
KANTOROVICH POTENTIALS AND CONTINUITY OF TOTAL COST

FOR RELATIVISTIC COST FUNCTIONS

JEROME BERTRAND, ALDO PRATELLI, AND MARJOLAINE PUEL

Abstract. In this paper we consider the optimal mass transport problem for relativistic cost

functions, introduced in [12] as a generalization of the relativistic heat cost. A typical example

of such a cost function is ct(x, y) = h( y−x
t

), h being a strictly convex function when the variable

lies on a given ball, and infinite otherwise. It has been already proved that, for every t larger

than some critical time T > 0, existence and uniqueness of optimal maps hold; nonetheless,

the existence of a Kantorovich potential is known only under quite restrictive assumptions.

Moreover, the total cost corresponding to time t has been only proved to be a decreasing right-

continuous function of t. In this paper, we extend the existence of Kantorovich potentials to a

much broader setting, and we show that the total cost is a continuous function. To obtain both

results the two main crucial steps are a refined “chain lemma” and the result that, for t > T ,

the points moving at maximal distance are negligible for the optimal plan.

1. Introduction

In this paper, we consider the classical mass transport problem with a particular class of

cost functions c. While the case when c is strictly convex and real-valued is well understood (we

refer to [34] for a survey), our goal is to continue the study of a wide class of non real-valued

cost functions, called “relativistic costs”, which were introduced in [12] as a generalization to

the “relativistic heat cost”.

More precisely, the relativistic heat cost, introduced by Brenier in [14], is defined as c(x, y) =

h(y − x), where h is given by the formula

h(z) =

{
1−

√
1− |z|2 |z| ≤ 1 ,

+∞ |z| > 1 .
(1.1)

As explained by Brenier in the aforementioned paper, this cost function can be used in order

to study a relativistic heat equation, where the region where the cost is infinite comes from the

fact that the heat has finite speed propagation. Afterwards, the corresponding relativistic heat

equation has also been studied by McCann and Puel in [28] by means of the Jordan-Kinderlehrer-

Otto approach introduced in [25], and by Andreu, Caselles and Mazón via PDE methods in a

series of papers [3, 5, 4, 6, 7, 8, 9, 16]. We refer to [14, 12] and the references therein for more

on this topic.

Notice that, from the mathematical point of view, a quite interesting feature of this cost

function is that it is strictly convex and bounded on its domain, hence in particular it is not

continuous on Rn × Rn (while the non real-valued cost functions have been often considered as

continuous, see for instance [23, 22, 29, 30, 33, 11]).
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More in general, one can consider costs “of relativistic type”, meaning that they are strictly

convex and bounded in a strictly convex domain C and +∞ outside. The corresponding optimal

mass transport problem has been studied in [12], see also [24].

In the classical case (strictly convex and real-valued cost function), a lot can be said; in

particular, an optimal transport map exists, is unique, and it is induced by a Kantorovich

potential ϕ (for instance the optimal transport map is simply the gradient of ϕ when the cost

is the Euclidean norm squared, see [27, 13]). This potential is also related to the so-called

Kantorovich’s dual problem. For non-negative and lower semi-continuous cost functions, the

following duality result is well known (see [21]).

Theorem 1.1 (Kantorovich duality). Let µ and ν be two probability measures with finite second

order moment on Rn. Then, the following equality holds:

sup
A

{∫
Rn
ϕ(x)dµ(x) +

∫
Rn
ψ(y)dν(y)

}
= min

γ∈Π(µ,ν)

∫
Rn×Rn

c(x, y) d γ(x, y) < +∞.

Here and in the following, Π(µ, ν) denotes the set of positive measures on Rn×Rn whose first

(resp., second) marginal is µ (resp., ν), while A is the set of pairs (ϕ,ψ) of Lipschitz functions

defined on Rn that satisfy ϕ(x) + ψ(y) ≤ c(x, y) for all x, y ∈ Rn.

However, it should be emphasized that in general, Kantorovich’s dual problem (on the

left hand side) has no solutions, counterexamples can be found for instance in [10]. A sufficient

condition for maximisers to exist is that the cost function is a bounded and uniformly continuous

function, see [34]; a more general criterion for real-valued cost functions is given in [2]. In the

case of non real-valued cost functions, the existence of maximisers is proved for reflector-type

problems [23, 22] and for Alexandrov’s Gauss curvature prescription problem [29, 11]; in both

cases the cost function is a continuous non real-valued function on the unit sphere in Euclidean

space. Existence of maximisers for the dual problem has also been proved in the case of the

Wiener space for the quadratic cost [20].

One of the main results of the present paper is the existence of a Kantorovich potential

for the mass transport problem relative to a relativistic cost. Beside a usual hypothesis on the

initial measure, the main assumption is that of a “supercritical regime” which means, loosely

speaking, that the mass transport problem is already well-posed even if the set of admissible

motions is shrunk by a homothety of ratio 1− ε. The precise statement is in Theorem B.

To conclude this introductory part, we recall that for real-valued cost functions, the enhanced

formula involving a potential is the starting point of the study of the optimal map regularity.

This topic, initiated by Caffarelli [15], has gone under tremendous development, we refer to [34,

Chapter 12] for more on the subject. The question about the regularity of the optimal map for

the relativistic heat cost in a very general setting (where only part of the mass can be moved at

finite cost) is highlighted in [14].

1.1. Previous results. We briefly recall here some results already known, to enlighted the

novelty of the results of the present paper. To do so, we need to introduce a parameter t,

called the “speed”, which takes into account the relativistic behaviour of the cost functions we
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consider. To be precise, whenever h : Rn → [0,+∞] is a strictly convex function, bounded in

some strictly convex set C and +∞ outside, then for every t > 0 we call

ct(x, y) = h

(
y − x
t

)
a relativistic cost function (see the formal Definition 3.1). Now, given two probability measures

µ and ν with compact support, we can see what happens when the speed t varies: to understand

it, let us define the total cost as

C(t) = min
π∈Π(µ,ν)

Ct(γ) = min
π∈Π(µ,ν)

∫∫
R2n

ct(x, y) dγ(x, y) . (1.2)

It is easy to guess that the total cost is infinite when t is small (at least if µ 6= ν), while it

becomes finite when t is larger, and finally it does not depend on t if it is sufficiently big. The

following properties are proved in [12].

Proposition 1.2. Given two probability measures µ 6= ν with compact support and a relativistic

cost function, the following holds.

a) The function t 7→ C(t) is decreasing.

b) The speed T := inf{t ; C(t) < +∞} is positive and finite (T is called the critical speed).

c) The total cost C(T ) is finite.

d) The function C(t) is right continuous.

Moreover, one can prove the existence of an optimal transport map for supercritical speed.

Theorem 1.3. Let µ and ν be two probability measures with compact support on Rn and ct be

a relativistic cost. Assume that µ is absolutely continuous with respect to the Lebesgue measure

and that t ≥ T . Then, there exists a unique optimal transport plan γt for the cost ct, and this

plan is induced by a map Ft.

1.2. Statement of the main results. Let us briefly describe the main achievements of this

paper. First of all, we can observe that the total cost is a continuous function of t when the

cost is “highly relativistic”: basically, a relativistic cost function is called “highly relativistic”

when the slope of h explodes at the boundary ∂C , as it happens for the original relativistic heat

cost (1.1) and most of the important examples (see the formal Definition 3.2).

Theorem A (Continuity of the total cost). Let µ and ν be two probability measures with compact

support on Rn, ct be a highly relativistic cost function, and assume that µ ∈ L∞(Rn). Then, the

total cost function t 7→ C(t) is continuous on [T,+∞). In particular, for every ρ� 1 and every

t, there exists C = C(n, µ, ν, t, ρ) such that, if δ � 1,

C(t) ≤ C(t− δt) ≤ C(t)
(
1 + exc(δ)

)
+

C

κδ(ρ)
, (1.3)

where exc(δ) and κδ(ρ) converge to 0 and +∞ respectively when δ → 0.

The precise values of the constants exc(δ) and κδ(ρ) are introduced in Definition 4.1 and

in (3.11) respectively. However, knowing that exc(δ)→ 0 and κδ(ρ)→∞ when δ → 0 is enough
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to infer the continuity of the total cost from (1.3). Of course, Theorem A extends the plain right

continuity stated in Proposition 1.2.

Our second main result is the existence of a Kantorovich potential.

Theorem B (Existence of a Kantorovich potential). Let µ and ν be two probability measures

with compact support on Rn, ct be a highly relativistic cost function, and assume that µ is

absolutely continuous with respect to the Lebesgue measure and has a connected support. Then,

for any supercritical speed t > T there exists a Kantorovich potential ϕt. In particular, there

is a unique optimal transport plan, and it corresponds to an optimal transport map Ft, defined

µ-almost everywhere as

Ft(x) = x+ t∇h∗
(
− t∇̃ϕt(x)

)
,

where h∗ denotes the Legendre transform of h and ∇̃ϕt is the approximate gradient of ϕt.

The classical notions of Kantorovich potential and of approximate gradient are given in

Definitions 5.3 and 5.4. Let us recall that the existence of a Kantorovich potential was already

proved in [12], but only under a regularity assumption on µ, and only for almost every t > T .

We underline that all our proofs are self-contained, in particular they do not rely on Theo-

rem 1.3.

There are two ingredients which are crucial for the proof of both our main theorems. The

first one is the “finite chain Lemma” 2.10, which generalizes similar results already used in the

literature, and which basically uses the cyclical monotonicity in order to modify a transport

plan to get a competitor. We will also use a discrete version of this finite chain result, given in

Lemma 5.5.

The second ingredient can be stated as an independent interesting result. It says that, for

any supercritical time t > T , the optimal transport plan moves no point at “maximal distance”,

that is, the pairs (x, y) such that y − x belongs to the boundary of tC are γ-negligible.

Theorem C (No points move at maximal distance). Let µ and ν be two probability measures,

ct a highly relativistic cost, µ� L n, t > T and γ an optimal plan with respect to ct. Then

γ
({

(x, y) ∈ Rn × Rn : y − x ∈ t ∂C
})

= 0 .

In all our results above we used the assumption that the cost is highly relativistic: actu-

ally, we can provide a counterexample showing that for most of our claims the sole relativistic

assumption is not enough.

The paper is organised as follows. In Section 2 we prove the finite chain Lemma 2.10. In

Section 3 we prove Theorem C. In Section 4 we prove Theorem A, and we present an example

which works as counterexample for most of our claims without the highly relativistic assumption.

Finally, in Section 5 we prove Theorem B.

2. Preliminaries and the finite chain lemma

The goal of this section is to show the “finite chain Lemma” 2.10. We start with a section

containing most of our technical definitions and preliminary results.
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2.1. General definitions and introductory lemmas. Throughout this paper, X and Y will

be arbitrary Polish spaces. We will denote byM+(X) the space of positive Borel measures, and

by P(X) the subspace of probability measures; usually, µ and ν will be two measures inM+(X)

and M+(Y ) respectively, having the same total mass, i.e. ‖µ‖M+(X) = ‖ν‖M+(Y ). We will

denote by Π(µ, ν) the space of transport plans between µ and ν, that is, an element of Π(µ, ν)

is some measure γ ∈ M+(X × Y ) whose marginals are µ and ν. Given a map g : X → Y , we

will denote by g# :M+(X)→M+(Y ) the push-forward operator, defined by∫
Y
ϕ(y) dg#µ(y) :=

∫
X
ϕ(g(x)) dµ(x) ∀ϕ ∈ Cb(Y ) .

