control queries, they were prompted with an error
message explaining the correct annotation process, but workers who persisted in failing were
permanently excluded from the job, and their previous responses ignored.
Since no worker has full knowledge of all domains, high coverage could only be reached if this

job employed as many workers as possible, to cover different backgrounds and cultures. For this
reason, for each query, we collected responses from at least 10 different workers. The job completed
in a few hours and collected a total of 10,038 responses (not counting those given by unreliable
workers and those given for quality-control queries). A total of 271 workers took part in the job;
they processed 37 queries each on average, and found a total of 3,197 distinct annotations (3.2 per
query).
Table 1 shows the output from Phase 1 for three queries. Each annotation is associated with the

number of workers that found it. As figures from a later step of refinement show (see Tables 2 and
3), the fact that an annotation was found only by a few workers does not indicate that it is wrong.
For example, in query south st philly stores, the user intent is to get information about
stores in South Street, a street in Philadelphia that is one of the city’s largest tourist attractions. 6
out of 11 workers correctly recognized that south st philly refers to that street, but only three
annotators found that term store refers to retail stores. Nonetheless, both annotations are correct.
However, in the query photos of stary night, the user intent is to find pictures of the night
view of the sky in which stars are visible. Entities Photograph, Star, Night are correctly found, but
6 out of 11 workers identified stary night as being a mention of Van Gogh’s famous painting
“The Starry Night.” Both are reasonable interpretations, and the subsequent Phase 2 of refinement
will have to choose which is the most common interpretation.
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Table 3. Distribution of Average Annotation Scores

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

53 81 94 134 169 251 325 369 633 712 375

Example: 81 annotations received an average score in [0.1, 0.2); 375 annotations

were given the maximum score by all workers (last column).

Table 2 shows the distribution of how many workers spotted the same annotation: about half
of the annotations were found by one or two workers but, as we will see later, most of them were
nonetheless judged as being correct in Phase 2.

3.3 Phase 2: Refining Precision

Phase 2 aimed at discarding bad annotations found by workers in Phase 1. We created a second
job on CrowdFlower, asking workers to judge, on a scale from 1 to 10, the likelihood that a certain
annotation found in Phase 1 was correct. Workers were prompted with questions like: In the query
armstrong moon, how likely does armstrong refer to the entity Neil_Armstrong? Workers were
also provided with an abstract of the Wikipedia article about the candidate entity (e.g., Neil Alden
Armstrong was an American astronaut . . . ), to better distinguish correct entities from wrong ones.

Similarly to Phase 1, Phase 2 featured covert quality-control. For the same set of 70 queries used
for quality-control in Phase 1, we manually generated 76 correct and 69 wrong annotations. Like
in Phase 1, we chose simple, unambiguous cases. These annotations were covertly provided to
workers that had to judge them. To have their responses on quality-control instances considered
acceptable, workers had to assign a score between 1 and 4 to wrong annotations, and a score
between 7 and 10 to correct annotations. Workers failing to recognize multiple quality-control
annotations were excluded from the job and their contribution not taken into account.
Each query was processed by at least 3 workers, for a total of 390 workers who took part in the

job and processed 26 queries each on average, generating a total of 9,612 annotation scores. The
distribution of average scores assigned to annotations in Phase 2 is shown in Table 3. Numbers
show that workers of Phase 2 considered as correct a big fraction of annotations, even among
those that were found by a limited number of workers in Phase 1. Sampled output from Phase 2 is
shown in Table 4.

3.4 Phase 3: Manual Refinement by Experts

A non-trivial issue was that of defining a threshold on the average score to discard wrong annota-
tions. We decided to leave this job to expert human judgment. By randomly sampling annotations,
we observed that all annotations with a score smaller than 0.58 were wrong, and thus to be dis-
carded. Similarly, all annotations with a score above 0.65 were correct. Annotations in the range
0.58–0.65 (a few dozen) were manually double checked for correctness until complete agreement
between two members of our research team was reached.
Even after filtering out the annotations with a low score, there can be two annotations for the

same query having overlapping mentions. Since a term cannot be part of two distinct mentions,
one annotation had to be discarded. This happened for 90 mentions over a total of 2,043. This may
occur because of three reasons:

(1) Actual ambiguity of the query: uncertainty on which entity to link. For example, in
query armstrong moon, mention armstrong can either be interpreted asmentioningNeil_
Armstrong or Louis_Armstrong. Since we are building a dataset that labels the most com-
mon interpretation (according to the problem definition, see Section 1.1), we solved these
cases by keeping the annotation with the highest score.
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Table 4. Score Assigned by Workers to Annotations in Phase 2

Query: south st philly stores
Annotation Ph. 1 Avg. Score

stores �→ Retail 3/11 0.778
philly �→ Philadelphia 2/11 0.889

south st philly �→ South_Street_(Philadelphia) 6/11 0.778

Query: cooking school mont st. michel
Annotation Ph. 1 Avg. Score

cooking school �→ Cooking_school 7/10 0.867
mont st. michel �→ Mont_Saint-Michel 8/10 0.814

Query: photos of stary night
Annotation Ph. 1 Avg. Score

photos �→ Photograph 6/11 1.000
stary �→ Star 2/11 0.800
night �→ Night 4/11 0.800

stary night �→ The_Starry_Night 6/11 0.222

Central column indicates howmanyworkers spotted an annotation in Phase 1, right column

indicates the average of the scores assigned by workers in Phase 2.

Table 5. GERDAQ Dataset Statistics for Each Portion

Queries with Avg. anns per Avg. anns Avg. query

Portion Queries ≥1 anns non-empty query per query length (chars)

GERDAQ-train 497 446 2.07 1.87 25
GERDAQ-dev 249 221 2.05 1.82 22
GERDAQ-test 246 220 1.95 1.75 23

The second column indicates the number of queries in a portion; the third column indicates the number of queries having

at least one annotation (non-empty queries); the fourth column indicates the average number of annotations among non-

empty queries while the fifth indicates the same quantity among all queries; the last column indicates the average query

length in characters.

(2) Unclearmention but unambiguous entity: uncertainty on what mention to link to the
entity. We solved these cases by choosing the annotation with highest score among those
linking the same entity.

(3) Entity entailment. For example, in query president of u.s. 2006, mention
president of u.s. refers to the institution President_of_the_United_States, but an al-
ternative annotation might link u.s. to United_States. In such cases, according to the
problem definition (see Section 1.1), we discarded the annotation referencing the en-
tailed entity (United_States) and keep the other annotation (the one referencing President_
of_the_United_States).

In case of actual query ambiguity (case 1), the GERDAQ dataset also features secondary inter-
pretations found by the workers, which are available for future work, though not considered in
this article.
Phase 3 keeps 2,043 (out of 3,197) distinct annotations (an average of 2.0 annotations per query),

constituting the ground truth for the GERDAQ dataset (see Table 5 for basic statistics).
We randomly split GERDAQ into training set (GERDAQ-train, 497 queries), development set

(GERDAQ-dev, 249 queries), and test set (GERDAQ-test, 246 queries). We encourage researchers
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Fig. 2. Overview of the three SMAPH entity-annotators. Continuous lines indicate workflow; dashed lines
indicate generated data. The first step, candidate entity generation, is shared among the three versions of
SMAPH. The solution provided by SMAPH-1 is found by pruning the set of candidate entities. SMAPH-S
and SMAPH-3 share the step of candidate annotations generation. The solution provided by SMAPH-S and
SMAPH-3 is a subset of candidate annotations, but they differ in the way this subset is chosen: SMAPH-S
builds the solution by judging candidate annotations independently, while SMAPH-3 iteratively builds the
solution also taking into account their coherence.

to train and tune their entity-annotators on the first two portions and keep the test set for the final
evaluation report.

4 CANDIDATE ENTITY GENERATION

We start the description of SMAPHby presenting its first step, which aims at finding a set of entities
that are good candidates for being part of the solution. This step is shared among all versions of
SMAPH. Its purpose is to find a set of candidate entities for input query q. The reader might find it
useful to follow the flow chart in Figure 2, where candidate entity generation appears in the upper
part.
For all versions of SMAPH, this is the only step in which new entities come into play (some of

them will be discarded in later steps). For this reason, this step aims at maximizing the coverage
of the candidate set, which poses an upper bound to the recall of the eventual solution for q.

Candidate entities are generated by processing the results returned by the public API of a search
engine (in our experiment, we will use either Bing or Google) and consists of two phases.
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4.1 Phase 1: Fetching

Search results for two queries are fetched from the search engine. The first query is the input query
q, the second query is qw , consisting of q concatenated with the word wikipedia. For both queries,
we enable the search engine’s spelling correction feature, so that results are not affected by spelling
errors possibly present in the query. The second query qw boosts results from Wikipedia. Note
that search engines also support domain-restricted queries that could be used to search among
Wikipedia articles only.We decided not to use this type of search, because it tends to return articles
loosely related to the actual query. Instead, by simply appending the word wikipedia, we give the
search engine a soft suggestion about the kind of pages we are interested in, and also obtain, as
their rank, a signal of their pertinence to query q.

4.2 Phase 2: Candidate-Entity Generation

Entities are drawn from three sources:

Source 1. Among the top-5 URLs returned by the search of q, we find those that point to
Wikipedia articles. Corresponding entities form the set E1.

Source 2. The same is done with the top-10 URLs returned by the search of qw . These form the
set E2.

Source 3. Snippets of the top-15 results of the first search are, independently of each other, fed to
the WAT entity-annotator7 For each snippet, WAT returns a set of annotations. Among
these, we consider only the ones overlapping with a bold-highlighted substring of the
snippet. Their entities form the set E3.

WAT has very good performance on annotating sentences excerpted from longer docu-
ments [44], and snippets are indeed excerpts from web pages of a few dozen terms. WAT finds
mentions in the snippets and disambiguates them by exploiting the context provided by the snip-
pet. The reason why we only keep the annotations that overlap with a bold-highlighted substring
of the snippet is that these bold-highlighted substrings are usually the form in which entities
mentioned by the query are mentioned in web pages. In snippets, these forms generally occur in
a canonical, spell-corrected form.
We set a limit to the number of search engine results that are considered for the generation

of sets E1, E2 and E3 (set, respectively, to 5, 10, and 15 top results). The objective of this phase
is to reach high coverage. We explored values for these limits by means of a simple grid search
and found that, as detailed in Section 9.3, the limits we set guarantee the coverage of the union
of the sources to be 87.9% for GenericEntities and 96.7% for NamedEntities,8 which we consider
satisfactory.
While Sources 1 and 2 are straightforward to understand, the explanation of Source 3 may ben-

efit from an example. Consider the query

q = armstrong mon lading.

This query features twomisspellings in the writing of terms moon and landing, and the ambiguous
term armstrong, which is a reference to Neil Armstrong. Figures 3(a) and 3(b) show the top five
results returned by Bing and Google, respectively, when searching for query q. Consider as an
example the third snippet by Bing:

7We tried several annotators other than WAT, but they yielded worse performance when annotating snippets.
8Coverage computed on the development set.

ACM Transactions on Information Systems, Vol. 37, No. 1, Article 13. Publication date: December 2018.



13:14 M. Cornolti et al.

Fig. 3. Top five results returned by Bing (a) and Google (b) for query armstrong mon lading.

Video embedded - Armstrong was a NASA astronaut and the first man on the moon or, more
accurately, the first man to set foot on the moon. He...

