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Abstract—This paper has a twofold goal. The first aim is
to provide a deeper understanding of the family of the Real
Elliptically Symmetric (RES) distributions by investigating their
intrinsic semiparametric nature. The second aim is to derive a
semiparametric lower bound for the estimation of the parametric
component of the model. The RES distributions represent a
semiparametric model where the parametric part is given by the
mean vector and by the scatter matrix while the non-parametric,
infinite-dimensional, part is represented by the density generator.
Since, in practical applications, we are often interested only in the
estimation of the parametric component, the density generator
can be considered as nuisance. The first part of the paper is
dedicated to conveniently place the RES distributions in the
framework of the semiparametric group models. The second
part of the paper, building on the mathematical tools previously
introduced, the Constrained Semiparametric Cramér-Rao Bound
(CSCRB) for the estimation of the mean vector and of the
constrained scatter matrix of a RES distributed random vector
is introduced. The CSCRB provides a lower bound on the Mean
Squared Error (MSE) of any robust M -estimator of mean vector
and scatter matrix when no a-priori information on the density
generator is available. A closed form expression for the CSCRB is
derived. Finally, in simulations, we assess the statistical efficiency
of the Tyler’s and Huber’s scatter matrix M -estimators with
respect to the CSCRB.

Index Terms—Parametric model, semiparametric model,
Cramér-Rao Bound, Semiparametric Cramér-Rao Bound, Ellip-
tically Symmetric distributions, scatter matrix estimation, robust
estimation.

I. INTRODUCTION

A prerequisite for any statistical inference method is the
notion of a statistical model, say P , i.e. a collection, or a
family, of probability density functions (pdfs) that is able to
characterize random phenomena based on their observations.
The most widely used models are parametric models. A para-
metric model is a family of pdfs parametrized by the elements
of a subset Γ of a finite-dimensional Euclidean space Rq . The
popularity of parametric models is due to the ease of derivation
of inference algorithms. On the other hand, a major drawback
is their “narrowness” that can lead to misspecification prob-
lems [1], [2]. Their counterpart are nonparametric models,
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a wide family of pdfs that can be required to satisfy some
functional constraints, e.g. symmetry, smoothness or moment
constraints. While the use of a nonparametric model minimizes
the risk of model misspecification, the amount of data needed
for nonparametric inference may represent an insurmountable
obstacle in practical applications. Semiparametric models have
been introduced as a compromise between the “narrowness”
of parametric models and the cost of using nonparametric ones
[3]. More formally, let x be a random vector taking values in
the sample space X ⊆ RN . Then, a semiparametric model
Pγ,l is a family of pdfs parametrized by a finite-dimensional
parameter vector of interest γ ∈ Γ ⊆ Rq , along with an
infinite-dimensional nuisance parameter l ∈ L, where L is
a set of functions:

Pγ,l , {pX |pX(x|γ, l),γ ∈ Γ, l ∈ L} . (1)

There is a rich statistical literature on semiparametric mod-
els and their applications. For a comprehensive and detailed
list of the main contributions in this field, we refer the reader to
[3] and [4] and to the seminal book [5]. However, this profound
theoretical understanding of semiparametric models has not
been fully exploited in Signal Processing (SP) problems as
yet. Two, among the very few, examples of SP applications
of the semiparametric inference are the references [6] and [7],
where the semiparametric theory has been applied to blind
source separation and nonlinear regression, respectively.

This paper aims at improving the understanding of potential
applications of semiparametric models. Specifically, we focus
our attention on the joint estimation of the mean vector µ
and of the (constrained) scatter matrix Σ in the family of
Real Elliptically Symmetric (RES) distributions by providing
a closed form expression, up to a (numerically performed)
singular value decomposition, for the Constrained Semipara-
metric Cramér-Rao Bound (CSCRB) on the MSE of any robust
estimator of µ and Σ. As we will discuss below, a constraint
on Σ is required to avoid the scale ambiguity that characterizes
the definition of scatter matrix in RES distributions. The RES
class represents a wide family of distributions that includes
the Gaussian, the t, the Generalized Gaussian and all the
real Compound-Gaussian distributions as special cases ([8]–
[14], and [15, Ch. 4]). The elliptical distributions are of
fundamental importance in many practical applications since
they can be successfully exploited to statistically characterize
the non-Gaussian behavior of noisy data. Moreover, as we will
discuss below, RES distributions represent an example of a
semiparametric model where the parametric part is represented
by the mean vector and by the scatter matrix. They should be
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estimated in the presence of an infinite-dimensional nuisance
parameter, i.e. the density generator, which is generally un-
known.

This paper is the natural follow on of our previous work
[16]. In [16], we provided, in a tutorial and accessible manner,
a general introduction to semiparametric inference framework
and to the underling mathematical tools needed for its de-
velopment. Moreover, the extension of the classical CRB in
the presence of a finite-dimensional nuisance deterministic
vector to the SCRB where the nuisance parameter belongs to a
certain, infinite-dimensional, function space has been reported
in Theorem 1 in [16]. As discussed in the statistical literature
and summarized in [16], this generalization can be carried out
by means of three key elements:

• the Hilbert space Hq of all the q-dimensional, zero-mean,
vector-valued function of the data vector,

• a notion of tangent space T for a statistical model,
• an orthogonal projection operator on T , i.e. Π(·|T ).

A formal definition of the Hilbert space Hq and of the
projection operator Π(·|T ) can be found in Appendix A, while
the tangent space for both parametric and semiparametric
models has been defined, in a tutorial manner, in [16].

This paper aims at investigating the applications of the
general concepts introduced in [16] to the semiparametric
model generated by RES distributions. We start by introducing
the semiparametric group model and then we continue by
showing that the RES class actually possesses this structure.
Building on the mathematical framework that characterizes
semiparametric group models and, in particular, their tangent
space and projection operator, we then show how to derive the
CSCRB for the joint estimation of the mean vector µ and the
scatter matrix Σ of a RES distributed random vector.

The problem of establishing a semiparametric lower bound
for the joint estimation of µ and Σ in the RES class has
been investigated firstly by Bickel in [17], where a bound
on the estimation error of the inverse of the scatter matrix
has been derived. More discussions and analyses have also
been presented in [5] (Sec. 4.2 and Sec. 6.3). More recently,
in a series of papers ([18], [19], [20] and [21]), Hallin and
Paindaveine rediscovered the RES class as a semiparametric
model and, by using two approaches based on Le Cam’s theory
[22] and on rank-based invariance [23], they presented the
SCRB for the joint estimation of µ and Σ in its most general
form. However, even if valuable and profound, Hallin and
Paindavaine’s work requires a deep understanding of Le Cam’s
theory on Local Asymptotic Normality [22]. For this reason,
starting from the results in [5] (Sec. 4.2 and Sec. 6.3), we
propose here an alternative derivation of the SCRB by using
a simpler, even if less general, approach.

Along with the derivation of a lower bound on the esti-
mation performance, we always have to specify the class of
estimators to which such bound applies. It can be shown that
the SCRB is a lower bound to the MSE of any regular and
asymptotic linear (RAL) estimator (see [5, Sec. 2.2], [17],
[24], [25], [26], [27, Ch. 3] and [28, Ch. 4] for additional
details). Even if we do not address this issue here, it must be
highlighted that the class of RAL estimators is a very wide

family that encompasses the Maximum Likelihood estimator
and all the R-, S-, and in particular, M - robust estimators.

