# COMPONENTS OF $V(\rho) \otimes V(\rho)$ 

ROCCO CHIRIVÌ, SHRAWAN KUMAR AND ANDREA MAFFEI

## 1. Introduction

Let $\mathfrak{g}$ be any simple Lie algebra over $\mathbb{C}$. We fix a Borel subalgebra $\mathfrak{b}$ and a Cartan subalgebra $t \subset \mathfrak{b}$ and let $\rho$ be the half sum of positive roots, where the roots of $\mathfrak{b}$ are called the positive roots. For any dominant integral weight $\lambda \in \mathrm{t}^{*}$, let $V(\lambda)$ be the corresponding irreducible representation of $\mathfrak{g}$. B. Kostant initiated (and popularized) the study of the irreducible components of the tensor product $V(\rho) \otimes V(\rho)$. In fact, he conjectured the following.

Conjecture 1. (Kostant) Let $\lambda$ be a dominant integral weight. Then, $V(\lambda)$ is a component of $V(\rho) \otimes V(\rho)$ if and only if $\lambda \leq 2 \rho$ under the usual BruhatChevalley order on the set of weights.

It is, of course, clear that if $V(\lambda)$ is a component of $V(\rho) \otimes V(\rho)$, then $\lambda \leq 2 \rho$.

One of the main motivations behind Kostant's conjecture was his result that the exterior algebra $\wedge \mathfrak{g}$, as a $\mathfrak{g}$-module under the adjoint action, is isomorphic with $2^{r}$ copies of $V(\rho) \otimes V(\rho)$, where $r$ is the rank of $\mathfrak{g}$ (cf. [Ko]). Recall that $\wedge \mathfrak{g}$ is the underlying space of the standard chain complex computing the homology of the Lie algebra $\mathfrak{g}$, which is, of course, an object of immense interest.

Definition 2. An integer $d \geq 1$ is called a saturation factor for $\mathfrak{g}$, if for any $(\lambda, \mu, v) \in D^{3}$ such that $\lambda+\mu+v$ is in the root lattice and the space of g -invariants:

$$
[V(N \lambda) \otimes V(N \mu) \otimes V(N v)]^{\mathrm{g}} \neq 0
$$

for some integer $N>0$, then

$$
[V(d \lambda) \otimes V(d \mu) \otimes V(d v)]^{\mathrm{g}} \neq 0,
$$

where $D \subset \mathrm{t}^{*}$ is the set of dominant integral weights of $\mathfrak{g}$. Such a $d$ always exists (cf. [Ku; Corollary 44]).

Recall that 1 is a saturation factor for $\mathfrak{g}=s l_{n}$, as proved by Knutson-Tao [KT]. By results of Belkale-Kumar [ $\mathrm{BK}_{2}$ ] (also obtained by Sam [S] and Hong-Shen [HS]), $d$ can be taken to be 2 for $\mathfrak{g}$ of types $B_{r}, C_{r}$ and $d$ can be taken to be 4 for $g$ of type $D_{r}$ by a result of Sam [S]. As proved by KapovichMillson $\left[\mathrm{KM}_{1}, \mathrm{KM}_{2}\right]$, the saturation factors $d$ of $\mathfrak{g}$ of types $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$
can be taken to be 2 (in fact any $d \geq 2$ ), 144, 36, 144, 3600 respectively. (For a discussion of saturation factors $d$, see [ $\mathrm{Ku}, \S 10]$.)

Now, the following result (weaker than Conjecture (1)) is our main theorem.

Theorem 3. Let $\lambda$ be a dominant integral weight such that $\lambda \leq 2 \rho$. Then, $V(d \lambda) \subset V(d \rho) \otimes V(d \rho)$, where $d \geq 1$ is any saturation factor for $\mathfrak{g}$.

In particular, for $\mathfrak{g}=s l_{n}, V(\lambda) \subset V(\rho) \otimes V(\rho)$.
The proof uses a description of the eigencone of $\mathfrak{g}$ in terms of certain inequalities due to Berenstein-Sjamaar coming from the cohomology of the flag varieties associated to $\mathfrak{g}$, a 'non-negativity' result due to Belkale-Kumar and Proposition (9).

An interesting aspect of our work is that we make an essential use of a solution of the eigenvalue problem and saturation results for any $\mathfrak{g}$.