The projections of X×Y onto X and Y will be denoted as π1 and π2; for simplicity of notations,

the corresponding projections fromM+(X × Y ) ontoM+(X) andM+(Y ) are also denoted by

π1 and π2, instead of π1# and π2#. In particular, γ ∈ Π(µ, ν) means π1γ = µ, π2γ = ν. When

α and µ are two measures such that α � µ, we denote by dα the density of α with respect to

µ, that is, α = dαµ.

Definition 2.1. For any two measures µ1, µ2 ∈M+(X), we define µ1 ∧ µ2 as

µ1 ∧ µ2(B) := inf
{
µ1(B1) + µ2(B2) : B1 ∩B2 = ∅, B1 ∪B2 = B

}
,

where B, B1 and B2 are Borel subsets of X. Notice that, if µ1 ≤ µ and µ2 ≤ µ for some

µ ∈M+(X), then also µ1 ∧ µ2 ≤ µ. In particular, one has

µ1 ∧ µ2 = min{d1, d2}µ . (2.1)

Definition 2.2 (α ≤ µ and its relative transport plan). Given α� µ ∈M+(X), we write that

α ≤ µ if dα ≤ 1, and we will denote by M+
µ (X) the set of the Borel measures α ∈M+(X) such

that α ≤ µ. If α ∈ M+
µ (X), for any transport plan γ ∈ Π(µ, ν) we denote by dαγ the transport

plan defined by∫
X×Y

ϕ(x, y) d dαγ(x, y) =

∫∫
X×Y

ϕ(x, y)dα(x) dγ(x, y) ∀ϕ ∈ Cb(X × Y ) .

Notice that the first marginal of dαγ is precisely α. Similarly, we define dβγ if β ≤ ν.

Roughly speaking, when γ is a transport plan between µ and ν, for any α ≤ µ the relative

transport plan dαγ is the “portion” of the transport plan γ relative to α, that is, a smaller

transport plan which transports the portion α of µ onto some portion of ν. With the next

definition, we “keep track” of what is precisely the latter portion of ν.

Definition 2.3. For any transport plan γ ∈ Π(µ, ν) we define
−→
Φ : M+

µ (X) → M+
ν (Y ) and

←−
Φ :M+

ν (Y )→M+
µ (X) as

−→
Φ (α) := π2(dαγ) ,

←−
Φ (β) := π1(dβγ) .

Through the paper, we will make extensive use of the disintegration Theorem (see [18, 1]

for a proof).
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Theorem 2.4 (Disintegration Theorem). Let X, Y be two Polish spaces and γ ∈ P(X × Y ).

Then there exists a measurable family (γx)x∈X of probability measures on Y such that γ =

π1γ ⊗ γx, namely, ∫
X×Y

ϕ(x, y)dγ(x, y) =

∫
X

(∫
Y
ϕ(x, y)dγx(y)

)
dπ1γ(x)

for all ϕ ∈ Cb(X × Y ).

Thanks to the Disintegration Theorem, we can easily compose two transport plans.

Definition 2.5 (Composition of plans). Let X, Y , and Z be three Polish spaces, and let γ ∈
M(X × Z) and θ ∈M(Z × Y ) be such that

π1γ = µ , π2γ = π1θ = ω , π2θ = ν .

Then, disintegrating γ = γz ⊗ ω and θ = ω ⊗ θz, we define the plan θ ◦ γ ∈ Π(µ, ν) as∫∫
X×Y

ϕ(x, y) dγ ◦ θ(x, y) :=

∫
Z

(∫
X×Y

ϕ(x, y) dγz(x)dθz(y)

)
dω(z) ,

for every ϕ ∈ Cb(X × Y ).

We can now show the first basic properties concerning the above definitions.

Lemma 2.6. If γ ∈ Π(µ, ν) and θ � γ, then θ � dπ1θγ and, analogously, θ � dπ2θγ.

Proof. Since characteristic functions of rectangles form a basis for the Borel sets, it is enough

to show that, for any rectangle A × B ⊆ X × Y such that dπ1θγ(A × B) = 0, there holds

θ(A×B) = 0.

Let us take such a rectangle and, for any j ∈ N, set Aj := {x ∈ A : dπ1θ(x) ≥ 1/j}. Then,

0 = dπ1θγ(A×B) =

∫∫
A×B

dπ1θ(x) dγ(x, y) ≥ 1

j

∫∫
Aj×B

dγ(x, y) =
γ(Aj ×B)

j
,

which letting j ∈ N vary implies that γ(A+ × B) = 0, being A+ = ∪j∈NAj = A \ A0, where

A0 = {x ∈ A : dπ1θ(x) = 0}. Since θ � γ, this implies that also θ(A+ ×B) = 0, so that

θ(A×B) = θ(A0 ×B) ≤ θ(A0 × Y ) = π1θ(A0) = dπ1θµ(A0) =

∫
A0

dπ1θ(x) dµ(x) = 0 ,

and the proof is concluded. �

In the above lemma, it is not possible to replace “�” by “≤” both in the assumptions and

in the conclusion, as the next example shows.

Example 2.7. Let γ = L([0, 1] × [0, 1]) and θ = L([0, a] × [0, a]) for some a ∈ (0, 1), so that

θ ≤ γ. Then, π1θ = aL([0, a]), so that dπ1θ(x) equals a in [0, a] and 0 in (a, 1]; as a consequence,

dπ1θγ = aL([0, a]×[0, 1]), hence we have θ � dπ1θγ, according to Lemma 2.6, but not θ ≤ dπ1θγ.

Actually, we can observe that in general, in the assumptions of Lemma 2.6, one has

‖dπ1θγ‖X×Y = ‖π1(dπ1θγ)‖X = ‖π1θ‖X = ‖θ‖X×Y ,

hence one never has θ ≤ dπ1θγ, unless the two measures coincide.
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It is easy to note that, in general,
−→
Φ
(←−

Φ (β)
)
6= β and

←−
Φ
(−→

Φ (α)
)
6= α. Nevertheless, the

following holds.

Lemma 2.8. With the notations of Definition 2.3, if 0 6= α ∈ M+
µ (X), then α �

←−
Φ
(−→

Φ (α)
)
.

In particular, α ∧
←−
Φ
(−→

Φ (α)
)
> 0.

Proof. The second property follows by the first one –just recall (2.1)– and in turn the first

property is a direct consequence of Lemma 2.6. Indeed, setting θ = dαγ � γ and recalling

Definition 2.3, we get by Lemma 2.6 that

dαγ � dπ2(dαγ)γ = d
−→
Φ (α)γ ,

and the result follows because

π1(dαγ) = α , π1(d
−→
Φ (α)γ) =

←−
Φ
(−→

Φ (α)
)
.

�

The last property that we list here will be quite useful in the following.

Lemma 2.9. Given α ≤ µ and β ≤ ν, one has

α ∧
←−
Φ (β) > 0⇐⇒ β ∧

−→
Φ (α) > 0 .

Proof. By symmetry, the conclusion is obtained as soon as we show that

α ∧
←−
Φ (β) = 0⇐⇒ γ(A×B) = 0 , (2.2)

where the sets A ⊆ X and B ⊆ Y are defined as A = {x : dα(x) > 0} and B = {y : dβ(y) > 0}.
First of all, let us assume that γ(A × B) = 0, and observe that by construction α ≤ µ A

and β ≤ ν B, so that

←−
Φ (β) ≤

←−
Φ (ν B) = π1(dν Bγ) = π1

(
γ (X ×B)

)
.

As a consequence, by definition

α ∧
←−
Φ (β)(X) ≤

(
µ A ∧ π1

(
γ (X ×B)

))
(X) ≤ µ A(X \A) + π1

(
γ (X ×B)

)
(A)

= γ (X ×B)
(
A× Y

)
= γ

(
(X ×B) ∩ (A× Y )

)
= γ(A×B) = 0 ,

by assumption. Hence, the left implication in (2.2) is proved.

On the other hand, assume that γ(A× B) > 0. Thus, there exists ε > 0 such that γ(Aε ×
Bε) > 0, being Aε = {x : dα(x) > ε}, Bε = {y : dβ(y) > ε}. Therefore, we get

α ≥ εµ Aε , β ≥ εν Bε .

The first inequality yields the bound

α ≥ επ1

(
γ (Aε × Y )

)
≥ επ1

(
γ (Aε ×Bε)

)
,

while the second inequality implies dβγ ≥ εγ (X ×Bε) ≥ εγ (Aε ×Bε), so that

←−
Φ (β) ≥ επ1

(
γ (Aε ×Bε)

)
.
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The last two estimates, together, ensure that α∧
←−
Φ (β) > 0, so also the right implication in (2.2)

is proved and the proof is concluded. �

2.2. The Finite Chain Lemma. This section is devoted to the proof of our main technical

tool, which is a general abstract result on measures. Let us first explain what is its meaning.

Let γ and γ′ be two transport plans between µ and ν, and assume for simplicity that all

the measures are purely atomic. Assume that we can find N + 1 pairs (xi, yi) ∈ X × Y , for

0 ≤ i ≤ N , with the property that each (xi, yi) belongs to the support of γ, and each (xi, yi+1)

belongs to the support of γ′, with the usual convention that yN+1 ≡ y0. We can then modify the

plan γ′ by making use of γ, deciding that a small quantity ε of the mass which was originally

moved from every xi to yi+1 should be instead moved from xi to yi. This modified plan is clearly

better than the original one if and only if

N∑
i=0

c(xi, yi) ≤
N∑
i=0

c(xi, yi+1) ,

and this is a crucial property in mass transportation, called cyclical monotonicity, strongly

related with the optimality of plans (see for instance [19, 21, 30]). This property is actually

also fundamental in the construction of the Kantorovich potential, and we will then use it in

Section 5, see Definition 5.1.

Notice that the strategy discussed above makes sense only if we can find a “chain” of pairs as

the (xi, yi) defined before, because this is the only way to guarantee that the modified measure

is indeed a transport plan. And actually, the only problem is in “closing” the chain: indeed,

we can arbitrarily choose some (x0, y0) in the support of γ; since this means that x0 is in the

support of µ, we find some y1 ∈ Y such that (x0, y1) is in the support of γ′ (to do this formally,

we need to make use of the map
−→
Φ of Definition 2.3). In turn, this ensures that y1 is in the

support of ν, hence (with the map
←−
Φ ) we find some x1 ∈ X such that (x1, y1) is in the support

of γ, and so on. This procedure will be concluded as soon as some xN has the property that

(xN , y0) is in the support of γ′, and then everything works if we can prove that this will happen

sooner or later: this is precisely the goal of our “chain Lemma” below. Actually, we do not

make the assumption that the measures are purely atomic, so our procedure is technically a bit

more complicate than what we just described, but the underlying idea is the same.

Lemma 2.10 (finite chain Lemma). Let γ, γ′ ∈ Π(µ, ν), let γ0 ≤ γ be a non zero measure, and

define µ0 = π1γ0 ≤ µ and ν0 = π2γ0 ≤ ν the marginals of γ0. Define recursively the measures

νi+1 =
−→
Φ ′(µi) , µi+1 =

←−
Φ (νi+1) ,

where
←−
Φ and

−→
Φ ′ are the functions of Definition 2.3 relative to γ and to γ′ respectively. Then,

there exists j > 0 such that νj ∧ ν0 > 0.
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Proof. Let us start by introducing the two sets (notice carefully the slight differences!)

B :=
{
ν̃ ≤ ν : if ∃ i > 0, νi ∧ ν̃ > 0, then ∃ j ≥ i : νj ∧ ν0 > 0

}
,

A :=
{
µ̃ ≤ µ : if ∃ i ≥ 0, µi ∧ µ̃ > 0, then ∃ j > i : νj ∧ ν0 > 0

}
.

