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Abstract

We analyze the implications of transboundary pollution externalities on environmental policymaking

in a spatial setting, in which pollution diffuses across the global spatial economy independently of the

specific location in which it is originally generated. This framework gives rise to a simple regional optimal

pollution control problem allowing us to compare the global and local solutions in which, respectively,

the transboundary externality is and is not taken into account in the determination of the optimal policy

by individual local policymakers. We show that it is not obvious that transboundary externalities are a

source of inefficiency per se since this is strictly related to the spatial features of the initial distribution of

pollution. If the initial pollution distribution is spatially homogeneous then the local and global solutions

will coincide and thus no efficiency loss will arise from transboundary externalities, but if it is spatially

heterogeneous the local solution will be suboptimal and thus a global approach to environmental problems

will be needed to achieve efficiency. From a normative perspective, in this latter (and most realistic) case

we also quantify the amount of policy intervention needed at local level in order to achieve the globally

desirable goal of pollution eradication in the long run. Our conclusions hold true in a number of different

settings, including situations in which the spatial domain is either bounded or unbounded, and situations

in which macroeconomic-environmental feedback effects are taken into account.

Keywords: Local and Global Solutions, Regional Optimal Control, Spatial Dynamics, Transboundary

Pollution Externalities

JEL Classification: C60, H23, Q28

1 Introduction

After decades of debates it has finally grown a shared consensus on the fact that anthropogenetic activ-

ities, and in particular economic activities, are an important determinant of environmental problems and

climate change (Oreskes, 2004, IPCC, 2014). Policymakers need thus to critically intervene to reduce the

accumulation of polluting emissions in the atmosphere in order to ensure that economic development is
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effectively addressed towards a sustainable path. However, understanding how to determine the optimal

size of these policy interventions is not simple at all, especially because the stock of pollution in specific

locations is strongly affected by the level of emissions generated in other locations as well, a phenomenon

referred to as transboundary externality (Ansuategi and Perrings, 2000; Ansuategi, 2003). In order to ensure

that such externalities are effectively accounted for in the design of environmental policy it has often been

suggested that local policymakers should adopt a global perspective and collaborate with one another. This

argument has been summarized in the popular motto “think globally, act locally”1 (or “think global, act

local”). Despite the fact that the benefits of such a collaborative approach to policymaking are quite clear,

understanding how to effectively implement collaboration is not simple at all, since quantifying the size of

such transboundary externalities and what individual policymakers should do is all but trivial. The goal of

this paper is to partly contribute to this debate by formally analyzing the desirability of a think globally, act

locally approach and the type of intervention that local policymakers should opt for in order to effectively

implement it.

Specifically, we analyze a pollution control problem in the presence of transboundary externalities. On the

one hand, several works have introduced transboundary externalities in the form of spatial spillovers in the

contexts of capital accumulation (Brito, 2004; Camacho and Zou, 2004; Camacho et al., 2008; Boucekkine et

al., 2009, 2013a, 2013b, 2019) and environmental problems (Anita et al., 2013, 2015; Brock and Xepapadeas,

2008, 2010, 2017; Camacho and Pérez–Barahona, 2015; La Torre et al., 2015, 2019a, 2019b), but none in a

pollution control framework. On the other hand, several works have discussed different types of pollution

control problems under uncertainty and irreversibility (Bawa, 1975; Forster, 1972, 1975; Keeler et al., 1973;

van der Ploeg and Withagen, 1991; Athanassoglou and Xepapadeas, 2012; Saltari and Travaglini, 2014; La

Torre et al., 2017), but to the best of our knowledge, none has ever considered the effects of transboundary

externalities as spatial spillovers. We therefore try to bridge these two branches of the economics literature

by analyzing a finite time horizon framework in which the social planner tries to minimize the social costs

of pollution (La Torre et al., 2017) by accounting for the fact that polluting emissions, independently of

where they are originated, naturally spread in the atmosphere affecting the pollution stock of every location