The rest of the paper is organized as follows. In Sec. II
the semiparametric group model is presented with a particular
focus on the calculation of the tangent space and projection
operator. Sec. III collects the basic notions on RES distri-
butions and their intrinsic semiparametric-group structure is
investigated. The step-by-step derivation of the CSCRB for the
estimation of µ and Σ is provided in Sec. IV. The efficiency of
the Sample Covariance Matrix and of two robust scatter matrix
M -estimators, Tyler’s and the Huber’s estimators, is assessed
in Sec. V using the previously derived CSCRB. Finally, some
concluding remarks are collected in Sec. VI.

Notation: Throughout this paper, italics indicates scalars
or scalar-valued functions (a,A), lower case and upper case
boldface indicate column vectors (a) and matrices (A) respec-
tively. Note that, since we deal with Hilbert spaces, the word
“vector” indicates both Euclidean vectors and vector-valued
functions. For clarity, we indicate sometimes a vector-valued
function as a ≡ a(x). Each entry of a matrix A is indicated
as ai,j , [A]i,j . The superscript T indicates the transpose
operator. Finally, for random variables or vectors, the notation
=d stands for ”has the same distribution as”.

II. THE SEMIPARAMETRIC GROUP MODELS

This section introduces a particular semiparametric model,
i.e. the semiparametric group model. As the name suggests,
this class of semiparametric models is generated by the action
of a group of invertible transformations on a random vector
whose pdf is allowed to vary in a given set. As we will show
in the sequel, this group-based data generating process allows
for an easy calculation of the nuisance tangent space and
of the orthogonal projection operator. Before introducing the
definition of this class of semiparametric models, let us first
introduce some related notation.

Let A be a group of invertible transformations from RN
into itself. Suppose that each transformation α ∈ A can be
parametrized by means of a real vector γ ∈ Γ ⊆ Rq , i.e.

A = {α|α(·;γ) , αγ(·);γ ∈ Γ}. (2)

We will indicate with α−1
γ the inverse of αγ . The operation

αγ2
◦αγ1

denotes the composition of αγ1
and αγ2

that can be
explicitly expressed as (αγ2

◦ αγ1
)(·) , αγ2

(αγ1
(·)). Finally,

γe indicates the parameter vector that characterizes the identity
transformation αγe , such that αγe(·) = ·.

Definition II.1. (see [5, Sec. 4.2]) Let z ∈ RN be a real-
valued random vector with pdf pZ , i.e. z ∼ pZ(z). The
parametric group model Pγ , generated by the action of the
group of invertible parametric transformations A, given in (2),
on the random vector z ∼ pZ(z), is the set of parametric pdfs
of the transformed random vector αγ(z) = x ∼ pX(x|γ).
Specifically, Pγ can be explicitly expressed as:

Pγ =
{
pX |pX(x|γ) = |J(α−1

γ )(x)|pZ(α−1
γ (x));γ ∈ Γ

}
,
(3)

where [J(α−1
γ )(x)]i,j , ∂[α−1(x;γ)]i/∂γj is the Jacobian

matrix of the inverse transformation α−1
γ and | · | defines the
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absolute value of the determinant of a matrix. The generaliza-
tion to semiparametric models can be obtained by allowing
the pdf pZ to vary within a large set of density functions L.
Consequently, a semiparametric group model generated by the
parametric group A in (2) can be expressed as:

Pγ,pZ =
{
pX |pX(x|γ, pZ) = |J(α−1

γ )(x)|pZ(α−1
γ (x));

γ ∈ Γ, pZ ∈ L} .
(4)

Using the notation introduced in [16], the actual “semipara-
metric vector” is indicated as (γT0 , pZ,0)T and, consequently,
the true pdf is given by:

p0(x) , pX(x|γ0, pZ,0) = |J(α−1
γ0

)(x)|pZ,0(α−1
γ0

(x)). (5)

Moreover, from now on, we denote by E0{·} the expectation
operator with respect to the true pdf p0(x). Note that the
word “true” here indicates the actual pdf, and consequently
the actual semiparametric vector, that characterizes the data.

As mentioned before, the most useful feature of a semi-
parametric group model is the fact that its underling group
structure allows for a convenient derivation of the nuisance
tangent space and of the relevant projection operator. The
following proposition formalizes this concept.

Let Pγ,pZ be a semiparametric group model defined in (4).
Let TpZ,0(γ) be the semiparametric nuisance tangent space of
Pγ,pZ evaluated at (γT , pZ,0)T , where γ is a generic element
of the finite-dimensional parameter space Γ. Let us indicate by
TpZ,0(γe) the semiparametric nuisance tangent space of Pγ,pZ

evaluated at (γTe , pZ,0)T , where, as defined before, γe is the
parameter vector that characterizes the identity transformation.

Proposition II.1. Let t be a generic q-dimensional vector-
valued function belonging to TpZ,0(γe), then the semipara-
metric nuisance tangent space TpZ,0(γ) can be obtained from
TpZ,0(γe) as follows:

TpZ,0(γ) =
{
t ◦ α−1

γ |t ∈ TpZ,0(γe)
}
,∀γ ∈ Γ. (6)

Moreover, let l be a generic q-dimensional vector-valued
function in Hq , then the projection operator Π(·|TpZ,0(γ)) on
TpZ,0(γ) (see Appendix A) can be obtained form the projection
operator Π(·|TpZ,0(γe)) on TpZ,0(γe) as follows:

Π(l|TpZ,0(γ)) = Π(l ◦ αγ |TpZ,0(γe)) ◦ α−1
γ ,∀γ ∈ Γ. (7)

The proof can be found in [5, Sec. 4.2, Lemma 3].
It is worth noticing that Proposition II.1 can be directly used

to derive the nuisance tangent space at the true semiparametric
vector (γT0 , pZ,0)T , i.e. TpZ,0 ≡ TpZ,0(γ0) and the relevant
projection operator Π(·|TpZ,0). This can be done by evaluating
the relations (6) and (7) at the true parameter vector of interest
γ0. As discussed below, Proposition II.1 is of fundamental
importance for the derivation of the Semiparametric Cramér-
Rao Bound (SCRB) for γ0 in the class of RES distributions.

III. THE FAMILY OF RES DISTRIBUTIONS AS A
SEMIPARAMETRIC MODEL

In this section, the semiparametric nature of the family
of RES distributions is investigated. In particular, we show
that the RES class can be conveniently interpreted as a

semiparametric group model. Here we restrict the discussion to
the absolutely continuous case [14, Sec. III.D], i.e. we always
assume that a RES distributed random vector admits a pdf.
In what follows, we exploit the definition of the RES class
provided in [29] and [9, Ch. 3], since it is particularly useful
for our aims.

A. Spherically Symmetric (SS) distributions

As a prerequisite for the definition of the RES class,
Spherically Symmetric (SS) distributions need to be introduced
first.

Definition III.1. Let z ∈ RN be a real-valued random vector
and let O be the set of all the orthogonal transformations such
that:

O 3 O : RN → RN

z 7→ O(z) = Oz,
(8)

for any orthogonal matrix O, i.e for any O ∈ RN×N such
that OTO = OOT = I. Then, z is said to be SS-distributed if
its distribution is invariant to any orthogonal transformations
O ∈ O, i.e.

z =d Oz. (9)

We indicate with S the class of all SS-distributions.

