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Abstract—In this paper we present a set of power-aware
dynamic allocators for Virtual Machines (VMs) in Cloud Data
Centers (DCs) taking advantage of the Software Defined Net-
working (SDN) paradigm. Each VM request is characterized by
four parameters: CPU, RAM, disk and bandwidth. We design the
allocators in order to accept as many VM requests as possible,
taking into account the power consumption of the network
devices. In this paper, we introduce 10 different allocation
strategies, and compare them with a baseline that consists in
using the first available server (First Fit). The allocators differ
in terms of allocation policy (Best Fit/Worst Fit), allocation
strategy (Single/Multi objective optimization), and joint/disjoint
selection of IT and network resources. For both joint and disjoint
approaches, we evaluate the behavior of all possible pairs policy-
strategy, varying the load of the DC and the number of VMs to
be allocated. Moreover, the experimental results highlight that
joint approaches outperform disjoint ones.

Index Terms—Cloud Computing, Data Center, Software De-
fined Networking, Virtual Machine, Fuzzy Logic, Multi-Objective
Optimization, Resources Allocation, Best Fit, Worst Fit, Pareto
Front.

I. INTRODUCTION

In the last few decades, Data Centers (DCs) have rapidly
evolved not only in terms of hardware resources and services,
but also from the architectural point of view. Indeed, many
and various services are made available to users, from online
storage to a variety of “apps”. All these services require
resources that are located “somewhere” in the Cloud. Users
do not care where such resources are, but only that they
are available when needed and with the desired quality and
security levels. In this evolutionary process a key role is played
by the Software Defined Networking (SDN) paradigm that
leads to virtualize DCs, enabling customers to deploy secure,
dynamic and highly distributed cloud infrastructure [1].

To satisfy the growing requirements of the users, adopting
a flexible and dynamic DC architecture has become a major
challenge. In this framework, the most critical issue to be
addressed is represented by the efficient use of network and IT
(i.e., storage and computational) resources for the allocation
of virtual machines (VMs) [2]. Initially, the allocation of
IT and network resources were addressed focusing on IT
resources and assuming no limitation at the network layer.
Really, data have to be exchanged between end-users and
VMs (and sometimes among VMs) and this can lead to a
significant performance degradation in case the network links
are congested (or not properly used in case simple minimum-
hop paths are selected).

In this work, we propose a novel approach able to tackle
this critical issue within an SDN framework, taking advantage

of one of SDN key features, i.e., the clean separation between
control and data planes [1]. The data plane forwards packets
using the flow tables computed by the control plane, while the
control logic is separated and implemented in a controller that
sets up the forwarding tables. In this way, switches implement
only the data plane logic, with a significant reduction in terms
of cost and complexity. Furthermore, the SDN paradigm en-
ables control plane centralization and programmability, giving
the possibility of implementing relatively complex control
features, which can make use of real-time state information
exchanged through the OpenFlow communication protocol [3].

This paper is an extension of our previous work [4] with
two new contributions. First of all, we added a comparison
between two versions of our allocators:
• the disjoint allocator, which performs a two step alloca-

tion, first choosing the server where to place the VM and
then looking for the proper network path;

• the joint allocator that considers at the same time both
computational and network requirements.

Moreover, in [4] we evaluated the behavior of the joint
allocators when we saturate our DC by allocating as many
VMs as possible; now, instead, we consider the behavior
of all our allocators during the transient phase, showing
some “snapshots” of the DC state and comparing the DC
performance at different loads.

The rest of the paper is organized as follows: Section II
presents a thorough review of the literature, Section III de-
scribes the behavior of our allocators, detailing all the policies
and allocation strategies that we adopt, Section IV outlines
the power model and the proposed solution to minimize the
consumption, Section V shows our experiments and their
results, and Section VI concludes the paper, pointing out some
future researches.

II. RELATED WORKS

A variety of published works focuses on the problem of VM
allocation in Cloud DC. We classified the literature in three
main parts: works that do not consider power consumption;
power-aware allocators for group of VMs (i.e., static alloca-
tors); and power-aware allocators that allocates VMs as soon
a new request is received (i.e., dynamic allocators).

