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Abstract

A ranked tree topology is a tree topology with a temporal ordering of its coalescence events. Under the
multispecies coalescent model, we consider ranked gene tree topologies realized along the branches of ranked
species trees, where one gene copy is sampled for each species. Previous results have demonstrated that for
almost all ranked species tree topologies with at least five species, there exists a set of branch lengths such
that the maximally probable ranked gene tree topologies—those generated with the highest probability under
the model—do not match the species tree ranked topology. Here, we focus on the agreement of a ranked
species tree with its maximally probable ranked gene tree topologies in terms of their unranked topology,
that is, disregarding the ordering of the coalescence events. We show that although the set of maximally
probable ranked gene tree topologies for a ranked species tree can contain ranked trees with different unranked
topologies, at least one of these maximal ranked gene tree topologies must have the same unranked topology as
the species tree. Our results contribute to the study of the relationships between gene trees and species trees.

Keywords Gene tree topologies · Phylogenetics · Species trees

Mathematics Subject Classification (2010) 05C05 · 92B10 · 92D15

1 Introduction

The description of evolutionary relationships among organisms using trees or networks is a central theme in
Biology. Gene trees represent the evolutionary relationships of a single genetic locus across a set of individuals
drawn from different species. Species trees describe the relationships among the populations or species from
which individuals are sampled. By making use of probabilistic models of sequence evolution (Felsenstein,
2004), phylogenetic methods enable the inference of gene trees. Species trees can be estimated from the
inferred gene trees by different methods. Some of these procedures reconstruct species trees by considering
only the topology—i.e. the branching pattern—of the observed gene trees (Degnan et al., 2009; Ewing et al.,
2008; Liu et al., 2009; Maddison and Knowles, 2006; Than and Nakhleh, 2009; Wu, 2012). Some others rely on
the knowledge of both the topology and branch lengths of gene trees (Heled and Drummond, 2010; Kubatko
et al., 2009; Liu and Pearl, 2007; Liu and Yu, 2011; Liu et al., 2010; Mossel and Roch, 2010).

Intermediate between these two approaches is the use of ranked topologies for representing gene trees.
Ranked gene tree topologies have been introduced by Degnan et al. (2012b) as tree structures that keep track
of both the gene tree topology and the relative order (1st, 2nd, and so on) with which the coalescence events
occur in the gene tree. More precisely, seen as purely combinatorial object, a ranked tree topology is a leaf
labeled tree topology together with a linear ordering—a ranking—of its internal nodes. In particular, the
ranked tree topology of a species tree has the ranking of its internal nodes naturally induced by the set of
branch lengths of the tree.

The variety of ranked gene tree topologies observed at different loci represents an important source of
information that needs to be analyzed in order to provide accurate species tree estimates. A key tool is a proper
modeling of the evolution of gene trees. The multispecies coalescent model (Degnan and Rosenberg, 2009;
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Degnan and Salter, 2005; Hudson, 1983; Maddison, 1997; Pamilo and Nei, 1988; Rosenberg, 2002) simulates the
descent of genealogical lineages along the branches of a species tree, enabling the calculation of the conditional
probability of a ranked gene tree topology (Degnan et al., 2012b; Stadler and Degnan, 2012). Under this model,
Degnan et al. (2012b) have demonstrated the existence of anomalous ranked gene tree topologies: ranked gene
tree topologies whose probability is larger than that of the ranked gene tree topology that matches the ranked
topology of the species tree. In other words, the ranked topology of a species tree that produces anomalous
ranked gene tree topologies does not agree with the most likely ranked gene tree topology. Furthermore, since
almost all ranked species tree topologies with at least five species produce anomalous ranked gene tree topologies
(Degnan et al., 2012a; Disanto and Rosenberg, 2014), the “democratic vote” procedure of estimating the species
tree ranked topology as the ranked topology of the most frequently observed ranked gene tree topology may
often converge on the wrong species tree ranked topology, as the number of considered loci increases.

Although the most frequent ranked gene tree topology does not in general characterize the species tree
ranked topology, it could still provide important information on the unranked topology of the species tree, that
is, on the species tree topology obtained by disregarding the ordering of the internal nodes. In order to explore
this possibility, Degnan et al. (2012a, 2012b) further studied the relationships between anomalous ranked gene
tree topologies and species trees in terms of their unranked topology—where, in general, the unranked topology
of an anomalous ranked gene tree topology can be either matching or not that of the species tree. In particular,
they demonstrated that, under fairly general hypotheses, anomalous ranked gene tree topologies exist that differ
from the species tree in the unranked topology (Degnan et al. (2012a), Section 4.2), and asked whether every
species tree has its unranked topology matching that of the most probable ranked gene tree topologies (Degnan
et al. (2012a), Section 5). If true, the latter property could assist in designing inference procedures from ranked
gene tree topologies. For instance, knowing that the species tree has the unranked topology of one of the most
frequently observed ranked gene tree topologies would allow to restrict the tree space in which we search for a
species tree estimate by considering only those unranked tree topologies underlying the most frequent ranked
gene tree topologies.

Here, we answer the question raised by Degnan et al. (2012a), considering ranked gene tree topologies
realized in species trees under the multispecies coalescent, when exactly one gene copy is sampled for each
species. By following the approach introduced by Degnan et al. (2012b) for calculating ranked gene tree
probabilities, we prove that among the ranked gene tree topologies that are maximally probable for a species
tree S, there is always at least one with the same unranked topology of S. In other words, if anomalous ranked
gene tree topologies exist for S, then there is an anomalous ranked gene tree topology of maximal probability
that disagrees with S only in the ranking of its unranked topology, which is exactly that of S.

Moreover, we also demonstrate that in general the set of maximally probable ranked gene tree topologies
for a given species tree can contain trees with different unranked topologies. Indeed, we exhibit a species
tree with 7 taxa for which there exists a ranked gene tree topology of the same size with maximal probability
and non-matching unranked topology. Hence, this shows that not all ranked gene tree topologies of maximal
probability need to share their unranked topology with the species tree.

Our theoretical results contribute to the study of the inference of species trees from gene tree topologies.
In particular, because the unranked topology of a species tree can often disagree with the most likely unranked
gene tree topologies (Degnan and Rosenberg, 2006), the existence for every species tree of a maximally probable
ranked gene tree topology with a matching unranked topology suggests that, in inferring the unranked topology
of a species tree, methods based on ranked gene trees might provide better estimates than methods that use
unranked gene trees.

