1	Saponaria officinalis-synthesized silver nanocrystals as effective biopesticides and
2	oviposition inhibitors against Tetranychus urticae Koch
3	
4	Roman Pavela ¹ *, Kadarkarai Murugan ² , Angelo Canale ³ , Giovanni Benelli ³ §
5	
6	¹ Crop Research Institute, Department of Secondary Plant Metabolites in Crop
7	Protection, Drnovska 507, 161 06, Prague 6, Czech Republic,
8	² Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
9	³ Department of Agriculture, Food and Environment, University of Pisa, via del
10	Borghetto 80, 56124 Pisa, Italy
11	
12	Correspondence:
13	* R. Pavela, e-mail address: <u>pavela@vurv.cz</u>
14	
15	[§] G. Benelli, e-mail address: <u>benelli.giovanni@gmail.com</u>
16	
17	

18 Abstract

20	Green-fabricated nanoparticles have been mainly tested on mosquito and tick
21	vectors, while no information are available about their toxicity against phytophagous
22	mites. Therefore, here it was determined whether Ag nanoparticles with acaricidal
23	activity could be synthesized using the Saponaria officinalis root extract. Size, shape
24	and crystalline structure of the nanoparticles were described. Furthermore, the toxicity
25	of S. officinalis extract vs. S. officinalis-fabricated Ag nanoparticles was studied,
26	comparing their activity on eggs, larvae and adults of two-spotted spider mite
27	Tetranychus urticae. The impact of both treatments on T. urticae oviposition was
28	investigated. Both the S. officinalis root extract and the nanoparticles showed a very
29	good acaricidal efficacy. Ag nanoparticle LC_{50} was $1.2g.L^{-1}(LC_{90}=2.8g.L^{-1})$,
30	significantly less if compared with the root extract alone $(LC_{50(90)} = 7.8 (11.9)g.L^{-1})$.
31	Adults of <i>T. urticae</i> showed the lowest sensitivity, with LC_{50} of 6.1 and 19.9g.L ⁻¹ for
32	nanoparticles and the aqueous root extract, respectively. Both treatments showed high
33	ovicidal toxicity with LC_{50} of 3.1 and 13.8g.L ⁻¹ for the nanoparticles and aqueous root
34	extract, respectively. Treatment spray residues also caused significant inhibition of
35	oviposition in females of <i>T. urticae</i> with EC_{50} estimated as 1.4g.L ⁻¹ , a value
36	significantly lower, if compared with the extract alone (EC ₅₀ = 6.1 g.L^{-1}). No
37	phytotoxicity of both treatments was observed in short-term tests. S. officinalis root
38	aqueous extract is used by food and cosmetic industries, thus it can be considered a safe
39	option for plant protection. In addition, the fabricated AgNP also seem highly promising
40	as they showed high biological efficacy, and the production method is relatively simple
41	and cheap.

- **Keywords:** soapwort; acaricidal activity; botanical insecticides; plant extracts;
- 44 nanotechnology

1. Introduction

49	The frequent use of pesticides in plant protection has led to a number of major
50	problems. Besides health-related and environmental risks associated with application of
51	some pesticides (Karabelas et al., 2009; Fantke et al., 2012), a significant issue is
52	represented by the development of resistant populations of harmful organisms including
53	the two-spotted spider mite, Tetranychus urticae Koch (Arachnida: Acari:
54	Tetranychidae), which has been known for its ability to rapidly develop resistance to
55	chemical pesticides (Van Leeuwen et al., 2010). Resistance selection is accelerated by
56	its high fecundity, inbreeding, arrhenotokous reproduction and short life cycle, resulting
57	in many generations per year, especially in warmer conditions (Van Leeuwen et al.,
58	2015). This species is currently considered as one of the 'most resistant' arthropods, in
59	terms of the total number of pesticides to which populations have become resistant.
60	Notably, <i>T. urticae</i> is a phytophagous pest that can cause significant yield losses
61	in many agricultural crops, including vegetables, fruits, cotton and ornamentals plants
62	(Cazaux et al., 2014; Van Leeuwen et al., 2015). To date, 1,127 host species have been
63	reported around the world in both outdoor crops and greenhouses (Migeon et al., 2011).
64	In addition, computer modelling suggests that thanks to the intensifying global
65	warming, the noxiousness of <i>T. urticae</i> in agriculture will markedly increase due to
66	accelerated development at high temperatures (Van Leeuwen et al., 2010).
67	The above-mentioned problems are the main reasons of the current intensive
68	efforts to seek new, suitable alternatives for plant protection with minimum negative
69	impacts on non-target organisms and human health (Benelli and Pavela, 2016a; Benelli
70	et al. 2016). Promising plant protection alternatives also include the use of plant