Note that the snippet provides a spelling correction for query term mon. Intuitively, snippets
provide a rewritings of query terms in a form that was used in a web page. Snippets also put
query terms into a context that can be leveraged to assist disambiguation. In fact, when WAT
is fed the snippet in the example, it searches the text for potential mentions, finding four se-
quences of tokens: Armstrong, NASA, astronaut, and man on the moon. The first mention,
Armstrong, is ambiguous in that by itself it could refer to Neil_Armstrong, Louis_Armstrong,
Armstrong _County,_Pennsylvania or other entities, but it is placed in the same context (the same
web page) as other terms such as NASA and astronaut that WAT can use to disambiguate the men-
tion into Neil_Armstrong. WAT also makes mistakes, for example, it may link man on the moon
to the 1999 movie starring Jim Carrey. In total, WAT finds four annotations for this snippet:

Armstrong �→ Neil_Armstrong

NASA �→ National_Aeronautics_and_Space_Administration

astronaut �→ Astronaut

man on the moon �→ Man_on_the_Moon_(film)

The mention astronaut does not overlap with any bold portion of the snippet, hence it is dis-
carded. The lack of overlap between mention and bold text indicates that entity Astronaut is not
explicitly mentioned by the query. This rule has some exceptions, namely, terms (in the example,
NASA) that are not included in the query but are rendered in bold with the purpose of assisting
users reading through results. These entities will be discarded in more sophisticated ways (see
Section 5.3).
This snippet contributes to E3 with the following entities: National_Aeronautics_and_

Space_Administration, Neil_Armstrong, Man_on_the_Moon_(film). More entities will be added by
analyzing the other snippets.
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5 SMAPH-1: INDIVIDUAL ENTITY PRUNING

SMAPH-1 chooses a subset of E1 ∪ E2 ∪ E3 and returns it as a result. The choice of the subset is
implemented with a binary classifier that judges each candidate entity independently and decides
whether it should be included in the result or not.

5.1 Entity Pruning via SVM Binary Classification

As binary classifier, SMAPH-1 employs a Support Vector Machine classifier (SVC) with an RBF
(Radial Basis Function) kernel. We used the implementation LibSVM [6], a library for training and
testing SVM models.
The input instances to the SVM are the candidate entities in E1 ∪ E2 ∪ E3. Each candidate entity

is associated with a feature vector. Training examples are gathered by running the candidate en-
tity generation step for all queries included in GERDAQ-train, and labeling the candidate entities
included in the ground truth as positive examples, the others as negative.
In Section 9.4 we report details on the results of the training procedure, including the values

obtained for the hyperparameters. Feature selection was performed by forward selection of fea-
tures, i.e., in each step the best remaining feature is added that improved the objective. For both
parameter optimization and feature selection, the objective function is macro-F1 on GERDAQ-dev.
SMAPH-1 returns as the result for q those entities of E1 ∪ E2 ∪ E3 that were classified as posi-

tive by the SVM.

5.2 Entity Features

The features we associate with each entity take into account the coherence and robustness of
the snippet annotation process, the ranking of snippets, the string similarity between q and the
snippets’ bold text portions, and the string similarity between q and the title of the Wikipedia
article about the candidate entity. Before exploring the features presented in Table 6, we need a
few definitions:

• U (q) is the ordered list of URLs returned by the search engine for query q;
• Z (q) is the ordered list of snippets returned by the search engine for q;
• B (q) is the multi-set of bold portions of all snippets returned by the search engine for q;
• W (q) is the total number of web pages found by the search engine for q;
• T (e ) is the title of the Wikipedia article about entity e;
• T ∗ (e ) is T (e ) excluding the final parenthetical-string, if any. For example,
T ∗ (ER_(TV_series)) = ER

• A (s ) is the set of annotations found by WAT in snippet s that are overlapping with a bold
portion of s;

• X (q) = {(m, s ) : s ∈ Z (q) ∧ (m, e ) ∈ A (s )} are the mentions that have been found by WAT,
paired with the snippet where they have been found;

• ρ (s,m, e ) is the ρ-score returned by WAT indicating the confidence in the annotation (m, e )
for snippet s (see Reference [44]);

• lp (m) is the link probability of mention m (see Reference [40]), computed as the ratio be-
tween the number of times m is an anchor in Wikipedia divided by the number of all its
occurrences in Wikipedia;

• comm(m, e ) is the commonness of the annotation (m, e ) (see Reference [40]), computed as the
number of links in Wikipedia havingm as anchor and linking to e , divided by the number
of times anchorm appears in Wikipedia as a link to any article.

• amb (m) stands for ambiguity and is the number of distinctWikipedia articles that a mention
m points to;
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Table 6. Features of a Candidate Entity e (Used by SMAPH-1,
SMAPH-S, and SMAPH-3) for Query q

Drawn From All Sources

ID Name Definition

1 webTotal W (q)
2 isNE 1 if e is a NamedEntity, 0 otherwise. Based

on the list of NamedEntities provided by [5]

Drawn From Sources E1 and E2
(q∗ is q for E1 or qw for E2)

ID Name Definition

3 rank position of e’s URL in U (q∗)
4 EDTitle MinED (T (e ),q∗)
5 EDTitNP MinED (T ∗ (e ),q∗)
6 minEDBolds min{MinED (b,q∗) : b ∈ B (q∗)}
7 captBolds number of capitalized strings in B (q∗)
8 boldTerms (1/|B (q∗) |)∑b ∈B (q∗ ) |b |

Drawn From Source E3
ID Name Definition

9 f req ( |s ∈ Z (q) : (·, e ) ∈ A (s ) |)/|Z (q) |
10 avдRank (

∑
i ∈[0,25) pi )/25 where

pi =

{
i if (·, e ) ∈ A (Z (q)i )
25 otherwise

11 paдeRank PageRank of e in Wikipedia Graph
P := {ρ (s,m, e ) : (m, s ) ∈ X (q)};

12 ρmin min(P)
13 ρmax max(P)
14 ρavд avg(P)

L := {lp (m) : (m, s ) ∈ X (q)};
15 lpmin min(L)
16 lpmax max(L)

C := {comm(m, e ):(m, s ) ∈ X (q)}
17 commmin min(C )
18 commmax max(C )
19 commavд avg(C )

A := {amb (m) : (m, s ) ∈ X (q)};
20 ambiдmin min(A)
21 ambiдmax max(A)
22 ambiдavд avg(A)
23 mentMEDmin min({MinED (m,q):(m, s ) ∈ X (q)})
24 mentMEDmax max({MinED (m,q):(m, s ) ∈ X (q)})

• ED (x ,y) is the Levenshtein distance between strings x and y, divided by max( |x |c , |y |c ),
where |x |c is the length of x in characters;

• MinED (a,b) is an asymmetric measure of distance of string a toward string b, defined as
follows: let us indicate as avg(X ) the arithmetic mean of the elements of X , and let at and
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bt be the set of terms in strings a and b, then

MinED (a,b) = avgta ∈atmintb ∈bt ED (ta , tb ).

In other words, for each term in a, we find the closest term in b;MinED (a,b) is the average
distance between them.

The feature vector for each entity is composed of the features in Table 6 (hence, the dimension-
ality of the original feature space is p = 24). With reference to Table 6, features 1 and 2 are relative
to entities drawn from any source. Feature webTotal is the number (as estimated by the search
engine) of documents in the web that matched query q. A high value may indicate that it is more
likely for a query to be well formed, thus containing entities. Feature isNE indicates whether the
entity is a NamedEntity. Compared to other kinds of entities, references to NamedEntities are less
ambiguous, hence more likely to be correct.
We also define features 3–8, relative to sources 1 and 2 (Wikipedia articles as web results of

q and qw ). The rationale behind Feature 3 is that if an entity has appeared in higher positions
among the web results, it is more likely to be mentioned by the query. Features 4, 5, and 6 are the
minimum edit distance between (i) the title of the Wikipedia article about the entity and (ii) the
query, and between (i) the bold portions of the snippets mentioning the entity and (ii) the query.
These distances indicate how likely the entity is mentioned by the query. The average number of
terms in bold contained in snippets (Feature 8) is an indicator of how likely the query mentions
entities, while the number of capitalized terms in the bold portion (Feature 7) gives an indication
of whether the mention is a proper name.
Entities drawn from Source 3, our largest source of candidates, are associated with a set of

features (9–24) relative to the process of snippet annotation performed by WAT. Feature freq (how
many snippets mention the entity) is an obvious indicator of an entity’s correctness. Similarly,
feature avgRank captures where, in the list of web search results, the entity is mentioned: if it is
mentioned in higher-ranked snippets, it is more likely to be correct. For each annotation found in a
snippet, WAT returns ρ, a confidence score. We also have lp (the prior probability that the mention
refers to any entity) and comm (the prior probability that the mention refers to that particular
entity, among the candidates, and not taking context into account). For these three values, we take
the minimum, maximum, and average value among the snippets. Higher values indicate strength
of the entity. In contrast, ambiд is the number of senses a mention may have in different contexts,
and lower values suggest higher confidence in the annotation. Finally, similarly to the edit-distance
measures previously described, Features 23 and 24 indicate to what degree the snippet terms that
have been linked to the entity are also contained in the query.

5.3 Limitations of SMAPH-1 and the Need of Link-back

An error analysis of SMAPH-1, confirmed by the results of experiments in Section 9, shows that
SMAPH-1 makes mistakes both in terms of false positives and false negatives. Typically, FNs are
entities that appear as candidates, are explicitly mentioned in the query, but are assigned a low
score due to their bad feature values and, thus, discarded by the SVM binary classifier (for example,
an entity ambiguouslymentioned by the querymay appearwith low frequency in snippets, leading
to low values of Feature 9). However, FPs are typically entities that have good feature values, are
somehow related to the query, but are not mentioned by it (for example, an entity strongly related
to the query, but not mentioned by it, may be mentioned by snippets with high rank, leading to
high values of Feature 10).
We address these errors by explicitly modeling the bond between a candidate entity and its

mention, so to prefer entities that are more likely to have a mention in the query (despite having
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poor feature values) over entities that are less likely to have a mention in the query (despite having
good feature values). We call this approach link-back.
Another type of mistake is incoherence. Namely, entities whose presence is mutually exclusive

from a semantic point of view. In particular, SMAPH-1 may include in the solution two entities
that are incompatible interpretation of the same set of query terms, whereas only the most ap-
propriate had to be chosen, or include entities that have no semantic relatedness with each other.
For example, in query armstrong mon lading, SMAPH-1 may include Neil_Armstrong (correct)
andMan_on_the_Moon_(film) (wrong), even though a third entity,Moon_Landing would be more
coherent with Neil_Armstrong.
To improve coherence, we consider annotations in relation with other annotations included in

the solution. To this end, we model the problem of entity-linking on queries as the problem of
subset selection: from the set of candidate annotations, we choose the ones that form the best
solution, according to our models.

6 GENERATION OF CANDIDATE ANNOTATIONS AND SUBSET SELECTION

We now present two algorithms that, in contrast to SMAPH-1, take both mentions and entities
into account: SMAPH-S (Section 7) and SMAPH-3 (Section 8). We start by describing the step of
candidate annotations generation, which is shared among them.
Given an input query q, let us denote with Seд(q) the set of all possible segments in q (a segment

is an n-gram of any length) and with Eq = E1 ∪ E2 ∪ E3 the set of candidate entities for q. The
set of candidate annotations Cq for q is simply the Cartesian product Cq = Seд(q) × Eq . This set
contains a high number of annotations, and only a few of them are correct. The set also contains
a high number of annotations conflicting with other annotations because of their overlapping
(possibly equal) mentions.
SMAPH-S and SMAPH-3 determine a solution for the token-level entity-linking problem by

choosing a subset of Cq . We can formalize this subset selection problem over Cq as the problem
of choosing the elements ofCq that form the best solution according to metric F1. In this problem
there are constraints to avoid the presence of incompatible elements in the solution. Formally, the
problem is that of finding the subset S∗ ⊆ Cq such that{

S∗ = argmaxS ⊆Cq F1 (S )
∀x ,y ∈ S∗,x � y ⇒ ¬K (x ,y),

(1)

where K is a binary relation onCq that is verified iff two annotations have overlapping mentions.
In other words, we search for the subset of non-overlapping annotations that maximizes F1.