(La Torre et al., 2015). Such a setting allows us to compare the “global” and “local” solutions in which,

respectively, the transboundary externality is and is not taken into account in the determination of the

optimal environmental policy by single local policymakers. This approach gives rise to a simple “regional

optimal control problem”, which is a specific type of spatially-structured optimal control problem aiming to

understand whether the local solution is effectively optimal also globally (Lions, 1973, 1988). This class of

problem was born as an application of the think globally, act locally motto in mathematics, thus our paper

partly relates to this literature as well (see Anita and Capasso, 2018, for a recent survey of applications

in epidemiology). To the best of our knowledge, ours is the first paper bringing a regional optimal control

approach in economics and applying it to a transboundary pollution control problem.

Different from extant works on transboundary pollution externalities, which compare the spatial and

a-spatial outcomes (La Torre et al., 2015, 2019a; de Frutos and Martin-Herran, 2019b), our analysis is

based on the comparison of local and global solutions, characterizing the decentralized and centralized

outcomes, respectively (Ogawa and Wildasin, 2009).2 Specifically, the global solution represents a situation

in which the global policymaker determines the optimal level of intervention in each single local economy

by internalizing the effects of transboundary pollution externalities at local levels, while the local solution

represents a situation in which single local policymakers determine their optimal level of local intervention by

completing neglecting the existence of such transboundary pollution externalities. However, the evolution

1The motto “think globally, act locally” seems to have origins in the pioneering work of the Scottish urban planner Geedes

(1915) which, even if not explicitly containing the phrase, clearly discusses the underlying argument.
2Even if in completely different settings and with goals substantially different from ours, also La Torre et al. (2019b) compare

the decentralized and centralized outcomes in spatial frameworks. Specifically, they analyze the effects of (non-transboundary)

pollution on mortality and population dynamics in a framework with spatial migration.
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of the pollution stock, both in a local and global solutions, depends on the level of intervention in each

single location and on its transboundary effects, which are internalized in the determination of the global

intervention level while they are not considered when determining the local one. Therefore, in our framework

we always consider the existence of spatial spillovers (i.e., the economy is spatially structured and pollution

spreads across space), thus our local solution does not represent the a-spatial equivalent of our global

solution. Moreover, in the local solution single local policymakers do not interact strategically exploiting

free-riding opportunities (i.e., there is no game structure), thus our local solution is not the non-cooperative

counterpart of a global cooperative game equilibrium. Our setting thus significantly departs from some

recent works which have analyzed the implications of transboundary pollution in differential game contexts

to analyze the spatial implications of strategic interactions, comparing spatial vs a-spatial and cooperative vs

non-cooperative equilibrium outcomes (de Frutos et al., 2019; de Frutos and Martin-Herran, 2019a, 2019b;

Boucekkine et al., 2020). Our different perspective allows us to investigate whether despite the presence of

transboundary pollution externalities in a spatial setting a local approach to policymaking may be enough

to achieve globally desirable outcomes, and eventually how such desirable outcomes may be implemented

through coordination at the local level.

The analysis of the local and global solutions in our simple regional optimal control problem, due to

its peculiar quadratic-linear formulation, allows us to analytically derive two interesting sets of conclusions.

First, we show that transboundary externalities are not a source of inefficiency per se since the spatial

structure of the initial distribution of pollution plays a critical role in determining their efficiency implica-

tions. Indeed, if the initial pollution distribution is homogeneous the local and global solutions will perfectly

coincide and thus no efficiency loss will arise from transboundary externalities. It is the existence of some

heterogeneity in the initial pollution distribution that leads the presence of transboundary externalities to

place a wedge between the local and the global solutions, requiring thus a global approach to environmental

problems to restore efficiency, consistently with the think globally, act locally argument. To some extent

these results are consistent with Ogawa and Wildasin’s (2009), who show, in a completely different and

purely static setting, that despite the presence of transboundary externalities there exist situations in which