Remark 4. As informed by Papi, Berenstein-Zelevinsky had proved Conjecture (1) (by a different method) for $\mathfrak{g}=s l_{n}$ (cf. [BZ, Theorem 6]). They also determine in this case when $V(\lambda)$ appears in $V(\rho) \otimes V(\rho)$ with multiplicity one. To our knowledge, Conjecture 1 appears first time in this paper.

Acknowledgements. We thank Corrado DeConcini who brought to our attention Conjecture (1). This note was written during the second author's visit to the University of Sydney, hospitality of which is gratefully acknolwledged. Also, the second author was partial supported by the NSF grant number DMS- 1501094.

## 2. Proof of Theorem (3)

We now prove Theorem (3).
Proof. Let $\Gamma_{3}(\mathrm{~g})$ be the saturated tensor semigroup defined by

$$
\Gamma_{3}(\mathrm{~g})=\left\{(\lambda, \mu, v) \in D^{3}:[V(N \lambda) \otimes V(N \mu) \otimes V(N v)]^{\mathrm{g}} \neq 0 \text { for some } N>0\right\} .
$$

To prove the theorem, it suffices to prove that $\left(\rho, \rho, \lambda^{*}\right) \in \Gamma_{3}(G)$, where $\lambda^{*}$ is the dual weight $-w_{o} \lambda, w_{o}$ being the longest element of the Weyl group of g. Let $G$ be the connected, simply-connected complex algebraic group with Lie algebra $\mathfrak{g}$. Let $B$ (resp. $T$ ) be the Borel subgroup (resp. maximal torus) of $G$ with Lie algebra $\mathfrak{b}$ (resp. $\mathfrak{t}$ ). Let $W$ be the Weyl group of $G$. For any standard parabolic subgroup $P \supset B$ with Levi subgroup $L$ containing $T$, let $W^{P}$ be the set of smallest length coset representatives in $W / W_{L}, W_{L}$ being the Weyl group of $L$. Then, we have the Bruhat decomposition:

$$
G / P=\sqcup_{w \in W^{P}} \Lambda_{w}^{P}, \text { where } \Lambda_{w}^{P}:=B w P / P
$$

Let $\bar{\Lambda}_{w}^{P}$ denote the closure of $\Lambda_{w}^{P}$ in $G / P$. We denote by $\left[\bar{\Lambda}_{w}^{P}\right]$ the Poincaré dual of its fundamental class. Thus, $\left[\bar{\Lambda}_{w}^{P}\right]$ belongs to the singular cohomology:

$$
\left[\bar{\Lambda}_{w}^{P}\right] \in H^{2(\operatorname{dim} G / P-\ell(w))}(G / P, \mathbb{Z})
$$

where $\ell(w)$ is the length of $w$.
Let $\left\{x_{j}\right\}_{1 \leq j \leq r} \subset \mathrm{t}$ be the dual to the simple roots $\left\{\alpha_{i}\right\}_{1 \leq i \leq r}$, i.e.,

$$
\alpha_{i}\left(x_{j}\right)=\delta_{i, j} .
$$

In view of [BS] (or [Ku; Theorem 10]), it suffices to prove that for any standard maximal parabolic subgroup $P$ of $G$ and triple $(u, v, w) \in\left(W^{P}\right)^{3}$ such that the cup product of the corresponding Schubert classes in $G / P$ :

$$
\begin{equation*}
\left[\bar{\Lambda}_{u}^{P}\right] \cdot\left[\bar{\Lambda}_{v}^{P}\right] \cdot\left[\bar{\Lambda}_{w}^{P}\right]=k\left[\bar{\Lambda}_{e}^{P}\right] \in H^{*}(G / P, \mathbb{Z}), \text { for some } k \neq 0, \tag{1}
\end{equation*}
$$

the following inequality is satisfied:

$$
\begin{equation*}
\rho\left(u x_{P}\right)+\rho\left(v x_{P}\right)+\lambda^{*}\left(w x_{P}\right) \leq 0 . \tag{2}
\end{equation*}
$$