Notice that both the sets are non-empty since B contains ν̃ = ν0, while A contains µ̃ = 0. Set

now

β := sup{ν̃ : ν̃ ∈ B} , α := sup{µ̃ : µ̃ ∈ A} .

We can immediately notice that both the suprema are actually maxima, that is, that β ∈ B and

α ∈ A. To show the first property, assume that for some i > 0 one has νi ∧ β > 0: by definition

of sup of measures, this means that there exists some ν̃ ∈ B such that νi ∧ ν̃ > 0; hence, by

definition of B there is some j ≥ i such that νj ∧ ν0 > 0, and finally this means exactly β ∈ B.

The proof that α ∈ A is identical.

Assume that, for some i ≥ 0, µi∧
←−
Φ ′(β) > 0; hence, Lemma 2.9 implies that β∧

−→
Φ ′(µi) > 0,

that is, β ∧ νi+1 > 0. Since β ∈ B, this implies the existence of some j ≥ i + 1 such that

νj ∧ ν0 > 0, and in turn this establishes that
←−
Φ ′(β) ∈ A, so

←−
Φ ′(β) ≤ α. Since the very same

argument gives that
−→
Φ (α) ≤ β, we obtain

−→
Φ
(←−

Φ ′(β)
)
≤ β. But the maps

−→
Φ and

←−
Φ ′ do not

change the total mass, so the last inequality must be an equality, and this implies

α =
←−
Φ ′(β) , β =

−→
Φ (α) ,

hence in particular

‖α‖ = ‖β‖ . (2.3)

Let us now recall that α ≤ µ and β ≤ ν, so we have α = dαµ and β = dβν; if we now define

A := {x ∈ X : dα(x) > 0} , B := {y ∈ Y : dβ(y) > 0} , µ := µ A , ν := ν B ,

we have that for any i ≥ 0

µi ∧ µ > 0⇐⇒ µi ∧ α > 0 ,

and since α ∈ A we deduce that also µ ∈ A, hence µ ≤ α. On the other hand, α ≤ µ by

definition, hence α = µ and then dα ≡ 1 on A; similarly, β = ν and dβ ≡ 1 on B. Observe that

ν B = β =
−→
Φ (α) = π2(dαγ) = π2

(
γ (A× Y )

)
,

which implies

γ
(
A× (Y \B)

)
= π2

(
γ (A× Y )

)
(Y \B) = ν B(Y \B) = 0 .

Then, from (2.3) we readily deduce

ν(B) = ‖β‖ = ‖α‖ = µ(A) = γ(A× Y ) = γ(A×B) ≤ γ(X ×B) = ν(B) ,

which also implies that

γ
(
(X \A)×B

)
= 0 .

We can then deduce that

←−
Φ (β) = π1(dβγ) = π1

(
γ (X ×B)

)
= π1

(
γ (A×B)

)
≤ π1

(
γ (A× Y )

)
= µ A = α ,
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which again since ‖α‖ = ‖β‖ = ‖
←−
Φ (β)‖ allows us to infer

α =
←−
Φ (β) . (2.4)

Notice that previously we had found that α =
←−
Φ ′(β). Now, since of course ν0 ∈ B, then ν0 ≤ β

and so by (2.4)
←−
Φ (ν0) ≤

←−
Φ (β) = α. Moreover, γ0 � γ and then Lemma 2.6 ensures that

γ0 � dπ2γ0γ, so we get

µ0 = π1γ0 � π1(dπ2γ0γ) = π1(dν0γ) =
←−
Φ (ν0) ≤ α ,

which implies µ0 ∧ α > 0. Finally, since α ∈ A, the last estimate implies the existence of some

j > 0 for which νj ∧ ν0 > 0, which is the thesis. �

We can use the finite chain Lemma 2.10 to make the following decomposition, which is

basically the formal way to define the modification that we described at the beginning of the

section.

Proposition 2.11. Let γ, γ′ ∈ Π(µ, ν), 0 6= γ0 ≤ γ, and set µ0 = π1γ0, ν0 = π2γ0. Then, there

exist N ∈ N and ε > 0 such that, for every ε ≤ ε, there are plans γ̃ ≤ γ and γ̃′ ≤ γ′ satisfying

π1γ̃ = π1γ̃
′ = µ̃+ µA , π2γ̃ = ν̃ + νA , π2γ̃

′ = ν̃ + νB ,

µA ≤ µ0 , µ̃ ≤ µ− µ0 , νA, νB ≤ ν0 , ν̃ ∧ ν0 = 0 ,

‖γ̃‖ = ‖γ̃′‖ = (N + 1)ε , ‖µ̃‖ = ‖ν̃‖ = Nε , ‖µA‖ = ‖νA‖ = ‖νB‖ = ε .

In particular, γ̃ can be decomposed as γ̃ = γ̃0 + γ̃∞, where

γ̃0 ≤ γ0 , γ̃∞ ≤ γ − γ0 , π1γ̃0 = µA , π2γ̃0 = νA , π1γ̃∞ = µ̃ , π2γ̃∞ = ν̃ .

Proof. Let us use the same notations as in the proof of Lemma 2.10, and let us define N as the

smallest integer such that ε := ‖νN+1 ∧ ν0‖ > 0. For any ε ≤ ε, we fix arbitrarily a measure

ν̃N+1 ≤ νN+1 ∧ ν0 such that ‖ν̃N+1‖ = ε. Now, for any 0 < i ≤ N , let us call γi = dνiγ, so that

π1γi = π1dνiγ =
←−
Φ (νi) = µi , π2γi = νi . (2.5)

Analogously, for any 0 ≤ i ≤ N we let γ′i = dµiγ
′, and as before

π1γ
′
i = µi , π2γ

′
i = π2dµiγ

′ =
−→
Φ ′(µi) = νi+1 , .

Observe that we have not defined γ0 because it was already defined; however, by definition, the

result of (2.5) holds also for i = 0. We claim now that

γ0 + γ1 + · · ·+ γN ≤ γ , γ′0 + γ′1 + · · ·+ γ′N ≤ γ′ . (2.6)

If N = 0, there is nothing to prove. Otherwise, by definition of N we know that ν0 ∧ ν1 = 0,

which implies a fortiori that γ0 ∧ γ1 = 0, thus γ0 + γ1 ≤ γ. As a consequence, µ ≥ µ0 + µ1,

and this gives by definition that γ′ ≥ γ′0 + γ′1, which by taking the second marginals ensures

ν ≥ ν1 + ν2. If N = 1, we have then concluded (2.6). If N > 1, we have also that ν0 ∧ ν2 = 0,

and exactly as before this implies first that γ0 ∧ (γ1 + γ2) = 0, then that γ0 + γ1 + γ2 ≤ γ, then

that µ ≥ µ0 + µ1 + µ2, and finally that γ′0 + γ′1 + γ′2 ≤ γ′. This proves (2.6) if N = 2, and with

an obvious induction argument we actually derive the validity of (2.6) whatever N is.
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We can now easily conclude the proof. Since ν̃N+1 ≤ νN+1 = π2γ
′
N , we define γ̃′N = dν̃N+1γ′N ,

and by construction γ̃′N ≤ γ′N and π2γ̃
′
N = ν̃N+1. We set then µ̃N = π1γ̃

′
N , and notice that

µ̃N ≤ π1γ
′
N = µN . Recalling then that µN = π1γN , we define γ̃N = dµ̃NγN ≤ γN , and

ν̃N = π2γ̃N ≤ νN . We can now define γ̃′N−1 = dν̃Nγ′N−1 and continue this construction backward

in the obvious way. In the end, for every i ∈ {0, 1, · · · , N} we have built measures γ̃i, γ̃
′
i, µ̃i

and ν̃i, with the properties that

µ̃i = π1γ̃
′
i = π1γ̃i , ν̃i = π2γ̃

′
i−1 = π2γ̃i .

We define now

γ̃ =

N∑
i=0

γ̃i , γ̃′ =

N∑
i=0

γ̃′i , ν̃ =

N∑
i=1

ν̃i , µ̃ =

N∑
i=1

µ̃i , µA = µ̃0 , νA = ν̃0 , νB = ν̃N+1 .

Observe that γ̃ ≤ γ and γ̃′ ≤ γ′ thanks to (2.6): then, by setting γ̃∞ =
∑N

i=1 γ̃i, it is immediate

to check all the properties and the proof is concluded. �

3. Proof of Theorem C

This section is devoted to show our first main result, Theorem C, which says that for

supercritical speeds only a negligible set of points moves at maximal speed; we will show this

under the assumption that the cost is highly relativistic (see Definition 3.2) and that µ� L n,

and Example 4.2 in next Section will show that both these assumptions are sharp. After that,

we will give a precise quantitative estimate of how many points are moved at almost maximal

speed, in Proposition 3.3.

To start, we need to give the formal definition of the (highly) relativistic cost functions,

together with some notation.

Definition 3.1 (Relativistic cost function). Let C be a strictly convex closed subset of Rn,

containing the origin in its interior, and let h : Rn → [0,+∞] be a strictly convex function with

h(0) = 0, continuous and bounded in C , and identically +∞ in Rn \ C . Then, for every t > 0

we call relativistic cost function the function

ct(x, y) = h

(
y − x
t

)
.

Definition 3.2 (Highly relativistic cost function). Let ct be a relativistic cost function. For

every η, ρ� 1 we define

κ(η, ρ) := inf

{
h(v)− h(v − λw)

λ
: v ∈ ∂C , |w − v| ≤ ρ, 0 < λ < η

}
. (3.1)

We say that ct is a highly relativistic cost function if, for ρ small enough, one has κ(η, ρ)→∞
for η ↘ 0. Notice that this only depends on h, and not on t.

Notice that the above definition has the following meaning: we are asking that the derivatives

of h explode at ∂C , and we write this by introducing the notation κ(η, r) only in order not to ask

differentiability of the function h. For instance, the standard Brenier’s relativistic heat cost (1.1)

satisfies this assumption. We are now able to give the proof of Theorem C, but first we briefly
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explain our strategy. The idea is to take an optimal plan γ relative to the cost ct and assume

that a positive quantity of mass moves exactly of maximal distance; for simplicity, let us think

that there is a small cube Qx of side r and mass ε which is translated by γ by a vector v ∈ t∂C
onto another cube Qy; let us also think that µ is a constant density on this cube. We can now

take the right half of Qx and decide to move it to the left half of Qy: in this way, the points

are not moving of a distance |v|, but only of a distance more or less equal to |v| − r/2. Thanks

to the fact that ct is a highly relativistic cost, the gain is much bigger than εr (and then in

the end it appears evident why the Theorem fails for just relativistic costs). Now, we cannot

send the left part of Qx onto the right part of Qy, because the points would move of a distance

|v| + r/2, and this would have an infinite cost. Here the assumption t > T comes into play:

indeed, we can take a plan γ′ relative to some T < t′ < t, and use it to modify γ according to

Proposition 2.11. Since t′ < t, the modification given by γ′ has finite cost for Ct even after a

change of order r � t− t′, and then this gives an admissible plan which pays something of order

Nε for the modification. Since the loss Nε is much smaller than the gain that we had before, our

modified transport plan has a cost strictly smaller than γ, and the contradiction will conclude

the proof. Of course, the proof will be quite more complicate without all the simplifications that

we assumed in this discussion.

Proof (of Theorem C). To keep the proof simple to read, we split it in four steps.

Step I. Setting of the construction and definitions.

Let t > T , and assume that there exists an optimal plan γ for which

γ
({

(x, y) : y − x ∈ t∂C
})

> 0 .