As a consequence, the following properties hold true (see,
e.g. [29] or [9, Ch. 3] for the proof):
P1) The SS-distributed random vector z ∼ SS(g) has a pdf

given by:
pZ(z) = 2−N/2g

(
||z||2

)
, (10)

where G 3 g, is a function, called density generator, that
depends on z only through ||z|| and

G =

{
g : R+ → R+

∣∣∣∣∫ ∞
0

tN/2−1g(t)dt <∞
}

(11)

where the integrability condition in (11) is required to
guarantee the integrability of pZ(z) (see [9, eq. 3.25]).
Consequently, the set of all SS pdfs can be described as:

S =
{
pZ |pZ(z) = 2−N/2g

(
||z||2

)
,∀g ∈ G

}
. (12)

P2) Let sN , 2πN/2/Γ(N/2) be the surface area of the unit
sphere in RN , then the pdf of the random variables Q =d

||z||2 and R ,
√
Q, called 2nd-order modular variate

and modular variate respectively [14], are given by:

pQ(q) = sN2−N/2−1qN/2−1g (q) , (13)

pR(r) = sN2−N/2rN−1g
(
r2
)
. (14)

P3) The Stochastic Representation Theorem. Let u ∼
U(RSN ) be a random vector uniformly distributed on
the real unit sphere of dimension N , indicated as RSN .
If z ∈ RN is SS-distributed with pdf given by (10), then:

z =d

√
Qu =d Ru, (15)

where Q ∼ pQ(q) in (13), R ∼ pR(r) in (14). Moreover,
Q and u (or R and u) are independent. Note that u in
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(15) satisfies the following three properties: ||u|| = 1,
E{u} = 0 and E{uuT } = N−1I.

P4) Maximal Invariant Statistic. The Stochastic Represen-
tation Theorem shows that there exists a one-to-one
relationship between every z ∼ SS(g) and every couple
(R,u). Moreover, it is easy to verify that the modular
variate R is a maximal invariant statistic for the set of
the SS-distributed random vectors. 1

We can now introduce the class of RES distributions as a
semiparametric group model.

B. The RES class as a semiparametric group model

At first, let us define the parameter space Ω ⊆ Rq of
dimension q = N(N + 3)/2 as:

Ω = {φ ∈ Rq|φ = (µT , vecs(Σ)T )T ;µ ∈ RN ,Σ ∈MN},
(16)

where µ ∈ RN is a real-valued N -dimensional vector while
Σ is an N × N matrix belonging to the set MN of all the
symmetric, positive-definite matrices of dimension N × N .
Note that the vecs operator maps the N × N symmetric
matrix Σ in an N(N + 1)/2-dimensional vector of the entries
of the lower triangular sub-matrix of Σ [31], [32]. We can
now introduce the group A of all affine transformations,
parameterized by the parameter space Ω in (16), such that

A 3 αφ : RN → RN , ∀φ ∈ Ω

z 7→ αφ(z) = µ + Σ1/2z.
(17)

The identity element αφe(·) of the group A is parameterized
by the vector φe = (0T , vecs(I)T )T , while the inverse
transformation is given by:

α−1
φ (·) = Σ−1/2(· − µ). (18)

The class of RES distributions is defined as the class of
distributions that is closed under the action of the group A in
(17) on any SS-distributed random vector. The next definition
formalizes this statement.

Definition III.2. A real-valued random vector x ∈ RN is said
to be RES-distributed with mean value µ and scatter matrix
Σ, if it can be expressed as:

x = αφ(z) = µ + Σ1/2z =d µ +
√
QΣ1/2u, (19)

where φ ∈ Ω defined in (16), z ∼ SS(g) is an SS-
distributed random vector, while u ∼ U(RSN ) and the 2nd-
order modular variate Q have been already defined in (15).
In particular:

Q =d ||z||2 = ||α−1
φ (x)||2 = (x− µ)TΣ−1(x− µ) , Q.

(20)

1For the sake of clarity, let us recall the definition of maximal invariant
statistic [30, Ch. 6]. Let D = {d} be a group of one-to-one transformations
on a sample space X and let T be an invariant statistic such that T (x) =d

T (d(x)), ∀x ∈ X and ∀d ∈ D. Then, T is a maximal invariant on X
w.r.t. D if T (x1) =d T (x2) implies that x1 =d d(x2), ∀x1,x2 ∈ X and
∀d ∈ D. Clearly, for any couple of SS-distributed random vectors z1 and z2,
we have ||z1|| =d ||z2|| ⇒ z1 =d Oz2, ∀O ∈ O, where O is the group
of orthogonal transformations defined in (8). Consequently, R = ||z|| is a
maximal invariant statistic for the set of the SS-distributed random vectors.

We refer the reader to [29], [9, Ch. 3] and [14] for the proof.
Definition III.2 provides the link between the RES family

and the semiparametric group model defined in Section II. As
a consequence, the explicit expression of the pdf of an RES
distributed random vector can be obtained as shown in the
Definition II.1, Equation (4). In particular, the determinant of
the Jacobian matrix of the inverse transformation in (18) is
|J(α−1

φ )| = |Σ−1/2| = |Σ|−1/2. Then, the pdf of any RES-
distributed random vector x can be obtained from the relevant
SS-distributed random vector z, i.e. pZ(z) in (10), as 2:

RESN (x;µ,Σ, g) , |Σ|−1/2pZ(α−1
φ (x))

= 2−N/2|Σ|−1/2g
(
(x− µ)TΣ−1(x− µ)

)
,∀g ∈ G.

(21)

Moreover, the general description of a semiparametric group
model given in (4) can be specialized for the RES case as:

Pφ,g =
{
pX |pX(x|φ, g) = 2−N/2|Σ|−1/2g(||α−1

φ (x)||2);

φ ∈ Ω, g ∈ G} ,
(22)

where G is the set of density generators given in (11). Clearly,
the mean vector of x ∼ RESN (x;µ,Σ, g) is given by
E0{x} = µ while, if E{Q} <∞, its covariance matrix M is
M , E0{(x− µ)(x− µ)T } = N−1E{Q}Σ

As extensively discussed in the literature on elliptically
symmetric distributions, the representation of an RES dis-
tributed vector x is not uniquely determined by (19). In fact,
x =d µ +

√
QΣ−1/2u =d µ +

√
c−2Q(cΣ−1/2)u,∀c > 0.

This scale ambiguity can also be seen as a consequence
of the functional form of an RES pdf given in (21) since
RESN (x;µ,Σ, g(t)) ≡ RESN (x;µ, c2Σ, g(t/c2)),∀c > 0.
To avoid this well-known identifiability problem, we impose
the following constraint on the trace of Σ, i.e.

c(Σ) = tr(Σ)−N = 0. (23)

This constraint limits the parameter vector φ ∈ Ω, where Ω
is defined in (16), in a lower dimensional smooth manifold

Ω̄ = {φ ∈ Ω|tr(Σ) = N}, (24)

whose dimension is q̄ = q − 1. Trace constraint is only an
example of all the possible constrains that can be imposed
on the scatter matrix to avoid scale ambiguity. For a deep and
insightful analysis of the impact of the particular constraint on
Σ on the estimation performance, we refer to [20] and [21].