71 secondary metabolites synthesized by some plants within the framework of their natural 72 defensive capacity against pathogens and pests (Rattan, 2010). As shown in many 73 studies, plant secondary metabolites can exhibit significant toxic effects against 74 arthropod pests (Isman and Grieneisen, 2014; Pavela, 2014a,b; Benelli, 2015a,b; Isman, 75 2015; Pavela, 2015a,b), including acaricidal effects (Attia et al., 2015; Benelli and 76 Pavela, 2016b; Pavela, 2015c, 2016 a,b). The history of using plant extracts in the 77 protection against pests dates back to the ancient times and this tradition has been 78 preserved until nowadays, although only to a limited extent (Pavela, 2016b). Generally, 79 these substances are obtained from plant materials using suitable isolation methods and 80 subsequently they are used as active ingredients in the so-called "botanical insecticides" 81 (BIs) (Isman and Grieneisen, 2014; Pavela, 2016b; Pavela and Benelli, 2016a). 82 Recently, intensive research on plant extract bioactivity has resulted in the 83 discoveries of new toic substances, which can be considered as suitable for the 84 development of new botanical pesticides including acaricides (Bakkali et al., 2008; 85 Isman, 2015). BIs are generally considered as safe for the health and the environment 86 (Isman, 2015; Benelli and Govindarajan, 2016). In addition, given that they contain 87 complex mixtures of active compounds often with synergistic effects (Pavela, 2014b, 88 2015b; Benelli et al., 2017) and different mechanisms of action (Rattan, 2010; Pavela, 89 2016b), it can be expected that no resistant populations of pests would develop (Pavela 90 and Benelli, 2016a,b).

However, despite many positive properties of BIs, these products also show
some negative characteristics that often prevent their prompt commercial use. Such
characteristics include the need of relatively high concentrations or doses of BIs in order
to achieve the required efficacy. Moreover, due to rapid biodegradation of the active

95 compounds, most BIs show a short duration of persistence of their effect, meaning that
96 their application must be repeated, which increases the costs for the grower (Pavela and
97 Benelli, 2016a).

98 Currently, it is important to seek new active compounds with novel multiple 99 mechanisms of action, as well as to use new technologies to increase their biological 100 efficacy and improve their yields or extend their duration of persistence (Pavela, 101 2016b). For these reasons, this research is focused on the acaricidal potential of metal 102 nanoparticles synthesized using a cheap extract obtained from the roots of soapwort, 103 Saponaria officinalis L. (Caryophyllaceae). Thanks to their chemical and physical 104 properties, soapwort extracts have been used as emulsifiers and softening agents in food 105 industry, particularly in the production of "halva" and other sweets. Sunflower "halva" 106 is a popular confectionery product specific to the countries of Eastern Europe (Bedigian, 107 2004; Korkmaz and Özcelik, 2011; Muresan et al., 2013). In addition, extracts from S. 108 officinalis have been used in traditional medicine and in the cosmetics industry as 109 diaphoretic, antioxidant and tonic agents. They have been traditionally used for the 110 treatment of rheumatic diseases and syphilis, and for jaundice and engorgement of the 111 abdominal viscera (CAS No. 84775-97-3) (Kucukkurt et al., 2011). 112 From a pest management perspective, in a previous research good acaricidal 113 effect of aqueous extracts obtained from the roots of S. officinalis was reported (Pavela, 114 2016a). However, as far as we know, no information has been available about lethal 115 concentrations for individual developmental stages of T. urticae and no possibilities of 116 enhancing acaricidal efficacy of the extract using the AgNP synthesis have been

117 studied.

118 Here a modern and inexpensive technology was used to synthesize silver 119 nanoparticles. The efficacy of extracts obtained using standard methods was compared 120 with that of AgNP, specifically their biological efficacy against two-spotted spider 121 mites, *T. urticae*. Indeed, nanotechnology has the potential to revolutionize a wide array 122 of applications in the fields of biomedicine, pest management and parasitology (Benelli, 123 2016a,b). Green biosynthesis provides advancement over chemical and physical method 124 as it is cost effective, environment friendly, and easy to exploit for large-scale nano-125 synthesis (Marimuthu et al., 2011; Govindarajan et al., 2016). 126 To the best of our knowledge, the possibility of using AgNP plant extracts in the 127 protection against phytophagous mites has not been studied. Until now, this technology 128 has been studied especially in the research of larvicides with potential use in the 129 protection against mosquito vectors or was mainly focused on ticks of veterinary 130 importance (Marimuthu et al., 2011; Benelli, 2016b), while no information is available 131 about the toxicity of green-fabricated nanoparticles towards phytophagous mites. 132 Therefore, the aim of this study is therefore to determine whether AgNP with 133 acaricidal activity can be synthesized using S. officinalis extract, to describe the size, 134 shape and crystalline structure of the biosynthesized nanoparticles, and to evaluate the 135 efficacy of S. officinalis root extract vs. S. officinalis-fabricated Ag nanoparticles, 136 comparing their toxic action on eggs, larvae and adults of two-spotted spider mites, T. 137 urticae at the same time, their effects on T. urticae oviposition activity was studied. 138 139 2. Materials and Methods 140

141 2.1 Preparation of *S. officinalis* extract and green synthesis of Ag nanoparticles