Both SMAPH-S and SMAPH-3 use statistical machine learning to find an approximate solution
to the subset selection problem, but they follow different approaches:

SMAPH-S builds the solution by judging candidate annotations independently, so it can model
the mention-entity link strength but not the coherence among annotations;

SMAPH-3 incrementally builds the solution, deciding at each iteration whether to add any of
the candidate annotations to the current solution or to terminate, so it can also model the
coherence between annotations included in the solution.

7 SMAPH-S: SINGLE ANNOTATION JUDGMENT

The SMAPH-S algorithm solves the subset selection problem above in two steps: candidate anno-
tations are first independently assigned a score representing the likelihood that they are correct,
then the solution is built by choosing non-overlapping annotations, giving priority to those with
higher score.
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ALGORITHM 1: SMAPH-S

Input: The query q to annotate.

Output: A set of annotations for q.

1 function smaph_s(q, R, t ) :
2 Cq ← {c ∈ дet_candidates (q) : R (c ) ≥ t } ;
3 A← sort (Cq ,R ) ;
4 P ← ∅ ;

5 for i = 0, . . . , ( |A| − 1) do
6 if ∀p ∈ P ,¬K (Ai ,p) then
7 P ← P ∪ {Ai } ;
8 return P ;

Algorithm 1 shows the pseudo-code of SMAPH-S. Candidate annotations are first assigned a
score by a regressor R (we detail the training of R in Section 7.1). The higher the score, the more
likely an annotation is correct. Annotations with a score lower than the threshold t are discarded
(line 2). The others are sorted by their score in descending order (line 3). Let A be this ordered
list, the first element A0 will be the annotation with highest score, A1 the second best, and so on.
The solution P (initially empty) is built scanning annotations in A by descending score (line 5),
and adding to P the annotations that do not overlap (line 6) with any annotation previously added
to P . This guarantees that, in case A contains overlapping annotations, only the one with higher
score is kept.
The choice of building such a regressor, as opposed to building a classifier like we did for

SMAPH-1, comes from the need of the algorithm to choose between two conflicting annotations
via their ranking. R is a key component of the algorithm, and its accuracy in assigning scores is
central, as it defines a policy to resolve conflicts among annotations and a criterion for terminating
the annotation process, discarding low-ranked annotations. As shown in the pseudocode, SMAPH-
S cannot take into account the coherence of the solution, as annotations are judged independently.

7.1 Scoring of Candidate Annotations via SVR and Choice of Threshold

Given an annotation a = (m, e ), regressor R is trained to predict the likelihood that mention m
refers to entity e (i.e., the likelihood that annotation a is a correct). This likelihood is expressed as
a real number: the higher the number, the more likely a is correct. Hence, R is a function in the
form Cq �→ R.
The algorithm we use for regression (i.e., the process of finding regressor R) is support vector

regression (SVR). Training examples are candidate annotationsCq for all queries q in the training
set. A candidate annotation is considered a positive example, and thus assigned a score of 1, if it
appears in the ground truth; otherwise, it is considered a negative example and thus assigned a
score of −1. As already observed, training examples are heavily unbalanced toward negative ones.
This is not a problem as SVR supports unbalanced training sets. We associate a feature vector to
each annotation, as detailed later. Training parameters, the threshold t and the features composing
the feature vector are chosen with the objective of maximizing the macro-F1 achieved by SMAPH-
S on the development set, which is distinct from the training set. In Section 9.4, we report details
on the hyperparameters resulting from the training procedure and on the generated model.

7.2 Annotation Features

The set of features that constitute the feature vector for each annotation ai = (mi , ei ) ∈ Cq are
(i) those used by SMAPH-1, modeling properties relative to the entity ei only (Features 1–24 in
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Table 7. Features of a Candidate Annotation (m, e )
(Used by SMAPH-S and SMAPH-3), Wherem is a Mention

(List of Query Terms) and e is an Entity

ID Name Definition

25 anchorsAvдED

∑
s ∈G (e )

(√
F (e, s ) · ED (s,m)

)
∑

s ∈G (e )
√
F (e, s )

26 minEdTitle MinED (m,T (e ))
27 EdTitle ED (m,T (e ))
28 commonness comm(m, e )
29 lp lp (m)

Table 6), concatenatedwith (ii) a set of five new features that capture aspects of the binding between
mentionmi and entity ei (Features 25–29 in Table 7). While features 1–24 model the quality of the
candidate entity, features 25–29 model the strength of the bond between the candidate entity and
its mention. We point out that the features listed in both tables are the result of a feature selection
process from a larger set of features involving annotations, bold parts of snippets and entities. The
description of features in Table 7 uses, in addition to the definitions introduced in Section 5, the
following definitions:

• F (e, s ) is the number of times (frequency) that entity e has been linked by anchor s in the
corpus of Wikipedia articles.

• G (e ) is the set of anchors used in Wikipedia to link e .

Let us discuss the rationale behind these features. Feature 25 (anchorsAvgED) is the average
edit distance between mention mi and all anchor texts contained in Wikipedia articles that link
to the Wikipedia article about ei . These anchors are forms in which entity ei can be referred to.
Edit distances are weighted with respect to the number of times the Wikipedia artice about ei is
referenced by an anchor (the square root mitigates the effect of high-frequency anchors). Themore
times ei has been referenced by anchors similar tomi , the larger anchorsAvgED will be, hence a
high value of this feature suggests that mentionmi refers to ei . Features 26 and 27 aim at measuring
the string similarity between mentionmi and the title of the Wikipedia article about the candidate
entity ei : edTitle is simply their edit distance, whileminEdTitle is the minimum word-to-word edit
distance.9 Lower values of Features 26 and 27 indicate a higher similarity between mentionmi and
title of entity ei , and thus a stronger bond between the two. Feature 28 (commonness) is another
measure for the mention-entity bond strength: the more frequentlymi refers to ei (as opposed to
other entities) in Wikipedia, the stronger is the bond. Feature 29 (lp) is instead a measure of how
likely mentionmi is actually a mention of anything. A higher value of lp indicates that the whole
annotation is more likely to be correct.

7.3 Notable Excluded Features

The set of features employed by the SMAPH entity-annotators (those described in the previous
section) is the result of forward feature selection on a much broader set of features. Features were
not considered if they did not increase macro-F1 on the development set. Similarly to the features
that were selected, the ones that were not selected consider other aspects of the relation between
an entity and a query. It would be uninteresting to describe all of them in detail, but it is worth

9See definition in Section 5.2.
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mentioning that, among the tested features that were excluded, we considered the scores pro-
vided by the models of Reference [3]. These models, based on word embeddings generated with
word2vec, measure the similarity between the word embeddings of the query terms and the word
embeddings of the first paragraph of the Wikipedia article about e . They model the context of a
query mention as the word embeddings of surrounding terms and exploit that context for disam-
biguating the mention. Though this score works well if used alone (see Reference [3]), it does not
offer to our model any additional information to decide whether an entity is mentioned by a query
or not. A reason for that might be that word embeddings do not provide any piece of informa-
tion that context given by the snippets does not offer already. In other words, snippets seem to
offer a larger (and, experimentally, more precise) context that WAT can leverage to perform entity
disambiguation.

8 SMAPH-3: GREEDY ITERATIVE SOLUTION ENRICHMENT

SMAPH-3 incrementally builds a solution by judging the contribution of each annotation with
respect to the others. This gives us a fine-grained model of annotation selection while also keeping
in consideration the coherence of the solution.
The core of SMAPH-3 is a greedy algorithm that iteratively selects candidate annotations to

be added to the solution. The process starts from an empty solution. At each iteration, it gives an
answer to the question: given the solution found so far, which is, among the candidate annotations,
the one that most likely improves the current solution? If such an annotation exists, then it is added
to the solution, otherwise the algorithm terminates and the current solution is returned. It follows
that at iteration i , the algorithm will either increase the solution size to i + 1 by adding a new
annotation, or it will return a solution consisting of i annotations.
The decision on which annotation to add (if any) at iteration i is made by a per-iteration re-

gressor Ri and an associated threshold ti . More precisely, let a be the annotation among the can-
didates that gets the highest score assigned by Ri , then if this score is higher than ti , a is added
to the solution; otherwise, the algorithm terminates returning the solution obtained by the previ-
ous iterations (which does not include a). It is important to note that at each iteration, a different
regressor-threshold pair < Ri , ti > makes the decision about either which annotation to add, or to
add none and terminate.
SMAPH-3’s training procedure is more complex than the other SMAPH versions. To better un-

derstand it, we will follow a top-down approach, explaining first how the regressor-threshold pairs
are employed to build a solution, and then, in Section 8.1, how they are trained. For now, let us as-
sume we have one regressor-threshold pair 〈Ri , ti 〉 for each iteration i = 0, . . . ,n − 1 (the number
of iterations n is determined at training time). These regressors take as input two arguments: the
current solution P (a set of annotations) and a candidate annotation a to be added to the current so-
lution, and output a real number indicating the likelihood that F1 (P ∪ {a}) > F1 (P ), in other words,
the likelihood that adding a to P would increase the F1 score of the current solution, as opposed
to decrease it. Threshold ti is interpreted to mean that it is worth adding a to the current solution
if, and only if, Ri (P ,a) ≥ ti .
We now describe the pseudo-code of SMAPH-3 as shown in Algorithm 2. It starts from an empty

solution P and a set of candidate annotationsC , which is initially set to the Cartesian productCq =

Seд(q) × Eq defined before (lines 2 and 3). At each iteration, SMAPH-3 uses a different regressor
to judge the opportunity of adding each candidate annotation c ∈ C to the current solution P . It is
important to note that how an annotation c is judged depends on P (lines 7 and 8). Considering the
annotation a that gets the highest score from the regressor (line 7), if that score is lower than the
threshold, it means that no annotations would improve the solution. In this case, the algorithm
terminates by returning P (line 9). Otherwise, annotation a is added to the current solution P
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ALGORITHM 2: SMAPH-3

Input: The query q to annotate.

Output: A set of annotations for q.

1 function smaph3(q, 〈R0, . . . ,Rn−1〉, 〈t0, . . . , tn−1〉) :
2 P ← ∅ ;

3 C ← дet_candidates (q) ;

4 for i ← 0, . . . ,n − 1 do
5 if |C | = 0 then

6 return P ;

7 a = argmaxc ∈C Ri (P , c ) ;
8 if Ri (P ,a) < ti then
9 return P ;

10 P ← P ∪ {a} ;
11 C ← {c : c ∈ C ∧ ¬K (c,a)} ;
12 return P ;

(line 10), and the candidates that overlap with a are removed from C so that they will not be
considered in the next iterations (line 11). This way, at the beginning of each iteration, C will
only contain annotations that do not overlap with any annotation contained in P , and thus can
be added without violating the constraint K . The algorithm then proceeds to the next iteration.
The algorithm terminates either (i) at iteration i , if adding any candidate annotation would not
improve the current solution, (ii) at iteration i , if there are no more candidates (i.e., all tokens of
the query are linked to an entity or setC lacks in coverage), or (iii) after all n iterations have been
executed.
At the beginning of the ith while iteration (starting from i = 0), the current solution P has size

i , and Ri determines which is the (i + 1)th annotation to be added to P , if any. As the reader
might have noticed, the algorithmmust make decisions based on scenarios that greatly differ from
iteration to iteration. This is the reason why we use per-iteration regressor-threshold pairs trained
to make decisions in the specific scenarios in which they are called.
As an example, let q = armstrog mon landign be the query to annotate, and letC be the set of

candidate annotations for that query:

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

a1 = mon landign �→ Moon_Landing

a2 = mon �→ Moon

a3 = armstrog �→ Louis_Armstrong

a4 = armstrog �→ Neil_Armstrong

. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪
⎭

.