2 Preliminaries

We start by introducing some notation (Table 1) and preliminary results that will be used in the rest of the
paper. In Section 2.1, we give some basic tree terminology. Section 2.2 focuses on algorithmic aspects of the
computation of ranked gene tree probabilities.
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Table 1: Main notation used in the paper

Symbol Meaning Symbol Meaning

tℓ / tr The left/right root subtree of a planar mi(h) The number of coalescences of G

representation of a tree t occurring in ith time interval of S

[t] The unranked topology kijz(G, h) The number of lineages that exist on the zth

of a ranked branch-zone of the ith time interval of S right after

tree topology t the jth coalescence of G occurring in that interval

G The ranked topology Gs The set of maximally probable ranked

of a gene tree gene tree topologies for S

γi The internal node of rank i in G Gi The subtree of G rooted at γi

S The ranked topology of a species tree S|g The smallest subtree of S containing

together with lengths for its time intervals a subtree g of G

H(G,S) The set of ranked histories h i∗ The maximum index i

possible for G in S such that [Gi] 6= [S|Gi
]

h∗ The maximal ranked history in H(G,S) α The branch of S that coalesces with

with respect to the lexicographic order the root branch of S|(Gi∗)ℓ

ti The length of the time interval β A point on G contemporary with γi∗ and

with exactly i branches of S such that all descending taxa are below α

A B C D EA B C D EA B C D E
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Figure 1: The three ranked tree topologies with unranked topology ((A,B), (C, (D,E))).

2.1 Ranked gene tree topologies, ranked species trees, and ranked histories

We recall from Degnan et al. (2012b) the definition of ranked gene tree topology, ranked species tree, and
ranked history.

A ranked tree topology t (or ranked tree for short) of size |t| = n is a full binary rooted tree with n labeled
terminal nodes, also called the leaves or the taxa of t, and 2n− 1 nodes in total. The n− 1 internal nodes of t
are bijectively associated with a number in {1, 2, ..., n−1} so that each path from the root of t to a leaf contains
an increasing sequence of numbers (Fig. 1). The number of ranked trees of size n is given by [(n− 1)!n!]/2n−1

(Rosenberg, 2006). Ranked tree topologies can be represented in Newick format—e.g. ((A,B)4, (C, (D,E)3)2)1
for the leftmost tree in Fig. 1—with a subscript for each closed parenthesis that determines the ranking of the
associated internal node.

A ranked tree t has its unranked topology [t] obtained by ignoring the ordering of its internal nodes, while
keeping the labeling of the taxa. Hence, different ranked trees can share the same unranked topology (Fig. 1).
The number of possible unranked topologies with n ≥ 2 taxa is given by (2n−3)!! = (2n−3)×(2n−5)×· · ·×1
(Rosenberg, 2006).

A ranked gene tree topology G is a ranked tree in which leaf labels denote different gene copies, whereas the
ranking of the internal nodes gives a time ordering of the coalescence events occurring along the branches of
the tree looking forward in time. The internal node of G with rank i is denoted by γi. The most recent internal
node is thus γn−1, when |G| = n. A gene lineage (or lineage for short) of G is a branch of G connecting two
nodes, where the term “node” refers to both internal and terminal nodes of G.

A ranked species tree S of size n consists of a ranked tree topology together with a vector of positive real
numbers (ti) ≡ (ti)i ≡ (t1, t2, ..., tn−1), where ti > 0 measures the length of the interval in which exactly i
branches of S coexist (Fig. 2). Interval length is measured in coalescent units of time, where we assume t1 to
be infinite (t1 = ∞). We will often refer to the length ti of the ith time interval of S as a symbolic variable,
without explicitly assigning to it a numerical value.

A branch of a ranked species tree S connects two adjacent nodes of S, which can be both internal or one
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Figure 2: A realization of the ranked gene tree topology G = ((A,B)3, (C, (D,E)4)2)1 in the ranked species tree S (thicker

tree) with ranked topology ((A,B)4, (C, (D,E)3)2)1 and length ti for the ith time interval. The ranked history associated

with the depicted realization of G in S is the maximal ranked history h∗ = (1, 2, 3, 3) of the set H(G,S) given in (1).

terminal and one internal. A branch-zone of S is a part of a branch of S that intersects a given time interval of
S. For instance, in the ranked species tree S of Fig. 2, the branch that connects the root node of the subtree
(A,B) with the root of S is divided into three branch-zones, one for each time interval of S different from
the first. The branch that connects the root node of the subtree (D,E) with the root node of the subtree
(C, (D,E)) consists instead of exactly one branch-zone, as it intersects only the third time interval of S. The
ith time interval of S intersects exactly i branch-zones of S that, for a given planar representation of S, can be
ordered from left to right: the first branch-zone is the leftmost one, while the ith branch-zone is the rightmost
one (Fig. 2).

Treating a ranked species tree S as a fixed parameter, in this paper we study probabilistic properties of
random ranked gene tree topologies realized along the branches of S, when exactly one gene copy is sampled
for each species (Fig. 2). Thus, each ranked gene tree topology G for S is assumed to have the same size and
the same set of taxa of S.

Given a ranked species tree S of size n and a ranked gene tree topology G for S, a ranked history h of
G in S is a (n − 1)-tuple h = (h1, h2, ..., hn−1) of integers representing one of the possible combinatorially
different evolutionary scenarios of G realized along the branches of S. More precisely, h encodes the realization
of G in S in which the coalescence event of G with rank i occurs in the hith time interval of S. For example,
h = (1, 1, ..., 1) corresponds to the realization of G in the root branch of S. We denote by H(G,S) the set of
ranked histories of G in S. For the ranked gene tree topology G and the ranked species tree S depicted in
Fig. 2, the set H(G,S) is given by

{(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 3), (1, 1, 3, 3), (1, 2, 2, 2), (1, 2, 2, 3), (1, 2, 3, 3) ≡ h∗}, (1)

where the maximal ranked history with respect to the lexicographic order is denoted by h∗ and it corresponds
to the realization depicted in Fig. 2.

As it can be observed from the list given in (1), the ranked histories of a ranked gene tree topology G in a
ranked species tree S of size n can be characterized through the maximal ranked history h∗ = (h∗

1, h
∗
2, ..., h

∗
n−1)

of G in S as the (n−1)-tuples of integers (h1, h2, ..., hn−1) that satisfy the following two conditions: (i) h1 = 1,
and (ii) hi−1 ≤ hi ≤ h∗

i for 2 ≤ i ≤ n− 1. Indeed, h∗
i corresponds to the index of the most recent time interval

of S in which the coalescence event γi of G can occur. From the maximal ranked history h∗ of G in S the
entire set H(G,S) can thus be determined.

