
ROS/Gazebo based simulation of co-operative
UAVs?

Cinzia Bernardeschi1, Adriano Fagiolini2, Maurizio Palmieri3, Giulio Scrima1,
and Fabio Sofia1

1 Department of Information Engineering, University of Pisa, Italy
cinzia.bernardeschi@unipi.it

giulio.scrima@gmail.com

fabiosofia@hotmail.it
2 Department of Energy, Information Engineering and Mathematical Models,

University of Palermo, Italy
adriano.fagiolini@unipa.it

3 Department of Information Engineering, University of Florence, Italy
maurizio.palmieri@ing.unipi.it

Abstract. UAVs can be assigned different tasks such as e.g., rendez-
vous and space coverage, which require processing and communication
capabilities. This work extends the architecture ROS/Gazebo with the
possibility of simulation of co-operative UAVs. We assume UAV with
the underlying attitude controller based on the open-source Ardupilot
software. The integration of the co-ordination algorithm in Gazebo is
implemented with software modules extending Ardupilot with the capa-
bility of sending/receiving messages to/from drones, and executing the
co-ordination protocol. As far as it concerns the simulation environment,
we have extended the world in Gazebo to hold more than one drone and
to open a specific communication port per drone. In the paper, results
on the simulation of a representative co-ordination algorithm are shown
and discussed, in a scenario where a small number of Iris Quadcopters
are deployed.

Keywords: ROS/Gazebo · Co-operative UAVs · Simulation.

1 Introduction

Simulation applied at the early stages of system design allows developers to gain
confidence that the system behaves as expected and it is an important tool to
visualize and validate systems before industrial production or deployment. Many
different languages and environments have been introduced to support modeling
and simulation.

? Postprint. Published in: Mazal J. (eds) Modelling and Simulation for Autonomous
Systems. MESAS 2018. Lecture Notes in Computer Science, vol 11472. Springer,
Cham. The final authenticated publication is available online at https://doi.org/

10.1007/978-3-030-14984-0



2 C. Bernardeschi et al.

During the last decades, much research has been carried out showing the
potentialities of multi-robot systems in many real applications, ranging from
precision farming, surveillance, patrolling, etc. [2, 7, 21, 29].

ROS (Robot Operating System) [28] is a standard de facto for robot soft-
ware development. Analogously, for simulation of UAV aircraft, Gazebo [12] has
been widely used in the scientific community. In Gazebo, Ardupilot [3] is the
open-source software that allows to carry out the control of different unmanned
vehicles mainly through its four different components: the Antenna Tracker, the
APM Rover, the ArduPlane and the Arducopter. In particular, Arducopter im-
plements the actual drone control. So far, the current ROS/Gazebo architecture
only allows for the simulation/emulation of a single aircraft

In this work we present a possible extension of the architecture enabling the
simulation of possibly multiple heterogeneous vehicles, adhering to their own
individual dynamics, as well as interacting with each other according to shared
co-operation strategies. In particular, we consider UAVs with an underlying at-
titude controller based on Ardupilot, which uses the MAVLink protocol (Micro
Air Vehicle Link) [6] for the communication. The integration of the co-ordination
algorithm in Gazebo is implemented with software modules extending Ardupilot
with the capability of (i) sending/receiving MAVLink messages to/from drones,
and (ii) executing the co-ordination protocol. An abstraction of the commu-
nication channel by which drones exchange information is implemented with
a co-ordination script, which is executed locally by each drone instance. Ev-
ery fixed time interval a drone sends information (e.g. actual position) to other
drones. Each drone uses the data received from the other drones via the co-
ordination script to compute a new target point, based on the task the drones
have to perform. A case study has been developed, where a small number of
Quadcopters are deployed and perform space-coverage operations by applying a
slightly modified version of the Olfati-Saber et al. co-ordination algorithm [13].

The paper is organized as follows. Section 2 reports related work. Section 3
provides a short overview of the state of the art of the ROS/Gazebo simulation
environment. Section 4 describes the modifications made to the simulation envi-
ronment to allow multi-UAVs simulation. Section 5 shows the application of the
developed framework to a case study. Finally, Section 6 contains a discussion on
the presented framework and the conclusions.