A. Power-unaware allocators

In [5], authors present an optimization technique designed
for VM allocation minimizing the costs and guaranteeing some
performance levels. The allocator presented in [6] combines
both Genetic Algorithms (GA) and Mixed Integer Linear
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Programming (MILP) to optimize the allocation of VMs
while it meets four different QoS requirements. In [7] authors
propose a resource allocator for distributed clouds that is
based on five approximation algorithms able to reduce inter-
cloud and inter-rack network traffic, but they do not consider
any computational requirement for VMs only constraining the
number of VMs that could be allocated on each server. Authors
apply in [8] the Hungarian method to optimize the resource
penalty during each VM allocation.

B. Power-aware static allocators

Authors in [9] implement a power-aware VM allocator for
groups of VMs using a modified version of the Multiple
Knapsack problem. An approach based on Fuzzy Logic is
presented in [10]. It performs the VM placement combining
Genetic Algorithms and Fuzzy Logic, but it has a high
completion time. Authors present in [11] a static power-
efficient allocator for groups of tasks based on Multi-Objective
Genetic Algorithms and Simulated Annealing. In [12], authors
introduce a power-aware VM allocation procedure for DCs,
but they neglect both the path allocation and the power
consumption of the network. Authors in [13] present two exact
algorithms for energy efficient VM scheduling. In [14], authors
suggest a heuristic optimization algorithm based on particle
swarm, but they suppose that the number of VM requests is
much lower than the number of physical servers, and they
disregard the power consumption of network devices. In [15],
two exact algorithms for energy-efficient scheduling of VMs
are compared, but all VMs have the same requirements, and
the network resources are not taken into account.

C. Power-aware dynamic allocators

The approach, presented in [16], manages dynamic resource
re-allocation in DCs using a multi-agent version of the fuzzy
controller. Only CPU and RAM are taken into account,
while disk and network requirements are neglected. Authors
present a dynamic allocator in [17] that neglects the power
consumption due to the networking devices. The allocator
presented in [18] dynamically allocates VMs putting in sleep
mode the underutilized servers. Finally, in [19], authors
describe a dynamic VM allocator addressing the problem of
energy-efficient task allocation in the system in the presence
of a time-varying grid energy price and the unpredictability
and time variation of provisioned power by renewable energy
sources, but they neglect the path allocation phase.

Our proposal is novel with respect to the reviewed ap-
proaches, because it:

• takes into account both computational and network re-
quirements;

• evaluates different allocation strategies either solving a
single-objective or a multi-objective optimization;

• compares the disjoint and the joint allocation strategies;
• optimizes the power consumption of network devices.

III. VIRTUAL MACHINE ALLOCATION

The main goal of the IT Resource Allocators (ITRA) is
to accept as many VM requests as possible, reducing at the
same time the network power consumption. Each VM request
is characterized by four parameters representing the peak
utilization of CPU, RAM, disk and bandwidth. The server
selection consists of the following steps:

1) Compute the candidate server list, i.e., the set of servers
with enough IT resources to satisfy the request:

a) if the list is empty, the request is rejected;
b) otherwise, go to next step.

2) Select the policy between:
a) Multi Resource Best Fit (BF) that strongly consol-

idates the system resource utilization choosing the
server that has the least resources availability;

b) Multi Resource Worst Fit (WF) that selects the
server having the highest resources availability, so
as to balance the load among all the available
servers.

3) Select the best server according to one of the possible
strategies:

a) disjoint or joint Analytic ITRA (described in Sec-
tion III-A);

b) disjoint or joint Fuzzy ITRA (described in Sec-
tion III-B);

c) disjoint or joint Multi-Objective Dynamic Alloca-
tor (MODA) (described in Section III-C).

The joint allocation strategies consider at the same time both
computational and network requirements to perform the allo-
cation of VMs. Instead, disjoint strategies split the allocation
procedure in two different steps:

1) choose the server where to allocate the VM evaluating
only the computational requirements rejecting the re-
quest if no server is available;

2) taking into account the bandwidth requirement, find the
minimum-cost path connecting the chosen server to the
gateway rejecting the request if no path is available.