2.2 Calculation of the conditional probability of a ranked gene tree topology

For a fixed ranked species tree S of size n, the conditional probability Prob(G|S) of a ranked gene tree topology
G can be calculated under the multispecies coalescent model (Degnan and Rosenberg, 2009; Degnan and Salter,
2005; Hudson, 1983; Maddison, 1997; Pamilo and Nei, 1988; Rosenberg, 2002) by following the approach
described by Degnan et al. (2012b). In particular, in Eq. (11) of Degnan et al. (2012b) the probability of G is
computed by summing the probabilities of the combinatorially different realizations of G in S encoded by the
ranked histories of G in S, that is,

Prob(G|S) =
∑

h∈H(G,S)

Prob(G&h|S). (2)
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In turn, for each ranked history h ∈ H(G,S), Prob(G&h|S) is calculated in Eqs. (9) and (10) of Degnan
et al. (2012b) as a probability function of the quantities (ti), i.e. the lengths of the time intervals of S, and
(mi) ≡ (mi)i and (ki,j,z) ≡ (ki,j,z)i,j,z, which are defined as follows:

- mi = mi(h) denotes, for 1 ≤ i ≤ n− 1, the number of coalescence events of G that occur in the ith time
interval of S or, in other words, the number of entries i in h. In Fig. 2, m1 = 1,m2 = 1,m3 = 2, and
m4 = 0.

- ki,j,z = ki,j,z(G, h) denotes, for 1 ≤ i ≤ n − 1, 0 ≤ j ≤ mi, and 1 ≤ z ≤ i, the number of gene lineages
present on the zth branch-zone of the ith time interval of S just after the jth coalescence event of G
occurring in that time interval. In Fig. 2, we have k1,1,1 = 2, k2,1,1 = 1, k2,1,2 = 2, k3,1,1 = 2, k3,1,2 =
1, k3,1,3 = 1, k3,2,1 = 2, k3,2,2 = 1, and k3,2,3 = 2. For example, looking at the 3rd time interval of
the species tree in the figure, we find k3,1,1 = 2 as right after the 1st coalescence event γ3 there are
2 gene lineages in the 1st (leftmost) branch-zone of the interval. Similarly, k3,1,2 = 1 and k3,1,3 = 1,
because right after γ3 the 2nd (middle) and the 3rd (rightmost) branch-zone of the interval contain
exactly 1 gene lineage. The 2nd coalescence event of G that occurs in the 3rd interval of S is γ4, where
k3,2,1 = 2, k3,2,2 = 1, and k3,2,3 = 2. Note that ki,0,z has to be interpreted as the number of gene lineages
entering the zth branch-zone of S at the boundary of the (i− 1)th and ith time interval of S. In Fig. 2,
k1,0,1 = 1, k2,0,1 = 1, k2,0,2 = 1, k3,0,1 = 1, k3,0,2 = 1, k3,0,3 = 1, k4,0,1 = 2, k4,0,2 = 1, k4,0,3 = 1, and
k4,0,4 = 1.

In symbols, we write
Prob(G&h|S) = P

(

(ti), (mi), (ki,j,z)
)

(3)

to indicate that the probability Prob(G&h|S) of G realized in S according to the ranked history h is completely
determined by the values of (ti), (mi), and (ki,j,z).

We have implemented the procedure described by Degnan et al. (2012b) for evaluating ranked gene tree
probabilities in a software RGTProb available at https://github.com/PasqM/RGTProb. This program enables
the symbolic calculation of the conditional probability (2) as a function of the lengths (ti) of the time intervals
of S considered as variables. In its current version, it consists of a Python script that outputs a Mathematica
file with an explicit probability formula. For instance, for the ranked gene tree topology G and the ranked
species tree S depicted in Fig. 2, our software computes the conditional probability of G given S as

Prob(G|S) =
1

180
e
−t4 e

−2t3 e
−4t2 +

1

18
e
−t4 e

−2t3

(

e−2t2

2
−

e−4t2

2

)

+
1

18
e
−t4 (e

−t3 − e
−2t3 ) e

−2t2 (4)

+
1

3
e
−t4 e

−2t3

(

e−t2

3
−

e−2t2

2
+

e−4t2

6

)

+
1

3
e
−t4 (e

−t3 − e
−2t3 ) (e

−t2 − e
−2t2 )

+
1

3
e
−t4

(

1

2
− e

−t3 +
e−2t3

2

)

e
−t2 + e

−t4 e
−2t3

(

1

8
−

e−t2

3
+

e−2t2

4
−

e−4t2

24

)

+ e
−t4 (e

−t3 − e
−2t3 )

(

1

2
− e

−t2 +
e−2t2

2

)

+ e
−t4

(

1

2
− e

−t3 +
e−2t3

2

)

(1 − e
−t2 )

=
1

360
e
−4t2−2t3−t4

(

−40 e
2t2 + 40 e

3t2 + 45 e
4t2 + 80 e

2t2+t3 − 180 e
4t2+t3 − 120 e

3t2+2t3 + 180 e
4t2+2t3 − 3

)

,

where the ith summand (1 ≤ i ≤ 9) in Eq. (4) yields the probability of the ith ranked history of G in S listed
in (1).

Note that the nine summands present in Eq. (4) match the entries of the second column of Table 4 in
Degnan et al. (2012b), where the authors express the probabilities of the ranked histories of G in S in terms
of the function gi,j(t) that calculates the probability that i lineages coalesce to j ≤ i lineages during time t.
Moreover, we have also verified that RGTProb gives correct results when used for evaluating unranked gene tree
probabilities by summing ranked gene tree probabilities. For example, when S is the ranked species tree with
ranked topology ((A, (B,C)4)2, ((D,E)5, (F,G)6)3)1 and interval lengths (t2, t3, t4, t5, t6), the probability of the
unranked gene tree topology T = ((A,B), (C, ((D,F ), (E,G)))) can be obtained by summing the probabilities
of the ten ranked gene tree topologies with unranked topology T :

((A,B)2, (C, ((D,F )5, (E,G)6)4)3)1, ((A,B)2, (C, ((D,F )6, (E,G)5)4)3)1,

((A,B)3, (C, ((D,F )5, (E,G)6)4)2)1, ((A,B)3, (C, ((D,F )6, (E,G)5)4)2)1,

((A,B)4, (C, ((D,F )5, (E,G)6)3)2)1, ((A,B)4, (C, ((D,F )6, (E,G)5)3)2)1,

((A,B)5, (C, ((D,F )4, (E,G)6)3)2)1, ((A,B)5, (C, ((D,F )6, (E,G)4)3)2)1,

((A,B)6, (C, ((D,F )4, (E,G)5)3)2)1, ((A,B)6, (C, ((D,F )5, (E,G)4)3)2)1.
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By using RGTProb for calculating these ten probabilities, and then substituting t2 = t4 = 1 and t3 = t5 = t6 = 0
in the resulting formula for Prob(T |S), we recover the value 0.000154... reported by Degnan and Salter (2005)
at the bottom of the third column of their Table 1. Indeed, in their setting, the same numerical value yields
the conditional probability of the unranked topology T—depicted in their Fig. 1(b) and (d)—when the species
tree is characterized by having unranked topology [S]—depicted in their Fig. 1(a) and (c)—and all internal
branches of length 1.