local policymaking may give rise to efficient outcomes globally; different from them, we can clearly deter-

mine the situations in which this conclusion may or may not hold true, identifying the spatial features of

the initial pollution distribution as the driver of this eventual lack of efficiency losses. Second, in the case of

heterogeneity in the initial pollution distribution, which clearly represents the most realistic scenario from

a real world perspective, we quantify how to implement coordination at local level in order to achieve glob-

ally desirable goals. Specifically, we show that if every local economy implements an environmental policy

stringent enough (and we determine what stringent enough exactly means), then the global total pollution

level will fall. If this is the case, then over the long run the entire global economy will be able to achieve a

completely pollution-free status. These two results jointly suggest that from a normative perspective it may

well be possible to determine whether and how global collaboration needs to be implemented locally in order

to deal with global pollution problems. To the best of our knowledge such a neat and clear characterization

of these issues from an economic point of view has never been provided before. We also show that our main

conclusions do not depend on the peculiarities of our model’s formulation but they rather extend to more

general and complicated frameworks.

This paper proceeds as follows. Section 2 discusses environmental policy in an a-spatial setting, where

there are no transboundary externalities and there is no spatial dimension. This represents a benchmark for

our following analysis, and it basically consists of a pollution control problem over finite horizon, in which

the stock of pollution is entirely determined by local economic and environmental conditions. We derive the

optimal policy which characterizes the environmental tax in a setting abstracting from a spatial dimension

and thus from spatial spillovers. Section 3 extends our baseline model in order to allow for a spatial dimension

in which transboundary externalities occur as a result of spatial pollution diffusion over a bounded spatial

domain. We distinguish between the local optimal policy, in which the environmental tax is determined
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without considering the effects of transboundary pollution externalities, and the global optimal policy, in

which the environmental tax is determined by internalizing such transboundary pollution externalities. We

show that, only if there exists some spatial heterogeneity in the initial pollution distribution, the localized

approach to environmental policy will give rise to suboptimal solutions, suggesting that coordination across

local policymakers will be essential to deal with environmental problems only in such a setting. We also

quantify the minimal level of intervention needed at local level for the global total level of pollution to

decrease over time, and we show that if such a minimal level of intervention is implemented in every local

economy then over the long run the entire global economy will be able to achieve a completely pollution-free

status. The specific linear-quadratic formulation of our model allows us to derive the explicit local and global

solutions for the spatio-temporal dynamic path of the environmental tax and the pollution level, which we

illustrate through a numerical example to clearly visualize the extent to which the two solutions may differ.

Section 4 presents some extensions of our baseline model showing that our main results straightforwardly

apply also in more general frameworks, including traditional macroeconomic-environmental settings with

macroeconomic and environmental feedback effects. Section 5 presents a further extension of our baseline

model in which the spatial domain is unbounded showing that also in such a setting our main conclusions

apply. Also in such a framework we derive the explicit solutions for the spatio-temporal dynamic path of

the environmental tax and the pollution level and we graphically visualize through a numerical example

the extent to which the local and global solutions may differ. Section 6 as usual concludes and suggests

directions for future research. The proofs of most of our results are presented in appendix A.

2 The A-Spatial Model

We consider a deterministic version of the finite time horizon pollution control problem recently presented

in La Torre et al. (2017). The macroeconomic framework is very simple but as we shall show in section

4 our main conclusions will hold true also in more complicated settings. Agents consume entirely their

disposable income, ct = (1 − τt)yt, where ct is consumption, yt income and τt ∈ (0, 1) the tax rate. The

final consumption good, yt, is produced through a linear production function, yt = akt, where a > 0 is a

technological parameter and kt capital. Capital grows at a constant exogenous rate g > 0, and productive

activities generate pollution, pt. The tax revenue is entirely allocated to environmental policy aiming to

reduce pollution accumulation, and one unit of output devoted to environmental preservation reduces one

unit of pollution. Pollution dynamics is summarized by the following equation ṗt = [η(1− τt)− δ] pt, where