2 Related Work

The problem of co-ordination of UAVs has been addressed in many works.
Among others, the works [25] and [26] report on co-ordination systems by fo-
cusing on the problem of optimizing the path and/or time of flights to cover an
area of interest. The works [19, 23] and [27] report on the problem of tracking a
target moving on the ground. In the context of civil security for disaster man-
agement, [11] introduces a decisional architecture for co-ordination of multiple
UAVs (such system was developed in the framework of the AWARE Project[14],



ROS/Gazebo based simulation of co-operative UAVs 3

which considers scenarios of surveillance with multiple UAVs, sensor deployment
and fire threat confirmation).

The work [24] reports on a further application of co-ordination and surveil-
lance of UAVs; in this case co-ordination algorithms are applied inside a urban
environment, with particular attention to surveillance approaches of a territory.

In [5] the complexity in the co-operation and co-ordination of independent
UAVs is studied: clustering techniques are applied for the division of aircrafts in
sub-teams according to the objective which they have to achieve.

The ROS/Gazebo simulation environment is a complex framework that in-
volves many different elements and allows realistic simulations of robotic sys-
tems. Other simulation environments are available, like for example [20], where
a control and co-operation strategy exploiting the CATA, Control Automation
and Task Allocation, is used; or [10], where Matlab/Simulink is used for the real
time control of UAVs. These environments are easier than ROS/Gazebo but they
do not allow a graphical representation of the UAVs.

3 ROS/Gazebo Simulation Environment

The ROS/Gazebo development simulation environment involves three main ele-
ments:

– the open-source autopilot software Ardupilot [3];
– the collection of software frameworks for robot programming ROS (Robot

Operating System) [16];
– the 3D simulation environment Gazebo[15].

In particular, the UAVs attitude controller is based on the Ardupilot soft-
ware. ROS is instead exploited like a middleware to help programmers in devel-
oping robot applications. Gazebo allows a visual, tridimensional simulation of
a scenario consisting of cyber-physical systems, e.g. ground-rovers, UAVs, and
different other objects, like, e.g., simple obstacles, or surrounding environmental
elements, together composing what it is called a Gazebo world.

3.1 Ardupilot

The base element that comes into play to start a software simulation of a single
vehicle is the open-source software Ardupilot (http://ardupilot.org/). Developed
by the community DIY Drones, it allows to carry out the control of different
unmanned vehicles, including drones.

The Ardupilot software offers different flight modes, which can be distin-
guished in manual flight modes and automatic ones, with a combination of
customizable parameters. For instance, it is possible to control the UAV flight
through a guided mode, by which Ardupilot will adjust automatically the val-
ues of yaw, roll, and pitch, according to the position given as input. Moreover,
through other flight modes, it is possible for the UAV to keep the desired al-
titude, a given position, to move the UAV with a circle trajectory (fixing the



4 C. Bernardeschi et al.

radius of the trajectory), to make the UAV come back to the launch point or
simply land, and many others.

For the communication with the unmanned vehicle, the MAVLink protocol
[6] is exploited. It allows vehicles communications through the exchange of pack-
ets, which are represented at low level by strings in C language, in which each bit
has a specific function in the communication. These packets are provided with
header, payload, and checksum, and are transmitted through some serial com-
munication channels. Through the MAVLink protocol it is possible to exchange
some predefined commands: the fundamental heartbeat message (characterized
by the ID 0), which is used to keep under control the communication state with
the UAV, or the set_mode message (characterized by the ID 11), which is used
to set a given flight mode, together with many other messages which are useful
to control the vehicle. Moreover, it is possible to create custom messages.

3.2 ROS

ROS is not actually an operative system, but rather it represents an open source
collection of frameworks/libraries [18] for the development of software for the
programming of robots. ROS was developed with the objective of facilitating and
expediting the prototyping of a robotic software. In particular, the principle of
software reuse is exploited, enabling interoperability among all the tools involved
with the ROS environment and solving problems such as real-time collection of
data from cyber-physical systems sensors, implementation of the publish/sub-
scribe model in a network of ROS nodes for the communication from/to robots,
management of commands received by a user and related actuation actions.