ITRA associates the minimum-cost network path with each
available server when a new request comes, and it discards
servers that do not have enough resource nor at least an
available path. The cost of the path is computed as the amount
of power that will be consumed by the new network flow.
More clearly, ITRA allocates the network path minimizing
the increment of power consumption of the network devices.
We provide a more detailed view about the path allocation
procedure in Section IV.

For the sake of clarity, we summarize the symbols used in
Table I.

A. Analytic ITRA

Analytic ITRA (A-ITRA) computes for each candidate
server the A-ITRA Availability Index (IA) that takes into
account the availability of IT resources. The joint version of
the A-ITRA Availability Index is computed as follows:

IsA =
1

300
[CPUs + RAMs + DISKs] + α

PCs

PCM
(1)
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Fig. 1. IT Resource Allocator algorithm.

where
α =

{
−1 if WF is adopted;

1 if BF is adopted. (2)

The first component of IA represents the normalized avail-
ability of the system resources (by definition the three values
range from 0 to 100) and the second one is the normalized
path cost (i.e., PCs

PCM ). A-ITRA chooses the server minimizing
IA in case of BF, or the server maximizing IA in case of WF.
Note that different values of α are used since in both cases
the path cost must be minimized.

When we adopt the disjoint A-ITRA, we calculate the
Availability Index taking into account only the computational
resources:

IsA =
1

300
[CPUs + RAMs + DISKs] . (3)

As for the joint version, disjoint A-ITRA first chooses the
server minimizing or maximizing Is

A
when we respectively

adopt BF or WF. Next, it computes the minimum-cost path
towards the gateway, and associates it with the selected server.

B. Fuzzy IT Resource Allocator

Fuzzy Logic [20], [21] is a technique that deals with
uncertain, imprecise, or qualitative information, as well as with

precise information in systems which cannot be described by
a formal and analytically tractable mathematical model. In
Boolean logic, an element x can or cannot belong to a set
A with a membership degree respectively equal to 1 or 0.
Instead, in Fuzzy Logic, the membership degree of x to a fuzzy
set F has a value in a continuous interval between 0 and 1.
Fuzzy set theory allows an element to have partial membership
degree in one or more fuzzy sets. This membership degree is
obtained through membership functions that map elements into
the interval [0, 1].

Fuzzy Logic can be used for the design of control systems,
called Fuzzy Logic Controller (FLC). The core of the FLC
[22], [23] is the inference engine, whose role is to apply
the inference rules (IF-THEN rules) contained in the rule
base. IF-THEN rules are made by premises and conclusions,
and embody the system control strategies. Since fuzzy rules
use fuzzy sets and their associated membership functions to
describe system variables, two operations are necessary for
translations between conventional and fuzzy values: fuzzi-
fication and defuzzification. The former maps input values
into one or more fuzzy sets, the latter produces a single
conventional value that best represents the inferred fuzzy
values.
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TABLE I
MODEL PARAMETERS

Parameter Description

CPUs % of the s-th server free CPU after the place-
ment of the VM.

RAMs % of the s-th server free space in RAM after
the placement of the VM.

DISKs % of the s-th server free space in the storage
after the placement of the VM.

PCs Cost value of the minimum-cost path from
server s to the external gateway.

PCM Sum of the costs of all the links in the network.

I s
A

Availability index for the s-th server made by
A-ITRA.

I sF Availability index for the s-th server made by
F-ITRA.

f (x) Defuzzification method applied to the input
vector x.

N Number of servers.

More specifically, our FLC includes the following modules
(see [24] for more details):
• Inputs fuzzification: we defined four input fuzzy sets

(“Not available”, “Small”, “Medium”, and “Large”) and
their membership functions. Figure 2 shows an example:
while RAMs and DISKs are fuzzified in a single fuzzy set
(i.e., “Medium” for RAM and “Large” for DISK), CPU
belongs to two different sets with a certain probability
(0.7 in “Small” and 0.3 in “Medium”);

• Inference engine: we considered two different inference
processes:

1) Mandami (F-ITRA M), that uses the min operator;
2) Sugeno [25] (F-ITRA S), that applies both linear or

constant membership functions;
and six output sets, “Empty”, “Almost empty”,
“Medium”, “Almost full”, “Full” and “Not available”,
whose corresponding membership functions as depicted
in Figure 3;

• Defuzzification method, denoted with f , that computes
the center of gravity as defuzzification algorithm for the
aggregated fuzzy subset.