η > 0 is the rate at which output growth (in excess of the environmental absorption capacity) generates

emissions3 and δ > 0 the natural pollution decay rate. We assume that η > δ such that environmental

regulation is effectively needed to avoid explosive pollution dynamics. In this setting, the policy instrument

τt represents the environmental tax aiming to manage the economic-environmental trade off. The social

planner wishes to minimize the social cost of pollution by choosing the optimal level of the tax rate. The

social cost function, C, is the weighted sum of two terms: the expected discounted (ρ > 0 is the discount

factor) sum of instantaneous social losses depending on both environmental and economic factors, and the

discounted environmental damage associated with the level of pollution remaining at the end of the planning

horizon, T . Both the loss function c(pt, τt) and the damage function d(pT ) are assumed to take a quadratic

form as follows: c(pt, τt) =
p2
t (1+τ2

t )
2 and d(pT ) =

p2
T
2 , respectively. Note that the loss function increases both

with the pollution stock and the tax rate, penalizing thus deviations from the no-pollution scenarios and

the no-environmental-regulation scenario. The weight of the social losses and the environmental damage are

3We may think that η = η(1+gt), where gt is the time-varying growth of output which increases the growth rate of pollution

due to emissions in excess of the environmental absorption capacity, such that even in the absence of output growth pollution

growth is constant. The assumption of a constant output growth at the rate g is just a mere simplifying assumption. For an

extension of the baseline model to the case of time-varying output growth due to capital accumulation, see section 5 in La Torre

et al. (2017).
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given by θ ∈ [0, 1] and 1− θ, respectively, such that 1−θ
θ represents the relative weight of the environmental

damage in terms of the social losses.

Therefore, the social planner needs to choose the level of the environmental tax in order to minimize the

social cost, given the evolution of pollution and its initial condition. The planner’s optimal control problem4

reads as follows:

min
τt

C =

∫ T

0

p2
t (1 + τ2

t )

2
e−ρtdt+

1− θ
θ

p2
T

2
e−ρT (1)

s.t. ṗt = [η(1− τt)− δ] pt (2)

p0 > 0 given, (3)

The objective function in the above problem reflects sustainability considerations related to intertemporal

equity (Chichilnisky et al., 1995; Chichilnisky, 1997; Colapinto et al., 2017). In particular, it is consistent with

the so-called Chichilnisky’s criterion which proposes to consider a weighted average between the discounted

sum of instantaneous costs and the long run cost associated with pollution in order to make sure that future

generations’ wellbeing is effectively taken into account in the determination of the current optimal policy

(Chichilnisky, 1997). The larger 1−θ (i.e., the lower θ) the larger the weight attached to future generations,

suggesting, as we shall clarify later, that environmental policy will tend to be stricter in order to allow future

generations to live in a cleaner environment; thus 1− θ represents the degree of sustainability concern (La

Torre et al., 2017). Note that encompassing sustainability issues in the analysis requires us to add a second

term in the objective function quantifying the level of pollution that future generations will need to bear.

In order for this term to effectively matter in the planning problem, the time horizon needs to be finite to

represent future generations not too far away in the future. A more detailed discussion of the peculiarities

of the problem under investigation can be found in La Torre et al. (2017).

In order to simplify the above problem, we can define ut = ptτt which allows us to obtain a linear-

quadratic model’s formulation which can be explicitly solved in closed form. Through this variable change,

the above problem can be rewritten as follows:

min
ut

C =

∫ T

0

p2
t + u2

t

2
e−ρtdt+

1− θ
θ

p2
T

2
e−ρT (4)

s.t. ṗt = (η − δ) pt − ηut (5)

p0 > 0 given, (6)

The current value Hamiltonian function, H
(
pt, ut, λt

)
, read as:

H =
p2
t + u2

t

2
+ λt [(η − δ)pt − ηut] ,

where λt is the costate variable. The FOCs for a minimum are given by the following expressions:

λ̇t = ρλt − pt − (η − δ)λt (7)

ut = ηλt. (8)

Substituting the latter expression in the former allows us to obtain the following system of differential

equations for the state and control variables:

u̇t = (ρ− η + δ)ut − ηpt (9)

ṗt = (η − δ) pt − ηut, (10)

4It is possible to show that such a social cost minimization problem is equivalent to a social welfare maximization problem

in which the utility function takes some specific form (see section 4).
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which, jointly with the terminal condition uT = η 1−θ
θ pT , completely characterize the optimal solution of our

a-spatial control problem. By defining the following vector zt and matrix Θ:

zt =

[
pt
ut

]
, Θ =

[
η − δ −η
−η ρ− η + δ

]

the system (9) and (10) can be rewritten as as follows:

żt = Θzt

whose solution is given by:

zt = CeΘt,

where C = [C1, C2]T . Since the two eigenvalues are both real and distinct, it is not complicated to calculate

the exponential term eΘt as follows:

eΘt =


e

1
2
ρ t

(
cosh

(
1
2 ξ t

)
− (2(δ−η)+ρ) sinh( 1

2
ξ t)

ξ

)
−2

e
1
2 ρ t sinh( 1

2
ξ t)η

ξ

−2
e

1
2 ρ t sinh( 1

2
ξ t)η

ξ e
1
2
ρ t

(
cosh

(
1
2 ξ t

)
+

(2(δ−η)+ρ) sinh( 1
2
ξ t)

ξ

)
 (11)

where ξ =
√

[2(δ − η) + ρ]2 + 4η2. The explicit solution of the system above is therefore given by the

following expressions:

u∗t =
η
(
(1− θ) ξ − {(1− θ) [2(δ − η) + ρ]− 2 θ} tanh

[
1
2 ξ (T − t)

])
p0

e
1
2
ρ T
{
θ ξ + θ [2(δ − η) + ρ] + 2 η2 (1− θ) tanh

(
1
2 ξ T

)} (12)

p∗t =

{
θ [2(δ − η) + ρ] + 2 η2 (1− θ) tanh

[
1
2 ξ (T − t)

]
+ θ ξ

}
p0

e
1
2
ρ T
{
θ ξ + θ [2(δ − η) + ρ] + 2 η2 (1− θ) tanh

(
1
2 ξ T

)} , (13)

from which it follows that the optimal environmental tax rate, τt = ut
pt

, read as follows:

τ∗t =
η
(
(1− θ) ξ − {(1− θ) [2(δ − η) + ρ]− 2 θ} tanh

[
1
2 ξ (T − t)

])
θ [2(δ − η) + ρ] + 2 η2 (1− θ) tanh

[
1
2 ξ (T − t)

]
+ θ ξ

(14)

This expression can be rewritten as in La Torre et al. (2017) as follows:

τt =
1

2η

{
2(η − δ)− ρ+

√
[2(η − δ)− ρ]2 + 4η2 tanh

[√
[2(η − δ)− ρ]2 + 4η2(T − t)

2
+

+ arctanh

(
2(1− θ)η2 − 2(η − δ)θ + ρθ

θ
√

[2(η − δ)− ρ]2 + 4η2

)]}
(15)

where tanh(z) = ez−e−z
ez+e−z and arctanh(z) = log(1+z)−log(1−z)

2 , with −1 < z < 1, are the hyperbolic tangent

function and its inverse, respectively. From the (14) we can note that the optimal environmental tax is time-

varying and intuitively increases with the degree of sustainability concern, and similarly also the optimal

pollution level changes over time to reflect the environmental tax dynamics. Moreover, the optimal environ-

mental tax is completely independent of the initial pollution level p0, suggesting that the only determinants

of the optimal policy are environmental (η and δ) and economic (ρ, θ, T ) parameters. Note that in the

determination of the above optimal policy, since the model abstracts completely from a spatial dimension,

there is no room from transboundary externalities and thus the policymaker cannot account for them.
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3 The Spatial Model: Bounded Spatial Domain