ROS provides hardware abstraction, device drivers, libraries, visualizers,
message-passing, package management, and more. ROS is based on FreeBSD,
the open source operating system developed by Berkeley Software Distribution.
In ROS, the components of the robots can be represented like nodes in a net-
work, which communicate one another, via the anonymous and asynchronous
publish/subscribe mechanism. This is a powerful design pattern that can signif-
icantly reduce the development effort and promote flexibility and modularity in
a system.

Another important element in ROS is the definition of the physics of the
robot, and a part of tools was developed to this aim. In particular, it is possible
to use the URDF (Unified Robot Description Format) files to describe the robot
physical parameters. This improves the integration with 3D simulators, like e.g.
Gazebo[15].

3.3 Gazebo

Exploiting a visual simulator is useful in case one wants to test the functioning
of a given algorithm. In Gazebo [15], realistic scenarios for cyber-physical sys-
tems, including the surrounding environment[8], can be created. This simulator
is complete with dynamic and kinematic physics, and a pluggable physics engine.



ROS/Gazebo based simulation of co-operative UAVs 5

Integration between ROS and Gazebo is provided by a set of Gazebo plugins
that support many existing robots and sensors. Since the plugins present the
same message interface as the rest of the ROS environment, a Gazebo user
can write ROS nodes that are compatible with simulation, logged data, and
hardware. A relevant aspect is that a user can develop an application directly
in the simulation environment and then deploy the physical robot with little or
no changes at all in the code. Simulation of UAV aircraft through Gazebo has
been widely used in the scientific community.

4 Multi-UAV Simulation

This section shows the approach we have followed to extend the base environ-
ment of Gazebo with the simulation of multiple robotic systems. The architecture
of the simulation environment has been modified since the connection between
Ardupilot and ROS/Gazebo is provided through a unique port, while, to have a
multi-vehicle simulation, it is indispensable the creation of a number of connec-
tion ports equal to the number of UAV instances.

Moreover, the Ardupilot software was enhanced with some modules allowing
drones exchanging MAVLink messages to each other directly.

Finally, Gazebo was extended to allow the graphical visualization of differ-
ent UAVs, which cooperate communicating with each other, by means of the
MAVLink protocol using the previously input/output inserted ports, in order
to execute the chosen co-ordination protocol for the specific application (e.g., a
space coverage application).

More precisely, our extension uses:

– the guided mode for controlling the UAV flight, by which Ardupilot adjusts
automatically the values of yaw, roll, and pitch, according to the target
position given as input to the drone;

– the Python script mavproxy.py, which is used for configuring the communi-
cations among the unmanned vehicles using the MAVLink protocol;

– the Python script simvehicle.py, which is used to create instances of ve-
hicles with their base parameters and their MAVLink connections, and to
control such instances. The simvehicle.py script contains also the algo-
rithm to be executed locally for the implementation of the co-ordination
protocol.

– the SITL (Software In The Loop) simulator which allows us to run Ardupilot
without any physical hardware, emulating the behavior of the drones;

– the command roslaunch to run the Gazebo simulator, together with a
launch file holding the Gazebo environment, i.e. all the elements within the
so-called Gazebo world, and one or more simulated drones in such an envi-
ronment.

Figure 1 shows the architecture of our simulation for the case study in Section
5: there is the Gazebo world, which is activated by the roslaunch command,
there are N drones, each of which is activated by a simvehicle.py script that



6 C. Bernardeschi et al.

Fig. 1: Multi-UAVs architecture for the case study in Section 5.

has been enhanced with a local co-ordination script to enable the data exchange
among drones and the execution of a co-ordination algorithm.

To carry out the simulation of cooperative UAVs we use a fixed, defined apri-
ori, number of Iris Quadcopters. These quadcopters, developed by 3D Robotics,
represent commercial, state-of-art drones which can be exploited in the pro-
fessional sector for different base applications. In particular, Iris UAVs hold the
typical equipment of a drone, including the remote controller, radio for communi-
cations, Wi-Fi card for control using Android devices, high-resolution cameras,
and other useful sensors. The Ardupilot software runs on top of the Pixhawk
flight controller board [17]. Even though Iris drones have the limitation of a
time of flight of about 20 minutes, which is, however, a typical feature of com-
mercial drones, the rationale behind these quadcopters was their simplicity of
programming and usage.