143	Commercially sold soapwort (S. officinalis) roots were obtained from Byliny
144	Mikes (Czech Republic), a company engaged in the sale of medicinal plants. Roots
145	were obtained from two-year old plants harvested in November 2015, which were
146	adapted after the harvest using standard methods according to European Pharmacopoeia
147	(Wichtl, 2004), i.e., they were dried and ground to pieces approximately 0.5cm long.
148	Saponaria officinalis root aqueous extract was prepared mixing 100 g of S.
149	officinalis roots with 1 L of tap water. Roots were macerated for 24h at ambient
150	temperature (21±1°C). Subsequently, the extract was filtered using filter paper
151	(Whatman no. 1) and the filtrate was stored in darkness at 7°C temperature until testing.
152	A part of the obtained aqueous extract was used for the green synthesis of Ag
153	nanoparticles. The extract was treated with aqueous AgNO ₃ 1mM (21.2mg of AgNO ₃ in
154	125mL of Milli-Q water) in an Erlenmeyer flask and incubated at room temperature.
155	Eighty-eight millilitres of an aqueous solution of AgNO ₃ 1mM was reduced using 12
156	mL of S. officinalis root extract at room temperature for 10 min, resulting in a brown-
157	yellow solution indicating the formation of Ag nanoparticles. The Ag nanoparticle
158	suspension was stored in darkness at 7°C temperature until the experiments.
159	Furthermore, the S. officinalis-fabricated Ag nanoparticles were characterized following
160	the method recently described by Rajaganesh et al., (2016), including UV-vis
161	spectroscopy (UV-160v, Shimadzu, Japan), FTIR spectroscopy (Perkin-Elmer Spectrum
162	2000 FTIR spectrophotometer.) ESEM (Environmental Electron Scanning Microscope
163	FEI Quanta 200), EDAX, and XRD analyses (Murugan et al., 2016a,b).
164	
165	2.2. Mite rearing

167

168

169 vulgaris L.) in a growth chamber (22-25°C; 80%R.H., 16:8h L:D). 170 171 2.3. Bioassays 172 173 Before establishing the assays, the contents of substances dissolved in water 174 were determined. One mL of the extract was removed using a pipette; this amount was 175 subsequently dried for 12h at 80±1°C. The residue was weighed, and the mass was used 176 to calculate the percentage of substances dissolved in the extract, expressed in the text as % of the extract dry mass weight in the volume of water $(g.L^{1})$. The entire 177 178 experiment was repeated 5 times. The obtained aqueous extract was found to contain, on average, 61.7g.L⁻¹ and 179 the Ag nanoparticle suspension, on average, 7.7g.L⁻¹ of dissolved substances. Based on 180 181 the determined contents of the dissolved substances, the extracts were diluted with 182 water in a way to obtain the following concentration series: for the root aqueous extract 30.0, 20.0; 15.0, 10.0; 5.0, 2.0, 1.0 and 0.5g.L⁻¹ and for the Ag nanoparticles 7.7, 5.0, 183

Tetranychus urticae mites were obtained from the cultures maintained at the

Crop Research Institute (Czech Republic). They were reared on bean plants (Phaseolus

184 2.0, 1.0 and 0.5g.L⁻¹ of dissolved substances. Then, prepared extracts were immediately
185 used in bioassays.

In order to determine acute toxicity, individual concentrations of products were
applied to bean plants (*P. vulgaris*) with a defined number of adults, nymphs or eggs.
The bean plants were adapted in such a way that they had only one fully developed leaf.
20 adults (age: 3-7 days) were introduced onto every leaf 12h before application using a

fine brush, and the number of living adults was ascertained again immediately before application. Eggs or nymphs were prepared as follows: ten females were allowed to lay eggs on every bean leaf for 12h. Subsequently, the females were removed, and the eggs were left for 3 days at 21±2°C. Application then followed. Alternatively, the eggs were left to develop naturally until the birth of the nymphs. The nymphs were left on the plants to develop for an additional five days, and then the plants with a defined nymph count were treated using the prepared extracts.

197 Treatments were applied to the plants using a manual electronic atomizer in a 198 dose approximately equivalent to the application of 600L of water per hectare. Control 199 plants were treated using only water. The experiment was repeated five times. 200 The plants were placed in a growth chamber (L16:D8, $25.0\pm1.0^{\circ}$ C). The numbers of 201 adults and nymphs on the plants were determined using a microscope at 48 h after 202 application. The eggs were left to develop until the birth of the nymphs (for 203 approximately 10 days); those eggs from which no nymphs had hatched were 204 considered dead.

205 Following Pavela et al. (2015c), the effect of the treatments on the inhibition of 206 oviposition was determined. Five mite females (3-4 days old) were transferred using a fine brush onto each of the cut bean leaf discs sized 1 cm^{-2} . The leaf discs were obtained 207 208 from those bean leaves that had been treated identically as described above and after 209 drying of the spray, using a cork borer. The cut discs with the females were placed in 210 Petri dishes with an agar bottom. Females were removed after 48 h and the laid eggs 211 were counted. Subsequently, the number of eggs was determined for individual 212 concentrations, and the lethal concentration causing oviposition inhibition by 50% or