Before executing iteration 0, the current solution P is empty, and SMAPH-3 has to decide
whether to add an annotation to P , or to return the empty solution. Regressor R0 assigns to each
annotation in C a score representing the likelihood that it is correct. Say the annotation with the
highest score is a1, and this score isR0 (P ,a1) = 0.6. Shall we take the risk of adding this annotation
to the solution (at the risk of a false positive), or should we be conservative (at the risk of a false
negative)? This question is answered by checking if a1’s score is higher than threshold t0. In case
it is, iteration 0 ends by adding annotation a1 to the current solution. Annotations overlapping
with a1 (a2 and a1 itself) are removed from C and will not be considered in the next iterations. At
iteration 1, SMAPH-3 has to decide whether to return P = {a1} as is, or to expand it by adding an
annotation inC = {a3,a4} that would improve F1. A regressor other than R0 is needed, because at
this iteration we must also consider the coherence with the annotation added to P at the previous
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iteration (in the example, a1). Annotation a4 has a strong semantic relatedness with a1, so it re-
ceives the highest score, say R1 (P ,a4) = 0.3. If the threshold for this iteration is t1 = 0.1, then a4
is added to P and a3,a4 are removed from C . Since there are no more candidates (C is empty), the
algorithm terminates returning as solution for q the set P = {a1,a4}.

8.1 Coherence Judgment on Candidate Annotations through SVR

Similarly to the other versions of SMAPH, regressors Ri are trained with examples drawn from a
training set while their hyperparameters and the threshold ti are chosen to maximize the macro-F1
on a distinct development set. Per-iteration regressors are built through support-vector regression
(SVR). Regressor Ri (the regressor that ranks candidates at iteration i) is trained to make decisions
in the scenario in which it will be invoked. This means that (i) the training examples it is trained
with are only the candidate annotations that are still included in Cq at iteration i , (ii) training
examples are only gathered for queries that reach iteration i (i.e., the queries for which SMAPH-
3 would provide a solution consisting of at least i annotations, and has to decide the (i + 1)th
annotation to include in the solution, if any), and (iii) a training example associated to a candidate
annotation is labeled with the improvement that the annotation would bring to the solution found
at iteration i − 1.
Training is done in cascade: at training time, after Ri is built, it is invoked to choose which (if

any) candidate annotation to add to the current solution for the queries of the training set. As
explained, this choice will influence the training of the regressors for the next iterations.
The pseudo-code for the training of SMAPH-3 is presented in Algorithm 3. The ith iteration of

the while-loop generates Ri and finds ti . Lines 6 and 7 implement the first stop condition: if, in
either the training or development datasets, there are no queries for which exists a correct annota-
tion among their candidates (TP (x ) indicates that x is a true positive), it means that no query may
possibly benefit from iteration i . In this case, we return a model that will execute i − 1 iterations.
In the opposite case, we gather the examples for iteration i (lines 9–14) and train the regressor
(line 15). Note that training examples are labeled with the difference in F1 between the solution
with and without a (line 13). Examples are gathered for all queries of the training set having a
solution of size i , namely, those for which the ith regressor would be invoked. For each candidate
annotation c , function gen_ftr_vec generates a feature vector and the label associated to it. Note
that it takes the current solution Pq as argument: this is necessary to compute the features about
the coherence between c and the current solution Pq . The features computed by gen_ftr_vec are
detailed in the next section. Function train_and_optimize_param trains regressor Ri with the
training examples gathered in E. The threshold ti is selected to maximize macro-F1 on the devel-
opment set. Similarly, features are selected by forward feature selection, maximizing macro-F1 on
the development set. For this purpose, function train_and_optimize_param will execute a par-
tial SMAPH-3 model consisting of all iterations 0, . . . , i on the queries of dataset Dd , and check its
output against the gold standard for those queries. Threshold ti is chosen through a fixed-width
scan of values between the lowest and highest value output by Ri for the example in E: among the
values that maximize macro-F1, the middle one is chosen.
The second stop condition (lines 16 and 17) checks if iteration i brought an improvement in

terms of macro-F1 on the development set. If it did not, then the algorithm terminates returning a
model consisting of iterations 0, . . . , i − 1, while regressor Ri is discarded.

The last block of pseudo-code (lines 18–23) applies the current iteration to the queries of the
training set. This consists of updating their solutions by adding the annotation a chosen by re-
gressor Ri (if any) and removing from the candidate set the annotations conflicting with a (in-
cluding a itself). Note that this is done only for queries having a solution of size i , namely, those
on which the ith iteration would be executed. Moreover, the current solution is updated by adding
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ALGORITHM 3: SMAPH-3 training

Input: Training dataset Dt ; Development dataset Dd .

Output: A list of regressors Ri and associated thresholds ti (one for each iteration).

1 function train_smaph3(Dt , Dd ) :

2 for q ∈ Dt do

3 Pq ← ∅ ;

4 i ← 0 ;

5 while true do
/* Terminate if no improvement is possible. */

6 if (∀q ∈ Dt , �c ∈ Cq : TP(c )) ∨ (∀q ∈ Dd , �c ∈ Cq : TP(c )) then
7 return 〈R0, . . . ,Ri−1〉, 〈t0, . . . , ti−1〉

/* Gather examples. */

8 E ← ∅ ;

9 for q ∈ Dt do

10 if |Pq | = i then
11 for c ∈ Cq do

12 v ← gen_ftr_vec(c, Pq ) ;

13 l ← F1 (Pq ∪ {c}) − F1 (Pq ) ;
14 E ← E ∪ 〈v, l〉 ;

/* Train regressor. */

15 Ri , ti ← train_and_optimize_param(E,Dd ) ;
/* Terminate if no improvement at current iteration. */

16 if F1 (M (〈R0, . . . ,Ri 〉, 〈t0, . . . , ti 〉) (Dd ) ≤ F1 (M (〈R0, . . . ,Ri−1〉, 〈t0, . . . , ti−1〉) (Dd )) then
17 return 〈R0, . . . ,Ri−1〉, 〈t0, . . . , ti−1〉

/* Update current solutions. */

18 for q ∈ Dt do

19 if |Pq | = i then
20 a ← argmaxc ∈C Ri (Pq , c ) ;
21 if Ri (P ,a) ≥ ti then
22 Pq ← Pq ∪ {a} ;
23 Cq ← {c : c ∈ Cq ∧ ¬K (c,a)} ;
24 i ← i + 1

annotation a only if it had been assigned a score above the threshold in the current iteration i
(condition at line 21). This guarantees that at any given iteration, the regressor will be trained
considering only queries for which that iteration would be reached.
Note that the training algorithm always terminates: for each query in the training set, eventually,

either the top annotationwill be assigned a score that is below the threshold, or the set of candidate
annotations Cq will become empty.

8.2 Annotation and Coherence Features for SMAPH-3

Each pair consisting of a candidate annotation a = (m, e ) and a current solution P is associated
with a feature vector F (a) that consists of three groups of features:

Entity features model the strength of entity e , and are mainly based on signals derived from the
search engine. They are 24 features computed over entities e; see Table 6.

Annotation features model the strength of the bond between mentionm and entity e . They are
5 features computed over annotation (m, e ); see Table 7.
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Table 8. Features of a Candidate Annotation a = (m, e ), Given the Current
Solution P , for Query q (Used by SMAPH-3)

ID Name Definition

Ra := {rel (e, e ′) : (m′, e ′) ∈ P }
30 relmin min(Ra )
31 relmax max(Ra )
32 relavд avg(Ra )

RP := {rel (e ′, e ′′) : (m′, e ′), (m′′, e ′′) ∈ P ∧ e ′ � e ′′ }
33 prelmin min(RP )
34 prelmax max(RP )
35 prelavд avg(RP )
36 Δrelmin min(Ra ) −min(RP )
37 Δrelmax max(Ra ) −max(RP )
38 Δrelavд avg(Ra ) − avg(RP )
39 covд

∑
(m,e )∈P∪{a } ( |m |)/|q |

40 δcovд |m |/|q |
41 Δcovд |m |
42 Σseдlp

∑
s ∈ Seд (q ) lp (s )

43 seдlpavд avgs ∈ Seд (q )lp (s )
44 seдlpratio

∑
s ∈ Seд (q ) lp (s )/( |P | + 1)

r el (a, a′) is the Milne-Witten Relatedness [39] Among Entities e and e′ (Where a′ =
(m′, e′))

Coherence and coverage features model the strength of the decision to add annotation a to
the solution P found by the algorithm in the previous iterations. They are 15 features
computed by taking into account an annotation (m, e ) and a current solution P ; see
Table 8.

With the third group of features, we can finally reach the goal of modeling how entities forming
a solution are related to each other. In fact, a high relatedness might indicate a good solution.
We also model how favorable it is to add annotation a to P as opposed to returning P . This is
the reason why some of the features model the differences between P and P ∪ {a}. Let us now
describe the rationale behind each coherence feature, keeping in mind that SVR captures, at least
to some level, the interdependence of features, whose effectiveness must therefore be considered
in combination with others. To model the semantic coherence of the solution, we compute the
relatedness between entity e and each entity included in the current solution (e ′ such that (m′, e ′) ∈
P ). We take the minimum, maximum and average of them as features 30, 31, and 32. We also
compute the same measures for the current solution P (Features 33, 34, 35) and the difference
between each measure computed on the solution P and on the solution P ∪ {a} (Features 36, 37,
38). The reason why we include features about the solution before and after the current iteration,
and the difference between them, is that they are crucial to decide what annotation to add, if any:
for example, if current solution P has a very high minimum relatedness (Feature 30), meaning that
all entities cited by a query are semantically related, but adding {a} would decrease the minimum
relatedness (Features 33, 36), this may suggest that a is a false positive. However, an increment in
maximum relatedness (Features 32, 35, 38), might indicate a true positive. The relatedness between
two entities is computed as the Milne-Witten relatedness, a measure that takes into account the
overlap of incoming links in the Wikipedia articles about the two entities (see Reference [39]).
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The remaining features aim at modeling the annotation coverage, namely, how many tokens
of the query should be part of a reference to an entity. The two main measures for this are the
number of tokens being part of a mention (which measures how much the query is covered by
a solution, Features 39–41), and the link probability of the mention,10 which models how much
it should be covered (Features 42–44). Similarly to relatedness features, coverage is computed for
the would-be solution P ∪ {a} (Feature 39), and as the increment of coverage that adding a would
bring, in absolute (Feature 41) and relative (Feature 40) terms.
These two groups of features are of particular importance for estimating the recall of a solution

and, intuitively, how hazardous it is for SMAPH-3 to add annotation a to the solution: if a query
has few terms covered (Feature 39), but a very high link probability sum (Features 42, 43), then
the solution probably lacks recall, and it is probably better to add a to the current solution P , than
to be conservative and decide to return P as a solution. Moreover, if the mention spans multiple
tokens (Features 40, 41), SMAPH-3 may decide to add an annotation even though it has a weak
mention-entity bond.

9 EVALUATION OF SMAPH

It is important to point out that the performance of SMAPH heavily depends on the quality of
results delivered by the underlying search engines, which depend on many aspects of their struc-
ture, including the user-generated data they possess (query logs, click logs), external resources
(the Web), internal resources (knowledge bases), their variation over time, and, above all, the algo-
rithm used for ranking web results. It is practically impossible to isolate the contribution of each of
these components to the quality of SMAPH results, and we are constrained to treating the whole
search engine as a black box. Nonetheless, results will show that the methods proposed by us are
applicable on popular search engines such as Google and Bing.