Let then (x, y) be a Lebesgue point (with respect to γ) of the set {y−x ∈ t∂C }, and let r � 1 to

be specified during the proof. Without loss of generality, and up to a rescaling of the problem, we

can assume that y− x = e1; let then Qx and Qy be two cubes, centered at x and y respectively,

with sides parallel to the coordinate axes and of length r. Since (x, y) is a γ-Lebesgue point of

the pairs {(x, y) : y − x ∈ tC }, and since µ � L n, there is a big constant K such that the

measure

γ0 := γ
{

(x, y) ∈ Qx ×Qy : y − x ∈ t∂C , ρ(x) ≤ K
}

is a non-zero measure, being ρ the density of µ with respect to the Lebesgue measure. As usual,

we call µ0 ≤ µ and ν0 ≤ ν the marginals of γ0.

Let us denote the generic point of Rn as x = (σ, τ) ∈ R × Rn−1, and call πτ : Rn → Rn−1

the projection on the τ variable; for simplicity of notation, let us assume that the σ-coordinates

of the points of Qx are between 0 and r. We disintegrate now µ0 = µτ ⊗ α, being α = πτ#µ0;

recall that each µτ is a probability measure concentrated in the segment [0, r], and that by

Fubini Theorem α-a.e. measure µτ is absolutely continuous with respect to L 1. Let us call

now m = ‖µ0‖ and let δ = δ(r) � 1 be a small quantity, to be specified later; for α-a.e. τ , we

can define the function

fτ :
{
σ ∈ [0, r] : µτ

(
[0, σ]

)
≤ 1− δ

}
−→

{
σ ∈ [0, r] : µτ

(
[0, σ]

)
≥ δ
}
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as fτ (σ) = σ′ where

µτ
(
[0, σ′]

)
= µτ

(
[0, σ]

)
+ δ .

In words, this means that we are taking all the points of the segment {(σ, τ) : 0 ≤ σ ≤ r} except

the last portion δ on the right, and we are calling fτ the map associating to each σ a point

fτ (σ) “after” a portion δ of mass. In average, we should expect points to be translated by fτ of

a quantity δr to the right: of course this would be true only if µτ were constant, and actually

all what we can say is that every point is moved to the right because µτ
(
[0, σ′]

)
> µτ

(
[0, σ]

)
implies σ′ > σ; nevertheless, it is useful to keep in mind this “average” idea. In fact, let us fix

a big constant M = M(r), to be specified later, and let us set

Z :=

{
τ : ∃σ ∈ [0, r] : fτ (σ) < σ +

δr

M

}
.

So, the elements τ of Z are those for which at least some point σ of the horizontal segment

moves only very little to the right compared with the “average”. We can expect Z to contain

only few points if M is big enough, and this is precisely the content of next step.

Step II. One has α(Z) ≤ m/3.

By the Measurable Selection Theorem (see for instance [17, 18]), there exists a measurable

function τ 7→ σ(τ) on Z such that, for any τ ∈ Z,

fτ
(
σ(τ)

)
− σ(τ) <

δr

M
.

Define then the box

Γ :=

{
(σ, τ) ∈ Qx : τ ∈ Z, σ(τ) ≤ σ ≤ σ(τ) +

δr

M

}
.

Then, on the one hand we have

µ0(Γ) ≤ KL n(Γ) = K
δr

M
L n−1(Z) ≤ Kδrn

M
,

and on the other hand

µ0(Γ) =

∫
Z

(∫ σ(τ)+ δr
M

σ(τ)
1 dµτ (σ)

)
dα(τ) ≥

∫
Z

(∫ fτ (σ(τ))

σ(τ)
1 dµτ (σ)

)
dα(τ) = δα(Z) .

Putting together the last two estimates, it is clear that the claim holds true if we choose, for

instance,

M =
3Krn

m
. (3.2)

Notice carefully that such M depends on r but not on δ.

Step III. The measures ξ1 and ξ2.

Let us start to build the competitor ξ ∈ Π(µ, ν) for γ. First of all, we set W = {τ /∈ Z} and

L :=
{

(σ, τ) : τ ∈W, µτ
(
[0, σ]

)
≤ 1− δ

}
, R :=

{
(σ, τ) : τ ∈W, µτ

(
[0, σ]

)
≥ δ
}
.

We define now the functions g̃ : L→ Qx and g : L× Rn → Rn × Rn as

g̃(σ, τ) :=
(
fτ (σ), τ

)
, g(x, y) :=

(
g̃(x), y

)
.
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Notice that g̃ is a µ0-essentially bijective function from L to R. We can now define the first two

pieces of ξ, namely,

ξ1 := γ0

{
(x, y) ∈ Qx ×Qy : x ∈ [0, r]× Z

}
, ξ2 := g#

(
γ0

(
L× Rn

))
.

The meaning of the last two definitions is simple, keeping in mind the discussion before the

beginning of this proof: for pairs (x, y) ∈ Qx × Qy for which x = (σ, τ) and τ ∈ Z, we decide

not to do any change, so ξ1 equals γ0 for those points. For the points for which τ ∈W , instead,

we want to shorten the path: ξ2 takes the “right points” which belong to R, and move them as

the corresponding “left points” in L were doing; it is easy to imagine that this will shorten the

paths, and that in the end we will remain with a very left part of the cube Qx which must go

onto a very right part of the cube Qy: we will take care of this in the next step with ξ3 and ξ4.

Let us now calculate the projections of ξ2 (since the projections of ξ1 are obvious). For the first

one, for any Borel set A ⊆ Rn we have

π1ξ2(A) = ξ2(A× Rn) = γ0

(
(L× Rn) ∩ g−1(A× Rn)

)
= γ0

(
g−1(A× Rn)

)
= γ0

(
g̃−1(A)× Rn

)
= µ0

(
g̃−1(A)

)
=

∫∫
(σ,τ)∈Qx

χg̃−1(A)(σ, τ) dµ0(τ, σ)

=

∫
τ∈W

∫
σ∈(0,r)

χg̃−1(A)(σ, τ) dµτ (σ) dα(τ) =

∫
τ∈W

µτ
({
σ : (σ, τ) ∈ g̃−1(A)

})
dα(τ) .

Now we observe that, by definition of fτ and of g, for any τ one clearly has

µτ
({
σ : (σ, τ) ∈ g̃−1(A)

})
= µτ

({
σ : (σ, τ) ∈ A ∩R

})
.

Hence, from last estimate we finally get

π1ξ2(A) =

∫
τ∈W

µτ
({
σ : (σ, τ) ∈ A ∩R

})
dα(τ) = µ0(A ∩R) .

In the very same way, using the fact the the second component of g is the identity, one directly

obtains that

π2ξ2(B) = γ0(L×B) .

Since the projections of ξ1 are obviously the same of the restriction of γ0 to points (σ, τ) with

τ ∈ Z, we simply have

π1

(
ξ1 + ξ2

)
= µ0 − µrem , π2

(
ξ1 + ξ2

)
= ν0 − νrem , (3.3)

where the “remaining measures” are

µrem = µ0

((
Qx \R

)
∩
{

(σ, τ) : τ ∈W
})

,

νrem = π2

(
γ0

[((
Qx \ L

)
∩
{

(σ, τ) : τ ∈W
})
× Rn

])
.

Let us call ε := ‖µrem‖ = ‖νrem‖, and notice that by Step II, we have

ε = δα(W ) ∈
[

2

3
mδ,mδ

]
. (3.4)
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To conclude this step, we need to evaluate also the costs of ξ1 and ξ2. To do so, take any

x = (σ, τ) ∈ L, and let y ∈ Qy be a point such that (x, y) is in the support of γ0. Call now

v = (y − x)/t ∈ ∂C and w = e1/t, and notice that by construction g̃(x)− x = λwt for some

δr

M
≤ λ ≤ r ,

where the second inequality comes from geometric arguments, while the first one is true because

x ∈ L implies τ ∈ W ; observe also that |w − v| ≤
√
nr/t (keep in mind that |y − x| = 1).

Notice also that, since h is strictly convex, we readily obtain that the function λ 7→ h(v − λw)

is decreasing for λ ∈ (δr/M, r) as soon as r is small enough. We can then evaluate

ct
(
g(x, y)

)
− ct(x, y) = ct

(
g̃(x), y

)
− ct(x, y) = h

(
y − g̃(x)

t

)
− h
(
y − x
t

)
= h(v − λw)− h(v) ≤ h

(
v − δr

M
w
)
− h(v) ≤ − δr

M
κ

(
δr

M
,

√
nr

t

)
.

(3.5)

As a consequence, the cost of ξ1 + ξ2 is

Ct(ξ1 + ξ2) =

∫∫
Rn×Rn

ct(x, y) dξ1(x, y) +

∫∫
Rn×Rn

ct(x, y) dξ2(x, y)

=

∫
[0,r]×Z×Qy

ct(x, y) dγ0(x, y) +

∫∫
L×Rn

ct
(
g(x, y)

)
dγ0(x, y)

≤
∫

[0,r]×Z×Qy
ct(x, y) dγ0(x, y) +

∫∫
L×Rn

ct(x, y)− δr

M
κ

(
δr

M
,

√
nr

t

)
dγ0(x, y)

≤ Ct(γ0)− δr

M
κ

(
δr

M
,

√
nr

t

)
γ0(L× Rn) = Ct(γ0)− δr

M
κ

(
δr

M
,

√
nr

t

)
µ0(L)

= Ct(γ0)− δr

M
κ

(
δr

M
,

√
nr

t

)
(1− δ)α(W ) = Ct(γ0)− εr

2M
κ

(
δr

M
,

√
nr

t

)
,

(3.6)

where we have used also (3.4) and the fact that δ ≤ 1/2.

Step IV. The measures ξ3 and ξ4.

We now present that last two pieces of the competitor ξ ∈ Π(µ, ν). Let us start by recalling

that by (3.3) and (3.4) the marginals of the measure ξ1 + ξ2 cover almost all µ0 and ν0, and

then it would be easy to conclude the competitor simply by adding the whole γ− γ0 plus a plan

transporting µrem onto νrem. Unfortunately, this would have an infinite cost, because points of

µrem and point of νrem have distance more or less e1 + r, which is outside tC . To overcome this

problem, we use the assumption that t > T , then we select some T < t′ < t and a transport

plan γ′ ∈ Π(µ, ν) which has finite Ct′ cost (we could take, for instance, some optimal plan for

Ct′ , but the finiteness of the cost is enough). Then, we apply Proposition 2.11 and we get some

N ∈ N and ε > 0, depending on γ, γ′ and γ0, also on r, but not on δ; if ε ≤ ε, then we get

also plans γ̃ and γ̃′ satisfying the claim of the proposition. But actually, by (3.4) we can assume

ε ≤ ε as soon as we choose δ small enough; thus, Proposition 2.11 provides us with two plans

γ̃ = γ̃0 + γ̃∞ and γ̃′, being γ̃0 ≤ γ0 and γ̃∞ ≤ γ − γ0. We can then define ξ3 = γ − γ0 − γ̃∞,

which is a positive measure whose marginals are

π1ξ3 = µ− µ0 − µ̃ , π2ξ3 = ν − ν0 − ν̃ ,
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so that by (3.3) we have now

π1(ξ1 + ξ2 + ξ3) = µ− µrem − µ̃ , π2(ξ1 + ξ2 + ξ3) = ν − νrem − ν̃ . (3.7)

Since ξ = ξ1 + ξ2 + ξ3 + ξ4 must be in Π(µ, ν), we need then the marginals of ξ4 to be µ̃+ µrem

and ν̃ + νrem. Since the marginals of γ̃′ are µ̃+ µA and ν̃ + νB, the plan γ̃′ does the job almost

perfectly, the only mistake being the presence of µA and νB instead of µrem and νrem. However,

notice that both µA and µrem are measures smaller than µ0 and of mass ε, and similarly both