Here, $x_{P}:=x_{i_{P}}$, where $\alpha_{i_{P}}$ is the unique simple root not in the Levi of $P$.
Now, by $\left[\mathrm{BK}_{1}\right.$; Proposition 17(a)] (or [Ku; Corollary 22 and Identity (9)]), for any $u, v, w \in\left(W^{P}\right)^{3}$ such that the equation (1) is satisfied,

$$
\begin{equation*}
\left(\chi_{w_{o} w w_{o}^{P}}-\chi_{u}-\chi_{v}\right)\left(x_{P}\right) \geq 0, \tag{3}
\end{equation*}
$$

where $w_{o}^{P}$ is the longest element in the Weyl group of $L$ and

$$
\chi_{w}:=\rho-2 \rho^{L}+w^{-1} \rho
$$

( $\rho^{L}$ being the half sum of positive roots in the Levi of $P$ ).
Now,

$$
\begin{align*}
& \left(\chi_{w_{o} w w_{o}^{P}}-\chi_{u}-\chi_{v}\right)\left(x_{P}\right) \\
& =\left(\rho-w_{o}^{P} w^{-1} \rho-\rho-u^{-1} \rho-\rho-v^{-1} \rho\right)\left(x_{P}\right), \text { since } \rho^{L}\left(x_{P}\right)=0 \\
& =\left(-\rho-u^{-1} \rho-v^{-1} \rho-w^{-1} \rho\right)\left(x_{P}\right), \text { since } w_{o}^{P}\left(x_{P}\right)=x_{P} . \tag{4}
\end{align*}
$$

Combining (3) and (4), we get

$$
\begin{equation*}
\left(\rho+u^{-1} \rho+v^{-1} \rho+w^{-1} \rho\right)\left(x_{P}\right) \leq 0, \text { if }(1) \text { is satisfied. } \tag{5}
\end{equation*}
$$

We next claim that for any dominant integral weight $\lambda \leq 2 \rho$ and any $u, v, w \in\left(W^{P}\right)^{3}$,

$$
\begin{equation*}
\rho\left(u x_{P}\right)+\rho\left(v x_{P}\right)+\lambda^{*}\left(w x_{P}\right) \leq\left(\rho+u^{-1} \rho+v^{-1} \rho+w^{-1} \rho\right)\left(x_{P}\right), \tag{6}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\lambda^{*}\left(w x_{P}\right) \leq\left(\rho+w^{-1} \rho\right)\left(x_{P}\right) . \tag{7}
\end{equation*}
$$

Of course (5) and (6) together give (2). So, to prove the theorem, it suffices to prove (7). Since the assumption on $\lambda$ in the theorem is invariant
under the transformation $\lambda \mapsto \lambda^{*}$, we can replace $\lambda^{*}$ by $\lambda$ in (7). By Proposition (9), $\lambda=\rho+\beta$, where $\beta$ is a weight of $V(\rho)$ (i.e., the weight space of $V(\rho)$ corresponding to the weight $\beta$ is nonzero). Thus,

$$
\lambda\left(w x_{P}\right)=\rho\left(w x_{P}\right)+\beta\left(x_{P}\right), \text { for some weight } \beta \text { of } V(\rho) .
$$

Hence,

$$
\lambda\left(w x_{P}\right)=\rho\left(w x_{P}\right)+\beta\left(x_{P}\right) \leq\left(w^{-1} \rho+\rho\right)\left(x_{P}\right), \text { since } \beta \leq \rho .
$$

This establishes (7) and hence the theorem is proved.
We recall the following conjecture due to Kapovich-Millson $\left[\mathrm{KM}_{1}\right]$ (or [ Ku ; Conjecture 47]).

Conjecture 5. Let $\mathfrak{g}$ be a simple, simply-laced Lie algebra over $\mathbb{C}$. Then, $d=1$ is a saturation factor for $\mathfrak{g}$.

The following theorem follows immediately by combining Theorem (3) and Conjecture (5).

Theorem 6. For any simple, simply-laced Lie algebra $\mathfrak{g}$ over $\mathbb{C}$, assuming the validity of Conjecture (5), Conjecture (1) is valid for $\mathfrak{g}$, i.e., for any dominant integral weight $\lambda \leq 2 \rho, V(\lambda)$ is a component of $V(\rho) \otimes V(\rho)$.