9.1 Evaluation Metrics

As evaluation metrics, we use those proposed by the BAT-Framework [9, 53]. Recall that SMAPH-
1 addresses query-level entity-linking, while SMAPH-S and SMAPH-3 address token-level entity-
linking. Any token-level entity-linking can be simplified to a query-level entity-linking by discard-
ing the mentions included in the solution and keeping the entities only, hence all SMAPH versions
can be tested with respect to their ability to solve query-level entity-linking while only SMAPH-S
and SMAPH-3 can be tested for token-level entity-linking.
For a deeper discussion on the match relations proposed by the BAT-Framework, see Refer-

ence [8]. We recall the basics of those metrics through an example of their computation over a
single query. Let

q = armstrong mon lading,

and let the corresponding ground-truth solution S∗ = {a∗1,a∗2} for token-level entity-linking be
composed of two annotations:

a∗1 = armstrong �→ Neil_Armstrong,

a∗2 = mon lading �→ Moon_Landing,

indicating that the first term is a mention of the astronaut, while the second and third terms form a
single mention of the historical event of landing on the moon.11 Let S̄ = {ā1, ā2, ā3} be the solution

10See definition in Section 5.2.
11Note that entity Moon_Landing entails the entity Moon, hence Moon is not expected to be part of the result, as per our

problem definition (Section 1.1).
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given by an entity-annotator:

ā1 = armstrong �→ Neil_Armstrong,
ā2 = mon �→Moon,
ā3 = lading �→ Moon_Landing.

Annotation ā1 is a true positive (TP); ā2 and ā3 are false positives (FPs); a∗2 is a false negative
(FN). Counting them, we have

|tp (S∗, S̄ ) | = 1 | f p (S∗, S̄ ) | = 2 | f n(S∗, S̄ ) | = 1,

yielding query-wise metrics:

P (S∗, S̄ ) =
1

3
, R (S∗, S̄ ) =

1

2
, F1 (S

∗, S̄ ) =
2

5
.

We define F1 to be 1.0 if both the ground truth and the provided solution are empty.12

The quality of the solutions found by an entity-annotator on the queries provided by a dataset is
measured by computing dataset-wise precision, recall, and F1 with both micro and macro weight-
ing schemes. We refer to dataset-wise metrics as, e.g., macro-P and micro-P . A macro-measure
is defined as the arithmetic average of a query-wise metric across the queries of a dataset. For
example, macro-P is defined as

macro-P (D) =
1

|D | ·
∑
q∈D

P (S∗q , S̄q ),

where D is a dataset, S∗q is the ground truth for query q, and S̄q is the solution provided by an
entity-annotator for query q.
Micro-measures are instead defined as a query-wise metric that considers the count of TP, FP

and FN across all queries of a dataset. For example, micro-P is defined as

micro-P (D) =

∑
q∈D |tp (S∗q , S̄q ) |∑

q∈D |S̄q |
.

As a consequence, macro-measures evaluate the performance of an entity-annotator on a new
single query; they are a better fit for measuring the performance in scenarios in which one query
at a time has to be annotated (e.g., a single search on a search engine), while micro-measures are
a better fit for scenarios in which aggregations of queries have to be annotated (e.g., query trend
analysis).
For queries where either the ground truth or the solution found by the entity-annotator is small,

the number of TPs, FPs, and FNs tends to be small. Micro-measures therefore do not capture how
well an entity-annotator handles such cases, since the count of TPs, FPs, and FNs are aggregated
over all queries. For this reason, we regard macro-measures as the appropriate evaluation: a cor-
rectly handled query with empty ground truth will contribute an F1 score of 1.0 to the macro
average and thus good performance will be rewarded. However, for completeness, we also report
micro-measures.

9.2 Experimental Setting

9.2.1 Tested Entity-Annotators. In our experiments, we test the following entity-annotators:

12As should be clear, F1 is 0.0 if the ground truth is empty, but the provided solution is not; and F1 is 0.0 if the provided

solution is empty, but the ground truth is not.
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WAT is the improved version of TagME introduced in [45] for token-level entity-linking. As
relatedness function in the disambiguation process, we use the Jaccard similarity among
in-links, because it performed best on GERDAQ.13

AIDA is the token-level entity-annotator introduced in Reference [27], we downloaded the code
from the official web site.14 AIDA offers several disambiguation methods, we tested all of
them and found that they offer almost the same performance on GERDAQ, so we only
report the best number.

NTNU-UiS is a query entity-annotator for query-level entity-linking (introduced in [24]) that
uses a multi-stage framework, first recognizing entity mentions, next scoring candidate
entities using a learning-to-rank method, finally, using a greedy algorithm to find all valid
interpretation sets for the query.

NTUNLP (introduced for query-level entity-linking in Reference [7]) searches the query trying
to match Freebase surface forms with the longest-match strategy. The disambiguation
step is built on top of TagME and Wikipedia.

Seznam (introduced for query-level entity-linking in Reference [15]) uses Wikipedia and DBpe-
dia to generate candidate annotations, then builds a graph of mentioned entities exploit-
ing the link structure of Wikipedia. The disambiguation step is based on PageRank over
this graph and assigns a score to each entity.

Tan et al. is a query entity-annotator introduced by Tan et al. [52] that performs a search of the
query in the body ofWikipedia articles, treating search results as candidate entities. These
candidates are ranked by means of a linear model that employs features that take into
account (i) the quality of the match between query and the body of the Wikipedia article,
(ii) the relatedness of the candidate toward other candidates, and (iii) toward the entities
directly linked by the article. Given that the entity-annotator has not been published, we
cannot experiment with it, and will only report the measures appearing in Reference [52].

SMAPH-1 (Section 5) addresses query-level entity-linking.
SMAPH-S (Section 7) is our first proposal for token-level entity-linking. It evaluates each

mention-entity pair individually.
SMAPH-3 (Section 8) is our final entity-annotator that addresses token-level entity-linking by

greedily building the solution, adding one annotation at a time, and considering its co-
herence with respect to previously added annotations.

The first two entity-annotators (AIDA and WAT) are the baselines for query-level and token-
level entity-linking. Other entity-annotators employed here are the top-ranking entity-annotators
of the ERD Challenge.
The scores obtained by SMAPH-1 and SMAPH-S are slightly higher than those reported in our

previous work [10, 11]. The difference in performance is due to bug fixes in the code.15

9.2.2 Evaluation Datasets. Our experiments have been conducted on three datasets. We briefly
summarize their main characteristics.

ERD-online. The dataset used in the ERD Challenge to test the entity-annotators solving query-
level entity-linking [5]. The entity knowledge base is a subset of Freebase, namely, only
its NamedEntities. It consists of 500 annotated queries. The ERD Challenge dataset is not

13Note that we also employ WAT to annotate snippets in SMAPH’s candidate entity generation phase (Section 4). Here

instead, we are testing how it performs when applied directly on queries.
14http://www.mpi-inf.mpg.de/yago-naga/aida/.
15More specifically, the bug caused anchors from Wikipedia to not be correctly parsed, resulting in incorrect values for

features 23 and 24 in Table 6 and feature 25 and 26 in Table 7.
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available off-line. To enable challenge participants to test their entity-annotators on this
dataset without revealing its ground truth, the challenge organizers built an online evalu-
ation platform. The platform, and consequently the dataset, is currently not accessible. For
this reason, we cannot test our most recent proposal on this dataset, and results refer to
old runs from the time it was accessible. The evaluation performed by the ERD Challenge
platform measures the quality of the entities found by an entity-annotator, but does not
take into account the mentions. For this reason, entity-annotators can be tested on this
dataset onlywith respect to the problem of query-level entity-linking. The query’s ground
truth remains unknown, so no error analysis can be carried out. This makes the evalua-
tion against this dataset a real third-party check of the robustness of entity-annotators.
For detailed information about the creation of the ERD-online dataset, see Reference [5].

ERD-dev. The dataset provided by the ERD Challenge organizers as a development set for chal-
lenge participants. It provides a token-level entity-linking ground truth for 91 queries.
Similarly to the ERD-online dataset, the entity knowledge base consists of NamedEntities.

GERDAQ. This is the novel dataset we have built via CrowdFlower. It provides a token-level
entity-linking ground truth for 992 queries. The entity knowledge base is the whole
Wikipedia, hence it includes all three types of GenericEntities enumerated at the begin-
ning of Section 1, not just NamedEntities. GERDAQ is split into three portions: train (497
queries), development (249 queries), and test (246 queries). Results will be given for the
test portion.

9.3 Coverage of Entity Sources

We first evaluate the coverage of the candidate entity generation process. As explained in Section 4,
this step (shared among all the three SMAPH entity-annotators) is the only one that aims at dis-
covering entities that may be mentioned by the query. After candidate entities are generated, some
of them can be discarded, but none can be added. For this reason, its performance fixes an upper
bound on the recall of our entity-annotators.
We evaluate the coverage of the three entity sources, which, we remind the reader, were defined

as follows:

• E1 are Wikipedia articles appearing as search results for the input query q;
• E2 are Wikipedia articles appearing as search results for the query q + wikipedia;
• E3 are entities found by annotating through WAT the snippets appearing in search results

for query q.

The SMAPH entity-annotators employ the union of these entity sources Eq = E1 ∪ E2 ∪ E3.
We also remind the reader that each entity source comes with a set of features associated with an
entity (see Table 6) that assist later steps of the algorithms.
Table 9 reports, for each entity source, the average coverage and precision computed over the

queries of dataset GERDAQ-dev. Read the leftmost column of the table as “when piggybacking
on Bing, entity source E1 provides 20.2% coverage of the ground-truth GenericEntities and 58.6%
of the ground-truth NamedEntities, with a precision of 91.0% for GenericEntities and 97.0% for
NamedEntities.” Coverage indicates how many entities forming the ground truth are provided by
a source, while precision indicates how many entities provided by a source are contained in the
ground truth. We can note a few facts:

• Source E3 is the largest single source of entities, though it has low precision.
• Entities in E1 are included in E2 (E1 ⊆ E2), because Wikipedia articles that appear as result

when searching for q also appear when searching for q + wikipedia. This may wrongly
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Table 9. Average Coverage and Precision of the Entity Sources E1,E2,E3 on the GERDAQ-dev Dataset

Bing Google

E1 E2 E3 E1 ∪ E3 E2 ∪ E3 E1 ∪ E2 ∪ E3 E1 E2 E3 E1 ∪ E3 E2 ∪ E3 E1 ∪ E2 ∪ E3
CGE 20.2 42.1 86.6 86.8 87.9 87.9 19.3 38.6 82.3 82.7 85.4 85.4

PGE 91.0 32.5 11.3 11.3 10.4 10.4 91.4 22.5 23.3 22.8 17.6 17.6

CNE 58.6 76.2 95.9 96.3 96.7 96.7 59.2 69.9 94.0 94.4 94.4 94.4

PNE 97.0 52.8 13.2 13.4 11.9 11.9 94.8 43.2 35.7 35.2 26.8 26.7

Coverage and precision is given for both the set of NamedEntities (CNE , PNE ) and the set of GenericEntities (CGE , PGE ).

suggest to the reader that E1 can be discarded, as it does not extend the coverage. But we
observe that E1 has higher precision than E2; thus, the fact that e is included in both E1
and E2 gives a stronger signal of correctness than the case in which it is only included in
E2 (this is captured by Feature 3; see Table 6).

• Merging all sources together increases the coverage of plain E3 by 1.3% (Bing) and by
3.3% (Google) on GenericEntities, while the coverage of NamedEntities is increased by 0.8%
(Bing) and by 0.4% (Google).

• The coverage reached by the union Eq is rather good for both GenericEntitites (87.9% for
Bing, 85.4% for Google) and for NamedEntities (96.7% for Bing, 94.4% for Google). An ideal
entity-annotator built on top of these sources, i.e., an entity-annotator that keeps all correct
candidate entities and discards all wrong ones, would achieve an impressive F1 score of
around 93% for GenericEntities.

9.4 Training Process

All models were trained on GERDAQ-train (497 queries). The piggybacked search engine is ei-
ther Google or Bing. Features were selected by forward variable selection on GERDAQ-dev (249
queries). Hyperparameters of the SVM models were tuned on GERDAQ-dev, by means of a grid
search, maximizing macro-F1.