The properties of the semiparametric group model pre-
viously discussed can be exploited to derive the CSCRB
for the estimation of the constrained parameter vector φ =
(µT , vecs(Σ)T )T ∈ Ω̄, where Ω̄ given in (24).

2Note that the definition of the pdf of an RES distributed random vectors
given here is consistent with the one proposed in [14] for CES distributed
random vectors. The only difference is that, in our definition, the normalizing
constant cN,g introduced in [14], has been included in the density generator
g(·).
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IV. THE CONSTRAINED SEMIPARAMETRIC CRAMÉR-RAO
BOUND FOR THE RES CLASS

This section is devoted to the derivation of a closed form
expression of the CSCRB for the estimation of φ ∈ Ω̄. The
theoretical foundation of the generalization of the Cramér-Rao
inequality in the semiparametric framework can be found in
[27, Theo. 4.1], [5, Sec. 3.4], [24] and [33]. Moreover, in
[16], it is shown, in a tutorial manner, how the SCRB can
be obtained as a result of a limit process of the classical
CRB derived in the presence of a finite-dimensional nuisance
parameter vector. Here, as mentioned before, we focus on the
calculation of the SCRB for the particular case of the RES
distributions.

As explained in the previous section, to avoid the scale
ambiguity of the RES class, we need to put a constraint on the
scatter matrix. In order to take this requirement into account,
we propose in the sequel the extension of Theorem 1 in [16] to
the case of constrained, finite-dimensional, parameter vector.
In particular, suppose that the finite-dimensional parameter
vector of interest γ0 ∈ Γ ⊆ Rq is required to satisfy k
(with k < q) continuously differentiable constraints ([34],
[35], [36]):

c(γ0) = 0. (25)

This set of constraints define a smooth manifold, of dimension
q̄ = q − k, in the parameter space Γ, such that:

Γ̄ = {γ ∈ Γ ⊆ Rq|c(γ) = 0} (26)

Moreover, suppose that the k × q Jacobian matrix of the
constraints, defined as [Jc(γ)]i,j , ∂ci(γ)/∂γj has full row
rank for any γ ∈ Γ satisfying (25). Consequently, there exists
a matrix U ∈ Rq×q̄ whose columns form an orthonormal basis
for the null space of Jc(γ0), i.e.

Jc(γ0)U = 0k×q̄, UTU = I. (27)

Theorem IV.1. The Constrained Semiparametric Cramér-Rao
Bound (CSCRB) for the estimation of the constrained finite-
dimensional vector γ0 ∈ Γ̄ in the presence of the nuisance
function l0 ∈ L is given by:

CSCRB(γ0|l0) = U(UT Ī(γ0|l0)U)−1UT , (28)

where:
Ī(γ0|l0) , E0{s̄0s̄

T
0 }, (29)

is the semiparametric Fisher Information Matrix (SFIM) and
s̄0 is the semiparametric efficient score vector defined as:

s̄0 = sγ0 −Π(sγ0 |Tl0), (30)

where Π(sγ0 |Tl0) is the orthogonal projection of the score
vector of the parameters of interest sγ0

on the semiparametric
nuisance tangent space. Finally, matrix U is defined in (27).
Note that s̄0, sγ0

and Π(sγ0
|Tl0) are q-dimensional functions

of the observation vector x.

The proof of the “unconstrained” part of this theorem can be
found in [27, Theo. 4.1] and in [24], while a more abstract and
general formulation can be found in [33] and in [5, Sec. 3.4].
The proof of the “constrained” part can be obtained through a

straightforward application of the approach discussed in [35]
for the constrained CRB.

The remainder of this section is devoted to the evaluation of
the CSCRB in (28) for the estimation of the mean vector µ and
of the constrained scatter matrix Σ, such that tr(Σ) = N , of
a RES distributed random vector x ∼ RESN (x;µ0,Σ0, g0)
in the presence of the nuisance function g0 ∈ G. To this end,
according to Theorem IV.1, we have to evaluate:

A. the score vector of the parameters of interest sφ0
≡

sφ0(x), where φ0 = (µT0 , vecs(Σ0)T )T ∈ Ω given in
(16),

B. the projection operator Π(sφ0
|Tg0), where Tg0 ≡ Tg0(φ0)

is the semiparametric nuisance tangent space for the RES
distributions class evaluated at the true semiparametric
vector (φT0 , g0)T ,

C. the semiparametric efficient score vector s̄0 ≡ s̄0(x) in
(30) and the SFIM Ī(φ0|g0) in (29),

D. the matrix U in (27) and then the CSCRB in (28).
In what follows, we will provide this calculation step-by-

step.

A. Evaluation of the score vector sφ0(x)

By definition, the score vector of the parameters of interest
is given by:

sφ0
(x) = ∇φ ln pX(x|φ0, g0) =

(
sµ0(x)

svecs(Σ0)(x)

)
, (31)

where φ0 ∈ Ω and Ω is the unconstrained parameter space
defined in (16) and:

sµ0
(x) = ∇µ ln pX(x|µ0,Σ0, g0), (32)

svecs(Σ0)(x) = ∇vecs(Σ) ln pX(x|µ0,Σ0, g0), (33)

and where µ0, Σ0 and g0 represents the true mean vector,
the true scatter matrix and the true density generator, re-
spectively. By substituting in (32) the explicit expression of
pX(x|µ0,Σ0, g0) given in (21) and by exploiting the differ-
entiation rules with respect to vector and matrices provided
e.g. in [37, Ch. 8], we have that:

sµ0
(x) = −2ψ0(Q0)Σ−1

0 (x− µ0)

=d −2
√
Qψ0(Q)Σ

−1/2
0 u

(34)

where, according to (20),

Q0 = ||α−1
φ0

(x)||2 = (x− µ0)TΣ−1
0 (x− µ0) =d Q, (35)

and the last two equalities follow directly from the Stochastic
Representation of a RES vector given in (19) and

ψ0(t) ,
1

g0(t)

dg0(t)

dt
. (36)

Similarly, the term svecs(Σ0)(x) in (33) can be evaluated by
applying the rules of the differential matrix calculus detailed in
[37, Ch. 8] and by using standard properties of the Kronecker
product and of the vec operator ([37, Ch. 15], [31,32]) as:

svecs(Σ0)(x) = −DT
N

(
2−1vec(Σ−1

0 )+

+ψ0(Q0)Σ−1
0 ⊗Σ−1

0 vec((x− µ0)(x− µ0)T )
)

=d −DT
N

(
2−1vec(Σ−1

0 )+

+Qψ0(Q)Σ
−1/2
0 ⊗Σ

−1/2
0 vec(uuT )

) (37)
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As before, the second equality follows from the Stochastic
Representation (19) while DN is the N2 × N(N + 1)/2
duplication matrix that is implicitly defined by the equality
DNvecs(A) = vec(A) for any N2 × N2 symmetric matrix
A ([31], [32]). See also [38]–[40] for similar calculation.

B. Evaluation of the projection operator Π(sφ0
|Tg0)

In order to obtain the explicit expression of the projection
operator, we will exploit the fact that the RES class is a
semiparametric group model. In particular, Π(sφ0 |Tg0) can
be obtained by specializing Proposition II.1 for the RES
distributions.