Remark 7. By an explicit calculation using the program LIE, it is easy to see that Conjecture (1) has an affirmative answer for simple $\mathfrak{g}$ of types $G_{2}$ and $F_{4}$. Further, Paolo Papi has informed us that he has verified the validity of Conjecture (1) (by an explicit computer calculation using LIE again) for any simple $\mathfrak{g}$ of type $E_{6} ; E_{7} ;$ and $E_{8}$ as well.

## 3. DETERMINATION OF DOMINANT WEIGHTS $\leq 2 \rho$

We follow the notation and assumptions from the previous sections. In particular, $\mathfrak{g}$ is a simple Lie algebra over $\mathbb{C}$ where we have fixed a Cartan subalgebra $t$ and a Borel subalgebra $\mathfrak{b} \supset \mathfrak{t}$. Let $\left\{\omega_{i}\right\}_{i \in I}$ be the fundamental weights, $\left\{\alpha_{i}\right\}_{i \in I}$ the simple roots, and $\left\{s_{i}\right\}_{i \in I}$ the simple reflections, where $I:=\{1 \leq i \leq r\}$. For any $J \subset I$, let $W_{J}$ be the parabolic subgroup of the Weyl group $W$ generated by $s_{j}$ with $j \in J$, $w_{o}^{J}$ be the longest element in $W_{J}, \Phi_{J}$ be the root system generated by the simple roots $\alpha_{j}$ with $j \in J$, and $\Phi_{J}^{+} \subset \Phi_{J}$ the subset of positive roots.

Let $A \subset \mathrm{t}^{*}$ be the dominant cone, $B \subset \mathrm{t}^{*}$ the cone generated by $\left\{\alpha_{i}: i \in I\right\}$ and $C:=2 \rho-B$. We want to describe the vertices of the polytope $A \cap C$. For $J \subset I$, define
$A_{J}:=\mathbb{R}_{\geq 0}\left[\omega_{j}: j \in J\right], \quad B_{J}:=\mathbb{R}_{\geq 0}\left[\alpha_{j}: j \in J\right]$ and $C_{J}:=2 \rho-B_{J}$.
The sets $A_{J}$ and $B_{J}$ are the faces of $A$ and $B$. The vertices of the polytope $A \cap C$ are given by the zero dimensional nonempty intersections of the form
$A_{J} \cap C_{H}$. To describe these intersections, we introduce some notation. For any $J \subset I$, let

$$
\rho_{J}:=\sum_{j \in J} \omega_{j}, \quad b_{J}:=\sum_{\alpha \in \Phi_{J}^{+}} \alpha \text { and } c_{J}:=2 \rho-b_{J} ;
$$

in particular, $c_{I}=0$ and $c_{\emptyset}=2 \rho$.
Lemma 8. For each $J \subset I$, we have

$$
A_{I \backslash J} \cap C_{J}=\left\{c_{J}\right\} .
$$

Moreover, none of the other intersections $A_{H} \cap C_{K}$ give a single point.
In particular, the intersection $A \cap C$ is the convex hull of the points $\left\{c_{J}\right.$ : $J \subset I\}$.

Proof. The lattice generated by $A_{I \backslash J}$ and the one generated by $B_{J}$ are orthogonal to each other so the intersection $A_{I \backslash J} \cap C_{J}$ contains at most one point. Observe now that

$$
b_{J}=2 \rho_{J}+\sum_{\ell \notin J} a_{\ell} \omega_{\ell}, \text { where } a_{\ell} \leq 0 .
$$

Hence, $c_{J} \in A_{I \backslash J} \cap C_{J}$.
Consider an intersection of the form $A_{I \backslash H} \cap C_{K}$. Assume it is not empty and that $y=2 \rho-x \in A_{I \backslash H} \cap C_{K}$. Since $y \in A_{I \backslash H}$, we have $x=2 \rho_{H}+$ $\sum_{\ell \notin H} a_{\ell}^{\prime} \omega_{\ell}$. Since $x \in B_{K}$, if $h \notin K$, the coefficient of $\omega_{h}$ in $x$ can not be positive. So, we must have $H \subset K$. If $H \subset K$ and $H \neq K$, then

$$
A_{I \backslash H} \cap C_{K} \supset\left(A_{I \backslash H} \cap C_{H}\right) \cup\left(A_{I \backslash K} \cap C_{K}\right) \supset\left\{c_{H}, c_{K}\right\} .
$$

Hence, it is not a single point.
We apply this Lemma to obtain the following result about the weights below $2 \rho$.