νB and νrem are measures smaller than ν0 and of mass ε. Let us then introduce two auxiliary

transport plans, namely

α = (Id, Id)#µ̃+ µrem ⊗ µA , β = (Id, Id)#ν̃ + νB ⊗ νrem ,

whose marginals are precisely µ̃+ µrem and µ̃+ µA, and ν̃ + νB and ν̃ + νrem respectively. Let

us finally define ξ4 = β ◦ γ̃′ ◦ α, so that

π1ξ4 = µ̃+ µrem , π2ξ4 = ν̃ + νrem ,

so that by (3.7) we finally get that ξ ∈ Π(µ, ν), so ξ is an admissible competitor. To conclude,

we need to estimate the costs of ξ3 and ξ4. While for ξ3 we simply have

Ct(ξ3) = Ct(γ)− Ct(γ0)− Ct(γ̃∞) ≤ Ct(γ)− Ct(γ0) , (3.8)

concerning ξ4 we must observe what follows: since γ̃′ ≤ γ′, and γ′ has a finite Ct′ cost, we know

that y − x ∈ t′C for γ′-a.e. (x, y). Hence, since µA and µrem are both supported in Qx and νB

and νrem are both supported in Qy, we derive that α and β move points at most of a distance
√
nr, and then for ξ4-a.e. (x, y) one has y − x ∈ t′C + 2

√
nr. Since we are free to chose r as

small as we wish, and t′ < t, it is admissible to assume that t′C + 2
√
nr ⊆ tC , thus ξ4 has a

finite Ct cost (and maybe an infinite Ct′ cost, but this is not a problem); notice that formally we

are first choosing t′, then r, then M , and only at the end δ. Recalling that h is bounded where

it is finite, and calling C the maximum of h in C , we get then

Ct(ξ4) ≤ C‖ξ4‖ = C(N + 1)ε . (3.9)

Putting together (3.6), (3.8) and (3.9), we finally get

Ct(ξ) ≤ Ct(γ) + ε

(
C(N + 1)− r

2M
κ

(
δr

M
,

√
nr

t

))
. (3.10)

Let us finally use the assumption that ct is a highly relativistic cost function: when we choose

r only t′ has been fixed, hence we are allowed to chose it so small that κ(η,
√
nr/t) → ∞ for

η ↘ 0. Having chosen r, we get M by Step II, and N by Proposition 2.11. Thus, we are free to

chose δ depending on N and r; since ct is highly relativistic, we can do this in such a way that

the parentesis in (3.10) is strictly negative. We have then found a competitor with cost strictly

smaller than the optimal plan γ, and the contradiction gives the thesis. �

We can now easily give a “quantitative” version of Theorem C, where we state precisely

how many pairs (x, y) can be moved from an optimal plan γ of a vector which is inside tC but

very close to t∂C ; it is important to notice that the next result holds for any relativistic cost
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function, regardless whether or not it is also highly relativistic. To state our result, we have to

generalize the definition (3.1) of κ(η, ρ) as follows: for every s� 1, we set

κs(ρ) := lim
η↘0

κs(η, ρ) = lim
η↘0

inf

{
h(v)− h(v − λw)

λ
: v ∈ C \ (1− s)C , |w − v| ≤ ρ, 0 < λ < η

}
.

(3.11)

Proposition 3.3. Let ct be a relativistic cost function, t > T , and assume that µ ∈ L∞ and the

supports of µ and ν are bounded. Then, for any t > T and any ρ small enough, there exists a

constant C = C(µ, ν, t, ρ) such that, for s small enough, any optimal plan γ for Ct satisfies

γ
({

(x, y) ∈ Rn × Rn :
y − x
t
∈ C \ (1− s)C

})
≤ C

κs(ρ)
. (3.12)

Proof. We will make use of the same main idea of the proof of Theorem C, with some important

modifications. Let us start from the beginning: first of all, we fix once for all T < t′ < t, a plan

γ′ with finite Ct′ cost, and a constant r such that the inclusion t′C + 2
√
nr ⊆ tC holds.

We can find a finite number points xi and yj such that the cubes centered at xi (resp.,

yi) with side-length r cover the support of µ (resp., of ν): here we use the fact that both the

supports are bounded. The support of γ is then covered by a finite number C1 of products of

cubes Qxi×Qyj . Let us fix such a product, say Qxi×Qyj and consider the measure γ1 = γ1(i, j)

given by

γ1 := γ
(
Qxi ×Qyj

)
.

If this measure is non-zero, we apply Proposition 2.11 finding constants N(i, j) and ε(i, j). We

call simply N and ε the biggest and smallest of the constants N(i, j) and ε(i, j). For any s < 1,

now, we define

γs := γ

{
(x, y) ∈ Qxi ×Qyj ,

y − x
t
∈ C \ (1− s)C

}
.

Notice that γs ≤ γ1. We will now repeat the very same construction as in the proof of Theorem C,

using γs in place of γ0 and (xi, yj) in place of (x, y). In particular, we give the same definition

of fτ and Z as in Step I there, with γ0 replaced by γs; then, we repeat exactly the Step II, so

we find that α(Z) ≤ mij/3 as soon as we have chosen

M =
3‖µ‖L∞rn

mij
, (3.13)

where mij = ‖γs‖ –compare with the estimate (3.2). Observe carefully that the choice of M

depends on mij , which in turn depends also on s. Notice also that the assumption that µ ∈ L∞

is used in (3.13) only.

Now, we repeat the Step III, defining the measures ξ1 and ξ2; keep in mind that, in the

whole proof of Theorem C, we used only once the fact that the measure γ0 in that proof was

concentrated on pairs (x, y) with y − x ∈ t∂C , that is, to obtain the estimate (3.5) on the gain

in the cost of a single pair, and in turn (3.5) was used only immediately after, to obtain (3.6).

Since now the measure γs is concentrated in pairs (x, y) such that (y−x)/t does not necessarily
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belong to ∂C , but to C \ (1 − s)C , we just have to substitute κ with κs, so this time instead

of (3.5) we get

ct
(
g(x, y)

)
− ct(x, y) ≤ − δr

M
κs
(
δr/M, ρ

)
,

where we write for brevity ρ = r
√
n/t, and then instead of (3.6) we get

Ct(ξ1 + ξ2) ≤ Ct(γs)−
εr

2M
κs
(
δr/M, ρ

)
. (3.14)

We have now to repeat Step IV: first recall that, in the construction of ξ1 and ξ2, we have

used the measure γs in place of γ0; nevertheless, we have applied Proposition 2.11 to γ0: this

is of primary importance, since in this way N and ε do not depend on s. Then, this time

we have that the two projections of ξ1 + ξ2 cover almost completely the two projections of γs;

hence similarly as in Step IV of last proof, we set now ξ3 = γ − γs − γ̃∞, which is positive

since γ̃∞ ≤ γ − γ0 ≤ γ − γs, and finally ξ4 is again exactly as before a plan having the correct

marginals so that ξ ∈ Π(µ, ν). Exactly as before, for almost every pair (x, y) in the support of

ξ4 we have that y − x ∈ t′C + 2
√
nr, which by assumption is in tC (and again, the choice of s

has no influence on this). Therefore, (3.8) and (3.9) perfectly generalize to

Ct(ξ3) = Ct(γ)− Ct(γs) , Ct(ξ4) ≤ C2(N + 1)ε ,

which together with (3.14) tells us that (3.10) becomes now

Ct(ξ) ≤ Ct(γ) + ε

(
C2(N + 1)− r

2M
κs
(
δr/M, ρ

))
.

Since γ is an optimal measure, we get that the term in parenthesis must be positive, which by

letting δ ↘ 0 means

M ≥ r

2C2(N + 1)
κs(ρ) .

Recalling now the choice of M in (3.13), we deduce that

‖γs‖ = mij ≤
6C2(N + 1)‖µ‖L∞rn−1

κs(ρ)
=

C3

κs(ρ)
.

Basically, we have found that the pairs in Cxi × Cyj which are moved of (t times) a vector in

C \ (1− s)C are only few. Putting now together all the pairs of cubes covering the support of

γ, we precisely find (3.12), with C = C1C3, and the proof is then concluded. �

Remark 3.4. Observe that the above result is valid for any relativistic cost, not necessarily

highly relativistic: in fact, in the proof of Theorem C we used the highly relativistic assumption

only at the very end, to use that κ(η, ρ)→∞ for η ↘ 0; instead, this time the constant κs(ρ) is

surely finite for every s > 0. Nevertheless, if the cost is highly relativistic, then κs(ρ)→ +∞ for

s ↘ 0 if ρ is small enough; hence, in the particular case of a highly relativistic cost the result

of Proposition 3.3 is stronger than Theorem C. Notice also that, in the particular case of the

relativistic heat cost (1.1), formula (3.12) takes the nice form

γ
({

(x, y) ∈ Rn × Rn :
y − x
t
∈ C \ (1− s)C

})
≤ C
√
s .
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4. Continuity of the total cost function

In this section, we prove our result on the continuity of the total cost function C(t), that is,

Theorem A. First of all, we need the following axiliary definition.

Definition 4.1. Let ct be a relativistic cost function. Then, for every δ > 0 we call

exc(δ) := sup

{
h(v)

h
(
(1− δ)v

) : v ∈ C

}
− 1 .

Notice that exc(δ)↘ 0 when δ ↘ 0.

Proof (of Theorem A). The proof of this Theorem is quite similar to that of Theorem C and

Proposition 3.3, and in particular it makes use of Proposition 2.11.

Notice first that the function ct decreases with t, so the inequality C(t) ≤ C(t− δ) is obvious

for every δ and we only have to show the second inequality in (1.3). Let us then fix, as usual,

some t > T , some T < t′ < t, call γ and γ′ two optimal plans corresponding to Ct and Ct′ , and

let r be a small side-length with the property that the inclusion t′C +2
√
nr ⊂⊂ tC holds. Then,

let us fix some δ > 0 with the property that

t′C + 2
√
nr ⊆ (t− δ)C . (4.1)

For every small δ > 0, we define

Sδ :=

{
(x, y) ∈ R2n :

y − x
t
∈ (1− δ)C

}
.

We can now cover the support of γ
{

(x, y) /∈ Sδ
}

with C1 cubes Qi in R2n with side-length r;

for every 1 ≤ i ≤ C1 and for every δ < δ, we set then

γi
δ

:= γ Qi \ Sδ , γiδ := γ Qi \ Sδ ≤ γiδ ,

and let us call µi
δ
, νi

δ
, µiδ and νiδ their projections. Up to discard useless cubes, we can assume

that each γi
δ

is a non-zero measure. As usual, we apply Proposition 2.11 to each of the measures

γi
δ
, finding constants N(i) and ε(i), and again we simply call N = max{N(i)} and ε = min{ε(i)}.

Moreover, up to decrease the value of ε, we have

min
{
‖γi

δ
‖, 1 ≤ i ≤ C1

}
> 2ε . (4.2)

Since ct is highly relativistic, we know that κs(ρ)→∞ when s→ 0, as soon as ρ = r
√
n/t has

been chosen small enough. Then Proposition 3.3 ensures us that

C1∑
i=1

εi :=

C1∑
i=1

‖γiδ‖ ≤
ε

N
, (4.3)

as soon as δ � 1, depending on ε and on δ.