For the sake of clarity, let us recall that, according to the
definition of the group A of the affine tranformations (17), for
any φ0 ∈ Ω, we have:

αφ0
(z) , µ0 + Σ

1/2
0 z, z ∼ SS(g0), (38)

αφe(z) , 0 + I1/2z = z, z ∼ SS(g0), (39)

α−1
φ0

(x) , Σ
1/2
0 (x− µ0), x ∼ RESN (x;µ0,Σ0, g0). (40)

Let Tg0 ≡ Tg0(φ0) and TS0 ≡ Tg0(φe) be the semipara-
metric nuisance tangent spaces of the RES class evaluated at
the true semiparametric vector (φT0 , g0)T and at (φTe , g0)T ,
where φe = (0T , vecs(I)T )T is the vector that characterizes
the identity transformation given in (39). Note that, since it is
evaluated at the identity transformation, TS0 can be interpreted
as the tangent space of the SS distribution class evaluated at
the true g0, and this explains the chosen notation. Now, by
directly applying Proposition II.1, we have that the projection
of the score vector of the parameters of interest sφ0

(x) on the
tangent space Tg0 can be expressed as:

Π(sφ0
(x)|Tg0)(x) = (Π((sφ0

◦αφ0
)(z)|TS0)◦α−1

φ0
)(x), (41)

where x ∼ RESN (x;µ0,Σ0, g0) and z ∼ SS(g0).
In what follows, we show how to obtain an explicit expres-

sion of the projection in (41).
1) Calculation of (sφ0

◦αφ0
)(z): From a visual inspection

of the expressions in (34) and (37), we notice that they can be
rewritten as a function of the inverse transformation α−1

φ0
(x),

i.e.:

sµ0
(x) = (s̃µ0

◦ α−1
φ0

)(x) = −2ψ0(Q0)Σ
−1/2
0 α−1

φ0
(x), (42)

and

svecs(Σ0)(x) = (s̃vecs(Σ0) ◦ α−1
φ0

)(x) = −DT
N

(
2−1vec(Σ−1

0 )+

+ψ0(Q0)Σ
−1/2
0 ⊗Σ

−1/2
0 vec

(
α−1
φ0

(x)α−1
φ0

(x)T
))

.

(43)

Then, we have that:

(sφ0
◦ αφ0

)(z) =

(
(s̃µ0

◦ α−1
φ0
◦ αφ0

)(z)

(s̃vecs(Σ0) ◦ α−1
φ0
◦ αφ0

)(z)

)
=

(
s̃µ0

(z)
s̃vecs(Σ0)(z)

)
,

(44)

and

s̃µ0
(z) = −2ψ0(Q0)Σ

−1/2
0 z =d −2

√
Qψ0(Q)Σ

−1/2
0 u (45)

s̃vecs(Σ0)(z) = −DT
N

(
2−1vec(Σ−1

0 )+

+ψ0(Q0)Σ
−1/2
0 ⊗Σ

−1/2
0 vec(zzT )

)
=d −DT

N

(
2−1vec(Σ−1

0 )+

+Qψ0(Q)Σ
−1/2
0 ⊗Σ

−1/2
0 vec(uuT )

)
.

(46)

2) Derivation of TS0 : The next step is the evaluation of TS0 ,
i.e. the tangent space of S in (12), evaluated at the true density
generator g0. Using the procedure discussed in the Appendix
A.3 of [5], it is possible to verify that TS0 is a q-replicating
Hilber space TS0 = T × . . .× T (see also Appendix A) such
that:

TS0 , {la| a is any vector in Rq, l ∈ T }, (47)

where

T =
{
l ∈ H1|l is invariant under O

}
= {l|l(z) ≡ l(||z||), E0{l(||z||} = 0} ,

(48)

and O is the group of orthogonal transformations defined in
(8). Let us now recall that, according to Property P4 in Sec.
III, the modular variate R is a maximal invariant statistic for
an SS distribution. Then, by using the procedure discussed in
[5, Sec. 6.3, Example 1] and in accordance with the discussion
provided in Appendix B, we have that the projection operator
Π(·|TS0) on the tangent space TS0 can be obtained as the
expectation operator E0|R{·|R} with respect to the maximal
invariant statistic R, i.e.

Π(l|TS0) = E0|R{l|R}, ∀l ∈ Hq. (49)

3) Calculation of the projection Π(sφ0
|Tg0): In order to

evaluate Π(·|Tg0), we can use the property of the semipara-
metric group models given in (41). Let us start by deriving
the expression for Π((sφ0

◦ αφ0
)|TS0) ≡ Π(s̃φ0

|TS0). By
exploiting the results collected in the previous subsections,
Π(s̃φ0 |TS0) can be easily obtained by substituting (45) and
(46) in (49) and then evaluating the expectation operator.
Specifically:

Π(s̃µ0
|TS0) = E0|R{s̃µ0

|R}
=d −2

√
Qψ0(Q)Σ

−1/2
0 E{u} = 0,

(50)

and

Π(s̃vecs(Σ0)|TS0) = E0|R{s̃vecs(Σ0)(z)|R}
=d −DT

N

(
2−1vec(Σ−1

0 )+

+Qψ0(Q)Σ
−1/2
0 ⊗Σ

−1/2
0 E{vec(uuT )}

)
= −DT

N

(
1

2
+

1

N
Qψ0(Q)

)
vec(Σ−1

0 ),

(51)

then, consequently:

Π(s̃φ0
|TS0) =d

(
0

−DT
N

(
1
2 + 1

NQψ0(Q)
)

vec(Σ−1
0 )

)
=d Π(sφ0

|Tg0),
(52)

where the last equality follows from (41) and from the fact
that Π(s̃φ0 |TS0) does not depend on z.

Now, a comment is in order. Equation (52) tells us that
the score function of the mean value is orthogonal to the
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nuisance tangent space Tg0 . This means that not knowing
the true density generator does not have any impact in the
(asymptotic) estimation performance of the mean vector µ0

[17].

C. Calculation of the semiparametric efficient score vector
s̄0(x) and of the SFIM Ī(φ0, g0)

By collecting the previous results, the semiparametric effi-
cient score vector in (30) can be evaluated as:

s̄0(x) = sφ0
(x)−Π(sφ0

(x)|Tg0)(x) =

(
s̄µ0(x)

s̄vecs(Σ0)(x)

)
=d(

−2
√
Qψ0(Q)Σ

−1/2
0 u

−DT
NQψ0(Q)

(
Σ
−1/2
0 ⊗Σ

−1/2
0 vec(uuT )− vec(Σ−1

0 )
N

) ) .
(53)

Finally, through direct calculation, the SFIM Ī(φ0, g0) can be
obtained as:

Ī(φ0|g0) = E0{s̄0(x)s̄0(x)T }

=

(
C0(s̄µ0

) 0
0T C0(s̄vecs(Σ0))

)
,

(54)

where C0(l) , E0{llT }, ∀l ∈ Hq . Note that the off-diagonal
block matrices in (54) are nil because all the third-order
moments of u vanish [14, Lemma 1]. From the previous results
and using some algebra, we get:

C0(s̄µ0
) =

4E{Qψ0(Q)2}
N

Σ−1
0 , (55)

and

C0(s̄vecs(Σ0)) =
2E{Q2ψ0(Q)2}
N(N + 2)

×

×DT
N

(
Σ−1

0 ⊗Σ−1
0 −

1

N
vec(Σ−1

0 )vec(Σ−1
0 )T

)
DN .