Besides being of interest from an algorithmic point of view, Eqs. (2) and (3) yield the following lemma,
which will be used in the next section to derive our main result.

Lemma 1 Let S be a ranked species tree, and let G1 and G2 be two ranked gene tree topologies for S such that
(i) H(G1, S) ⊆ H(G2, S), and (ii) for each h ∈ H(G1, S), ki,j,z(G1, h) = ki,j,z(G2, h) for all possible choices
of the indices i, j, z. Then we have Prob(G1|S) ≤ Prob(G2|S). Furthermore, if H(G1, S) = H(G2, S) in (i),
then from condition (ii) it follows that Prob(G1|S) = Prob(G2|S).

Proof. If conditons (i) and (ii) are both satisfied, then for every h ∈ H(G1, S)—where h is a ranked history of
G2 in S as well—we have Prob(G1 &h|S) = Prob(G2 &h|S) as it follows from Eq. (3). Hence, from Eq. (2),
we obtain Prob(G1|S) < Prob(G2|S) when H(G1, S) ⊂ H(G2, S), whereas Prob(G1|S) = Prob(G2|S) when
we have the equality H(G1, S) = H(G2, S). �

3 Results

For a given ranked species tree S, let GS be the set of ranked gene tree topologies that are maximally probable
for S. In other words, if G ∈ GS , then Prob(G|S) ≥ Prob(G|S) for all ranked gene tree topologies G that can
be realized in S by sampling one gene per species. Note that the set GS depends in general on the numerical
values of the lengths (ti) of the time intervals of S.

Here, we show two facts. First, in Section 3.1, we demonstrate that, for every ranked species tree S,
there exists G ∈ GS such that [G] = [S]. Second, in Section 3.2, we identify a ranked species tree S for
which the set GS contains a ranked gene tree topology G such that [G] 6= [S]. Thus, in general, the set GS

of maximally probable ranked gene tree topologies for a ranked species tree S can contain ranked trees with
different unranked topologies, but at least one of these ranked trees must have the same unranked topology
of S.

3.1 Every S has a maximally probable ranked gene tree topology G with [G] = [S]

In order to prove that for every ranked species tree S the set GS contains a tree with the same unranked
topology of S, we describe a procedure that, given a ranked species tree S and a ranked gene tree topology G
for S, constructs a ranked gene tree topology G∗ such that [G∗] = [S] and Prob(G∗|S) ≥ Prob(G|S). The idea
is to obtain G∗ from G by iteratively applying a tree operator (·)′ to produce a finite sequence of ranked gene
tree topologies of non-decreasing probability,

G ≡ G(0), G(1), ..., G(r), G(r+1), ..., G(q−1), G(q) ≡ G∗, (5)

in which G(r+1) ≡
(

G(r)
)′

and, for a certain index q, [G∗] = [G(q)] = [S] (Fig. 3).
In Section 3.1.1, we define the tree operator (·)′ by showing how the output ranked gene tree topology G′

is built from a given input ranked gene tree topology G such that [G] 6= [S]. In other words, we show how to
obtain G(r+1) from G(r) in (5) if [G(r)] 6= [S]. In Section 3.1.2, we describe some key features of the introduced
tree operator that lead to the proof of our main result.

3.1.1 Construction of G′ from G when [G] 6= [S]

Fix a ranked species tree S. The tree operator (·)′ that we introduce in this section outputs a ranked gene tree
topology G′ for S starting from a ranked gene tree topolgy G for S such that [G] 6= [S]. In order to describe
the construction of G′, we first need some definitions and notation.

For a given planar representation of a ranked tree t, let tleft and tright (or tℓ and tr for short) denote the
left and right root subtree of t, respectively. If t is any tree in Fig. 1, then tℓ has its set of taxa given by
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Figure 3: Application of the operator (·)′. For a fixed ranked species S tree with ranked topology ((((A,B)4, C)3, D)2, E)1,

we consider the ranked gene tree topology G(0) ≡ G = (A, ((B, (C,D)4)3, E)2)1 realized in S as in A. Starting from G(0), we

iteratively apply the tree operator (·)′ described in the text finding a sequence G(1) ≡ (G(0))′, G(2) ≡ (G(1))′, G(3) ≡ (G(2))′,

and G∗ ≡ G(4) ≡ (G(3))′ of ranked gene tree topologies represented at the bottom of panels B, C, D, and E, respectively,

and realized in S as depicted at the top of each panel. The sequence ends with G∗ ≡ G(4) as [G(4)] = [S].

{A,B}, while (tℓ)ℓ consists of the taxon A. Given a ranked gene tree topology G for S, Gi is the subtree of G
containing the internal node γi of rank i in G and all the nodes descending from it. Given a subtree g of G,
S|g is the smallest subtree of S that contains all the taxa present in g. In particular, if g consists of a single
labeled taxon τ of G, then S|g = τ , whereas if g has size larger than one, then the root of S|g is the internal
node of largest rank in the ranked topology of S whose set of descending taxa contains the taxa present in g.
Finally, if [G] 6= [S], then we define

i∗ = i∗(G) = max{i : [Gi] 6= [S|Gi
]}, (6)

that is, i∗ is the maximum index 1 ≤ i ≤ |G| − 1 such that Gi and S|Gi
have a different unranked topology. In

Fig. 3A, the white node of the ranked gene tree topology G realized inside the ranked species tree S corresponds
to the node γi∗ , where {C,D} is the set of taxa of Gi∗ and {A,B,C,D} is the set of taxa of S|Gi∗

.
Observe that if S and G are such that [G] 6= [S], then the set of taxa of S|Gi∗

strictly contains the set of
taxa of Gi∗ . Indeed, from Eq. (6) every proper subtree g of Gi∗ is such that [g] = [S|g]. Hence, if S|Gi∗

and Gi∗

were defined over the same set of taxa, then we would have [Gi∗ ] = [S|Gi∗
] in contrast with Eq. (6). Without

loss of generality, we can thus assume that

{taxa of
(

S|Gi∗

)

ℓ
} * {taxa of Gi∗}. (7)

For instance, in Fig. 3A the taxa of Gi∗ are C and D, whereas {A,B,C} is the set of taxa of
(

S|Gi∗

)

ℓ
.