4.1 Base Environment Modifications

To allow the creation of the extension described in the previous subsection,
some modifications to the base development/simulation environment Ardupilot-
Gazebo were needed. In particular, for the multi-UAV extension, the following
versions of the environment tools were exploited:

– version 16.04 of Ubuntu;
– the most recent version of Ardupilot;
– ROS Kinetic;
– version 8 of the Gazebo simulator, together with the ardupilot sitl gazebo

plugin for the integration of the two environments (Ardupilot and Gazebo),
in a context in which the emulation of drones by means of SITL is exploited,
i.e. we can work even in the absence of hardware.

First of all, it was necessary to make some modifications to the Iris drone
configuration files, so as to allow the presence of different, uniquely identified
drones. To this objective, we modified, in the base configuration files, the model
name exploited for the insertion of the particular vehicle in the Gazebo world,



ROS/Gazebo based simulation of co-operative UAVs 7

and the input/output communication ports for each Iris drone, so as to have
them different for each UAV. This enhancement allows a direct information
transfer among drones. This will be described in a detailed way in the following
subsections.

After having created different Iris UAV instances, we created a Gazebo multi-
UAV world, i.e. a world that could contain all the created instances together.
To this aim, all the single models, identified in a unique way through the model
name, were inserted, each one in a given position, which was chosen in the Gazebo
world configuration according to the co-ordination algorithm of the application
object of the simulation.

For the case study reported in Section 5, the Gazebo world with multi-
UAVs we created is shown in the code below. For each UAV instance, iden-
tified through the model name field, information about the initial position
(pose field) inside the Gazebo world and the physical model of the drone
(uri field) are provided. For instance, the first drone, identified by the name
iris uav instance1, is placed at position (0,0,0), and it is a Iris UAV
(model://iris with standoffs demo).

<model name="iris_uav_instance1">

<pose>0 0 0 0 0 0</pose>

<include>

<uri>model://iris_with_standoffs_demo</uri>

</include>

</model>

<model name="iris_uav_instance2">

<pose>0 10 0 0 0 0</pose>

<include>

<uri>model://iris_with_standoffs_demo</uri>

</include>

</model>

<model name="iris_uav_instance3">

<pose>0 20 0 0 0 0</pose>

<include>

<uri>model://iris_with_standoffs_demo</uri>

</include>

</model>

<model name="iris_uav_instance4">

<pose>0 50 0 0 0 0</pose>

<include>

<uri>model://iris_with_standoffs_demo</uri>

</include>

</model>

<model name="iris_uav_instance5">

<pose>0 100 0 0 0 0</pose>

<include>

<uri>model://iris_with_standoffs_demo</uri>

</include>



8 C. Bernardeschi et al.

</model>

Then, for the purposes of applying the co-ordination algorithm to the drones
swarm, whose number is apriori defined, some small changes have been made to
the Ardupilot Python script sim vehicle.py, for the control of simulated vehi-
cles. Finally, we extended the script mavproxy.py, which manages the commands
given to drones, using dedicated options.

4.2 Co-ordination Algorithm

For the execution of the co-ordination algorithm:

– we implemented a Python script (named co-ordination script in the follow),
executed locally by each drone. Each UAV performs the operations envisaged
by the algorithm and communicates with the other drones. The Python script
is implemented using the Python Dronekit[1] library, through which it is
indeed possible to connect and communicate to a drone. The co-ordination
script will be described in detail in subsection 5.1.

– we added a port in sim vehicle.py to communicate with the co-ordination
script, to get real-time information about the position of drones.

– we defined a new command in mavproxy.py in order to start the co-ordination
script in an automatic way. In particular, a new function was written in the
code, to start a new non-blocking process, executing the co-ordination script.

For the computation of the distance between two drones, the Haversine for-
mula[22] is used, which is the one shown below. Considering two points, each
one at a given latitude and longitude, their distance will be given by:

d = 2r arcsin

(√
sin2

(
φ2−φ1

2

)
+ cos (φ1) cos (φ2) sin2

(
λ2−λ1

2

))
(1)

where φ1 and φ2 are, respectively, latitude of point 1 and latitude of point
2, and λ1, λ2 are, respectively, longitude of point 1 and longitude of point 2.
Moreover, r is the radius of the earth.