(56)

Note that we had not imposed the constraint on the scatter
matrix Σ0 as yet. In particular, in all the previous equations,
Σ0 can be considered as the unconstrained scatter matrix. The
next subsection is then dedicated to the derivation of the SCRB
for the constrained parameter vector.

D. Evaluation of the CSCRB(φ0|g0)

As showed in Theorem IV.1, as a prerequisite of the
derivation of the CSCRB on the estimation of φ0 ∈ Ω̄, we have
to calculate the matrix U defined in (27). This can be done
by using the same procedure discussed in [41]. Specifically,
let us start by evaluating the gradient of the constraint in (23)
as:

Jc(Σ0) = ∇Tvecs(Σ)c(Σ0) = 1TI , (57)

where 1I is the N(N + 1)/2-dimensional column vector
defined as:

[1I ]i =

{
1 i ∈ I
0 otherwise

(58)

where I =
{
i
∣∣∣i = 1 +N(j − 1)− (j−1)(j−2)

2 , j = 1, . . . , N
}

.

Then, U can be obtained by numerically evaluating, using
singular value decomposition (SVD), the q̄ = q − 1 orthonor-
mal eigenvectors associated with the zero eigenvalue of 1I .

Finally, the constrained SCRB (CSCRB) for the estimation
of φ0 ∈ Ω̄ in (24) can be expressed as:

CSCRB(φ0|g0) =(
N

4E{Qψ0(Q)2}Σ0 0

0T U
(
UTC0(s̄vecs(Σ0))U

)−1
UT

)
.

(59)

Note that the block-diagonal structure of CSCRB(φ0|g0)
implies that not knowing the mean vector µ0 does not have
any impact on the asymptotic performance in the estimation
of the scatter matrix Σ0. From a practical point of view,
this also means that the unknown µ0 can be substituted with
any consistent estimator without affecting the asymptotically
optimal performance of the scatter matrix estimator.

V. SIMULATION RESULTS FOR RES DISTRIBUTED DATA

In this section, we investigate the efficiency of three well-
known scatter matrix estimators with respect to the CSCRB:
the constrained Sample Covariance Matrix (CSCM) estimator,
the constrained Tyler’s (C-Tyler) estimator and the constrained
Huber’s (C-Hub) estimator. Note that none of these estimators
relies on the a-priori knowledge of the true density generator
g0 ∈ G.

Assume to have a set of M , RES-distributed, observation
vectors {xm}Mm=1. Let us define {x̄m}Mm=1 as the set of M
vectors such that:

x̄m = xm − µ̂, m = 1, . . . ,M (60)

and µ̂ is the sample mean estimator, i.e. µ̂ , N−1
∑M
m=1 xm.

The CSCM estimate can then be expressed as [42]:

Σ̂CSCM ,
N

tr(ΣSCM )
ΣSCM , ΣSCM ,

1

M

M∑
m=1

x̄mx̄Tm,

(61)
while C-Tyler and C-Hub estimates are the convergence points
of the following iterative algorithm:

S
(k+1)
T =

1

M

M∑
m=1

ϕ(t(k))x̄mx̄Tm

Σ̂
(k+1)
T = NS

(k+1)
T /tr(S

(k+1)
T )

, (62)

where t(k) = x̄Tm(Σ̂
(k)
T )−1x̄m and the starting point is Σ̂

(0)
T =

I. The weight function ϕ(t) for Tyler’s estimator is defined as
(see e.g. [14,43] and [15, Ch. 4] and references therein):

ϕTyler(t) = N/t, (63)

whereas the weight function for Huber’s estimator is given by
([14], [44] and [15, Ch. 4]):

ϕHub(t) =

{
1/b t 6 δ2

δ2/(tb) t > δ2 , (64)

and δ = Fχ2
N

(u) where Fχ2
N

(·) indicates the distribution of a
chi-squared random variable with N degrees of freedom and
q ∈ (0, 1] is a tuning parameter. Moreover, the parameter b is
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usually chosen as b = Fχ2
N+2

(δ2) + δ2(1−Fχ2
N

(δ2))/N [14],
[44].

To compare the three scatter matrix estimators with the
CSCRB, we define the following performance index:

εα , ||E{(vecs(Σ̂α)−vecs(Σ0))(vecs(Σ̂α)−vecs(Σ0))T }||F ,
(65)

where α = {CSCM,C − Tyler, C −Hub(u)} indicates the
particular estimator under test and ||A||2F , tr(ATA) is the
Frobenius norm of matrix A. Similarly, for the sample mean,
we have the following index:

εµ0 , ||E{(µ̂− µ0)(µ̂− µ0)T }||F . (66)

For the sake of comparison, we show in the following figures
also the constrained CRB (CCRB) for the estimation of φ0 =
(µT0 , vecs(Σ0)T )T ∈ Ω̄. The classical FIM can be obtained
from the score vectors previously derived in Subsection IV-A
as a block matrix of the form [39]:

I(φ0) = E0{sφ0
sTφ0
} =

(
C0(sµ0

) 0
0T C0(svecs(Σ0))

)
.

(67)
Through direct calculation, it is easy to verify that:

C0(sµ0) = C0(s̄µ0) =
4E{Qψ0(Q)2}

N
Σ−1

0 , (68)

and

C0(svecs(Σ0)) = DT
N

(
a1vec(Σ−1

0 )vec(Σ−1
0 )T+

+a2Σ
−1
0 ⊗Σ−1

0

)
DN

(69)

where:
a1 ,

1

4
+
E{Qψ0(Q)}

N
+
a2

2
, (70)

a2 ,
2E{Q2ψ0(Q)2}
N(N + 2)

. (71)

It is worth highlighting here that the difference between the
classical FIM in (67) and the SFIM in (54) is due to the
different expressions of the covariance matrix of the efficient
score vector s̄vecs(Σ0) in (56) and of the one of the score vector
svecs(Σ0) in (69).

Finally, the CCRB on the estimation of φ0 ∈ Ω̄ can be
obtained using exactly the same procedure discussed for the
CSCRB in Subsection IV-D (see also [41]).

As performance bounds, the following indices are plotted:

εCCRB,Σ0
, ||[CCRB(φ0)]Σ0

||F , (72)

εCSCRB,µ0
, ||[CSCRB(φ0, g0)]µ0

||F , (73)

εCSCRB,Σ0
, ||[CSCRB(φ0, g0)]Σ0

||F , (74)

where [·]µ0
and [·]Σ0

indicate the top-left and the bottom-right
submatrices of the CCRB(φ0) and of the CSCRB(φ0, g0),
respectively.

We analyze two different cases:
1) The true RES distribution is a t-distribution,
2) The true RES distribution is a Generalized Gaussian (GG)

distribution.
The simulation parameters that are common to the two cases

are:

• [Σ0]i,j = ρ|i−j|, i, j = 1, . . . , N . Moreover, ρ = 0.8 and
N = 8.

• The data power is chosen to be σ2
X = EQ{Q}/N = 4.

• The data mean value is chosen to be [µ0]i = 1, i =
1, . . . , N .

• The number of the available independent and identically
distributed (i.i.d.) data vectors is M = 3N = 24. Note
that, since we assume to have M i.i.d. data vectors, the
SFIM in (54) and the FIM in (67) have to be multiply
by M .