Starting from a ranked gene tree topology G such that [G] 6= [S], we now describe how G is transformed
into the ranked gene tree topology G′. To better follow the steps of the procedure, it is important that we fix a
planar representation of the ranked species tree S and consider G realized in S according to one of the ranked
histories of G in S. For instance, one can take the realization of G in S associated with the maximal ranked
history ofH(G,S) (Fig. 3A). The construction of G′ from G proceeds by the following three steps (Fig. 3 and 4):

(i) Locate the branch α of S that coalesces with the root branch of S|(Gi∗ )ℓ , where the left/right orientation
of Gi∗ is induced by the orientation chosen for S by defining (Gi∗)ℓ as the root subtree of Gi∗ that
contains those taxa of Gi∗ that belong to

(

S|Gi∗

)

ℓ
. As an example, consider the ranked species tree S

and ranked gene tree topology G depicted at the top of panel A in Fig. 3. Gi∗ is the subtree of G rooted
at the white node γi∗ . S|Gi∗

has set of taxa {A,B,C,D}, with ((A,B), C) being its left root subtree
(S|Gi∗

)ℓ. Hence, (Gi∗)ℓ has its set of taxa given by {C}, from which we obtain that S|(Gi∗ )ℓ consists only
of the taxon C. The branch α that coalesces with the root branch of S|(Gi∗ )ℓ = C is therefore the (grey)
branch of S that connects the root node of the clade (A,B) with the root node of the clade ((A,B), C).
In each panel of Fig. 3 as well as in Fig. 4, α is depicted as the grey branch of the ranked species tree.
Note that from Eq. (6) we have [S|(Gi∗ )ℓ ] = [(Gi∗)ℓ]. By Eq. (7) it thus follows that S|(Gi∗ )ℓ is properly

contained in
(

S|Gi∗

)

ℓ
, and therefore α must be a branch of

(

S|Gi∗

)

ℓ
(Fig. 3 and 4).
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(S|Gi∗
)ℓ

S|(Gi∗)ℓ

γi∗β

α

Figure 4: Schematic illustration of the node γi∗ of G (white node), the branch α of S (grey branch), and the point β on

G (white square) used for constructing the ranked gene tree topology G′ from G. For obtaining G′, we let the root lineage

of (Gi∗)ℓ join the point β instead of coalescing with the root lineage of (Gi∗)r.

(ii) Identify a point β 6= γi∗ on a lineage of G such that β is contemporary with—at the same height of—γi∗

with respect to the considered realization of G in S and all the taxa descending from β are below the
branch α of S determined in step (i). In Fig. 3 and 4, the white square indicates possible choices for the
point β contemporary with γi∗ , the latter being represented by the white node in the figure. A proof of
the existence of such a β is given in the Appendix.

(iii) Define G′ by letting the root lineage of (Gi∗)ℓ join the point β of G found in step (ii), instead of coalescing
with the root lineage of (Gi∗)r. In doing so, we replace the internal node γi∗ of G with an internal node
of the same rank in G′ placed at the position determined by the point β of G and whose set of descending
taxa consists of the taxa of (Gi∗)ℓ and the taxa descending from β in G. In the sequence of ranked
gene tree topologies (G(r))r = (G(0), G(1), G(2), G(3)) depicted at the bottom of panels A, B, C, and D
of Fig. 3, the arrow connects the root lineage of

(

(G(r))i∗
)

ℓ
to the point β (white square) indicating the

coalescence event that in G(r+1) ≡ (G(r))′ replaces the node γi∗ of G(r) (white node). In general, we
observe that as depicted in Fig. 4 the taxa of (Gi∗)ℓ and those descending from β all belong to

(

S|Gi∗

)

ℓ
.

Thus, S|(G′)i∗—where i∗ = i∗(G)—must be a (not necessarily proper) subtree of
(

S|Gi∗

)

ℓ
(Fig. 4).

Remark. It is important to observe that the described construction of the ranked gene tree topology G′ depends
only on G and S as ranked topologies. In particular, considering different realizations of G in S does not affect
the output ranked topology G′. However, note that when the tree operator (·)′ is applied to two different
realizations of G in S, the resulting realizations of G′ in S are different. More precisely, as detailed in the proof
of the next lemma, if we start from a realization of G in S associated with a ranked history h ∈ H(G,S), then
the resulting realization of G′ in S is associated with a ranked history h′ ∈ H(G′, S) such that h = h′. For
example, in Fig. 3A the ranked gene tree topology G is realized according to the ranked history (1, 1, 2, 2). By
iteratively applying the tree operator (·)′, the resulting ranked histories of G(1), G(2), G(3), and G(4) remain
equal to the starting ranked history (1, 1, 2, 2) chosen for G.

3.1.2 The probability of G′ and the existence of G∗

We describe some important features (Lemma 2 and 3) of the tree operator introduced in the previous section,
and use them for proving that the set GS of maximally probable ranked gene tree topologies of a ranked species
tree S contains at least one element with the same unranked topology of S (Theorem 1).

Lemma 2 Let S be a ranked species tree, and let G be a ranked gene tree topology for S such that [G] 6= [S].
Then Prob(G|S) ≤ Prob(G′|S). Furthermore, if H(G,S) = H(G′, S), then Prob(G|S) = Prob(G′|S).

Proof. Fix an arbitrary ranked history h ∈ H(G,S) and consider G realized in S according to h (e.g. Fig. 3A).
Consider the point β of G defined in step (ii) of the construction of G′ from G. Note that β must belong to
the same branch b of S that contains the node γi∗ of G. Indeed, since γi∗ is in b, then b has to be ancestral
or equal to the root branch of S|Gi∗

, which is in turn ancestral to α as this is a branch of (S|Gi∗
)ℓ (step (i)
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of Section 3.1.1). Thus, b is ancestral to α in S. Therefore, any point of G contemporary with γi∗ in S that
is not located in the branch b of S cannot have descending lineages passing through α. By definition, β is
contemporary with γi∗ in S with descending taxa below α. Hence, β must be in b.

Because γi∗ and β have the same height in S and belong to the same branch b of S, when we apply the
operator (·)′ to the realization of G in S associated with h, the resulting realization of G′ in S is associated
with a ranked history h′ such that mi(h) = mi(h

′) and ki,j,z(G, h) = ki,j,z(G
′, h′) for all possible indices i, j, z.