Similarly to A-ITRA, we use the FLC to compute the
F-ITRA Availability Index (IF ) for each server. We define
the joint and disjoint F-ITRA Availability Index in (4) and
(5) respectively assuming as values for α the ones reported
in (2). Analogously to A-ITRA, both disjoint and joint F-
ITRA choose the server maximizing or minimizing IsF each
in order when WF or BF is adopted. Moreover, disjoint F-
ITRA computes the minimum-cost path only when the server
is selected.

IsF = f (CPUs,RAMs,DISKs) + α
PCs

PCM
(4)

IsF = f (CPUs,RAMs,DISKs) (5)

40 60 80 10020

40 60 80 10020

40 60 80 10020

µA

µA

µA

Medium LargeNot Available Small

Medium LargeNot Available Small

Medium LargeNot Available Small

1

0.3

CPU  = 25s

RAM  = 40

DISK  = 80

s

s

0.7

1

Fig. 2. Inputs membership functions

Fig. 3. Inference process outputs fuzzy sets and their membership functions.

C. Multi-Objective Dynamic Allocator (MODA)

MODA allocates VMs using a technique based on the multi-
objective optimization: available resources are the objectives
that should be optimized all together. Solutions are not com-
parable among each others in a multi-objective computation,
so we use the concept of Pareto front [26] to deal with the
incommensurability of vector solutions.

If we consider two solutions s and t for a minimization
problem, and we associate a set of m objectives denoted with
f1, f2, . . . , fm, we say that s dominates t if an integer value
d exists such that:{

fd (s) < fd (t) 1 ≤ d ≤ m;
f l (s) ≤ f l (t) 1 ≤ l ≤ m ∧ l , d. (6)
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Solutions s and t are non-dominated if both s does not
dominate t and viceversa, and the set including all the non-
dominated solutions is called Pareto front. Within a Pareto
front, the solution that optimizes all the objectives at the same
time is called ideal vector [27].

MODA computes in multiple steps the allocation procedure;
when a new VM should be allocated, MODA creates a list of
servers able to fit the request. The difference between joint
and disjoint MODA concerns only the number of objectives
that should be optimized:
• disjoint MODA considers only CPUs , RAMs and DISKs ,

and it computes the minimum-cost path after the phase
of server selection;

• joint MODA considers CPUs , RAMs , DISKs and PCs ,
and it associates the minimum-cost path with each server
during the server selection phase.

Then, MODA computes the Pareto front for the current
allocation, and finally it chooses one of the possible allocations
according to the applied policy (i.e., BF or WF) and one of
the two possible strategies:

1) Choosing randomly one solution within the Pareto front
(MODA-R);

2) Normalizing all the objectives and taking the solution
that has the minimum distance from the ideal vector
(MODA-D).

The joint MODA solves the minimization problem described
in formula (7) when it adopts the BF policy:

minimize min
1≤s≤N

{CPUs, RAMs, DISKs, PCs }

subject to: 0 ≤ CPUs ≤ 100 1 ≤ s ≤ N
0 ≤ RAMs ≤ 100 1 ≤ s ≤ N
0 ≤ Disks ≤ 100 1 ≤ s ≤ N
0 ≤ PCs ≤ PCM 1 ≤ s ≤ N

(7)

The allocator maximizes instead the computing resources in
case we set the WF policy, but it still minimizes the path cost:

minimize min
1≤s≤N

{-CPUs, -RAMs, -DISKs, PCs }

subject to: 0 ≤ CPUs ≤ 100 1 ≤ s ≤ N
0 ≤ RAMs ≤ 100 1 ≤ s ≤ N
0 ≤ Disks ≤ 100 1 ≤ s ≤ N
0 ≤ PCs ≤ PCM 1 ≤ s ≤ N

(8)

As described above, disjoint MODA solves the same opti-
mization problems without considering PC and associating
the minimum-cost path only with the selected server.