213	90% compared with the control was estimated using Probit analysis. Petri dishes were
214	placed in a growth chamber (L16:D8, 25°C). The experiment was repeated five times.
215	
216	2.4. Data analysis
217	
218	Experimental tests demonstrated that more than 20% of the controlled
219	mortality was discharged and repeated. When the controlled mortality reached 1-20%,
220	the observed mortality was corrected by Abbott (1925). Probit analysis of mortality and
221	antioviposition data was conducted to estimate the LC_{50} and LC_{90} values and related
222	95% confidence limits for each tested product (Finney, 1971; Benelli, 2017).
223	
224	3. Results
225	
226	3.1. Characterization of Ag nanoparticles
227	
228	The concentrated aqueous extract contained, on average, 61.7g.L ⁻¹ of dissolved
229	substances. It had a light yellow colour. On the contrary, the synthesized Ag
230	nanoparticles extract contained 7.7g.L ⁻¹ of dissolved substances and had a brown-
231	yellow colour. Figure 1 showed the UV-vis spectra of the S. officinalis extract reacting
232	with silver nitrate 1mM over time. A main absorbance peak at 490nm is clearly visible
233	after 120 and 180 min from the reaction. ESEM showed the effective synthesis of Ag
234	nanoparticles, which are mostly spherical or cubical, with a mean size ranging from 10
235	to 20nm (Figure 2a). EDAX confirmed the presence of metallic Ag in the tested
236	nanocomposite (Figure 2b). FTIR spectroscopy showed peaks at 428, 771, 1068, 1645,

237	2357, 2931 and 3807cm ⁻¹ (Figure 3). Results from XRD analysis (Figure 4) showed the
238	Bragg's reflections corresponding to (200), (202), (311) and (402) planes, which
239	characterizes the face-centred-cubic structure of Ag nanoparticles.
240	
241	3.2. Efficacy of S. officinalis root extract and Ag nanoparticles on mites
242	
243	Both the S. officinalis extract and Ag nanoparticles showed a very good
244	acaricidal efficacy. However, a significant difference was observed both in efficacies on
245	individual development instars of <i>T. urticae</i> , and between the tested products. Estimated
246	lethal concentrations for acute toxicity for adults, nymphs and eggs are shown in Table
247	1. As a general trend, the highest sensitivity was seen in nymphs. However, Ag
248	nanoparticles were significantly effective, with LC_{50} estimated as $1.2g.L^{-1}(LC_{90}=2.8)$
249	g.L ⁻¹), i.e. significantly less compared with the extract alone $(LC_{50(90)}=7.8 (11.9)g.L^{-1})$.
250	The adults of <i>T. urticae</i> showed the lowest sensitivity, with LC_{50} estimated as 6.1 and
251	19.9g.L ⁻¹ for Ag nanoparticles and for the aqueous extract, respectively. Both treatments
252	also showed ovicidal activity, with LC_{50} estimated as 3.1 and 13.8g.L ⁻¹ for the AgNP
253	and aqueous extract, respectively.
254	Extract spray residues also caused significant inhibition of oviposition in
255	females of <i>T. urticae</i> (Table 2). AgNP showed a significantly higher inhibition of
256	oviposition, with the effective concentration $EC_{50 (90)}$ estimated as 1.4 (8.6)g.L ⁻¹ , i.e. a
257	concentration significantly lower compared with the extract alone (EC ₅₀ = 6.1 and
258	$EC_{90}=30.1gL^{-1}$). No phytotoxicity of both treatments was observed in short-term tests.
259	

4. Discussion

262	Results showed that the use of extracts obtained by simple maceration of <i>S</i> .
263	officinalis roots in water is very promising in plant protection against phytophagous
264	mites such as T. urticae. Nymphs were the most sensitive instar to the root aqueous
265	extract, with LC_{90} estimated as 11.9g.L ⁻¹ , and the lowest sensitivity was shown by
266	adults (LC ₉₀ =36.1g.L ⁻¹). Also, Ag nanoparticle synthesis could be easily achieved, and
267	this boosted the acaricidal effect. For example, for the most sensitive developmental
268	stage (nymphs), LC_{50} was reduced more than 6 times and LC_{90} more than 4 times for
269	the Ag nanoparticles compared with the aqueous extract alone.
270	The extract of S. officinalis also caused significant inhibition of oviposition in
271	the females of <i>T. urticae</i> . However, the synthesized Ag nanoparticles showed a
272	significantly higher efficacy. Comparing the EC_{90} values, the effective concentration of
273	30.1g.L ⁻¹ was estimated for the aqueous extract, while it was only 8.6 g.L ⁻¹ for the AgNP
274	extract, i.e. 3.5 times less. Similarly, a significant increase of larvicidal efficacy was
275	previously demonstrated in several researches focusing on larvae of important mosquito
276	vectors, including Anopheles stephensi, An. subpictus, Aedes aegypti, Ae. albopictus
277	and Culex quinquefasciatus (Benelli, 2016a; Govindarajan et al., 2016; Murugan et al.,
278	2016a,b), even if extremely scarce information are available about the extract
279	mechanisms of toxicity of Ag nanoparticles against mosquito larvae, as well as other
280	arthropods of economic importance. Nanoparticle toxicity on different arthropod species
281	may be related to the ability of nanoparticles to penetrate through the exoskeleton. In
282	the intracellular space, nanoparticles can bind to sulphur from proteins or to phosphorus
283	from DNA, leading to the rapid denaturation of organelles and enzymes. Therefore, a
284	decrease in membrane permeability and disturbance in proton motive force may led to

the loss of cellular function and cell death (Benelli 2016b). Further research on the
possible mechanisms at the basis of differential toxicity when testing the *S. officinalis*root extract and nanoparticles on the different mite instars is needed.