Indeed, the third step of the construction of G′ acts inside that branch-zone of S where the branch b intersects
the time interval of S in which γi∗ occurs, replacing the coalescence event γi∗ of G with a contemporary
coalescence event that takes place at the position determined by the point β (Fig. 3). This replacement does
not alter either the number of coalescence events happening in the different time intervals of S or the number
of gene lineages present in the different branch-zones of S after each coalescence event (Fig. 3). In particular,
observe that h′ = h as mi(h) = mi(h

′) for all possible values of i.
The same argument applied to all the ranked histories h of the ranked gene tree topology G shows that G

and the ranked gene tree topology G′ satisfy the hypothesis (i) and (ii) of Lemma 1 with G1 ≡ G and G2 ≡ G′,
from which Prob(G|S) ≤ Prob(G′|S). Moreover, if H(G,S) = H(G′, S), then by the same Lemma 1 we obtain
Prob(G|S) = Prob(G′|S). �

Remark. From the proof of the previous lemma, we see that the property of G′ of having at least the same
probability as G—or exactly the probability of G when H(G,S) = H(G′, S)—depends only on the ranked
topology of S. In other words, we have Prob(G|S) ≤ Prob(G′|S)—or Prob(G|S) = Prob(G′, S)—for all
possible numerical values of the lengths (ti) of the time intervals of S. For instance, let us consider the ranked
species tree S and the ranked gene tree topologies G(1) and G(2) depicted in Fig. 3B and C. We use our software
RGTProb for calculating the conditional probability Prob(G(1)|S) and Prob(G(2)|S) as a symbolic function of
the lengths t2, t3, and t4 of the time intervals of S. Subtracting the first probability from the second yields
Prob(G(2)|S) − Prob(G(1)|S) = 1

18 e
−3t2−t3−t4(3 e2 t2 − 2)(et4 − 1), which is larger than or equal to 0 for all

values of t2, t3, t4.

We now show that, starting from a ranked gene tree topology G such that [G] 6= [S], the iterative appli-
cation (5) of the tree operator (·)′ yields, at some point, a ranked gene tree topology with the same unranked
topology of S. We need two preliminary observations.

First, note that
i∗(G′) ≤ i∗(G). (8)

Indeed, in G′ all subtrees generated by a node whose rank is strictly larger than i∗(G) are left as in G, that is,
(G′)i = Gi for all i > i∗(G). In Fig. 3, we have

(

i∗(G(0)), i∗(G(1)), i∗(G(2)), i∗(G(3))
)

= (4, 4, 3, 2), which also
shows that i∗(G′) can be equal to i∗(G).

Second, as noticed in step (iii) of Section 3.1.1, S|(G′)i∗(G)
is contained in

(

S|Gi∗(G)

)

ℓ
, from which

|S|(G′)i∗(G)
| < |S|Gi∗(G)

|. (9)

For example, in Fig. 3 we have |S|(G(1))
i∗(G(0))

| = 3 < 4 = |S|(G(0))
i∗(G(0))

|, |S|(G(2))
i∗(G(1))

| = 2 < 3 =

|S|(G(1))
i∗(G(1))

|, |S|(G(3))
i∗(G(2))

| = 3 < 4 = |S|(G(2))
i∗(G(2))

|, and |S|(G(4))
i∗(G(3))

| = 4 < 5 = |S|(G(3))
i∗(G(3))

|.

From these facts, we have the next result.

Lemma 3 Let S be a ranked species tree, and let G be a ranked gene tree topology for S such that [G] 6= [S].
Then there exists a finite index q > 0 such that [G(q)] = [S].

Proof. Consider the sequence G ≡ G(0), G(1), ..., G(r), G(r+1), ... of ranked gene tree topologies obtained by
iteratively applying the tree operator (·)′ starting from G. In this sequence, as long as [G(r)] 6= [S], we

construct G(r+1) ≡
(

G(r)
)′

by following steps (i), (ii), and (iii) of the construction described in the previous
section. We show that the assumption

[G(r)] 6= [S] ∀r > 0 (10)

yields a contradiction.
For each fixed index r ≥ 0, define i∗r ≡ i∗(G(r)) as in Eq. (6), where 1 ≤ i∗r ≤ |S| − 1. Notice that i∗r+1 ≤ i∗r

from Eq. (8). Furthermore, the number of taxa in S|(G(r+1))i∗
r

must be strictly smaller than the number of taxa
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in S|(G(r))i∗
r

, as it follows directly from Eq. (9). In particular, by iteratively making use of the latter property,

if i∗r = i∗r+1 = ... = i∗r+w for a given integer w ≥ 0, then S|(G(r+s+1))i∗
r

has strictly less taxa than S|(G(r+s))i∗
r

for

every integer 0 ≤ s ≤ w, that is,

2 ≤ |S|(G(r+w+1))i∗
r

| < |S|(G(r+w))i∗
r

| < · · · < |S|(G(r+1))i∗
r

| < |S|(G(r))i∗
r

|.

Therefore, because the number of taxa in S|(G(r))i∗
r

is a finite quantity, there must exist an index r′ > r such

that i∗r′ 6= i∗r , that is, i
∗
r′ < i∗r .

Finally, consider the sequence of integers (i∗r)r≥0. This sequence contains infinitely many terms, because
we are assuming Eq. (10). Moreover, as we have just shown, for every r ≥ 0 there exists r′ > r with i∗r′ < i∗r .
Hence, i∗r → −∞ for increasing values of r, which is in contrast with the fact that i∗r ≥ 1 for all r. From Eq. (10)
we have thus reached a contradiction, showing that there must exist a finite index q > 0 such that [G(q)] = [S].
�

Suppose G is a ranked gene tree topology for S such that [G] 6= [S]. Let G∗ denote the ranked gene tree
topology G(q) found by the previous lemma. Hence, [G∗] = [S] and, from Lemma 2, Prob(G|S) ≤ Prob(G∗|S).
We can now prove our main result.

Theorem 1 For every ranked species tree S, there exists a ranked gene tree topology G ∈ GS with [G] = [S].

Proof. Suppose G ∈ GS is such that [G] 6= S. Consider the ranked gene tree topology G∗. Since G ∈ GS , we
must have G∗ ∈ GS as well. Furthermore, [G∗] = [S]. Hence, G∗ is a ranked gene tree topology of maximal
probability whose unranked topology matches that of S. �

Remark. The set GS of the maximally probable ranked gene tree topologies for a ranked species tree S is not
independent of the numerical values chosen for the lengths (ti) of the time intervals of S. By changing these
values, the argument used in the proof of the latter proposition will in general lead to identify different ranked
gene tree topologies with the property of having maximal probability and same unranked topology as S.

3.2 Existence of a maximally probable ranked gene tree topology G with [G] 6= [S]

In Section 3.1, we have shown that for every ranked species tree S, the set GS of maximally probable ranked
gene tree topologies for S contains a tree whose unranked topology matches that of S. Here, we exhibit a
ranked species tree S such that the set GS has also one element with an unranked topology that differs from
that of S.