16

SMAPH-1’s binary classifier (Section 5.1) was trained with 757 positive and 5,567 negative ex-
amples (Google) or with 757 positive and 8,496 negative examples (Bing). This means that the set
of candidate entities Eq consists on average of 1.5 correct vs. 11.2–17.1 wrong candidate entities.
Macro-F1 on GERDAQ-dev is 59.44% (Google) and 58.49% (Bing).

SMAPH-S’s regressor was trained with 736 positive and 40,803 negative examples (Google) or
with 736 positive and 51,171 negative examples (Bing). This implies that the candidate setCq con-
sists on average of 1.5 correct vs. 82–103 wrong candidate annotations. Macro-F1 on GERDAQ-dev
is 58.03% (Google) and 57.13% (Bing).

16We cannot give a detailed introduction to SVMs here, but for the interested reader we provide the following details about

the SVM models and their training. The Support Vector Machines employed by all versions of SMAPH use RBF as kernel

function, as this proved to be the one that better exploits the features. The hyperparameters for the training process of

SVM are γ (the free parameter of the RBF function) and C (the margin between the hyperplanes). SMAPH-S also has

hyperparametersw−,w+ (the objective value assigned, respectively, to bad and good annotations) and t (the threshold on
the predicted score; see Section 7).

SMAPH-1. The tuning process took 25 min on a consumer personal computer. Value of hyperparameters: C = 1.0,

γ = 0.01998 (Google) andC = 1.0, γ = 0.02500 (Bing). Number of support vectors employed by the model: 1,683 (Google),

1,799 (Bing). SMAPH-S. The tuning process took less than 3h. Value of hyperparameters: γ = 0.01190,C = 0.62366,w− =
0.61852,w+ = 2.02761, t = −0.85796 (Google) and γ = 0.01700,C = 0.78936,w− = 0.94000,w+ = 3.34372, t = −0.79074
(Bing). Number of support vectors employed by the model: 1,841 (Google), 2,090 (Bing). SMAPH-3. Number of support

vectors for Google: 3,758 (iteration 1), 2,766 (iteration 2), 568 (iteration 3), 39 (iteration 4), 8 (iteration 5). Number of support

vectors for Bing: 5,261 (iteration 1), 3,073 (iteration 2), 1,041 (iteration 3), 42 (iteration 4).
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Table 10. Performance of Query-level Entity-linking for NamedEntities on GERDAQ-test

Entity-Annotator Pmac Rmac F1mac Pmic Rmic F1mic
AIDA 94.8 ± 2.3 59.6 ± 2.0 58.4 ± 2.5 31.6 ± 3.1 04.8 ± 2.2 08.3 ± 2.2
TagME 77.6 ± 2.1 86.9 ± 2.2 71.6 ± 2.5 54.0 ± 3.4 70.7 ± 3.7 61.3 ± 3.0
WAT 71.3 ± 2.3 86.4 ± 2.3 65.8 ± 2.7 45.3 ± 3.1 69.9 ± 4.1 55.0 ± 3.2
SMAPH-1 (Bing) 79.2 ± 2.2 90.0 ± 1.8 76.1 ± 2.5 59.1 ± 3.2 78.9 ± 3.5 67.6 ± 3.0
SMAPH-1 (Google) 79.4 ± 2.5 89.5 ± 1.9 75.7 ± 2.8 56.9 ± 3.3 77.2 ± 3.8 65.5 ± 3.1
SMAPH-S (Bing) 88.6 ± 1.3 86.9 ± 2.1 79.6 ± 2.0 72.9 ± 2.7 69.9 ± 3.4 71.4 ± 2.6
SMAPH-S (Google) 87.4 ± 2.3 87.1 ± 1.8 79.9 ± 2.7 70.4 ± 3.7 71.5 ± 2.9 71.0 ± 2.8
SMAPH-3 (Bing) 88.2 ± 1.9 89.1 ± 1.7 81.5 ± 2.2 74.0 ± 3.3 74.0 ± 2.5 74.0 ± 2.5
SMAPH-3 (Google) 89.0 ± 2.3 88.9 ± 2.0 82.3 ± 2.7 75.0 ± 4.2 75.6 ± 3.8 75.3 ± 3.4

SMAPH-3’s regressors were trained with a different number of examples at each iteration. For
example, when piggybacking on Google, the first iteration regressor is trained with a total of
41,539 vectors, 40,288 of which (97%) are assigned label 0.0, meaning that adding the associated
annotation would bring no improvement to the solution, while 116 vectors are assigned label 1.0,
meaning that for 116 queries the ideal solution (consisting of one annotation) can be found at the
first iteration. With Bing, the number of vectors is 51,907, with similar proportions. The number
of iterations (i.e., regressor-threshold pairs) generated by the training process was five for Google
and four for Bing. Thresholds ti for both Bing and Google range in [−0.03, 0.03] across iterations.
For a deeper discussion on the models of SMAPH-3, see Section 9.7. Macro-F1 on GERDAQ-dev is
59.21% (Google) and 61.54% (Bing).

9.5 Benchmark Results

9.5.1 Experiment #1: Query-level Entity-linking for NamedEntities. This experiment compares
the ability of different entity-annotators in finding NamedEntities mentioned by queries of the
ERD-dev, ERD-online and GERDAQ-test datasets. Some of the entity-annotators we experiment
with are designed to detect GenericEntities and, in some cases, their mentions; however, in this
experiment, we evaluate their ability to spot NamedEntities only. In other words, the evaluation
ignores AbstractEntities and CategoriesOfEntities, and ignores mentions. To define which enti-
ties are NamedEntities, we use the list of NamedEntities provided by the organizers of the ERD
Challenge.
Table 10 reports the results for this experiment on GERDAQ-test. We refer to the versions of

SMAPH piggybacking on either Bing or Google as, e.g., SMAPH-3 (Bing) and SMAPH-3 (Google).
Precision, recall and F1 measures are reported both micro- and macro-averaged. For each number,
we report the bootstrap estimate of its standard deviation.17 In this and the next tables, we report
this value after the ± sign. We also mark with green, yellow and red the first, second and third best
result.18 We also tested the statistical significance of the improvements between entity-annotators
in terms of macro-F1. Let us indicate with X ≤t Y the fact that entity-annotator X is significantly

17The bootstrap estimate of the standard deviation is computed on 40 random samples (with replacement) of the dataset

instances. The 40 samples have the same size of the dataset.
18With respect to the coloring, the aim is to rank the three best algorithms independently of the data they are fed with, so

the three versions of SMAPH will be compared with each other only when piggybacking on the same search engine. This

leads to two independent rankings, one for the versions of SMAPH piggybacking on Bing, and one for those piggybacking

on Google.

ACM Transactions on Information Systems, Vol. 37, No. 1, Article 13. Publication date: December 2018.



13:32 M. Cornolti et al.

Table 11. Performance of Query-level Entity-linking for NamedEntities on ERD-dev

Entity-Annotator Pmac Rmac F1mac Pmic Rmic F1mic
AIDA 92.1 ± 3.3 61.1 ± 2.7 60.4 ± 4.4 42.8 ± 6.8 06.0 ± 5.0 10.5 ± 4.8
TagME 83.5 ± 4.6 92.3 ± 2.6 82.1 ± 4.3 67.2 ± 7.4 84.8 ± 5.3 75.0 ± 6.2
WAT 83.5 ± 4.5 87.4 ± 3.8 76.9 ± 4.8 67.3 ± 7.3 71.7 ± 7.3 69.5 ± 6.4
SMAPH-1 (Bing) 87.4 ± 3.2 93.4 ± 2.3 84.2 ± 3.6 70.2 ± 7.1 87.0 ± 5.1 77.7 ± 5.8
SMAPH-1 (Google) 88.4 ± 3.5 92.6 ± 2.4 85.0 ± 3.9 75.0 ± 6.6 91.3 ± 5.2 82.4 ± 5.0
SMAPH-S (Bing) 86.8 ± 3.6 92.3 ± 3.0 85.0 ± 3.9 73.6 ± 6.6 84.8 ± 6.0 78.8 ± 6.1
SMAPH-S (Google) 89.0 ± 3.4 92.3 ± 2.7 86.0 ± 3.5 79.6 ± 6.4 84.8 ± 5.4 82.1 ± 5.6
SMAPH-3 (Bing) 93.4 ± 2.5 93.4 ± 2.4 90.1 ± 3.0 87.0 ± 5.7 87.0 ± 5.0 87.0 ± 5.0
SMAPH-3 (Google) 89.6 ± 3.4 93.4 ± 2.7 86.4 ± 4.0 80.0 ± 6.6 87.0 ± 5.5 83.3 ± 5.7

worse than Y , according to t-test with p < 0.05. We verify the following:

AIDA ≤t TagME ≤t WAT,
WAT ≤t SMAPH-1 (Bing) ≤t SMAPH-S (Bing) ≤t SMAPH-3 (Bing),
WAT ≤t SMAPH-1 (Google) ≤t SMAPH-S (Google) ≤t SMAPH-3 (Google).

As a first result, these figures show that entity-annotators designed for natural language perform
poorly on queries. The macro-F1 obtained by WAT and AIDA on this dataset is 16% lower than
the typical macro-F1 these entity-annotators achieve on natural language documents.19 Despite
its simplicity, SMAPH-1 outperforms WAT, TagME, and AIDA by 4.5% macro-F1 or more. This
supports our claim on the importance of designing entity-annotators that specifically address the
domain of queries. The idea of link-back (mapping entities to query tokens), even in the simpler
version that judges annotations independently (SMAPH-S), improves SMAPH-1 by 3.5% (Bing)
and 4.2% (Google) in terms of micro-F1. In particular, link-back raises the micro-P of SMAPH-1
by 9.4% (Bing) and 8.0% (Google). The key algorithmic idea of SMAPH-3, which is to model the
coherence of the entities forming a solution, brings an additional improvement of 5.4% (Bing) and
6.4% (Google) in macro-F1 with respect to judging annotations independently (SMAPH-S).

Values for recall indicate that AIDA fails in retrieving most entities. The most likely reason is
that AIDA expects well-formed natural language input, whereas queries are often not well-formed.
In this experiment, many queries have no ground-truth entities attached. This explains why

micro measures are so much smaller than macro measures, especially for entity-annotators like
AIDA that return very few entities.
We perform the same experiment on dataset ERD-offline. Results are reported in Table 11. Run-

ning the experiment with dataset ERD-offline, as opposed to GERDAQ-test, leads to identical rank-
ing by macro-F1 of the entity-annotators. The queries in ERD-offline are easier to annotate than
those in GERDAQ-test, in fact, macro-F1 is 4%–11% higher. This lets us confirm the conclusions
drawn while discussing the results for GERDAQ-test. Due to the limited size of the dataset, no
significance test could be performed on this dataset.
We also report in Table 12 the results computed by the ERD Challenge evaluation platform.