IV. POWER CONSUMPTION AND NETWORK PATH
COMPUTATION

We adopt the power consumption model for switches pre-
sented in [28], whose parameters are summarized in Table II.

The power model for switches is:

Pswitch = Pchassis + n ∗ Plinecard +

n∑
i=1

Pload (i, r). (9)

We express an equivalent (and simplified) formulation of (9)
by grouping all the fixed terms and taking into account that the

TABLE II
NOTATION OF THE PARAMETERS RELATED TO POWER CONSUMPTION

Parameter Description

Pswitch the average power consumption of a single switch.

Pchassis the constant power consumed by chassis.

n the number of line cards in the switch.

Plinecard the fixed amount of power consumed by line cards.

Pload (i, r ) the power consumed by the i-th port while
transmitting at bit-rate r .

Pmax (i) Pload (i, r ) while transmitting at the maximum bit-rate.

Pf ix Pchassis + n ∗ Plinecard .

B(i) the bandwidth transmitted by the i-th line card.

Bmax (i) the maximum capacity of the i-th line card.

R
the bandwidth request of a new
(i.e., not allocated) VM.

w the link weight.

load-dependent power component. The power consumption is
linearly proportional to the transmission rate, as the authors
showed in [29], and we assumed that the line cards of a link
are active even when no packet is transmitted:

Pswitch = Pf ix +

n∑
i=1

B(i)
Bmax (i)

∗ Pmax (i). (10)

We might estimate the utilization values retrieving period-
ically the number of bytes transmitted by each link from the
SDN controller; then, we could be able to compute the average
bandwidth during the considered period [30]. After pruning the
links without enough available bandwidth, i.e.,

B(i) + R ≤ Bmax (i) (11)

we used the Dijkstra’s algorithm for minimizing power con-
sumption; for each line card, we set as weight the increment
of the power cost due to the transmission of the new flow.

wi =
R

Bmax (i)
∗ Pmax (i). (12)

In this analysis we considered only the power consumption
of network devices and we neglected the server consumption
because we supposed all the servers to be equal, and we
applied them the same consumption profile.

V. EXPERIMENTS AND RESULTS

We describe in this section two sets of experiments. In
Section V-B, we focus on power consumption and path allo-
cation algorithm comparing our power-aware path allocation
with the classical equal cost routing. Then, we evaluate the
power consumption of the networking devices. In the second
experiment, we analyze the performance of our allocators
in terms of accepted VMs; we describe this experiment in
Section V-C. At the end, we show the difference between the
joint and disjoint ITRAs.
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TABLE III
VM REQUEST PARAMETERS

Parameter Value
CPU percentage Uniformly distributed

in [10; 30]RAM percentage
Disk percentage

Bandwidth Uniformly distributed
in [100; 300]Mbps

TABLE IV
POWER CONSUMPTION AND NETWORK PARAMETERS

Parameter Value
Access switch Pf ix 160W

Access switch Pmax 200W
Aggregation switch Pf ix 2000WCore switch Pf ix

Aggregation switch Pmax 2500WCore switch Pmax

Server-Access link bw 1Gbps
Access-Aggregation link bw 10GbpsAggregation-Core link bw

In our experiments we use as baseline the simplest possible
allocation strategy named First Fit (FF) that allocates VMs
one by one on the first available server, and we execute 30
independent runs for each experiment.

A. Simulation scenario

The simulation scenario consists of 16 servers intercon-
nected through a three-tier fat tree network topology [31],
which is one of the most widely adopted topologies within
DCs [26]. Three-tier fat tree is structured in three different
layers: access, aggregation, and core. Access switch provides
connection to servers, and it is connected to a pair of ag-
gregation switches. Access switches provide connection to
servers and are connected to a pair of aggregation switches.
Servers and access switches connected to the same couple of
aggregation switches belong to the same pod. Core switches
guarantee connectivity between all the pods and the external
gateway. All the servers had the same hardware and they were
empty at the beginning.