288 Notably, the extracts from the roots of S. officinalis contain especially saponins. 289 Our FTIR results showed peaks related to saponin absorptions of OH, C = O, C-H, and 290 C = C (Almutairi and Ali, 2015), indicating that these molecules may play a role as 291 reducing and stabilizing agents for the fabrication of crystalline Ag nanoparticles with 292 mean size of 10-20nm (Govindarjan et al.2016; Rajaganesh et al., 2016). Saponins 293 contained in the S. officinalis roots are employed for a wide array of applications in 294 food industry (Bedigian, 2004; Korkmaz and Özçelik, 2011; Mureşan et al., 2013) and 295 cosmetics (Kucukkurt et al., 2011). In addition, the effects of triterpene glycosides 296 (saponins), recently extracted from S. officinalis radices, on the cellular and humoral 297 innate immunity factors were studied (Kuznetsova et al., 2014). Tests showed a positive 298 impact on natural immunity given that triterpene glycosides stimulated the phagocytic, 299 bactericidal, and adhesion activities of polymorphonuclear leukocytes (Kuznetsova et 300 al., 2014). Saponins promoted the maturation of human peripheral blood dendritic cells, 301 which was proven by a high expression of the terminal differentiation marker and bone-302 stimulating molecule on the cell membrane. Moreover, no acute or chronic toxicity, or 303 growth and tissue abnormalities, were found for the extract from the roots of S. 304 officinalis administered orally to mice (Yudina et al., 2007). It was also found that 305 plants rich in triterpenoid saponins are a diet-dependent potential factor that has an 306 important role in modulation of rumen fermentation processes (Szczechowiak et al., 307 2013). These findings provide evidence of the health safety of S. officinalis extracts,

including their potential residues, which may occur on vegetables treated using thisbotanical pesticide.

310

311 5. Conclusions

312

313 Nanotechnology has the potential for applications in many areas of human 314 activity (Govindarajan et al., 2016; Murugan et al., 2016a,b) including plant protection 315 as shown in this study. Green nanosynthesis provides advancement over chemical and 316 physical method, as it is cost-effective, environment friendly, and easily scaled up for 317 large-scale synthesis (Govindarajan et al. 2016; Benelli, 2016). To conclude, it can be 318 noted that Ag nanoparticles were prepared employing the root extract of S. officinalis At 319 the same time, it was showed that this synthesis can be used to boost the acaricidal and 320 antiovipositional activity of the saponin complex contained in the extract against all 321 developmental stages of an important polyphagous pest, T. urticae. Given that the 322 aqueous extract alone from the roots of S. officinalis has been used in the food and 323 cosmetic industries, it can be considered as safe for application in plant protection. In a 324 nutshell, Ag nanoparticles synthesized here are highly promising, as they showed high 325 biological efficacy and, at the same time, the production method is relatively simple and 326 inexpensive.

However, it is clear to us that the development of this young field of science has only begun, at least regarding applications of synthesized Ag nanoparticles in plant protection. Further tests will thus be needed including toxicological tests or the study of Ag nanoparticle effects on phytotoxicity of the treated plants, which would demonstrate

331	the safety of the newly synthesized Ag nanoparticles in Integrated Pest Management
332	strategies.
333	
334	Acknowledgements
335	
336	Financial support for this work has been provided by the Technology Agency of
337	the CR (Project no. TA04020103). G. Benelli is sponsored by PRAF 2012-2015
338	PROAPI.
339	
340	Conflicts of interest
341	
342	The authors declare no conflicts of interest.
343	
344	References
345	
346	Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. J.
347	Econ. Entomol. 18, 265–267.
348	
349	Almutairi MS, Ali M. 2015. Direct detection of saponins in crude extracts of
350	soapnuts by FTIR. Nat Prod Res. 29(13):1271-5
351	
352	Attia, S., Lebdi, K.G., Heuskin, S., Lognay, G., Hance, T., 2015. An analysis of
353	potential resistance of the phytophagous mite, Tetranychus urticae Koch (Acari:
354	Tetranychidae) to four botanical pesticides. Biotech. Agronom. Soc. Environ. 19,
355	232-238.