Proposition 9. Let $\lambda \leq 2 \rho$ be a dominant integral weight. Then,

$$
\lambda=\rho+\beta
$$

for some weight $\beta$ of $V(\rho)$.
Proof. Let $Q \subset \mathrm{t}^{*}$ be the root lattice and let $H_{\rho}$ be the convex hull of the weights $\{w(\rho): w \in W\}$. Recall that the weights of the module $V(\rho)$ are precisely the elements of the intersection

$$
(\rho+Q) \cap H_{\rho} .
$$

If $\lambda$ is as in the Proposition, then it is clear that $\lambda-\rho \in \rho+Q$. So, we need to prove that it belongs to $H_{\rho}$. To check this, it is enough to check that ( $A \cap C$ ) $-\rho \subset H_{\rho}$ or equivalently, by the previous Lemma, that

$$
c_{J}-\rho \in H_{\rho}, \text { for all } J \subset I
$$

Notice that $w_{o}^{J}\left(\Phi_{J}^{+}\right)=-\Phi_{J}^{+}$and that, if $\alpha$ is a positive root, $w_{J}^{0}(\alpha)$ is a negative root if and only if $\alpha \in \Phi_{J}^{+}$. Hence,

$$
w_{0}^{J}(\rho)=\sum_{\alpha \in \Phi_{J}^{+} \backslash \Phi_{J}^{+}} \alpha-\sum_{\alpha \in \Phi_{J}^{+}} \alpha=\rho-b_{J},
$$

and $c_{J}-\rho=\rho-b_{J} \in H_{\rho}$.

## REFERENCES

[ $\left.\mathrm{BK}_{1}\right]$ P. Belkale and S. Kumar, Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math. 166 (2006), 185-228.
[ $\left.\mathrm{BK}_{2}\right]$ P. Belkale and S. Kumar, Eigencone, saturation and Horn problems for symplectic and odd orthogonal groups, J. Alg. Geom. 19 (2010), 199-242.
[BS] A. Berenstein and R. Sjamaar, Coadjoint orbits, moment polytopes, and the HilbertMumford criterion, J. Amer. Math. Soc. 13 (2000), 433-466.
[BZ] A. Berenstein and A. Zelevinsky, Triple multiplicities for $s l(r+1)$ and the spectrum of the exterior algebra of the adjoint representation, J. of Algebraic Combinatorics 1 (1992), 7-22.
[HS] J. Hong and L. Shen, Tensor invariants, saturation problems, and Dynkin automorphisms, Preprint (2015).
$\left[\mathrm{KM}_{1}\right]$ M. Kapovich and J. J. Millson, Structure of the tensor product semigroup, Asian J. of Math. 10 (2006), 492-540.
$\left[\mathrm{KM}_{2}\right]$ M. Kapovich and J. J. Millson, A path model for geodesics in Euclidean buildings and its applications to representation theory, Groups, Geometry and Dynamics $\mathbf{2}$ (2008), 405-480.
[KT] A. Knutson and T. Tao, The honeycomb model of $\mathrm{GL}_{n}(\mathbb{C})$ tensor products I: Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), 1055-1090.
[Ko] B. Kostant, Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the $\rho$ decomposition, $C(\mathfrak{g})=$ End $V_{\rho} \otimes C(P)$, and the $\mathfrak{g}$-module structure of $\wedge \mathfrak{g}$, Adv. Math. 125 (1997), 275-350.
[Ku] S. Kumar, A survey of the additive eigenvalue problem (with appendix by M. Kapovich), Transformation Groups 19 (2014), 1051-1148.
[S] S. Sam, Symmetric quivers, invariant theory, and saturation theorems for the classical groups, Adv. Math. 229 (2012), 1104-1135.

## Addresses:

Rocco Chirivì: Department of Mathematics and Physics, Università del Salento, Lecce, Italy (rocco.chirivi@unisalento.it)

Shrawan Kumar: Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA (shrawan@email.unc.edu)

Andrea Maffei: Dipartimento di Matematica, Università di Pisa, Pisa, Italy (maffei@dm.unipi.it)