In our experiments, we supposed that VMs remained active
until the end of the simulation. As already mentioned, VMs
are characterized by CPU, RAM, disk and bandwidth. The
values of such parameters are generated as described in
Table III, while the parameters related to power consumption
and network equipment are reported in Table IV.

B. Power-aware network path allocation

In this experiment, we evaluate the power efficiency of
our path allocation strategy. The only differences with re-
spect to the parameters reported in Table IV are the two
power consumption profiles for aggregation and core switches.
Within the same pod, the two aggregation switches have
different power profiles and both of them are connected to
the same number of less consuming and more consuming core
switches. The two profiles for aggregation and core switches
are shown in Table V. We generate 60 requests with the
parameters described in Table III, and we allocate them using

TABLE V
AGGREGATION AND CORE SWITCH POWER PROFILES

Profile Pf ix [W] Pmax [W]
First profile 2000 2500

Second profile 2500 5000
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−
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s
tr

a

Fig. 4. Power consumption after 60VM requests

the FF policy. More specifically, we adopted FF since we were
interested only in evaluating the behavior of the network path
allocator regardless the server placement strategy.

We use violin plots [32] to show the main statistical infor-
mation for our allocators. Violin plots represent the first and
the third quartiles as the extreme points of the bold line and
the median using a white dot, and they trace the probability
density function symmetrically at both sides of the plot. We
compare our power-aware network allocation strategy (PA-
Dijkstra) with the classic power-unaware equal cost path (PU-
Dijkstra) in Figure 4. The PA-Dijkstra saves on average around
1 kW with respect to the PU-Dijkstra. The amount of power
saved corresponds to the 3% of the total power consumption
due to all the switches.

C. Performance evaluation of the allocation strategies

We carried out two different experiments evaluating:
• the “steady state” of the system after 80 VMs, when on

average all the allocators saturate the available resources,
and new VM requests may not be allocated;

• the “transient state” of the system after 20, 40, and 60
VM requests.

In both the experiments we compared our joint with disjoint
allocators evaluating them in terms of accepted/rejected re-
quests. We used Matlab Simulink to perform our simulations,
doing 30 independent runs for each experiment.

As described above, we generated 80 VM requests in the
first experiment. Our purpose is to evaluate the steady state
of the system reducing the availability of many resources as
possible. In Figures 5 and 6 we show the results respec-
tively for joint and disjoint allocators using as metric the
number of rejected requests and the FF policy as comparison
term. Furthermore, we show in Table VI all the numerical
values related to each policy and allocation strategy. Joint
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TABLE VI
VMS ALLOCATED BY DISJOINT ALLOCATORS AFTER 80 REQUESTS

Joint Disjoint
Mean Std Dev Mean Std Dev

A-ITRA BF 66.38 1.76 63.10 11.56
A-ITRA WF 66.00 1.46 65.38 1.78

F-ITRA M BF 66.34 1.70 63.03 11.61
F-ITRA M WF 66.07 1.25 65.48 1.30
F-ITRA S BF 66.34 1.70 61.66 12.58
F-ITRA S WF 65.90 1.26 65.76 1.48
MODA-D BF 66.55 1.62 63.10 11.56
MODA-D WF 66.34 1.37 65.38 1.82
MODA-R BF 66.34 1.86 62.28 12.46
MODA-R WF 65.93 1.60 65.38 1.52

FF 66.41 1.64 61.72 12.70

TABLE VII
VMS ALLOCATED BY DISJOINT ALLOCATORS AFTER 60 REQUESTS

Joint Disjoint
Mean Std Dev Mean Std Dev

A-ITRA BF 60 0 52.62 10.38
A-ITRA WF 59.86 0.35 58.93 1.56

F-ITRA M BF 60 0 52.66 10.34
F-ITRA M WF 59.86 0.35 58.79 1.42
F-ITRA S BF 60 0 51.45 11.28
F-ITRA S WF 59.93 0.26 58.83 1.39
MODA-D BF 60 0 52.69 10.34
MODA-D WF 59.97 0.19 58.83 1.47
MODA-R BF 60 0 52.10 11.15
MODA-R WF 59.97 0.19 59.14 1.03