We now introduce a spatial dimension in the above problem to allow for transboundary pollution external-

ities. There exist two alternative forms of transboundary pollution externalities, with static and dynamic

effects respectively (La Torre et al., 2015). On the one hand, pollution may be transboundary because at

any moment in time the stock of pollution in each location is affected not only by the emissions generated

in that single location but also by those generated in other locations as well; this characterizes a static

externality with simultaneous effects between economies, and the implications of this type of externality

have been extensively discussed in the pollution control literature, for example in the context of dynamic

games (Long, 1992). On the other hand, pollution may be transboundary because of the effects of spatial

diffusion, which lead the stock of pollution in each location to spread out across space affecting thus the

stock of pollution in other locations as well; this characterizes a dynamic externality with delayed effects

between economies and such delays are associated with the amount of time required for pollution to spatially

propagate; to the best of our knowledge, the implications of this type of externality have not been analyzed

in a pollution control setting yet. Given the lack of studies on this latter interpretation of transboundary

pollution externalities and given the physical characteristics of pollution which is generally transported by

air currents and deposited with precipitation, along with the fact that such natural phenomena take time

(OECD, 1977), it seems convenient to model the transboundary characteristic of pollution as a dynamic

externality.

We assume that the economy develops along a linear city (Hotelling, 1929), where all activities take

place, and in particular pollution, even if generated in a specific location, diffuses across the whole economy

(La Torre et al., 2015). We denote with τx,t and px,t the tax rate and the pollution stock in the position x

at date t, in a closed and compact set Ω ⊂ R. We also assume that the economy is isolated, in the sense

that there is no flow of pollution that can cross the boundary in the normal direction and the component on

the boundary is purely tangential. Mathematically this is described by the so-called Neumann’s conditions,

which state that the normal derivatives at the borders of Ω are null:
∂τx,t
∂x =

∂px,t
∂x = 0. Other constraints,

such us Dirichlet or Robin boundary conditions, might be imposed as well, however these conditions will

somehow force the pollution level to assume a specific value at the boundary and thus to follow a specific

path over time, which do not seem to fit the purpose of this paper which rather aims at exploring the

pollution dynamics in a closed economy without external impositions. In this framework, a set of locations

x may be interpreted as a specific local economy while the entire spatial domain as the global economy; such

a possibility to distinguish between local and global economies allows us to compare the local and global

solutions of the pollution control problem. Modeling the spatial domain as a compact interval implies that

we are considering an isolated global economy (i.e., an island country located far away from other countries)

in which pollution is entirely determined by the behavior of the different local economies which compose it

(i.e., the subnational unities within the country). Despite this may seem a very restrictive assumption, as

we shall see in section 5, our main results will not depend on the boundedness of the spatial domain.

In our spatial framework, the social planner’s problem can be summarized as follows:

min
τx,t

C =

∫ T

0

∫
Ω

p2
x,t(1 + τ2

x,t)

2
e−ρtdxdt+

1− θ
θ

∫
Ω

p2
x,T

2
e−ρTdx (16)

s.t.
∂px,t
∂t

= d
∂2px,t
∂x2

+ [η(1− τx,t)− δ] px,t (17)

∂τx,t
∂x

=
∂px,t
∂x

= 0, x ∈ {xa, xb}, (18)

px,0 > 0 given (19)