Let us consider the ranked species tree S with ranked topology ((((A,B)4, C)3, D)2, ((E,F )6, G)5)1 and
interval lengths (t2, t3, t4, t5, t6) = (10, 0.001, 0.001, 0.001, 0.001) (Fig. 5). From Proposition 1, the set of max-
imally probable ranked gene tree topologies for S must contain a ranked gene tree topology with the same
unranked topology of S. Since S has a caterpillar with 3 internal nodes and a caterpillar with 2 internal nodes
as its root subtrees, there are exactly

(

5
2

)

= 10 possible ranked gene tree topologies with the same unranked
topology of S. By using our software RGTProb, we have calculated the conditional probability of each one of
these ten ranked gene tree topologies. Results are reported in Table 2, where the ranked gene tree topology
with the ith largest probability is denoted by Gi. Among the ten probability values listed in the table, the
first four are equal up to the 7th decimal digit at least—too close to identify which one among G1, G2, G3,
and G4 has the greatest probability without the danger of relying too much upon numerical calculations. The
difference between the fourth and the fifth probability value is instead large enough to conclude that at least
one among G1, G2, G3, and G4 has to be maximally probable for the chosen S.

For the selected ranked species tree S, the existence of a maximally probable ranked gene tree topology with
a different unranked topology follows by observing that, for each one of G1, G2, G3, and G4, there exists a ranked
gene tree topology with the same conditional probability and with a different unranked topology. In other words,
there exist four ranked gene tree topologies for S, G̃1, G̃2, G̃3, and G̃4, such that Prob(Gj |S) = Prob(G̃j |S)

and [G̃j ] 6= [Gj ] = [S], for every j = 1, 2, 3, 4. Indeed, let us consider

G̃1 ≡ ((((A,B)6, C)4, D)2, ((E,G)5, F )3)1, G̃2 ≡ ((((A,B)6, C)4, D)3, ((E,G)5, F )2)1,

G̃3 ≡ ((((A,B)6, C)5, D)2, ((E,G)4, F )3)1, G̃4 ≡ ((((A,B)6, C)5, D)3, ((E,G)4, F )2)1.

10



t 2 = 10

t 6 = 0.001

t 2 = 10

t 6 = 0.001

t
t
t

3 = 0.001

4 = 0.001

5 = 0.001

t 2 = 10

t 6 = 0.001

t 2 = 10

t 6 = 0.001

G 1
~

~
G 2

~
G 3

~
G 4

G 1

G 2

G 3

G 4

t
t
t

3 = 0.001

4 = 0.001

5 = 0.001

A B C D E GFA B C D E GF

A B C D E GF

t
t
t

3 = 0.001

4 = 0.001

5 = 0.001

t
t
t

3 = 0.001

4 = 0.001

5 = 0.001

A B C D E GF

A B C D E GF

A B C D E GA B C D E GF F

A

D

C

B

A B C D E GF

Figure 5: Ranked gene tree topologies G̃1, G̃2, G̃3, G̃4 (left column) and G1, G2, G3, G4 (right column) realized

according to their maximal ranked history in the ranked species tree S (thicker tree) with ranked topology

((((A,B)4, C)3, D)2, ((E,F )6, G)5)1. When (t2, t3, t4, t5, t6) = (10, 0.001, 0.001, 0.001, 0.001), Table 2 gives the conditional

probabilities of G1, G2, G3, and G4. For j = 1, 2, 3, 4, Gj and G̃j have the same probability but different unranked topology.
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Table 2: Probability of the ranked gene tree topologies whose unranked topology matches that of the ranked species tree

of Fig. 5.

Ranked gene tree topology Gi Prob(Gi|S) Ranked gene tree topology Gi Prob(Gi|S)

G1 ≡ ((((A,B)6, C)4, D)2, ((E,F )5, G)3)1 .00232378785813527 G6 ≡ ((((A,B)5, C)4, D)3, ((E,F )6, G)2)1 .00202778426225364

G2 ≡ ((((A,B)6, C)4, D)3, ((E,F )5, G)2)1 .00232378785768080 G7 ≡ ((((A,B)6, C)3, D)2, ((E,F )5, G)4)1 .00154923407574531

G3 ≡ ((((A,B)6, C)5, D)2, ((E,F )4, G)3)1 .00232372557171676 G8 ≡ ((((A,B)6, C)5, D)4, ((E,F )3, G)2)1 .00154919227511797

G4 ≡ ((((A,B)6, C)5, D)3, ((E,F )4, G)2)1 .00232372557151044 G9 ≡ ((((A,B)5, C)3, D)2, ((E,F )6, G)4)1 .00135189222396372

G5 ≡ ((((A,B)5, C)4, D)2, ((E,F )6, G)3)1 .00202778426403491 G10 ≡ ((((A,B)4, C)3, D)2, ((E,F )6, G)5)1 .000901352849789283

The probabilities have been calculated by using our software RGTProb conditioning on the species tree S of Fig. 5 that has
ranked topology ((((A,B)4, C)3, D)2, ((E,F )6, G)5)1 and interval lengths (t2, t3, t4, t5, t6) = (10, 0.001, 0.001, 0.001, 0.001).
In the Supplementary Material, we provide explicit formulas with symbolic variables t2, t3, t4, t5, and t6 for the conditional
probability Prob(Gi|S) (1 ≤ i ≤ 10).

Panels A,B,C, and D of Fig. 5 depict the pairs of ranked gene tree topologies G̃1 and G1, G̃2 and G2, G̃3 and
G3, and G̃4 and G4, respectively, as realized in the ranked species S according to their maximal ranked history.
In particular, note that the maximal ranked history h̃∗

j of G̃j in S coincides with the maximal ranked history

h∗
j of Gj for every j = 1, 2, 3, 4. More precisely, h̃∗

1 = h∗
1 = (1, 2, 3, 3, 4, 4), h̃∗

2 = h∗
2 = (1, 2, 2, 3, 4, 4), h̃∗

3 =

h∗
3 = (1, 2, 3, 3, 3, 4), and h̃∗

4 = h∗
4 = (1, 2, 2, 3, 3, 4). Because the set of ranked histories of a ranked gene tree

topology G in a ranked species tree S is determined by the maximal ranked history of G in S (Section 2.1),
we have that H(G̃j , S) = H(Gj , S) for every j = 1, 2, 3, 4. Furthermore, observe that the ranked gene tree

topology Gj can be obtained from the ranked gene tree topology G̃j by a single application of the operator

(·)′ described in Section 3.1.1, that is, Gj = (G̃j)
′ for every j = 1, 2, 3, 4. Indeed, Fig. 5 shows that Gj can

be obtained from G̃j by replacing the coalescence event identified by the white node—i.e. γi∗ of G̃j—with the

coalescence of the gene lineage ancestral to taxon E—i.e. the root lineage of
(

(G̃j)i∗
)

ℓ
—and the gene lineage

ancestral to taxon F at the point identified by white square—i.e. the point β of G̃j . From Lemma 2, we thus

have Prob(Gj |S) = Prob(G̃j |S) for every j = 1, 2, 3, 4, as claimed above.
As noticed in the remark following Lemma 2, for every j = 1, 2, 3, 4 the ranked gene tree topologies Gj

and G̃j must have the same conditional probability for all possible numerical values of the lengths (ti)i of the
time intervals of S—not only when we set (t2, t3, t4, t5, t6) = (10, 0.001, 0.001, 0.001, 0.001). Indeed, considering
t2, t3, t4, t5, and t6 as variables, RGTProb returns equivalent formulas for the conditional probabilities Prob(Gj |S)

and Prob(G̃j |S).