FF 60 0 51.62 11.23

allocators reach on average best results compared to the
disjoint approaches, and they also guarantee a lower standard
deviation. We underlined the two best possible mean and
standard variation values among all possible combinations.
All joint allocators are able to satisfy on average 66 requests
regardless the adopted policy or strategy. On the contrary, dis-
joint allocators decrease their effectiveness when BF policy is
adopted because the consolidation procedure quickly saturates
the bandwidth availability producing congestion at the higher
layers of the topology. Moreover, disjoint BF allocators have a
very high standard deviation because sometimes the network
path computation (performed only when the server is already
chosen) may fail, and the request may be blocked even if there
is enough available computational resources. Lastly, all the BF
allocators have a higher standard variation compared to the
corresponding WF ones, so WF allocators are usually more
stable. In the second experiment, we focused on the transient
phase inspecting the evolution of the system after steps of
20 allocation requests. We show the number of rejection after
20 and 40 VM requests respectively in Figures 7 and 8 for
the disjoint allocators. It is worth noting that joint allocators
do not reject any VM until the 40th request. After the 60th
request, BF joint allocators are still able to allocate all the
requests unlike disjoint and WF joint allocators. We show the
violin plots in Figures 9 and 10 and the numerical value in
Table VII.

Summarizing all the results, joint allocators perform always
equally to or better than the corresponding disjoint approach.
In the low load phase (i.e., when the DC is not overloaded),
BF joint allocators allocates all the requests, while WF ones
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Fig. 5. VMs allocated by joint allocators
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perform better during the high load phase. For what concerns
only disjoint allocators, WF policies reach results similar to
the joint ones, so we suggest to adopt WF policy in this case
choosing the allocation strategy according to the parameter
that preferably should be optimized (i.e., mean or standard
deviation of the allocated requests). In our scenario, all the
joint allocation strategies using the same policy (i.e., BF
or WF) obtained similar results with respect to the mean
and the standard deviation. The A-ITRA approach is the
least computational expensive, while the others increase their
complexity obtaining little improvements. However, all the
joint allocation strategies are valid alternatives to be adopted
in a real system. For what concerns the two policies, BF
groups all the VMs in the least number of servers, so it may
reduce the number of active computing devices; on the other
hand, BF quickly saturates the access network links. The WF
policy uses all the servers in the transient phase since it is
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Fig. 7. VMs rejected by the network after the 20th request
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Fig. 8. VMs rejected by the network after the 40th request

a load balancing policy and it less congests the network. We
suggest to adopt BF policy with a high oversubscription rate
between the network layers or when servers could be put in
sleep mode for power saving reason. On the contrary, we
strongly suggest to use the WF policy if the DC provider
prefers to leave all computing resources active and running,
or the oversubscription rate is low.

VI. CONCLUSION

In this paper we presented a set of power-aware dynamic
allocators for VMs that take into account CPU, RAM, disk
and bandwidth. We allocated all the network flows on the
the most power-efficient paths using a modified version of
the Dijkstra algorithm. We implemented two policies (i.e BF
and WF) and 10 allocation strategies, and we evaluated the
performance of our joint and disjoint allocators in terms of
number of accepted requests. Simulation results highlighted
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Fig. 9. Snapshot of the joint allocators after 60 requests
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Fig. 10. Snapshot of the disjoint allocators after 60 requests

that the modified version of Dijkstra allocated the network
flows reduced the consumption of 1kW (about 3.3% of the
total previous consumption) with respect to the classical equal
cost path allocation. For what regards the performance ex-
periments, joint allocators performed better than the disjoint
ones reaching a higher average acceptance rate and a lower
standard deviation. Results showed also a different behavior
between BF and WF allocators especially when we adopted
disjoint allocators: disjoint BF allocators reached higher values
of standard deviation because of the two-step allocation pro-
cedure that may reject VM requests during the second phase
due to the lack of network resources. Concerning the allocation
strategies, the joint version of BF MODA allocates more VMs
on average while the joint WF F-ITRA achieves the lowest
standard deviation. Lastly, A-ITRA represents the best choice
when the less CPU-intensive strategy is needed.
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