For each 1 ≤ i ≤ C1, we apply now Proposition 2.11, relative to the measure γi
δ
, to the

constant C1εi, and we find as usual measures γ̃i ≤ γ and γ̃′i ≤ γ′ with total mass (N(i)+1)C1εi

satisfying all the properties listed in the proposition. By definition, each measure γ̃i∞ is smaller

than γ − γi
δ
, hence it is orthogonal to the measure γiδ; nevertheless, it could have some common



20 JEROME BERTRAND, ALDO PRATELLI, AND MARJOLAINE PUEL

part with γjδ for some j 6= i. As a consequence, we need now to slightly modify each γiδ: more

precisely, we call γiδ,AD the “already done” part, that is,

γiδ,AD :=

( C1∑
j=1

γ̃j∞
C1

)
Qi \ Sδ ≤ γiδ ,

we define arbitrarily a “replacement part” γiδ,R satisfying

‖γiδ,R‖ = ‖γiδ,AD‖ , γiδ,R ≤
(
γ −

C1∑
j=1

γ̃j∞
C1

) ((
Qi \ Sδ

)
∩ Sδ

)
, (4.4)

so that γiδ,R ≤ γiδ but γiδ,R ∧ γiδ = 0, and we finally set the “modified version” of γiδ as

γ̂ iδ := γiδ − γiδ,AD + γiδ,R ,

calling µ̂ iδ and ν̂ iδ its projections. Notice that the existence of some replacement part as in (4.4)

is ensured by (4.2) and (4.3), and by construction we have that ‖γ̂ iδ‖ = ‖γiδ‖ = εi. We can now

set

ξ1 := γ −
C1∑
i=1

γ̂ iδ −
C1∑
i=1

γ̃i∞
C1

,

which is a positive measure by construction (this could have been false if we had used γiδ instead

of γ̂ iδ). Notice carefully that the measure ξ1 is concentrated on Sδ. The projections of ξ1 are

then

π1ξ1 = µ−
C1∑
i=1

µ̂ iδ −
C1∑
i=1

µ̃i

C1
, π2ξ1 = ν −

C1∑
i=1

ν̂ iδ −
C1∑
i=1

ν̃i

C1
,

and we look now for a measure ξi2 satisfying

π1ξ
i
2 = µ̂ iδ +

µ̃i

C1
, π2ξ

i
2 = ν̂ iδ +

ν̃i

C1
. (4.5)

Notice that the measure γ̃′i/C1 has projections µ̃i/C1 + µA/C1 and ν̃i/C1 + νB/C1, and the

measures µA/C1 and νB/C1 have mass εi, exactly as µ̂ iδ and ν̂ iδ. Arguing exactly as in the proof

of Theorem C, then, we can define ξi2 = β ◦ γ̃′i/C1 ◦ α so that (4.5) is satisfied. Notice that,

exactly as in Theorem C and keeping in mind (4.1), the measure ξi2 is concentrated on Sδ: since

the same was already observed for ξ1, we derive that the plan ξ = ξ1 +
∑

i ξ
i
2 belongs to Π(µ, ν),

and it has a finite Ct−δt cost. More precisely, calling again C = max{h(v) : v ∈ C }, we have

immediately that

C1∑
i=1

Ct−δt(ξi2) ≤ C
C1∑
i=1

‖ξi2‖ = C

C1∑
i=1

N(i)εi ≤ CN
C1∑
i=1

εi .

Concerning ξ1, we have

C t−δt(ξ1) ≤ C t−δt

(
γ −

∑
i
γiδ

)
=

∫∫
Sδ

ct−δt(x, y) dγ(x, y) =

∫∫
Sδ

h

(
y − x
t(1− δ)

)
dγ(x, y)

≤
∫∫

Sδ

(
1 + exc(δ)

)
h

(
y − x
t

)
dγ(x, y) ≤

(
1 + exc(δ)

)
Ct(γ) =

(
1 + exc(δ)

)
C(t) .
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Putting together the last two estimates and applying Proposition 3.3 we then find

C(t− δt) ≤ Ct−δt(ξ) ≤
(
1 + exc(δ)

)
C(t) + CN

∑
i
εi

=
(
1 + exc(δ)

)
C(t) + CNγ

(
R2n \ Sδ

)
≤
(
1 + exc(δ)

)
C(t) +

CNC

κδ(ρ)
.

This gives (1.3) which in turn, since κδ(ρ) → ∞ for δ ↘ 0, also implies the continuity of the

map t 7→ C(t). �

We can conclude this section by showing a simple situation, which gives counterexamples

to all our previos results without their assumptions, and then shows that basically all our

assumptions were sharp.

x1 y11

x2 y30.9
y2 x3

0.9 0.9

Figure 1. Situation in Example 4.2

Example 4.2. Let us consider the situation drawn in Figure 1, where µ (resp., ν) is the sum

of three Dirac masses of weight 1/3 at the points x1, x2 and x3 (resp., y1, y2 and y3). Assume

that, as in the figure, the distance between x1 and y1 is 1, the distances between x1 and y2, x2

and y3, and x3 and y1 are all 0.9, and the distances between x2 and y2 and between x3 and

y3 are some small ε � 1. Let h be a relativistic cost function such that h(v) = f(|v|), with

f(0) = 0, f(ε) ≈ ε2, f(1) = 1 and f(r) = +∞ for r > 1. We can assume that

f(1) + 2f(ε) < 3f(0.9) . (4.6)

It is clear that there are basically two possible ways of transporting µ onto ν: either sending

each xi onto the corresponding yi, or sending each xi onto yi+1, where we denote for simplicity

y4 ≡ y1. These two possibilities correspond to paying once the price of moving of a distance 1

and twice of a distance ε, or to paying thrice the price of moving of a distance 0.9. It is obvious

that T = 0.9, and that for T ≤ t < 1 the second transport plan is the unique having a finite

cost; instead, for t ≥ 1 both the transports (and all their convex combinations) have finite cost;

by keeping in mind (4.6), this gives that the total cost is given by

C(t) =

{
f(0.9/t) if 0.9 ≤ t < 1 ,
1
3f(1/t) + 2

3f(ε/t) if t ≥ 1 .
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Hence, the total cost function t 7→ C(t) can be discontinuous if µ is a singular measure, and this

gives a counterexample to Theorem A without the assumption that µ� L n (while the additional

fact that µ is in L∞ is basically only needed to get the nice estimate (1.3)). The same example

gives also a counterexample to Theorem C without the assumption µ� L n: indeed, if we take

t = 1, then t > T = 0.9, and nevertheless there is a strictly positive mass moved exactly with

directions in t∂C by the optimal plan relative to Ct.
Finally, it is easy to show that a simple modification of the same example gives also a coun-

terexample to the validity of Theorem C for costs which are relativistic but not highly relativistic.

Indeed, substitute the Dirac masses in the example above with uniform measures concentrated in

very small balls, the centers still being the points xi and yi. It is then still true that T = 0.9, and

we want to show that for t = 1 (and with a good choice of f) the tranport plan γ1 translating

each ball centered at xi onto the ball centered at yi is still optimal. If we do so, then again we

have a counterexample to Theorem C for µ absolutely continuous but with relativistic and not

highly relativistic cost functions. We just underline how can one prove this: arguing as in the

proof of Theorem C, if another transport plan γ̃ moves a portion 1 − δ of the points of the ball

at x1 onto the ball at y1 by making a distance 1 − δ instead of 1, then the remaining portion δ

of the ball at x1 must move of a distance 0.9 onto the ball at y2, then a portion δ of the ball at

x2 must go onto the ball at y3, and finally a portion δ of the ball at x3 must fill the remaining

portion δ of the ball at y1. The costs of the plans γ1 and γ̃ are then

3C1(γ1) = f(1) + 2f(ε) , 3C1(γ̃) ≈ (1− δ)
(
f(1− δ) + 2f(ε)

)
+ 3δf(0.9) .

A simple calculation, then, shows that basically γ̃ is better than γ1 if

f ′(1) > 3f(0.9)− f(1)

(recall that the right term is positive by (4.6)). Now, if the cost is highly relativistic, then this

means f ′(1) = +∞, and thus the above inequality is surely true and then γ1 is not optimal,

according with Theorem C. Instead, for a cost which is relativistic but not highly relativistic, it

is possible that the above inequality fails, which implies the optimality of γ1, and thus the claim

of Theorem C is seen to be false without the highly relativistic assumption.

Remark 4.3. Roughly speaking, both Theorems C and A have two main assumptions, namely,

the fact that ct is highly relativistic, and the fact that µ � L n. The above Example 4.2 has

shown that the absolute continuity assumption on µ is essential for both the results, and that

the highly relativistic assumption on ct is essential for Theorem C. Instead, we do not have an

example showing that the plain relativistic assumption is not enough to get the continuity of the

total cost function.

5. Existence of Kantorovich potentials

The goal of this section is to prove the existence of a Kantorovich potential, namely, The-

orem B. To do so, we need some classical notation, which we briefly present here. The first

definition is the c-cyclical monotonicity, which was introduced by Knott and Smith in [26, 27],
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generalizing the classical cyclical monotonicity defined by Rockafellar in [31], and later used by

several authors.

Definition 5.1 (c-cyclically monotone set). A set S ⊆ Rn × Rn is said c-cyclically monotone

if for any m ∈ N and any choice of (xi, yi) ∈ S, 0 ≤ i ≤ m, one has

m∑
i=0

c(xi, yi) ≤
m∑
i=0

c(xi, yi+1) ,

as usual denoting ym+1 = y0.

It is extremely simple to show that, whenever a mass transport problem with a l.s.c. cost

c is considered, if the total cost is finite then any optimal transport plan is concentrated on a

c-cyclical monotone set. The second notation that we will use is that of c-transform, c-concavity

and c-subdifferential.

Definition 5.2 (c-transform, c-concave function and c-subdifferential). Let ϕ : suppµ → R ∪
{−∞} (resp., ψ : supp ν → R ∪ {−∞}) be a Borel function; its c-transform ϕc : supp ν →
R ∪ {±∞} (resp., ψc : suppµ→ R ∪ {±∞}) is defined as

ϕc(y) := inf
x∈suppµ

c(x, y)− ϕ(x) , ψc(x) := inf
y∈suppν

c(x, y)− ψ(y) .

The function ϕ is said c-concave if ϕc(y) < +∞ for every y ∈ supp ν and ϕcc = ϕ. Finally, for

every c-concave function ϕ, we define the c-subdifferential as the set

∂cϕ =
{

(x, y) ∈ suppµ× supp ν : ϕ(x) + ϕc(y) = c(x, y)
}
.

It is well-known that the c-subdifferential of any c-concave function is a c-monotone set, see

for instance [34]. We can now recall the definition of Kantorovich potential, and that of the

approximate gradient.

Definition 5.3 (Kantorovich potential). A Kantorovich potential is a c-concave map ϕ :

suppµ → R ∪ {−∞} with the property that any optimal transport plan γ ∈ Π(µ, ν) is con-

centrated on ∂cϕ.

Definition 5.4 (Approximate gradient). Given a function f : X ⊆ Rn → R ∪ {−∞} and a

point x of density 1 in X, we say that v ∈ Rn is the approximate gradient of f at x if there

exists a map g : Rn → Rn differentiable at x, with ∇g(x) = v and such that x has density 1 in

the set {f = g}. If there exists such a vector, then it is necessarily unique, and we denote it by

∇̃f(x); moreover, the function f is said to be approximately differentiable at x.

The existence of a Kantorovich potential is a fundamental issue in the mass transportation

problem, also because it is an important aid in showing the existence of an optimal transport

map. It is classically known that a Kantorovich potential exists in the most common cases of

transport problems, though not always.