356	
357	Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M., 2008. Biological effects of
358	essential oils - a review. Food Chem. Toxicol. 46, 446-475.
359	
360	Bedigian, D., 2004. History and lore of sesame in Southwest Asia. Econ. Bot. 58,
361	329–353.
362	
363	Benelli G (2015a) Research in mosquito control: current challenges for a brighter
364	future. Parasitol Res114: 2801–2805
365	
366	Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of
367	medical and veterinary importance: a systematic review. Parasitol Res 114:3201-
368	3212
369	
370	Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool
371	against mosquitoes of medical and veterinary importance: a review. Parasitol Res
372	115: 23–34
373	
374	Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-
375	borne diseases and cancer – a brief review. Enzyme Microb Technol doi:
376	10.1016/j.enzmictec.2016.08.022
377	
378	Benelli G (2017) Commentary: Data analysis in bionanoscience – issues to watch
379	for. J Clust Sci, doi: 10.1007/s10876-016-1143-3

380	Benelli G, Govindarajan M (2016) Green-synthesized mosquito oviposition
381	attractants and ovicides: towards a nanoparticle-based "lure and kill" approach? J
382	Cluster Sci doi: 10.1007/s10876-016-1088-6
383	
384	Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus:
385	insights for mosquito vector control. Parasitol Res 115: 1747-1754
386	
387	Benelli G, Pavela R, Canale A, Mehlhorn H (2016) Tick repellents and acaricides of
388	botanical origin: a green roadmap to control tick-borne diseases?. Parasitol Res
389	115:2545–2560
390	
391	Benelli G, Pavela R, Iannarelli R, Petrelli R, Cappellacci L, Cianfaglione K, Afshar
392	FH, Nicoletti M, Canale A, Maggi F (2017) Synergized mixtures of Apiaceae
393	essential oils and related plant-borne compounds: Larvicidal effectiveness on the
394	filariasis vector Culex quinquefasciatus Say. Ind Crops Prod 96:186-195
395	
396	Cazaux, M., Navarro. M., Bruinsma, K.A., Zhurov, V., Negrave, T., Van Leeuwen,
397	T., Grbic, V., Grbic, M., 2014. Application of two-spotted spider mite Tetranychus
398	urticae for plant-pest interaction studies. J. Vis. Exp. 89, e51738.
399	
400	Fantke, P., Friedrich, R., Jolliet, O., 2012. Health impact and damage cost
401	assessment of pesticides in Europe. Environ. Internat. 49, 9–17.
402	
403	Finney, D.J., 1971. Probit Analysis. Cambridge University Press, London.

404

405	Govindarajan, M., Rajeswary, M., Veerakumar, K., Muthukumaran, U., Hoti, S.L.,
406	Mehlhorn, H., Barnard, D.R., Benelli, G., 2016. Novel synthesis of silver
407	nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito
408	control. Parasit. Res. 115, 723-733.
409	
410	Isman, M.B., Grieneisen, M.L., 2014. Botanical insecticide research: many
411	publications, limited useful data. Trends Plant Sci. 19, 140-145.
412	
413	Isman, M.B., 2015. A renaissance for botanical insecticides? Pest Manag. Sci. 71,
414	1587–1590.
415	
416	Karabelas, A.J., Plakas, K.V., Solomou, E.S., Drossou, V., Sarigiannis, D.A., 2009.
417	Impact of European legislation on marketed pesticides — A view from the
418	standpoint of health impact assessment studies. Environ. Internat. 35, 1096–1107.
419	
420	Korkmaz, M., Özçelik, H., 2011. Economic importance of Gypsophila L.,
421	Ankyropetalum Fenzl and Saponaria L. (Caryophyllaceae) taxa of Turkey. Afric. J.
422	Biotechnol. 10, 9533-9541.
423	
424	Kucukkurt, I., Ince, S., Enginar, H., Eryavuz, A., Fidan, A.F., Kargioglu, M., 2011.
425	Protective effects of Agrostemma githago L. and Saponaria officinalis L. extracts
426	against ionizing radiation-induced oxidative damage in rats. Rev. Med. Veter. 162,
427	289-296.

429	Kuznetsova, T.A., Ivanushko, L.A., Makarenkova, I.D., Cherevach, E.I.,
430	Ten'kovskaya, L.A., 2014. Effects of S. officinalis L. radix triterpene glycosides on
431	innate immunity factors. Bul. Experiment. Biol. Med. 156, 366-369.
432	
433	Marimuthu, S., Rahuman, A.A., Rajakumar, G., Santhoshkumar, T., Kirthi, A.V.,
434	Jayaseelan, C., Bagavan, A., Zahir, A.A., Elango, G., Kamaraj, C., 2011. Evaluation
435	of green synthesized silver nanoparticles against parasites. Parasitol. Res. 108, 1541-
436	1549.
437	
438	Migeon, A., Nouguier, E., Dorkeld, F., 2011. Spider Mites Web: a comprehensive
439	database for the Tetranychidae. Trends Acarol. 557-560.
440	
441	Mureşan, V., Blecker, C., Danthine, S., Racolţa, E., Muste, S., 2013. Confectionery
442	products (halva type) obtained from sunflower: production technology and quality
443	alterations. A review. Biotechnol. Agron. Soc. Environ., 17, 651-659.
444	
445	Murugan, K., Panneerselvam, C., Samidoss, C.M., Madhiyazhagan, P., Roni, M.,
446	Subramaniam, J., Dinesh, D., Rajaganesh, R., Paulpandi, M., Wei, H., Aziz, A.T.,
447	Alsalhi, M.S., Devanesan, S., Nicoletti, M., Pavela, R., Canale, A., Benelli, G.,
448	2016a. In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver
449	nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their
450	potential against malaria mosquitoes. Res. Vet. Sci. 106, 14-22.
451	