• The tuning parameter u of Huber’s estimator has been
chosen as u = 0.9, 0.5, 0.1. Note that for u = 1 Huber’s
estimator is equal to the SCM, while for u→ 0 Huber’s
estimator tends to Tyler’s estimator [14].

• The number of independent Monte Carlo runs is 106.

A. Case 1: the t-distribution

The density generator for the t-distribution is:

g0(t) ,
2N/2Γ(λ+N

2 )

πN/2Γ(λ/2)

(
λ

η

)λ/2(
λ

η
+ t

)−λ+N2
(75)

and then ψ0(t) in (36) is given by ψ0(t) = −2−1(λ +
N)(λ/η + t)−1. Consequently, from (13), we have that:

pQ(q) =
Γ(λ+N

2 )

Γ(λ/2)Γ(N/2)

(
λ

η

)λ/2
qN/2−1

(
λ

η
+ q

)−λ+N2
(76)

Using the integral in [45, pp. 315, n. 3.194 (3)], we have
that:

E{Qψ0(Q)} = −N/2 (77)

E{Qψ0(Q)2} =
ηN(λ+N)

4(N + λ+ 2)
(78)

E{Q2ψ0(Q)2} =
N(N + 2)(λ+N)

4(N + λ+ 2)
(79)

Then, the coefficients (70) and (71) for the t-distribution
are:

a1,t , −
1

2(N + λ+ 2)
, a2,t ,

λ+N

2(N + λ+ 2)
. (80)

By substituting the previous results in (68), (69) and
(56), we obtain the matrices C0(sµ0), C0(svecs(Σ0)) and
C0(s̄vecs(Σ0)) for the t-distribution.

Fig. 1 shows the MSE index of the sample mean compared
with the CSCRB as function of the shape parameter λ. As
we can see, when λ → ∞, the sample mean tends to be an
efficient estimator. This is an expected result, since, when the
shape parameter λ goes to infinity, the t-distribution becomes
a Gaussian distribution, then the sample mean is the ML
estimator for µ0. In Fig. 2 we can observe an interesting fact:
the distance between the CSCRB and the CCRB increases
as λ → ∞. This means that the lack of knowledge of the
particular density generator, i.e. the lack of knowledge of the
particular RES distribution of the data, has an higher impact
when the tails of the true distribution become lighter. This
behavior has been already observed in [20]. Regarding the
constrained scatter matrix estimators, the CSCM achieves the
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CSCRB as λ → ∞, i.e. as the data tends to be Gaussian
distributed. Note that while it is well-known that the SCM
is the ML estimator for the unconstrained scatter matrix, the
CSCM is not the ML estimator for the constrained scatter
matrix Σ0. This is why, as λ → ∞, the CSCM does
not achieve the CCRB. Regarding C-Tyler’s and C-Huber’s
estimators, from Fig. 2 we can see that C-Huber’s estimator
has better estimation performance for all the three values
of u with respect to C-Tyler’s estimator. In particular, the
estimation performance of C-Huber’s estimator improves as
u tends to 1, i.e. when it tends to collapse to the CSCM. Both
C-Tyler’s and C-Huber’s estimators are far from being efficient
with respect to the CSCRB. However, it must be mentioned
here that efficiency is not the only property that an estimator
should have. Robustness is also important in the choice of an
estimation algorithm. We will investigate the trade-off between
efficiency and robustness in future works.

Another important question that may arise is related to
the behaviour of the Maximum Likelihood estimator of the
scatter matrix. To answer this question, firstly we have to
note that the density generator of the t-distribution in (75)
depends on two additional parameters: the shape λ and the
scale η. If we assume to know perfectly both the functional
form of g0 and the scale and shape parameters, then the ML
estimator of the scatter matrix Σ will outperform all M -
estimators and will achieve the classical CRB for Σ. This
scenario is discussed in [39]. A more realistic situation is
when only the functional form of g0 is assumed to be a
priori known while the scale and shape parameters have to
be jointly estimated with the scatter matrix Σ. A joint ML
(JML) estimator for Σ, λ and η generally does not exists, so
we have to rely of sub-optimal strategies as the one discussed
in [41]. Specifically, the recursive joint estimator of Σ, λ and
η proposed in [41] exploits the Method of Moments (MoM) to
estimate the scale and shape parameters, while an estimation
of the scatter matrix is obtained using an ML approach where
the unknown parameters λ and η are replaced by their MoM
estimates. Clearly, this JML algorithm will no longer achieve
the classical CRB on the scatter matrix due to the lack of
a priori knowledge about the scale and shape parameters. It
would be interesting to investigate how the JML estimator
behaves with respect to the CSCRB. As we can see from
Fig. 1, the MSE index of the JML is larger than the CSCRB
and this would suggest that not knowing the shape and scale
parameters has the same impact of not knowing the whole
functional form of the density generator. Of course, this aspect
deserves further investigation and we leave it to future work.

B. Case 2: the Generalized Gaussian distribution
The density generator relative to the Generalized Gaussian

(GG) distribution is:

g0(t) ,
2N/2sΓ(N/2)

πN/2(2b)
N
2sΓ(N/2s)

exp

(
− t

s

2b

)
(81)

and then ψ0(t) in (36) is given by ψ0(t) = −s(2b)−1ts−1.
Consequently, from (13), we have that:

pQ(q) =
sqN/2−1

(2b)
N
2sΓ(N/2s)

exp

(
−q

s

2b

)
. (82)

Using the integral in [45, pp. 370, n. 3.478 (1)], we have
that:

E{Qψ0(Q)} = −N/2. (83)

E{Qψ0(Q)2} =
s2Γ(N+4s−2

2s )

(2b)1/sΓ(N/2s)
(84)

E{Q2ψ0(Q)2} = N(N + 2s)/4. (85)

Then, the coefficients (70) and (71) for the GG distribution
are:

a1,GG ,
s− 1

2(N + 2)
, a2,GG ,

N + 2s

2(N + 2)
. (86)

As before, by substituting the previous results in (68), (69)
and (56), we obtain the matrices C0(sµ0), C0(svecs(Σ0)) and
C0(s̄vecs(Σ0)) for the GG distribution.

The simulation results for the GG distributed data confirm
all the previous discussions about t-distributed data:
• The sample mean estimator is an efficient estimator of

µ0 when the data is Gaussian distributed. In fact, as we
can see from Fig. 3 that the MSE index εµ0 equates the
CSCRB for s = 1, i.e., when the GG distribution becomes
the Gaussian one.

• The distance between the CSCRB and the CCRB in-
creases as the tails of the true data distribution become
lighter. This behavior can be observed in Fig. 4. It is
worth recalling here that for 0 < s < 1 the GG
distribution has heavier tails and for s > 1 lighter
tails compared to the Gaussian distribution that can be
obtained for s = 1.

• The CSCM is an efficient estimator for Σ0 w.r.t. the
CSCRB when the data is Gaussian distributed, i.e., when
s = 1 (see Fig. 4). However, it does not achieve the
CCRB since, as discussed before, the CSCM is not the
ML estimator for the constrained scatter matrix under
Gaussian distributed data.

VI. CONCLUSION

This paper is organized in two interrelated parts. The
first part is devoted to place the class of RES distributions
within the framework of semiparametric group models. This
analysis allows to look at the well-known RES family from a
different and enlightening standpoint. The main features of
the semiparametric group models have been presented and
discussed, paying particular attention to their implications on
the family of RES distributions. In the second part of the paper,
we showed how the direct application of these properties leads
to derive a closed-form expresson for the CSCRB for the joint
estimation of the mean vector µ0 and of the constrained scatter
matrix Σ of a set of RES distributed random vectors.