With respect to the a-spatial control problem discussed in the previous section, two important differences

arise. (i) The social planner wishes to minimize the social costs of pollution within the spatial economy,

thus the level of pollution and environmental tax in each location within Ω jointly contribute to determine
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the choice of the optimal level of policy intervention. (ii) The dynamics of pollution is described by a

partial differential equation (PDE) which characterizes its spatio-temporal evolution, and the parameter

d > 0 represents the diffusion coefficient which measures the speed at which the pollution stock spreads

across space. Therefore, the term d
∂2px,t
∂x2 in (17) introduces some transboundary pollution externalities

since the increase in the stock of pollution in each location x is affected by the stock of pollution in other

locations x′ 6= x as well, implying that all locations mutually affect one another. Note that such a type of

transboundary externality implies that individual local economies are all interrelated in a dynamic sense,

since it will take time for the effects of pollution diffusion to manifest themselves.5 These two substantive

differences with respect to the a-spatial model imply that the environmental outcomes in different local

economies are all interrelated and thus they need to be fully accounted for in the determination of the

optimal policy by a global social planner, while a local social planner may neglect to consider them; this

might suggests that a global approach to environmental policy may be superior to a local approach. Despite

such an intuitive conclusion may appear obvious, as we shall formally prove later, it will not always hold

true and only in specific circumstances local policymaking will fail to achieve global efficiency.

We assume without loss of generality that the spatial economy develops along the interval [xa, xb], and

is composed by M (non-overlapping, except for sets of zero Lebesgue measure) local economies, such that

the interval [xa, xb] is split in M different subintervals [xj , xj+1], j = 1, ...,M , with x1 = xa and xM+1 = xb,

each of which represents a single individual local economy. In a local control problem each local economy j

is ruled by a local social planner who solves the problem (16) - (19) over the interval [xj , xj+1] neglecting

the transboundary nature of pollution generated in other local economies, considering thus the economy j

to be completely isolated from other economies j′ 6= j (and thus Neumann’s conditions apply to the borders

xj nd xj+1). The optimal policy determined in this context represents what an individual policymaker

would independently choose without considering what other individual policymakers might do. In a global

control problem there exists a global social planner who solves the problem (16) - (19) over the entire spatial

domain [xa, xb], accounting for transboundary externalities arising within the whole spatial economy (and

thus Neumann’s conditions apply only to the borders xa and xb). The optimal policy determined in this

framework characterizes what policymakers collaborating with one another would agreed upon, or what a

global intergovernmental policymaker would determine and impose to local policymakers. Therefore, the

optimization problems faced by a local and a global social planner present the same mathematical structure,

and the only difference between them is related to the size of the interval over which their pollution control

decisions are made. We now describe more specifically the characteristics of the local and global control

problems deriving our local and global solutions to then move to their comparison in order to assess the

efficiency implications of transboundary pollution externalities.

3.1 The Local Solution

The local solution corresponds to the decentralized outcome in the local control problem in which single

local social planners behave by completely neglecting the transboundary pollution externalities. Thus, the

environmental tax is determined without internalizing at local level the consequences of pollution diffusion

within the entire spatial domain. After simplifying the problem by defining a new control variable ujx,t =

pjx,tτ
j
x,t as in our previous a-spatial analysis, the problem faced by a local social planner in the local economy

5It may be possible to include also a static trasboundary externality by including an integral term to account for the extent

to which the level of pollution in each single location instantaneously propagates across the whole economy (see La Torre et

al., 2015, for a discussion of the different effects of static and dynamic externalities). This will make the pollution dynamic

equation become an integro-partial differential equation, substantially complicating the analysis without qualitatively modifying

our main results.
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j reads as follows:

min
ujx,t

Cj =

∫ T

0

∫ xj+1

xj

(pjx,t)
2 + (ujx,t)

2

2
e−ρtdxdt+

1− θ
θ

∫ xj+1

xj

(pjx,T )2

2
e−ρTdx (20)

s.t.
∂pjx,t
∂t

= d
∂2pjx,t
∂x2

+ (η − δ) pjx,t − ηu
j
x,t (21)

∂ujx,t
∂x

=
∂pjx,t
∂x

= 0, x ∈ {xj , xj+1}, (22)

pjx,0 > 0 given, (23)

where the local policymaker determines the optimal level of intervention by completely ignoring the sur-

rounding local economies and thus without taking into account the transboundary pollution externalities

generated in other local economies. Since the local social planner neglects to account for what happens in

other local economies, his optimization problem is constrained by Neumann’s boundary conditions.