Formula (1), which is commonly exploited in navigation, allows computing
the distance between two objects in the Earth, known the positions in the form
of geographic coordinates, i.e. the couple (latitude, longitude).

5 An Application Scenario

Among the many possible interaction policies, we focus on the problem of co-
ordination of a team of drones, and we present a variation of the classical forma-
tion control scheme, based on the well-known consensus protocol described e.g.
in [13]. The algorithm in [13] is distributed and allows drones to asymptotically
converge to a target point. The co-ordination algorithm we simulate, instead,
is obtained by the original one, simply assuming that two drones are fixed at



ROS/Gazebo based simulation of co-operative UAVs 9

the extreme of a line segment. This variant allows the uniform placement of the
drones along the interval and it has not been studied in that work.

As an application scenario, we considered the case of 5 drones that are sup-
posed to coordinate on the interval [0, 100]. The first and fifth vehicles are sup-
posed to be stationary at the outer position of the interval, while the other three
must recursively adjust their positions according to the shared co-ordination
policy.

5.1 Co-ordination Script

The co-ordination script involves the following operations:

– a connection to the actual drone instance is created, through which it is
possible to acquire information by the UAV about its position. In our case,
we use only the longitude. The same information will be sent by this drone
instance to the closest drone on the left and to the closest drone on the right.

– a control about the type of drone instance, fixed drone (stubborn) or mobile
drone, is added to the code. Indeed, in case the drone is a stubborn one,
the script will terminate, since fixed drones do not have to perform any
movement, according to our modified version of Olfati-Saber et al. algorithm,
but they have rather to be fixed in the position assigned to them. Mobile
drones have to change their position according to the formula in the previous
paragraph. The control on the drone instance is made exploiting the port
in the UAV-address which is passed to the script, which identifies uniquely
such instance. According to the architecture, the ports related to the single
aircraft, and thus their ordering in space, are already known apriori, whereas
their relative (geographical) position, at the beginning of the execution of
the co-ordination script and in any subsequent instant, are not known.

In the first phase of the script execution, some functions are used to arm drone
motors and to make them take off until they reach a height of 10 meters, which
represents an arbitrarily-chosen height. Then the script contains a loop where
each iteration computes a step of the co-ordination algorithm, using the positions
of adjacent drones. In particular, a reference longitude is used, the one of the
first stubborn UAV, which is considered for the application of the algorithm,
and the distance of the other UAVs is computed in relation to this stubborn.
Each drone executes the co-ordination algorithm using the actual position of its
adjacent drones and its own desired position.

5.2 Simulation

A typical simulation scenario is reported in Figure 2. Assuming as a reference
the leftmost UAV in position 0, in the initial deployment the second, third and
fourth drones, are, respectively, placed 10, 20, and 50 meters after the first one.
The last UAV is placed at the last extreme of the line segment, i.e. 100 meters
after the first drone. For each of the five drones, the sim_vehicle.py script



10 C. Bernardeschi et al.

is launched, in order to create the corresponding MAVLink connection for the
control of the vehicle, and the launch file containing the Gazebo world is executed
through the roslaunch command. At this point, Gazebo will start, and the 3D
simulation environment will show the five drones in their initial placement. The
co-ordination script can now be launched. Aircraft will arm their motor and will
take off at the predetermined height of 10 meters, and each mobile drone will
start to communicate with the adjacent UAV and to make some position change,
according to the formula shown above. Figure 2 shows the position of drones at
the beginning (time t = 0s), in the middle (time t = 28s), and at the end (time
t = 51s) of the simulation.



ROS/Gazebo based simulation of co-operative UAVs 11

(t = 0s)

(t = 28s)

(t = 51s)

Fig. 2: Dynamic behavior of a team of cooperative UAVs: a) initial deployment
at t = 0 seconds, b) intermediate displacement at t = 28 seconds, and c) final
deployment at t = 51 seconds.



12 C. Bernardeschi et al.

Fig. 3: Actual (dashed lines) and desired (continuous lines) positions of drones
during the co-ordination script execution.