Even if the semiparametric inference offers us a wide
range of research opportunities, a huge amount of work still
remains to be done. Our short-term research activity will be
devoted to the extension of the CSCRB to the complex field,
i.e. to the joint estimation of a complex mean vector and a
complex scatter matrix in the family of Complex Elliptically
Symmetric (CES) distributions. This is of great relevance in
radar applications where both the data and the parameters to
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be estimated are modeled as complex quantities. Regarding
the long-term research activities, our efforts will be devoted
to an in-depth study of the robustness property of an estimator
in the framework of semiparametric models. Specifically,
particular attention will be devoted to the analysis of the trade-
off between robustness and semiparametric efficiency of an
estimator.

APPENDIX A
THE HILBERT SPACE OF q-DIMENSIONAL RANDOM

FUNCTIONS

This Appendix provides some additional details on the
Hilbert space Hq of the zero-mean, q-dimensional functions
and on the projection operator Π(·|V), where V ⊆ Hq . The
following discussion does not claim to provide a complete
mathematical characterization of these two elements, but could
be useful as background material for the derivation of the
CSCRB provided in this paper.

Let us introduce the underlying probability space
(X ,F,PX), where X ⊆ RN is the sample space, F
is the Borel σ-algebra of events in X and PX is the
probability measure. Let x ∈ X be a random vector, then
PX(a) , PX(x1 ≤ a1, . . . , xN ≤ aN ) is its cumulative
distribution function (cdf). We assume that the cdf PX admits
a relevant probability density function (pdf) (with respect to
the standard Lebesgue measure), denoted as pX , such that
dPX(a) = pX(a)da.

Consider now the vector space of the one-dimensional
square-integrable function defined on (X ,F,PX):

L2(PX) =

{
h : X → R

∣∣∣∣∫
X
|h(x)|2dPX(x) <∞

}
, (87)

with the inner product given by:

〈h, g〉X = EX{hg} ,
∫
X
h(x)g(x)dPX(x), ∀h, g ∈ L2(PX).

(88)
Let us define H1 ⊆ L2(PX) as the subspace of all the one-

dimensional, zero-mean functions on (X ,F,PX) such that:

H1 = {h ∈ L2(PX) |EX{h} = 0} . (89)

It is immediate to verify that H1, endowed with the inner
product defined in (88), is an infinite-dimensional Hilbert
space [27, Ch. 2].

The “q-replicating” Hilbert space Hq of the zero-mean,
q-dimensional functions on (X ,F,PX) is defined as the
Cartesian product of q copies of the Hilbert space H1, i.e.
Hq , H1 ×H1 × · · · × H1 [27, Ch. 3, Def. 6], such that:

Hq =
{
h = [h1, . . . , hq]

T
∣∣hi ∈ H1, i = 1, . . . , q

}
. (90)

Due to the Cartesian product-based construction, the inner
product of Hq is naturally induced by the one of H1, i.e.:

〈h1,h2〉X , EX{hT1 h2} =
∑q

i=1
EX{h1,ih2,i}, (91)

and consequently the norm is:

||h||X =
√
〈h,h〉X =

∑q

i=1
EX{h2

i }. (92)

Let us now investigate the geometrical structure of Hq ,
with a particular focus on the orthogonal projection of a
generic element h ∈ Hq into a closed subspace V of Hq . The
following theorem is a fundamental result in Hilbert spaces
theory, and can be established in a very general setting (see
e.g. [46, Theo. 3.9.3]). Here, we will adapt it to the particular
Hilbert space Hq .

Theorem A.1 (The Projection Theorem). Let V be a closed
subspace of the Hilbert space Hq and let h and g be two
q-dimensional, zero-mean functions on (X ,F,PX), such that
h ∈ Hq and g ∈ V . Then, the following conditions are
equivalent:

1) ||h− g||X = inf
l∈V
||h− l||X ,

2) h can be uniquely written as

h = g + (h− g), (93)

where g , Π(h|V) ∈ V and h − Π(h|V) ∈ V⊥, where
V⊥ indicates the orthogonal complement of V in Hq ,

3) the element g , Π(h|V) ∈ V is then uniquely determined
by the orthogonality constraint

〈h−Π(h|V), l〉X = 0, ∀l ∈ V. (94)

The operator Π(·|V) defined in Theorem A.1 is called the
orthogonal projection operator onto the closed subspace V .
The unique element Π(h|V) is then called the orthogonal
projection of h ∈ Hq onto V . Furthermore, as a consequence
of the Condition 2) in Theorem A.1, the Hilbert space Hq can
be written as the Cartesian product of the subspace V and of
its orthogonal complement V⊥, i.e. Hq = V × V⊥.

APPENDIX B
PROJECTION OPERATOR AND CONDITIONAL EXPECTATION

In Appendix A we defined Hq as the Hilbert space of
the q-dimensional, zero-mean functions on the probability
space (X ,F,PX). Let G(V ) ⊆ F be the sub-sigma algebra
generated by the random variable V . It can be shown (see
e.g. [47, Ch. 23] and [5, Appendix 3]) that the set of all the
q-dimensional, zero-mean functions on the probability space
(X ,G(V ),PX|V ) is a closed linear subsapce, say V , of the
Hilbert space Hq .

This fact can be exploited to establish a link between the
projection operator Π(·|V) and the conditional expectation
EX|V {·|V }. Firstly, let us define EX|V {·|V } as in [47, Ch.
23] and [5, Appendix 3].

Definition B.1. Let h ∈ Hq and l ∈ V ⊆ Hq be two q-
dimensional, zero-mean functions on the probability spaces
(X ,F,PX) and (X ,G(V ),PX|V ) with G(V ) ⊆ F, respec-
tively. Then the conditional expectation EX|V {h|V } is the
unique element in V , such that:〈

h− EX|V {h|V }, l
〉
X

, EX{(h− EX|V {h|V })T l} = 0,
(95)

for every l ∈ V .

For a more general and formal definition we refer the reader
to [47, Ch. 23] and [5, Appendix 3]. The condition (95) is
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equivalent to (94) in Theorem A.1 that defines the projection
operator, and consequently, we have that:

Π(·|V) = EX|V {·|V }. (96)

The usefulness of this relation is in the fact that, for
some semiparametric models, the tangent space presents an
invariance structure with respect to a group of transformations
and it admits a characterization through a certain sub-sigma
algebra generated by the relevant maximal invariant statistic
[30]. An example of a semiparametric model that owns this
property is the semiparametric group model of RES distribu-
tions discussed in Subsection III-B.
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Fig. 1: MSE index for µ̂ and the related CSCRB as functions
of the shape parameter λ for t-distributed data (M = 3N ).
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Fig. 2: MSE indices for the constrained scatter matrix estima-
tors and the related CCRB and CSCRB as functions of the
shape parameter λ for t-distributed data (M = 3N ).
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Fig. 3: MSE index for µ̂ and the related CSCRB as functions
of the shape parameter s for GG distributed data (M = 3N ).
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Fig. 4: MSE indices for the constrained scatter matrix estima-
tors and the related CCRB and CSCRB as functions of the
shape parameter s for GG distributed data (M = 3N ).