As detailed in Reference [5], using this platform was the only way to test against the ERD-online
dataset. Note that the F -measure computed by this platform slightly differs from themacro-F1 used
elsewhere in this article.20 Unfortunately, the platform is not available anymore, and the dataset

19For a report on the macro-F1 achieved by WAT and AIDA on natural language documents, see, e.g., Reference [9].
20In fact, the F -measure considers a solution as correct only if all its annotations are correct; see Reference [5] for details.
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Table 12. Performance of
Query-level Entity-linking

on ERD-online

Entity-Annotator F -measure
AIDA 22.1
WAT 58.6
Seznam 66.9
SMAPH-S (Bing) 67.0
NTU 68.0
SMAPH-1 (Bing) 68.8

NTNU-UiS 69.9

SMAPH-2 (Bing) 70.8

Table 13. Performance of Query-level Entity-linking for GenericEntities on GERDAQ-test

Entity-Annotator Pmac Rmac F1mac Pmic Rmic F1mic
AIDA 94.0 ± 2.2 12.2 ± 2.5 12.6 ± 2.2 28.6 ± 1.8 01.5 ± 1.1 02.8 ± 1.0
TagME 59.6 ± 2.1 49.7 ± 2.8 43.5 ± 2.1 51.8 ± 2.2 48.2 ± 2.4 49.9 ± 2.0
WAT 49.6 ± 2.1 57.0 ± 3.0 46.0 ± 2.3 43.0 ± 1.9 56.4 ± 2.6 48.8 ± 2.0
Tan et al. (from [52]) 71.5 58.5 56.9 N/A N/A N/A
SMAPH-1 (Bing) 63.4 ± 2.3 68.7 ± 2.5 57.8 ± 2.3 55.6 ± 2.2 66.5 ± 2.3 60.6 ± 1.9
SMAPH-1 (Google) 64.1 ± 2.3 66.7 ± 2.7 57.0 ± 2.1 56.6 ± 1.9 64.8 ± 2.5 60.4 ± 1.9
SMAPH-S (Bing) 72.8 ± 2.2 56.3 ± 2.5 55.1 ± 2.3 66.2 ± 2.4 54.0 ± 2.1 59.5 ± 1.9
SMAPH-S (Google) 71.7 ± 2.4 60.9 ± 2.7 57.3 ± 2.6 65.7 ± 2.3 59.4 ± 2.4 62.4 ± 2.1
SMAPH-3 (Bing) 70.9 ± 2.5 62.0 ± 2.4 58.7 ± 2.4 64.2 ± 2.6 60.4 ± 2.5 62.2 ± 2.3
SMAPH-3 (Google) 73.2 ± 2.3 65.1 ± 2.4 62.3 ± 2.2 68.6 ± 2.4 63.6 ± 2.3 66.0 ± 2.0

was not distributed offline due to copyright restraints.21 For this reason, we cannot test SMAPH-3
on the ERD-online dataset. Nonetheless, we report for completeness the results of the top-scoring
entity-annotators, including SMAPH-1, SMAPH-S, and SMAPH-2, an intermediate version covered
by Cornolti et al. [10] that performs worse than SMAPH-3 on the GERDAQ dataset. The table
shows that WAT outperforms AIDA, but its F -measure is 10.3% lower than SMAPH-1. In turn,
SMAPH-1 is outperformed by SMAPH-2 by an additional 2% in F -measure.

9.5.2 Experiment #2:Query-level Entity-linking for GenericEntities. This experiment is similar to
Experiment #1 but does not have any restriction on the kind of entities taken into account for the
evaluation: we now consider any GenericEntity included in Wikipedia, i.e., in addition to Name-
dEntities, we also consider AbstractEntities and CategoriesOfEntities. Since the ERD-online and
ERD-dev datasets only cover NamedEntities, we can perform this experiment only on GERDAQ-
test.
Results are shown in Table 13. In comparison to experiment #1, we notice that the ranking

of the entity-annotators by macro-F1 is similar. Similarly to experiment #1, significance tests (t-
test with p < 0.05) confirm the ranking of the entity-annotators by macro-F1. The numbers also
show that finding GenericEntities is harder than finding NamedEntities: F1 decreases by about

21Private communication with ERD Challenge organizers.
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Table 14. Performance of Token-level Entity-linking for GenericEntities on GERDAQ-test

Entity-Annotator Pmac Rmac F1mac Pmic Rmic F1mic
AIDA 94.0 ± 2.2 12.2 ± 2.5 12.6 ± 2.2 28.6 ± 1.8 01.5 ± 1.1 02.8 ± 1.0
TagME 57.2 ± 2.0 48.0 ± 2.8 41.5 ± 2.2 49.0 ± 2.2 46.2 ± 2.4 47.5 ± 2.1
WAT 47.8 ± 2.2 54.9 ± 2.9 44.5 ± 2.3 41.5 ± 1.9 54.5 ± 2.5 47.1 ± 2.0
SMAPH-S (Bing) 69.0 ± 2.3 52.6 ± 2.6 51.6 ± 2.3 61.2 ± 2.5 50.6 ± 2.1 55.4 ± 2.1
SMAPH-S (Google) 68.5 ± 2.5 57.7 ± 2.9 54.3 ± 2.7 61.4 ± 2.6 56.0 ± 2.6 58.6 ± 2.4
SMAPH-3 (Bing) 67.8 ± 2.6 58.6 ± 2.5 55.6 ± 2.5 59.9 ± 2.7 56.7 ± 2.7 58.3 ± 2.6
SMAPH-3 (Google) 69.9 ± 2.4 62.0 ± 2.6 59.3 ± 2.3 64.5 ± 2.5 60.4 ± 2.6 62.4 ± 2.3

6%–10% (micro-F1) and 19%–23% (macro-F1) with respect to experiment #1. This decrease might
be attributable to the fact that NamedEntities are easier to detect, because their forms have a lower
degree of ambiguity than other types of entities. Moreover, the number of queries with empty
ground truth is lower than in experiment #1 (since there are strictly more GenericEntities than
NamedEntities).
Again, entity-annotators designed for long text, such as AIDA and WAT, perform worse than

entity-annotators designed for queries. SMAPH-S improves SMAPH-1 only when piggybacking
on Google. SMAPH-3 is again the best entity-annotator. Macro-F1 of SMAPH-3 is 12.7% (Bing) and
16.3% (Google) higher, compared toWAT. Macro-F1 of SMAPH-3 is greater by 0.9% (Bing) and 5.3%
(Google) compared to SMAPH-1.

9.5.3 Experiment #3: Token-level Entity-linking for GenericEntities. This experiment compares
the ability of entity-annotators in finding not only the GenericEntities mentioned by queries, but
their mentions too. Similar to Experiment #2, we can run this experiment only on GERDAQ-test,
the only dataset that provides GenericEntities as ground truth. SMAPH-1, which solves query-
level entity-linking, cannot be tested in this experiment. Results for this experiment are reported
in Table 14.

Similar to the other two experiments, significance tests (t-test with p < 0.05) confirm the rank-
ing of the entity-annotators by macro-F1. We first notice that token-level entity-linking performs
worse than query-level entity-linking (Table 13). This can be explained by the fact that a solution
for token-level entity-linking is intrinsically harder to find than a solution for query-level entity-
linking: not only the entity has to be correct, but the mention too. For example, the best macro-F1
on query-level entity-linking, i.e., 63.3% of SMAPH-3 (Google), decreases on token-level entity-
linking to 59.3%, indicating that SMAPH-3 finds a number of annotations having correct entity
but a mention different than that provided by the ground truth.
Again, off-the-shelf natural language entity-annotators (AIDA andWAT) are worse than entity-

annotators built specifically for queries, and SMAPH-S improves over them by 7.1%–12.8% in
macro-F1. SMAPH-3 is still the best entity-annotator with an improvement over SMAPH-S of 4.0%
(Bing) and of 5.0% (Google) in macro-F1.

After this comparison, we conclude: (i) SMAPH-3 is the state of the art for entity-linking on
queries; (ii) the idea of generating candidate entities by piggybacking on search engines is promis-
ing; and (iii) joint annotation models the task of query annotation better than individual entity/
annotation judgment, and this lets us build solutions with higher precision and recall.

9.5.4 Experiment #4: Performance on Tail Queries. This experiment is specific to SMAPH, and
aims at assessing its robustness when annotating tail queries. We define a tail query as a query
that carries a more specific information need, and for which search engines provide fewer results.
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Table 15. SMAPH-3 (Google) Performance of
Query-level Entity-linking on GERDAQ-test,

Bucketed by Number of Web Results

Web results Pmac Rmac F1mac
0−5k 78.5 62.9 59.5
5k−68k 67.9 67.3 62.8
69k−1,370k 74.2 68.3 66.7
1,630k−517,000k 72.0 61.7 60.1

For example, a query about a small village in Kazakhstan (economy of karsakbay) is a tail query,
whereas a query about an event widely covered by the media (2017 superbowl) is not a tail query.

The experiment consists of measuring the performance of SMAPH on queries at various posi-
tions in the tail. Results are reported for the best-performing entity-annotator: SMAPH-3 piggy-
backing on Google. We divide the queries of GERDAQ-test in four buckets of equal size (around 62
queries per bucket) according to the number of web results returned by Google for those queries.
The first result tells us that the number of web results follows a power law distribution: the quan-
tiles computed at probabilities p = (0, 0.25, 0.5, 0.75, 1) are found, respectively, at 0, 5k, 68k, 1.3M,
and 517M number of results. There are five queries with no results (for them, SMAPH will return
an empty solution, though two of themmention an entity), and the query with the highest number
of results (517M) is home book.

The second result regards the robustness of SMAPH on tail queries. Table 15 reports, for each
bucket, the macro-F1 reached by SMAPH-3 (Google) for query-level entity-linking. Keeping in
mind that the macro-F1 computed on the whole dataset is 62.3% (see Table 13), we note that its
value varies across buckets in the range 59.5%–68.3%. The queries for which the search engine
finds a lower number of results are those on which SMAPH reaches a lower F1, which can be
explained by the lack of information provided by the search engine. The result is also slightly
lower than the average for non-tail queries. This may be due to the excess of information that
“dilutes” web results, interleaving those that provide information that is useful to disambiguate
the query with those that don’t. We conclude that the performance of SMAPH depends on the
quality of results returned by the search engine, that it effectively exploits the information that
search engines provide, and that it is rather robust on both tail and non-tail queries.

9.6 Detailed Error Analysis and Possible Improvements

We manually analyzed the results of SMAPH-3 (Google), our best performing entity-annotator,
with the aim of learning what types of errors it makes and how they can be avoided. Errors can
either be false positives or false negatives, which, respectively, hurt precision and recall. We found
three main reasons for these errors.

(1) The candidate set E1 ∪ E2 ∪ E3 does not include an entity mentioned in the query. Since
SMAPH only considers entities in the candidate set, this case will generate a false nega-
tive. Examples are listed in Table 16. As the examples show, most missing entities are not
central to the meaning of the query, in fact they are in most cases modifiers of the central
entity (looking at the examples, “for Toddlers” is a modifier ofMartial_Art; Used_Good is a
modifier ofMusical_Instrument). The reason why these non-central entities do not appear
in the search results is that central entities are predominant among bothWikipedia results
(Sources 1 and 2) and the snippets (Source 3). The fact that these missing entities are not
central does not mean they are of secondary importance to the semantics of the query.
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Table 16. Error Analysis: Examples of Entities Missing from the Candidate Set

Query Missing entity

marital arts for toddlers georgia Toddler

minnesota spring lake ice fishing report Spring_Lake,_Minnesota

paying taxes on the telephone Payment

used instrument Used_Good

alcove elementary school Primary_school

Table 17. Error Analysis: Examples of Entities that are Part of the Candidate Set But Are not Included
in SMAPH-3’s Result, Either Because It Is too Conservative and Leaves the Mention Unlinked

(Case a) or Because It Chooses a Bad Candidate (Case b)

Case Query Good candidate Chosen candidate(s)

(a) nail healht Health <none>

(a) el pasoisdjobline El_Paso,_Texas <none>

(a) brigids day Imbolc <none>

(b) modern dishes of pakistan Pakistani_Cusine Pakistan

(b) monetry from first century 1st_century Christianity_in_the_1st_century

(b) hotel pontchartrain detroit Pontchartrain_Hotel Crowne_Plaza_Detroit_Convention_Center

Correct mention is in bold.

These entities may be included in the candidate set by the same methods that natural lan-
guage entity-annotators [17] use, e.g., by searching the query for substrings that may be
references to aWikipedia article, and adding the entity corresponding to this article to the
candidate set.