452	Murugan, K., Aruna, P., Panneerselvam, C., Madhiyazhagan, P., Paulpandi, M.,
453	Subramaniam, J., Rajaganesh, R., Wei, H., Saleh Alsalhi, M., Devanesan, S.,
454	Nicoletti, M., Syuhei, B., Canale, A., Benelli, G., 2016b. Fighting arboviral diseases:
455	low toxicity on mammalian cells, dengue growth inhibition (in vitro) and
456	mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles.
457	Parasitol. Res. 115, 651–662.
458	
459	Pavela, R., 2014a. Insecticidal properties of Pimpinella anisum essential oils against
460	the Culex quinquefasciatus and the non-target organism Daphnia magna. J. Asia
461	Pacific. Entomol. 17, 287–293.
462	
463	Pavela, R., 2014b. Acute, synergistic and antagonistic effects of some aromatic
464	compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crop
465	Prod. 60, 247-258.
466	
467	Pavela, R., 2015a. Essential oils for the development of eco-friendly mosquito
468	larvicides: A review. Ind. Crop Prod.76, 174–187.
469	
470	Pavela, R., 2015b. Acute toxicity and synergistic and antagonistic effects of the
471	aromatic compounds of some essential oils against Culex quinquefasciatus Say
472	larvae. Parasitol. Res. 114, 3835-3853.
473	

474	Pavela, R., 2015c. Acaricidal properties of extracts and major furanochromenes from
475	the seeds of Ammi visnaga Linn. against Tetranychus urticae Koch. Ind. Crop Prod.
476	67, 108-113.
477	
478	Pavela, R., 2016a. Acaricidal properties of extracts of some medicinal and culinary
479	plants against Tetranychus urticae Koch. Plant Prot. Sci. 52, 54-63.
480	
481	Pavela, R., 2016b. History, presence and perspective of using plant extracts as
482	commercial botanical insecticides and farm products for protection against insects -
483	a review. Plant Prot. Sci. 52, 229–241.
484	
485	Pavela R, Benelli G (2016a) Essential oils as eco-friendly biopesticides? Challenges
486	and constraints. Tr Plant Sci doi: 10.1016/j.tplants.2016.10.005
487	
488	Pavela R, Benelli G (2016b) Ethnobotanical knowledge on botanical repellents
489	employed in the African region against mosquito vectors - a review. Exp Parasitol
490	167:103-108
491	
492	Pavela, R., Canale, A., Mehlhorn, H., Benelli, G., 2016a. Application of
493	ethnobotanical repellents and acaricides in prevention, control and management of
494	livestock ticks: A review. Res. Veter. Sci. 109, 1-9.
495	

496	Pavela, R., Stepanycheva., E., Shchenikova, A., Chermenskaya, T., Petrova, M.,
497	2016b. Essential oils as prospective fumigants against Tetranychus urticae Koch Ind.
498	Crop Prod. 94, 755-761.
499	
500	Rajaganesh R, Murugan K, Panneerselvam C, Jayashanthini S, Aziz AT, Roni M,
501	Suresh U, Trivedi S, Rehman H, Higuchi A, Nicoletti M, Benelli G (2016) Fern-
502	synthesized silver nanocrystals: towards a new class of mosquito oviposition
503	deterrents? Res Vet Sci, 109:40-51
504	
505	Rattan, R.S., 2010. Mechanism of action of insecticidal secondary metabolites of
506	plant origin. Crop Prot. 29, 913–920.
507	
508	Szczechowiak, J., Szumacher-Strabel, M., Stochmal, A., Nadolna, M., Pers-
509	Kamczyc, E., Nowak, A., Kowalczyk, M., Cieslak, A., 2013. Effect of Saponaria
510	officinalis L. or Panax ginseng C.A. Meyer triterpenoid saponins on ruminal
511	fermentation in vitro. Ann. Anim. Sci. 13, 815-827.
512	
513	Van Leeuwen, T., Vontas, J., Tsagkarakou, A., Dermauw, W., Tirry, L., 2010.
514	Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae
515	and other important Acari: A review. Insect Biochem. Mol. Biol. 40, 563-572.
516	
517	Van Leeuwen, T., Tirry, L., Yamamoto, A., Nauen, R., Dermauw, W., 2015. The
518	economic importance of acaricides in the control of phytophagous mites and an

519	update on recent acaricide mode of action research. Pest Biochem. Physiol. 121, 12-
520	21.
521	
522	Whalon, M.E., Mota-Sanchez, R.M., Hollingworth, R.M., Duynslager, L., 2008.
523	Artrhopods Resistant to Pesticides Database (ARPD).
524	http://www.pesticideresistance.org.
525	
526	Wichtl, M., 2004. Herbal Drugs and Phytopharmaceuticals, Third Edition,
527	Medpharm Scientific Publishers, Stuttgart, Germany
528	
529	Yudina, T.P., Cherevach, Y.I., Babin, Y.V., Barkulova, I.S., Sidorova, T.D.,
530	Maslennikova, Y.V, Goren'kov, E.S., Golovanets, V.A., 2007. Research of saponin
531	extraction processes from soapwort roots Saponaria officinalis L. Khranenie i
532	pererabotka sel'khozsyr'ya 10, 21-23. (Russian)
533	

Figure 1. Saponaria officinalis-synthesized Ag nanoparticles: UV-vis spectroscopy
after 30, 60, 120 and 180 min from reaction (purple, blue, red and green spectrum,
respectively).