4 Discussion

When one gene copy is sampled for each species, we have considered ranked gene tree topologies realized in
ranked species trees under the multispecies coalescent model. In particular, in this paper we have addressed
a problem left open by Degnan et al. (2012a) on determining whether, for a given ranked species tree S, the
most probable ranked gene tree topologies disagree with S in their unranked topology. Theorem 1 shows that,
for any ranked species tree S, the set GS of the maximally probable ranked gene tree topologies for S contains
at least a tree whose unranked topology matches that of S. Equivalently, for a ranked species tree S for which
anomalous ranked gene tree topologies exist, there is an anomalous ranked gene tree topology of maximal
probability with a matching unranked topology.

The proof of Theorem 1 makes use of a tree operator (·)′ that, from a ranked gene tree topology G whose
unranked topology differs from that of the fixed ranked species tree S, produces a ranked gene tree topology
G′ with at least the same conditional probability of G (Lemma 2) and whose unranked topology is “closer” to
that of S than it was the unranked topology of G. In particular, the sequence of ranked gene tree topologies
G,G′, G′′, G′′′, ..., which is obtained by iteratively applying the operator (·)′ starting from G, terminates at
some point with a ranked gene tree topology G∗ that is at least as likely as G and whose unranked topology
matches that of S (Lemma 3). Notably, the fact that G′—and thus G∗—has at least the same conditional
probability of G is true for every set of numerical values that can be assigned to the lengths of the time

12



intervals of S. In particular, the equality between the conditional probability of G and G′ holds exactly when
H(G,S) = H(G′, S), whereas in general we have H(G,S) ⊆ H(G′, S).

In Section 3.2, by using our software RGTProb, we have identified a ranked species tree S of relatively small
size for which the set GS contains also an element whose unranked topology differs from that of S. This shows
that in general the set of maximally probable ranked gene tree topologies for a ranked species tree can consist
of ranked gene tree topologies with different unranked topologies.

Further works will investigate the variability of the ranked gene tree topologies belonging to the set GS

associated with a given ranked species tree S. For instance, in this direction, preliminary results indicate the
existence of ranked species trees with multiple ranked gene tree topologies of maximal probability that have
the same unranked topology of the species tree. In other words, we observe that the property of having the
same unranked topology as the ranked species tree does not always identify a unique ranked gene tree topology
among those of maximal probability.

Results of this paper may find application to the study of the inference of species trees from gene trees.
A possible procedure for estimating ranked species trees from ranked gene tree topologies can be derived by
following a maximum likelihood approach (Stadler and Degnan, 2012). Roughly speaking, given a collection, or
multiset, G = {G1, . . . , GN} of ranked gene tree topologies inferred at N different loci, a maximum likelihood

estimate of the “true” unknown ranked species tree S is Ŝ = argmaxS∈S

∏N

i=1 Prob(Gi|S), where S is a certain
subset of the ranked species tree space (or the entire space). If we assume that the most probable ranked
gene tree topologies for S are those appearing with higher frequency in the collection G, a direct application of
Theorem 1 gives a possible criterion for defining S. The latter can be taken as the set of ranked species trees
whose unranked topology matches the unranked topology of at least one of the most frequent ranked gene tree
topologies in G.

Moreover, one can consider to use the tree operator (·)′ introduced in this article to further investigate the
agreement between the ranked topology of the estimated Ŝ and the ranked topology of S, with respect to the
collection G of observed ranked gene tree topologies. In theory, if Ŝ and S share the same ranked topology, then
for each ranked gene tree topology G ∈ G such that [G] 6= [Ŝ], the ranked gene tree topology G′—derived from
G considering Ŝ as the ranked species tree—should appear in G at least as many times as G, if the number N
of loci is sufficiently large. Indeed, Lemma 2 shows that Prob(G|Ŝ) ≤ Prob(G′|Ŝ) for all possible choices of the
lengths of the time intervals of Ŝ, and thus Prob(G|S) ≤ Prob(G′|S) if Ŝ and S have the same ranked topology.
In practice, if G and G′ are found to have respectively a high and low frequency in G, then Ŝ gives probably a
wrong estimate of the ranked topology of the species tree S. In this case, a possibility is to proceed by running
again the maximum likelihood procedure sketched above, once all trees with the same ranked topology of Ŝ
have been removed from the examined subset S of the ranked species tree space.
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Appendix 1. Proof of the existence of β

We demonstrate the existence of a point β of G as defined in step (ii) of the construction described in Sec-
tion 3.1.1. In particular, for a fixed realization of G in S, we seek a point β 6= γi∗ contemporary with γi∗ , i.e.
at the same height of γi∗ in S, lying on a lineage of G that has all its descending taxa below the branch α of
S determined in step (i) of the same construction.

First, observe that the node γi∗ of G cannot have any of its descending taxa placed below α. Indeed, from
step (i), α is a branch of (S|Gi∗

)ℓ external to S|(Gi∗ )ℓ—in fact, α coalesces with the root branch of S|(Gi∗ )ℓ

(Fig. 4). Hence, none of the lineages of Gi∗ passes through α.
Second, with respect to the considered realization of G in S, take any lineage (branch) ρ of G containing a

point p contemporary with γi∗ and such that at least one of the taxa descending from ρ is placed below the
branch α. Such a lineage must clearly exists and, as shown above, it cannot contain the node γi∗ of G, i.e.
p 6= γi∗ . We claim that p has all its descending taxa below α, and thus it satisfies the definition of β. Suppose
a contrario that from p descends a taxon of G that is not placed below α. Since p has also a descending taxon
below α, there must be at least one internal node of G descending from p. Let γv be the most ancient internal
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node of G descending from p, where v > i∗. As for the point p, the node γv has some descending taxa below
α and some others that are not placed below α. Hence, since α is the branch of S that coalesces with the
root branch of S|(Gi∗ )ℓ (Fig. 4), [S|Gv

] strictly contains [S|(Gi∗ )ℓ ]. Note that [S|Gv
] = [Gv], as v > i∗, and

[S|(Gi∗ )ℓ ] = [(Gi∗)ℓ]. Therefore, the set of taxa of Gv strictly contains the set of taxa of (Gi∗)ℓ, which implies
that γv must be equal or ancestral to γi∗ in G. This is in contrast with v > i∗. �
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