(2) The candidate set includes the correct entity, but the model discards it. There are two
scenarios that can have this outcome: (a) the learned model does not recognize the link
between entity and mention to be strong enough; it decides to be conservative and not
link the mention to any entity, thus generating one false negative, or even worse, (b) the
model decides that a (wrong) candidate entity which is competing for the same mention is
stronger than the correct entity, and adds it to the solution, thus generating one false pos-
itive and one false negative. Table 17 shows such examples. We can see from the examples
that this type of error occurs mostly when the mention is distant from the most com-
mon way of referencing the correct entity, either because of spelling errors (e.g., healht
vs. health) or because of synonymy (e.g., brigids day vs. imbolc). These cases can be
solved by developing features that better model the strength of the mention-entity link,
taking into account spelling errors and synonyms.

(3) A sequence of tokens does not refer any entity, yet the model is not conservative enough
and assigns it to the most likely entity, thus generating one false positive. Table 18 shows
such examples. In these cases, there is typically a strong bond between the sequence of
tokens and the entity (e.g., beta toward Beta_film), but the entity does not contribute to
form a coherent interpretation of the query. A better modeling of interpretation coherence
would solve these types of errors.

9.7 On the SMAPH-3 Models

In this section, we analyze SMAPH-3, the best performing algorithm, in more detail by addressing
the following questions: What is the outcome of the training phase (see Section 8.1)? How does
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Table 18. Error Analysis: Examples of Sequences of Tokens that Do not Reference
any Entity, and Yet They Are Assigned One

Query Chosen candidate (wrong)

beta mennan Beta_(film)

moorefeild high school yellow jackets football Yellowjackets_(Jazz_band)

baseball hat hooks Hook_(music)

The sequence of tokens is in bold.

Table 19. Contribution of Each Iteration of SMAPH-3

SMAPH-3 (Bing) SMAPH-3 (Google)

J- J+ TP FP FN Pmac Rmac F1mac J- J+ TP FP FN Pmac Rmac F1mac S ST P

Start 0 0 409 100 10.6 10.6 0 0 409 100 10.6 10.6 100 100

Iteration 0 41 205 141 64 268 74.0 42.9 47.3 37 209 147 62 262 74.8 44.9 49.5 75.6 85.8

Iteration 1 71 134 216 123 193 69.5 56.2 55.2 83 126 228 107 181 71.5 59.3 58.6 75.8 88.5

Iteration 2 86 48 232 155 177 67.8 58.6 55.6 87 39 245 129 164 70.3 61.8 59.4 74.8 88.7

Iteration 3 48 0 232 155 177 67.8 58.6 55.6 32 7 247 134 162 70.0 62.0 59.4 74.6 88.6

Iteration 4 (not executed) 5 2 247 136 162 69.9 62.0 59.3 74.5 88.6

Performance of token-level entity-linking on GERDAQ-test.

the choice of the underlying search engine (Bing or Google) affect the training phase? What is the
contribution of each iteration of SMAPH-3 to the solution?

9.7.1 Model Description. The outcome of Algorithm 3 (SMAPH-3 training) is a list of regressors
Ri and associated thresholds ti , one for each iteration of the algorithm. The choice of whether to
produce a pair 〈Ri , ti 〉 at iteration i , as opposed to terminating and returning the list of regressors
obtained at the previous iterations 0, . . . , i − 1, is determined by three factors: (i) the annotations
chosen by the regressors in the previous iterations, which determines what subset of queries will
be processed at iteration i and their current solutions Pq , (ii) the availability of correct candidates
inCq , and (iii) the quality of features, that determine whether or not a regressor can be built such
that it improves the current solution.
We executed the training pipeline by piggybacking on either Bing or Google. The two runs pro-

duce two lists of regressor-threshold pairs. Here we describe the main differences between them.
The number of iterations (i.e., the number of regressors) is four for Bing and five for Google. This
means that in no case SMAPH-3 will produce a solution larger than four (five) annotations when
piggybacking on Bing (Google). The most important difference is that training over Google termi-
nated, because no improvement was possible (i.e., all candidate annotations were false positives;
see first stop condition in Algorithm 3), while training over Bing terminated, because the fifth re-
gressor did not improve the solution obtained at the previous iteration, and hence was discarded
(second stop condition in Algorithm 3). In other words, signals provided by Google lets the training
process produce regressors that explore the whole set of correct candidates, while signals provided
by Bing do not.

9.7.2 Contribution of Each Iteration. To have a deeper understanding of the functioning of
SMAPH-3, we dissect its behavior by looking at the solutions achieved at each iteration. Table 19
reports token-level entity-linking results achieved at each iteration for the 246 GERDAQ-test
queries. At the beginning of the algorithm, all solutions are empty. This achieves a macro-F1 of
10.6% (which indicates that 10.6% of queries have an empty ground truth). At each iteration, part
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Table 20. Time Employed by SMAPH Versions
to Annotate aQuery

Entity-Annotator Time avд ± stdev (ms)

Bing Google
SMAPH-1 90.5 ± 38.4 82.8 ± 34.1
SMAPH-S 344.6 ± 314.4 179.2 ± 249.3
SMAPH-3 316.6 ± 561.3 226.5 ± 491.5
Time is additional with respect to querying the search engine.

of the queries will be assigned a new annotation (column J+) while for the remainder (J−), their
current solution will be returned as final result.
We can see that the distribution of solution sizes between Bing and Google is similar: the empty

solution is returned for around 40 queries, a solution of one or two annotations is returned for
around 80 queries, a solution of three or more annotations is returned for around 40 queries. Each
iteration increases recall by 32.3%, 13.3%, 2.4%, 0% (piggybacking on Bing) and 34.3%, 14.4%, 2.5%,
0.2%, 0% (piggybacking on Google) at the cost of sacrificing a bit of precision by up to 4.5% (Bing)
and up to 3.3% (Google). As a consequence of this, macro-F1 increases at each iteration (with the
exception of the last iteration of the Google version, where it slightly decreases).

9.7.3 Difference between Piggybacking on Google or Bing. Column S reports the similarity
between the solutions found by the two algorithms at each iteration. As suggested in Refer-
ence [9], we compute the average similarity at iteration i as Si =

∑
q∈Dt

J (PB,q,i , PG,q,i )/|Dt |,
where Dt is the GERDAQ-test dataset, J is the Jaccard measure, PB,q,i and PG,q,i are the solutions
obtained for query q at iteration i , piggybacking, respectively, on Bing and Google. We can see
that from the first iteration on, the solution similarity is around 75%, meaning that the models
built on top of Google and Bing return quite different annotations. Do the two entity-annotators
differ in the correct annotations, in the wrong ones, or both? The last column ST P indicates the
similarity of the true positives contained in the solutions, which is 88.6% at the last iteration.
This indicates that the two entity-annotators differ both in the true and false positives. The fact
that the macro-F1 measure is similar among the two entity-annotators, though the solutions they
provide are different, indicates that SMAPH-3, and in particular its training process, is general
enough to be employed with both search engines, and its performance is robust.

9.8 Runtime Evaluation

One context where entity-linking on queries may be deployed is web search, which is performed
by search engines in tenths of a second. To make it feasible to have a step of entity-linking as part
of the web search process, entity-linking must be performed in a comparable time span. To shed
some light on the feasibility of this, we measure the runtime of SMAPH. It is important to note that
our main focus during the development of SMAPHwas the quality of the query annotations rather
than the runtime performance, and further work may lead to important gains in runtime, keeping
a high quality. Hence, the figures presented in this experiment must be taken as preliminary.
The reader may refer to Figure 2 for an overview of the steps performed by the three versions of

SMAPH. The runtime measure does not consider the time needed to fetch the search results (the
two top boxes in the figure), as this time is not under our control and varies considerably. In other
words, we measure the additional time needed by the versions of SMAPH to annotate a query,
after the query has been processed by the search engine.
The experiments run on a consumer PC (Intel i7 CPU), deploying the process on a single core.

The runtime has been measured several times showing differences below 1% among runs.
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The steps performed by the three versions of SMAPH are somehow incremental: SMAPH-1 (Sec-
tion 5) generates candidate entities and judges each of them through an SVM prediction, hence the
runtime is proportional to |Eq |; SMAPH-S (Section 7) generates candidate annotations by linking
candidate entities to all segments of the query, and must express a judgment for each annota-
tion, hence the runtime is proportional to |Eq | · |Seд(q) |; finally, SMAPH-3 (Section 8) decides, at
each iteration, which of the candidate annotations have to be added to the solution, leading to a
complexity of n · |Eq | · |Seд(q) |, where n is the number of iterations.

Results show that SMAPH-1 has an average annotation time of 82–90ms. Considering mention-
entity pairs (SMAPH-S) increases the runtime by a factor of 2–3, while processing the query iter-
atively (SMAPH-3) has a runtime similar to SMAPH-S (this is due to the fact that fewer and fewer
queries reach the later iterations of SMAPH-3).
In conclusion, SMAPH-1 reaches quite good macro-F1 performance for query-level entity-

linking on GenericEntitites (57.8% with Bing, 57.0% with Google, see Table 13) and is fast enough
to be deployable without increasing search time by a significant margin; while SMAPH-3 (59.7%
with Bing, 62.3% with Google) may need further optimization to be deployed in on-the-fly query
annotation.

10 CONCLUSION AND FUTURE WORK

In this article, we presented and evaluated extensively SMAPH, a family of entity-annotators that
perform the task of entity-linking on queries using the information coming from a web search en-
gine, an approach we called “piggybacking.” We employ search engines to alleviate the noise and
irregularities that characterize the language of queries. Snippets returned as search results also
provide a context for the query that makes it easier to disambiguate its terms. From the search re-
sults, SMAPH builds a set of candidate entitieswith high coverage. This set is filtered by linking back
the candidate entities to the terms occurring in the input query, ensuring high precision. A greedy
disambiguation algorithm performs this filtering; it maximizes the coherence of the solution by it-
eratively discovering the entities mentioned in the query. We proposed three versions of SMAPH
and presented an extensive set of experiments that evaluate them on the GERDAQ dataset, a novel
dataset that we have built specifically for this problem via crowd-sourcing, and, when possible,
on the dataset of the ERD Challenge. These experiments show that, on GERDAQ-test, SMAPH-3
achieves macro-F1 scores of 62.3% for GenericEntities and of 82.3% for NamedEntities, while on
ERD-dev, SMAPH-3 achieves 90.1% for NamedEntities. On ERD-online, the benchmark dataset of
the ERD Challenge, we improved the F -measure by 2.0% with respect to SMAPH-1. This was the
best result at the time of the contest and is also the best result among all other entity-annotators
that have been tested on the ERD-platform since the end of the challenge (August 2014).
Overall, we can conclude that SMAPH-3 is the state-of-the-art for entity-linking on the domain

of queries. Though runtime was not our primary concern, and some algorithm and software engi-
neering may improve it, SMAPH-3 is quite efficient and annotates a query in about one-third of a
second. To encourage further experiments and uses of SMAPH, we have released its source code
on Github22 and published the SMAPH algorithms as a web service.23 SMAPH and GERDAQ are
released under free licenses.
The idea of piggybacking is to carry out language understanding tasks using search results,

thus leveraging the ability of a search engine to understand a query and retrieve relevant results
and meaningful snippets. It could be argued that the commercial search engines (such as Google
and Bing) already do some sort of entity-linking on queries. Unfortunately, the details of the

22http://github.com/marcocor/smaph.
23https://sobigdata.d4science.org/group/smaph.
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functioning of these search engines are not published. This article, however, has publicly described
an efficient method to do entity-linking in queries. An interesting future work is to study how
entity-linking by means of piggybacking may help yielding a better query understanding than
the underlying search engine already has. We suggest to address this question on open-source
search engines, such as ElasticSearch, Sphinx or Lemur/Indri, to check whether SMAPH allows to
improve both their ranking and snippets retrieval. A possible experiment in this direction would
be to build a search engine that, given a query, executes the following steps: (i) feed the query to
a secondary open-source search engine; (ii) annotate the query with SMAPH, using the search
results found in the previous step; (iii) use the entities found by SMAPH to improve the search
results found in the first step (either improve ranking or snippets quality). The success of this
experiment would further validate the piggyback approach.
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