- 553 Figure 2. (a) ESEM of Ag nanoparticles biosynthesized using the Saponaria officinalis
- aqueous extract, and (b) EDAX spectrum showing the chemical composition of
- 555 nanoparticles (Ag 44.49%, O 55.51%).
- **(a)**

- **(b)**

578 Figure 3. FTIR spectrum of Ag nanoparticles green synthesized using the *Saponaria*579 *officinalis* aqueous roots extract.

592 Figure 4. XRD pattern of Ag nanoparticles biosynthesized using the Saponaria

- *officinalis* aqueous extract.

597 **Table 1.** Acute toxicity of *Saponaria officinalis* root crude extract and green

598	synthesized	Ag nanop	articles	tested	on 7	Tetranychus	urticae mites.
	2	<u> </u>				-	

		Crude	root extr	act	Ag nanoparticles					
Target	LC ₅₀	CI95	LC ₉₀ ^a	CI ₉₅	Chi	LC ₅₀ ^a	CI ₉₅	LC ₉₀ ^a	CI ₉₅	Chi
	а				b					b
Adult	19.9	17.6-	36.1	31.9-	0.5	6.1	4.5-	15.4	12.8-	0.0
S		22.3		45.5	17		8.9		22.9	13
Nymp	7.8	7.2-8.3	11.9	10.9-	0.2	1.2	1.0-	2.8	2.5-3.5	0.0
hs				13.6	13		1.3			55
Eggs	13.8	12.4-	18.8	17.7-	0.0	3.1	2.5-	13.1	8.6-	0.5
		14.6		21.2	32		3.5		21.8	11

600

601 ^a Concentration LC₅₀ (LC₉₀) in g.L⁻¹ causing 50% (90%) mortality of *T. urticae* adults,

602 nymphs and eggs

603 ^bChi-square value, not significant (P=0.05)

 $CI_{95} = 95\%$ confidence intervals, extract activity is considered significantly different

605 when the 95% CI fail to overlap

607	Table 2. Effect of Saponaria officinalis root crude extract and green synthesized Ag
608	nanoparticles tested as oviposition inhibitors on Tetranychus urticae mites.

Dose		Crude roo	t extra	ct	Ag nanoparticles					
(g.L	Eggs/Fe	Inhibit	EC ₅	EC ₉	Chi	Eggs/Fe	Inhibit	EC ₅₀	EC ₉	Chi
¹)	male	ion	0	0	d	male	ion	(CI ₉	0	d
	\pm SD ^a (n)	(%)±	(CI ₉	(CI ₉		\pm SD ^a (n)	(%)±	5) ^c	(CI ₉	
		SD^{b}	5) ^c	5) ^c			SD^{b}		5) ^c	
30.0	0.3±0.1	94.1±3	6.1	30.1	3.5	ND	-	1.4	8.6	0.3
		.8	(5.2	(24.	24			(1.2-	(8.2	23
20.0	0.6±0.3	88.4±2	-	4-		ND	-	3.5)	-	
		.9	7.4)	41.8					12.	
15.0	1.3±0.4	76.5±5)		ND	-		8)	
		.5								
10.0	2.8±1.2	55.6±4				ND	-			
		.8								
7.7	ND	-				0.1±0.1	97.9±3			
							.9			
5.0	3.9±0.7	43.1±5				1.6±0.3	71.9±5			
		.2					.2			
2.0	5.2±1.1	32.7±2				3.5±0.8	47.4±3			
		.8					.2			
1.0	8.9±1.8	4.8±3.				3.9±0.9	43.1±3			
		2					.1			

	0.5	9.2±1.7	3.1±0.				5.2±1.1	30.7±2				
			1					.8				
	Cont	9.8±1.2	-	-	-	-	9.8±1.2	-	-	-	-	
	rol											
610												
611	^a The a	verage num	ber of egg	gs laid p	oer fen	nale ±	standard de	viation (Sl	D)			
612	^b Mean inhibition of oviposition in comparison with the control \pm standard deviation											
613	^c Effect	tive concent	ration EC	₅₀ (EC ₉	₀) in g	.L ⁻¹ ca	using 50% ((90%) inhi	bition c	of egg		
614	laying	by <i>T. urtica</i>	e females	, compa	ared w	ith unt	reated cont	rol				
615	^d Chi-se	quare value	, not signi	ficant (P=0.05	5)						
616	CI ₉₅ =	95% confid	ence inter	vals, ex	tract a	ctivity	is consider	ed signific	cantly d	ifferent		
617	when t	he 95% CI 1	fail to ove	rlap								
618	ND = r	not determir	ned									
619												
620												