Figure 3 reports the desired positions of the drones, i.e. the positions after
the computation of the modified version of the Olfati-Saber et al. algorithm,
together with the actual positions of UAVs, during the execution of the simu-
lation. Step #1, Step #9 and Step #17 of the co-ordination algorithm refer to
simulation at t=0, t=28 and t=51, respectively.

Another simulation scenario is reported in Figure 4, where the initial position
of mobile drones is at the boundaries of the interval. In the figure, we show again
the dynamic behavior of drones and we consider three different phases during
the execution of the coordination algorithm.

The results of the simulations show the convergence of the co-ordination
algorithm, as expected.



ROS/Gazebo based simulation of co-operative UAVs 13

(t = 0s)

(t = 28s)

(t = 51s)

Fig. 4: Dynamic behavior of a team of cooperative UAVs: a) initial deployment
at t = 0 seconds, b) intermediate displacement at t = 28 seconds, and c) final
deployment at t = 51 seconds.



14 C. Bernardeschi et al.

6 Discussion and Conclusions

This work extends the ROS/Gazebo architecture with the possibility of simu-
lation of co-operative UAVs, adhering to their own individual dynamics as well
as interacting with each other according to shared cooperation strategies. Two
important features of the framework are its flexibility and modularity. Indeed,
heterogeneous vehicles and new co-ordination algorithms can be easily plugged
into the simulation, by simply modifying the corresponding Python script. In
the paper, preliminary results on the proposed formation control scheme that
combine actual positions and desired positions of the vehicles are presented. A
limitation of the framework is that launching and configuring a multi-UAVs sim-
ulation requires some manual operations. Scalability poses another major issue
mostly attributable to the physical-level simulation performed within Gazebo.
Finally, although the use of trigonometric functions for distance measurements
(Haversine formula) involves small approximation errors, simulations show that
the computations have maintained near the theoretical expectations. The au-
tomated creation of the UAV instances and the application of the framework
to more complex scenarios are objects of further work. Moreover, co-simulation
techniques [4, 9], in which different sub-systems, possibly modelled and simu-
lated with different tools, are co-ordinated by a co-simulation engine will be
investigated.

References

1. 3DRobotics: Dronekit-pythons documentation (2016), http://python.dronekit.
io/

2. Adams, S.M., Friedland, C.J.: A survey of unmanned aerial vehicle (UAV) usage
for imagery collection in disaster research and management. In: 9th International
Workshop on Remote Sensing for Disaster Response. p. 8 (2011)

3. ArduPilot-DevTeam: Ardupilot documentation (2016), http://ardupilot.org/

ardupilot/

4. Bernardeschi, C., Domenici, A., Masci, P.: A PVS-Simulink Integrated Environ-
ment for Model-Based Analysis of Cyber-Physical Systems. IEEE Trans. Software
Eng. 44(6), 512–533 (2018)

5. Chandler, P.R., Pachter, M., Swaroop, D., Fowler, J.M., Howlett, J.K., Rasmussen,
S., Schumacher, C., Nygard, K.: Complexity in uav cooperative control. In: Pro-
ceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301).
vol. 3, pp. 1831–1836. IEEE (2002)

6. Dronecode-Project: Mavlink developer guide (2018), https://mavlink.io/en/
7. Ham, Y., Han, K.K., Lin, J.J., Golparvar-Fard, M.: Visual monitoring of civil

infrastructure systems via camera-equipped unmanned aerial vehicles (uavs): a
review of related works. Visualization in Engineering 4(1), 1 (2016)

8. Koenig, N.P., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: IROS. vol. 4, pp. 2149–2154. Citeseer (2004)

9. Larsen, P.G., Fitzgerald, J., Woodcock, J., Fritzson, P., Brauer, J., Kleijn, C.,
Lecomte, T., Pfeil, M., Green, O., Basagiannis, S., Sadovykh, A.: Integrated tool
chain for model-based design of Cyber-Physical Systems: The INTO-CPS project.