To show Theorem B, we start with another “chain” result, which is a sort of discrete version

of the Chain Lemma 2.10.
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Lemma 5.5. Under the same assumptions of Theorem B, there exists M ∈ N such that the

following holds. Let γt be an optimal transport plan for the cost ct, let Γ ⊆ supp γt be a set on

which γt is concentrated, and fix (x0, y0) ∈ supp γt. Then, for every (x, y) ∈ supp γt, there is

some 0 ≤ k ≤ M and points (xi, yi) ∈ Γ for 0 < i ≤ k such that, calling (xk+1, yk+1) = (x, y),

for every 0 ≤ i ≤ k one has yi − xi+1 ∈ tC .

Proof. The proof is somehow similar to that of the chain Lemma 2.10, but in a discretized

setting. For simplicity, we divide it in some steps.

Step I. The discretized setting and the cycles.

We start by selecting some T < t′ < t′′ < t and a constant ε > 0, much smaller than t−t′′, t′′−t′,
and t′ − T , and we cover suppµ (resp., supp ν) with finitely many essentially disjoint cubes Q1

j

(resp., Q2
k) of side length ε > 0. Let us call N + 1 the number of the pairs (j, k) such that

γt(Q
1
j ×Q2

k) > 0, and let us enumerate these cubes Q1
j ×Q2

k as Q0, Q1, Q2, . . . , QN ⊆ Rn×Rn.

Notice that the number of cubes can be bounded only in terms of the supports of µ and ν, and

of the value of ε, thus in turn only in terms of µ, ν and t; hence, there is some M ∈ N, depending

only on µ, ν and t, such that N ≤ M . For every 0 ≤ i ≤ N , writing Qi = Q1
j × Q2

k we call zi

and wi the centers of Q1
j and Q2

k. Notice that the pairs (zi, wi) are all different, but of course

zi = zm (resp., wi = wm) whenever the first (resp., the second) projection of the 2n-dimensional

cubes Qi and Qm is the same n-dimensional cube.

Let us now set the “discretized problem” as follows: we define

γd =
N∑
i=0

δ(zi,wi)γt(Qi) , µd = π1γd, νd = π2γd ,

and we observe that the critical speed Td of the discretized problem corresponding to µd and νd

is at most t′. Indeed, for every j, k let us call

αj = µd Q1
j ⊗ µ Q1

j , βk = ν Q2
k ⊗ νd Q2

k ,

so that α =
∑
αj (resp., β =

∑
βk) is a transport plan between µd and µ (resp., ν and

νd); by construction, for every (x′, x′′) ∈ suppα (resp., for every (y′, y′′) ∈ suppβ) one has

|x′′ − x′| ≤ ε
√
n (resp., |y′ − y′′| ≤ ε

√
n). As a consequence, if we call γT an optimal transport

plan corresponding to cT , we have that γ′ := β ◦ γT ◦ α is a transport plan between µd and νd,

and for every (x, y) ∈ supp γ′ one has y − x ∈ TC + B(2ε
√
n) ⊆ t′C , where B(r) denotes the

ball of radius r centered at the origin, and the last inclusion holds as soon as ε is small enough.

Let us now take any two indices 0 ≤ i, i′ ≤ N : we say that i′ follows i if (zi′ , wi) ∈ supp γ′;

notice that for every index i there is at least one i′ which follows i, possibly i itself. Then, we call

cycle any finite sequence of not necessarily distinct indices I = {i1, i2, . . . , ip} such that every

im+1 follows im, and i1 follows ip; in particular, if i follows itself, then the singleton I = {i} is

a cycle.

Step II. Every index 0 ≤ i ≤ N belongs to at least a cycle.

For every 0 ≤ i ≤ N , we can start a sequence of indices from i, so that each one follows

the preceding one, until a cycle is found; notice that this cycle does not necessarily contain i

(otherwise, the claim would be trivial); notice also that a cycle might contain twice the same
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index, but any cycle contains a subcycle with all distinct indices. Take then an arbitrary cycle

I = {i1, i2, . . . , ip}, containing all distinct indices, and set

η = min
`=1, ... , p

γd
(
{(zi` , wi`)}

)
∧ min

`=1, ... , p
γ′
(
{(zi`+1

, wi`)}
)
,

considering as usual ip+1 = i1; notice that η is strictly positive by construction. Now, define the

“reduced transport plans”

γred = γd − η
p∑
`=1

δ(zi` ,wi` )
, γ′red = γ′ − η

p∑
`=1

δ(zi`+1
,wi` )

.

Observe that these are two positive measures with the same marginals; observe also that the

number of the pairs in the support of γred and γ′red is at most the corresponding number for γd

and γ′, and at least one of them has strictly decreased. We can repeat the same construction

with γred and γ′red in place of γd and γ′, so to find again a cycle: notice that, since γred ≤ γd

and γ′red ≤ γ′, then any cycle with respect to γred and γ′red is a fortiori a cycle with respect to

γd and γ′. Going on in the same way, after at most 2M + 2 steps the reduced transport plans

become null: this means that every index belongs to some of the cycles which have been found,

so this step is concluded.

Step III. The “regions” and the “networks”.

For any index 0 ≤ i ≤ N , we call region the union R of all the indices which belong to some

cycle containing i. It is clear that for any two elements m, p ∈ R there is a sequence of indices,

each following the preceding one, which starts with m and ends in p; it is also clear that, if we

had started with some m ∈ R, instead than with i, we would have found the same region. In

other words, the set of all the indices is subdivided in finitely many disjoint regions. Take now

two indices i and m such that zi = zm; then, m and i belong to the same region: indeed, for

any index p one has that i follows p if and only if m follows p, and then we can trivially use

two cycles, one containing i and the other containing m, to build another cycle containing both

i and m. As a consequences, the first projections of the regions form also a disjoint cover of

suppµd.

Let us now introduce another piece of notation: given two indices m, p we say that m can

be hooked to p if wp − zm ∈ t′′C . By definition, if m follows p then it is also true that m can be

hooked to p, but the converse is not necessarily true. Moreover, we say that the region R′ can

be hooked to the region R if there exist two indices m ∈ R′, p ∈ R such that m can be hooked to

p. Finally, for any region R we call its network the union of all the regions R′ such that there is

a finite sequence of regions, each one hooked to the preceding one, starting with R and ending

with R′. Notice that, in principle, the fact that R′ can be hooked to R does not imply that R
can be hooked to R′; more in general, if the network of R contains R′, in principle it is possible

that the network of R′ does not contain R: in other words, the networks are not automatically

a partition of the indices. Nevertheless, in the next step we see that something much stronger

is actually true.

Step IV. Every network contains all the regions.

Let us fix a region R, and call N the network of R: we aim to prove that N contains all the
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regions. Since we already observed, in Step III, that whenever zi = zm the two indices i and m

are in the same region, it is enough to show that the union N1 of all the cubes centered at some

zi with i ∈ N contains the whole support of µd.

Suppose that it is not so: this means that the measure µ is not concentrated on N1. Since

the support of µ is connected, there must be some cube Q1
j which does not belong to N1 but

is adjacent to one of the cubes of N1, say Q1
l , such that µ(Q1

j ) > 0. Assuming for simplicity of

notations that Q1
j and Q1

l are contained in the 2n-dimensional cubes Qj and Ql, we have then

that |zj − zl| ≤ ε
√
n; recall that by construction we have l ∈ N and j 6∈ N . Let then p be an

index such that l follows p: this implies that (zl, wp) ∈ supp γ′, hence wp − zl ∈ t′C , so in turn

wp − zj ∈ t′C + B(ε
√
n) ⊆ t′′C , where again the last inclusion holds if ε has been chosen small

enough. Since this means that j can be hooked to p, and since the fact that l follows p implies

that l and p are in the same region, thus also p belongs to N , we derive that the index j is an

element of N , which gives the desired contradiction. Hence, the network of each region is made

of all the indices, and this conlcudes the step.

Step V. Conclusion.

We are finally in position to conclude the proof of this lemma. Fix a pair (x0, y0) in supp γt,

and take any other pair (x, y) ∈ supp γt. Thanks to Step IV, we can find k ≥ 0 and indices

j(0), j(1) , . . . , j(k + 1) such that (x0, y0) ∈ Qj0 , (x, y) ∈ Qjk+1
, and for every 0 ≤ i ≤ k the

index ji+1 can be hooked to ji; of course, we can do this in such a way that all the indices ji

are distinct, except for j0 and jk+1 which could coincide. As a consequence, since there exist

N + 1 indices, for sure we have k ≤ N , hence k ≤ M because we know that N ≤ M . Now, set

xk+1 = x and yk+1 = y, and for every 0 < i ≤ k choose arbitrarily some pair (xi, yi) ∈ Γ ∩Qi:
this is possible because, by construction, γt(Qi) > 0, and γt is concentrated on Γ. We claim that

the sequence (xi, yi) for 0 < i ≤ k fulfills the requirements of the Lemma.

Indeed, the fact that every pair (xi, yi) with 0 < i ≤ k belongs to Γ is true by construction.

Moreover, for every i we have that xi (resp., yi) is in a cube of side ε centered at zi (resp., wi).

As a consequence, for every 0 ≤ i ≤ k we have

yi − xi+1 ∈ wi − zi+1 + B(2ε
√
n) ⊆ t′′C + B(2ε

√
n) ⊆ tC ,

where as usual the last inclusion is true if ε was chosen small enough. �

The next step to prove Theorem B is to show the existence of a Kantorovich potential for ct

whenever t > T . This is the content of the next result. We underline that the same result was

proven in [12] only for almost every t > T , and under additional assumptions on the measure µ.

Proposition 5.6. Under the same assumptions of Theorem B, for any supercritical speed t > T

there exists a Kantorovich potential ϕt for ct, which is approximately differentiable µ-almost

everywhere.

Proof. Let us fix a supercritical speed t > T , and let us assume without loss of generality –and

just for the simplicity of notations– that t = 1. Let us call γ an optimal transport plan relative

to the cost c = c1, let Γ ⊆ supp γ be a c-cyclical monotone set on which γ is concentrated, and
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let us fix arbitrarily a point (x0, y0) ∈ Γ: since the time t = 1 is supercritical and γ is an optimal

transport plan, we know that y0 − x0 ∈ C . Let us then define the map ϕ : suppµ→ R as

ϕ(x) = inf
k∈N

inf

{
k∑
i=1

c(xi, yi−1) + c(x, yk)−
k∑
i=0

c(xi, yi) : (xi, yi)
k
i=1 ∈ Γk

}
. (5.1)

The proof will by concluded once we show that this map is a µ-almost everywhere approximately

differentiable Kantorovich potential.

Step I. The map ϕ is well-defined and bounded from above and from below.

First of all notice that, since the set
{

(x, y) ∈ Rn × Rn : c(x, y) = +∞
}

is open, then c(x, y) <

+∞ for every (x, y) ∈ supp γ, hence in particular for every (x, y) ∈ Γ. As a consequence, for

every k ∈ N and every choice of the sequence (xi, yi)
k
i=1 ∈ Γk, the second sum in the braces above

is real valued, while the first sum is possibly +∞. Hence, the term in braces is well defined for

every sequence and then the function ϕ is well-defined (and easily Borel).

We aim now to show that ϕ is bounded from above and from below. First of all, take

any x ∈ suppµ, and let y be a point such that (x, y) ∈ supp γ. By Lemma 5.5, we can find

a finite chain (xi, yi)
k
i=1 ∈ Γk such that, writing xk+1 = x, for every 0 ≤ i ≤ k one has

yi − xi+1 ∈ C , hence c(xi+1, yi) < ‖h‖L∞ . This implies that ϕ(x) < (k + 1)‖h‖L∞ , and since x

was arbitrary and Lemma 5.5 gives k ≤M for some M depending only on µ, ν and t, we obtain

that ϕ ≤ (M + 1)‖h‖L∞ , so the upper bound is found.