ROS/Gazebo based simulation of co-operative UAVs 15

In: 2016 2nd International Workshop on Modelling, Analysis, and Control of Com-
plex CPS (CPS Data). pp. 1–6 (April 2016)

10. Lu, P., Geng, Q.: Real-time simulation system for uav based on matlab/simulink.
In: Computing, Control and Industrial Engineering (CCIE), 2011 IEEE 2nd Inter-
national Conference on. vol. 1, pp. 399–404. IEEE (2011)

11. Maza, I., Caballero, F., Capitán, J., Mart́ınez-de Dios, J.R., Ollero, A.: Experimen-
tal results in multi-uav coordination for disaster management and civil security
applications. Journal of intelligent & robotic systems 61(1-4), 563–585 (2011)

12. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., von Stryk, O.: Compre-
hensive simulation of quadrotor uavs using ros and gazebo. In: Noda, I., Ando,
N., Brugali, D., Kuffner, J.J. (eds.) Simulation, Modeling, and Programming for
Autonomous Robots. pp. 400–411. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

13. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (Jan 2007)

14. Ollero, A., Marron, P.J., Bernard, M., Lepley, J., la Civita, M., de Andres, E.,
van Hoesel, L.: Aware: Platform for autonomous self-deploying and operation of
wireless sensor-actuator networks cooperating with unmanned aerial vehicles. In:
Safety, Security and Rescue Robotics, 2007. SSRR 2007. IEEE International Work-
shop on. pp. 1–6. IEEE (2007)

15. OSRF: Gazebo api reference (2017), http://osrf-distributions.s3.amazonaws.
com/gazebo/api/8.2.0/index.html

16. OSRF: Ros wiki: Documentation (2018), http://wiki.ros.org/

17. PX4-DevTeam: Pixhawk series (2018), https://docs.px4.io/en/flight\

_controller/

18. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA workshop on
open source software. vol. 3, p. 5. Kobe, Japan (2009)

19. Quintero, S.A., Papi, F., Klein, D.J., Chisci, L., Hespanha, J.P.: Optimal uav
coordination for target tracking using dynamic programming. In: Decision and
Control (CDC), 2010 49th IEEE Conference on. pp. 4541–4546. IEEE (2010)

20. Rasmussen, S.J., Chandler, P.R.: Multiuav: A multiple uav simulation for investi-
gation of cooperative control. In: Simulation Conference, 2002. Proceedings of the
Winter. vol. 1, pp. 869–877. IEEE (2002)

21. Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D.: Uav photogram-
metry for mapping and 3d modeling–current status and future perspectives. Inter-
national Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences 38(1), C22 (2011)

22. Robusto, C.C.: The cosine-haversine formula. The American Mathematical
Monthly 64(1), 38–40 (1957)

23. Rysdyk, R.: Unmanned aerial vehicle path following for target observation in wind.
Journal of guidance, control, and dynamics 29(5), 1092–1100 (2006)

24. Semsch, E., Jakob, M., Pavlicek, D., Pechoucek, M.: Autonomous uav surveillance
in complex urban environments. In: Proceedings of the 2009 IEEE/WIC/ACM In-
ternational Joint Conference on Web Intelligence and Intelligent Agent Technology-
Volume 02. pp. 82–85. IEEE Computer Society (2009)

25. Techy, L., Woolsey, C.A., Schmale, D.G.: Path planning for efficient uav coordi-
nation in aerobiological sampling missions. In: Decision and Control, 2008. CDC
2008. 47th IEEE Conference on. pp. 2814–2819. IEEE (2008)



16 C. Bernardeschi et al.

26. Tortonesi, M., Stefanelli, C., Benvegnu, E., Ford, K., Suri, N., Linderman, M.:
Multiple-uav coordination and communications in tactical edge networks. IEEE
Communications Magazine 50(10), 48–55 (2012)

27. Wise, R., Rysdyk, R.: Uav coordination for autonomous target tracking. In: AIAA
Guidance, Navigation, and Control Conference and Exhibit. p. 6453 (2006)

28. Yoonseok Pyo, Hancheol Cho, L.J.D.L.: ROS Robot Programming (English).
ROBOTIS (12 2017)

29. Zhang, C., Kovacs, J.M.: The application of small unmanned aerial systems for
precision agriculture: a review. Precision agriculture 13(6), 693–712 (2012)