We now deal with the lower bound. Take any x ∈ suppµ, any k ∈ N, and any choice of pairs

(xi, yi)
k
i=1 ∈ Γk. Let us apply Lemma 5.5 with starting point (xk, yk) and final point (x0, y0).

We get some 0 ≤ ` ≤M and points (xi, yi) ∈ Γ for k < i ≤ k+ ` such that tC contains yi−1−xi
for every k < i ≤ k+ `, as well as yk+` − x0. As a consequence c(xi, yi−1) is bounded by ‖h‖L∞
for every k < i ≤ k + `, as well as c(x0, yk+`). Therefore, we can estimate

k∑
i=1

c(xi,yi−1) + c(x, yk)−
k∑
i=0

c(xi, yi)

≥
k+∑̀
i=1

c(xi, yi−1)−
k+∑̀
i=0

c(xi, yi)−
k+∑̀
i=k+1

c(xi, yi−1) + c(x0, yk+`)− c(x0, yk+`)

≥
k+∑̀
i=1

c(xi, yi−1) + c(x0, yk+`)−
k+∑̀
i=0

c(xi, yi)− (M + 1)‖h‖L∞ ≥ −(M + 1)‖h‖L∞ ,

where the last inequality comes because all the points (xi, yi) are in the c-cyclically monotone

set Γ. Keeping in mind the definition (5.1) of ϕ and the arbitrariness of x ∈ suppµ and of the

sequence (xi, yi)
k
i=1, we obtain that ϕ ≥ −(M + 1)‖h‖L∞ , so also the lower bound is found.

Step II. ϕ is c-concave.

In this step we want to show that ϕ is c-concave, that is, ϕc(y) < +∞ for every y ∈ supp ν, and

ϕcc = ϕ. First of all, take any y ∈ supp ν and let x ∈ suppµ be such that (x, y) ∈ supp γ, hence

c(x, y) ≤ ‖h‖L∞ . Thus, also by the estimates of Step I,

ϕc(y) ≤ c(x, y)− ϕ(x) ≤ (M + 2)‖h‖L∞ .
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We have then found that ϕc is bounded from above, so the function ϕcc is well defined, and we

have to check that ϕcc = ϕ. Actually, since the inequality ϕcc ≥ ϕ is always trivially true, we

just have to take care of the opposite inequality. Let us now define the function

ψ(y) = sup
k∈N

sup

{
k∑
i=0

c(xi, yi)−
k∑
i=1

c(xi, yi−1) : (xi, yi)
k
i=1 ∈ Γk, yk = y

}
, (5.2)

which is well-defined and Borel by the very same argument as for ϕ in Step I. We claim that

ψ(y) < +∞ for every y ∈ supp ν. If this is the case, then the c-transform ψc is well-defined, and

comparing (5.2) with (5.1) it is immediate to realize that ψc = ϕ. Since we know that ϕ = ψc

is bounded, we obtain then that ψ ≤ ψcc = ϕc, and this implies that ψc ≥ ϕcc, that is, the

inequality ϕ ≥ ϕcc follows. Summarizing, to prove that ϕ is c-concave we just have to check

that ψ(y) < +∞ for every y ∈ supp ν.

We can immediately notice that ψ(y0) = c(x0, y0): indeed, the inequality ψ(y0) ≥ c(x0, y0)

comes simply by choosing k = 1 and (x1, y1) = (x0, y0) in (5.2); on the other hand, for every

sequence (xi, yi)
k
i=1 in Γk with yk = y0, one has

k∑
i=0

c(xi, yi)−
k∑
i=1

c(xi, yi−1) =

k−1∑
i=0

c(xi, yi) + c(xk, y0)−
k∑
i=1

c(xi, yi−1) ≤ c(x0, y0)

by the c-cyclical monotonicity of Γ, and then we get ψ(y0) ≤ c(x0, y0) directly by the definition.

Let us now take any y ∈ supp ν: we must show that ψ(y) < +∞. If y does not belong

to the second projection π2(Γ) of Γ, then (5.2) readily gives ψ(y) = −∞, so there is nothing

to prove. Otherwise, let x ∈ suppµ be such that (x, y) ∈ Γ. First of all, consider any other

(x̃, ỹ) ∈ Γ: for each sequence (xi, yi)
k
i=1 ∈ Γk with yk = y, we can then add (xk+1, yk+1) = (x̃, ỹ)

to get a sequence of length k + 1 which is admissible in the definition of ψ(ỹ), and we then

ψ(ỹ) ≥ ψ(y) + c(x̃, ỹ) − c(x̃, y), which of course implies, for any choice of (x̃, ỹ) ∈ Γ, the

inequality

ψ(y) ≤ ψ(ỹ) + c(x̃, y)− c(x̃, ỹ) ≤ ψ(ỹ) + c(x̃, y) . (5.3)

Let us now apply once again Lemma 5.5, starting from (x, y) and reaching (x0, y0). We get some

0 ≤ k ≤M and point (xi, yi) in Γ for 1 ≤ i ≤ k in such a way that C contains all the vectors

y − x1 , y1 − x2 , . . . , yk−1 − xk , yk − x0 .

Therefore, we can apply several times (5.3) to get

ψ(y) ≤ ψ(y1) + c(x1, y) ≤ ψ(y2) + c(x2, y1) + c(x1, y) ≤ · · ·

≤ ψ(yk) + c(xk, yk−1) + · · ·+ c(x1, y) ≤ ψ(y0) + c(x0, yk) + c(xk, yk−1) + · · ·+ c(x1, y)

≤ c(x0, y0) + (M + 1)‖h‖L∞ ≤ (M + 2)‖h‖L∞ .

As a consequence, we have proved that ψ is bounded from above, so this step is concluded.

Step III. γ is concentrated on ∂cϕ.

To conclude the proof that ϕ is a Kantorovich potential, we have to check that every optimal

transport plan is concentrated on ∂cϕ; since Theorem 1.3 gives the uniqueness of an optimal

transport plan, we just have to check that the plan γ is concentrated on ∂cϕ (actually, we do not
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need to rely on Theorem 1.3, see Remark 5.7 at the end). Since we know that γ is concentrated

on Γ, we will just check that Γ ⊆ ∂cϕ.

To do so, let us fix (x, y) ∈ Γ: by (5.3), for any other y ∈ π2(Γ) we have the inequality

ψ(y)− c(x, y) ≥ ψ(y)− c(x, y) = −
(
c(x, y)− ψ(y)

)
. (5.4)

We notice that the same inequality holds also for every y ∈ supp ν, because if y ∈ supp ν \π2(Γ)

then we have already noticed that ψ(y) = −∞, so (5.4) is emptily true. Passing then to the

supremum in y ∈ supp ν, we get ψ(y) − c(x, y) ≥ −ψc(x). We now observe that, since ψc = ϕ,

then ϕc = ψcc ≥ ψ, so the last estimate gives

ϕ(x) + ϕc(y) ≥ ϕ(x) + ψ(y) ≥ c(x, y) ,

and since the inequality ϕ(x) +ψ(y) ≤ c(x, y) is always true for any x ∈ suppµ and y ∈ supp ν,

we have proved that (x, y) ∈ ∂cϕ, and this step is concluded.

Step IV. ϕ is approximatively differentiable µ-almost everywhere.

To conclude the proof, we have now only to show that ϕ is approximatively differentiable µ-

almost everywhere. To do so, let us define the sets

Θn :=
{
x ∈ suppµ : ∃ y ∈ supp ν, (x, y) ∈ Γ, y − x ∈

(
1− n−1

)
C
}
,

and let us observe that the union of the sets Θn has full measure in suppµ since γ is concentrated

in Γ and by Theorem C. Let now x, z be two points in Θn, let y be such that (x, y) ∈ supp γ

with y − x ∈ (1− n−1)C , and observe that, since

ϕ(x) + ψ(y) = c(x, y) , ϕ(z) + ψ(y) ≤ c(z, y) ,

then we have

ϕ(z)− ϕ(x) ≤ c(z, y)− c(x, y) . (5.5)

Let now εn > 0 be a geometrical constant such that B(0, 2εn) ⊆ (1/n)C : then, since c is a

relativistic cost and by the properties of convex functions, by (5.5) we immediately get the

existence of a constant Kn such that, as soon as |z − x| ≤ εn,

|ϕ(z)− ϕ(x)| ≤ K(n)|z − x| .

In other words, ϕ is locally Lipschitz in Θn and, since it is also bounded by Step I, we get that it

is actually Lipschitz there. By Kirszbraun’s Theorem, there is a Lipschitz extension ϕn of ϕ|Θn .

So, by Definition 5.4, we obtain that ϕ is approximately differentiable at x for every point x of

density 1 in Θn where ϕn is differentiable, hence for µ-almost every x ∈ Θn (keep in mind that

µ is absolutely continuous with respect to the Lebsegue measure). Since this holds for every

n ∈ N, we have obtained that ϕ is approximatively differentiable µ-almost everywhere. �

Having the existence of the Kantorovich potential at hand, the existence of an optimal

transport map is easy and classical. We give them for the sake of completeness.
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Proof (of Theorem B). Let ϕt be the Kantorovich potential given by Proposition 5.6; let us also

call Θn the sets defined in Step IV of the proof of that proposition. Also recalling Theorem C

we know that, for µ-a.e. x, there exists some y such that (x, y) ∈ supp γt, y − x ∈ t
◦
C , and ϕt is

approximatively differentiable at x. For every z ∈ ∪nΘn close enough to x we know the validity

of (5.5), which can be rewritten as

h

(
y − z
t

)
− h
(
y − x
t

)
≥ ϕt(z)− ϕt(x) = ∇̃ϕt(x) · (z − x) + o(|z − x|) .

As a consequence, since x has density 1 in ∪nΘn, we get

−t ∇̃ϕt(x) ∈ ∂h
(
y − x
t

)
,

hence

y = x+ t∇h∗
(
− t ∇̃ϕt(x)

)
,

being h∗ the Legendre transform of the strictly convex function h. This shows that the optimal

transport plan γt is actually an optimal transport map, in particular γ = (Id, Ft)#µ for the

optimal transport map Ft(x) = x+ t∇h∗
(
− t∇̃ϕt(x)

)
. The proof is then concluded. �

Remark 5.7. As underlined in the Introduction, our construction does not rely on the result of

Theorem 1.3; in particular, we do not need to know a priori that there is a unique optimal trans-

port plan and that it is given by a map, since we are able to show it in Theorem B. Nevertheless,

we have seemingly used this existence during the proof of Proposition 5.6, at the beginning of

Step III. Therefore, we have now to explain how the proof really works if one does not want to

use the uniqueness given by Theorem 1.3. In Step III of the proof of Proposition 5.6, we are

only able to check that the optimal plan γ used to build ϕ is concentrated on ∂cϕ; hence, we

are still not sure that ϕ is a Kantorovich potential, because we would not know how to deal with

other optimal plans, if there were. Thus, the proof of Theorem B still ensures that the plan γ is

actually a transport map, but it gives no information on possible other plans. However, we can

now conclude in a classical way: indeed, by the arbitrariness of γ, we have proved that every

optimal transport plan is a transport map. If now γ1 and γ2 are two optimal transport plans,

then so is also γ = (γ1 + γ2)/2, thus it must be a map. But it is immediate to realize that γ can

be a map only if γ1 = γ2: this shows the uniqueness of the optimal transport plan, and in turn

only now we can conclude that the map ϕ built before is actually a Kantorovich potential.
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