We approach the spatial optimal control problem (20) – (23) by following a variational method (Troltzsch,

2010; Boucekkine et al., 2013a). The generalized current value Hamiltonian function, Hj(px,t, ux,t, λx,t),
reads as follows:

Hj =
(pjx,t)

2 + (ujx,t)
2

2
+ λjx,t

[
d
∂2pjx,t
∂x2

+ (η − δ)pjx,t − ηu
j
x,t

]

where λjx,t is the costate variable. The FOCs for a minimum are given by the following expressions:

∂λjx,t
∂t

= ρλjx,t − d
∂2λjx,t
∂x2

− pjx,t − (η − δ)λjx,t (24)

ujx,t = ηλjx,t (25)

Rearranging this last expression in terms of λjx,t and substituting this into (21) and (24) we obtain the

following system of PDEs:

∂pjx,t
∂t

= d
∂2pjx,t
∂x2

+ (η − δ) pjx,t − ηu
j
x,tu

j
x,t (26)

∂ujx,t
∂t

= ρujx,t − d
∂2ujx,t
∂x2

− ηpjx,t − (η − δ)ujx,t, (27)

which, jointly with the following boundary conditions:

pjx,0 = pj0(x) (28)

ujx,T = η
1− θ
θ

pjx,T (29)

∂pjxj ,t

∂x
=
∂pjxj+1,t

∂x
= 0 ∀t ∈ [0, T ] (30)

∂ujxj ,t

∂x
=
∂ujxj+1,t

∂x
= 0 ∀t ∈ [0, T ], (31)

completely characterize the optimal level of intervention and pollution in the local economy j, along with the

optimal environmental tax at local level, τ jx,t =
ujx,t

pjx,t
. Since in a decentralized setting the policymaker neglects

to account for the transboundary nature of pollution generated in other local economies, we need to determine

the true level of pollution arising in the single local economy by considering the fact that the interrelations

between local economies implies that the environmental tax in each single local economy impacts the stock
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of pollution not only locally but also globally. Indeed, the collection of all local environmental taxes within

the global economy, given by: τx,t = τ jx,t for x ∈ [xj , xj+1], determines the evolution of the pollution stock

at global level. Thus, by substituting τx,t into (17), we obtain the following PDE:

∂px,t
∂t

= d
∂2px,t
∂x2

+ (η − δ) px,t − ητx,tpx,t (32)

subject to the boundary conditions:

∂pxa,t
∂x

=
∂pxb,t
∂x

= 0 ∀t ∈ [0, T ], (33)

Therefore our local solution is represented by the pair (τx,t, px,t) satisfying the above FOCs, given by (26)

and (27) subject to (28) - (31) for all M local economies, along with (32) and (33).

3.2 The Global Solution

The global solution corresponds to the centralized outcome in the global control problem in which the global

social planner quantifies and accounts for the transboundary pollution externalities between local economies,

and thus he determines the environmental tax in each local economy in order to internalize the externality.

Thus, the global control problem reads as follows:

min
ux,t

C =

∫ T

0

∫ xb

xa

p2
x,t + u2

x,t

2
e−ρtdxdt+

1− θ
θ

∫ xb

xa

p2
x,T

2
e−ρTdx (34)

s.t.
∂px,t
∂t

= d
∂2px,t
∂x2

+ (η − δ) px,t − ηux,t (35)

∂ux,t
∂x

=
∂px,t
∂x

= 0, x ∈ {xa, xb}, (36)

px,0 > 0 given, (37)

where, different from what happens in the local control problem, Neumann’s boundary conditions apply only

to the borders of the entire spatial economy. It is straightforward to see that the mathematical structure of

the local and global control problems is identical, and in particular the global control problem is a large-scale

version of the local problem.

In the global control problem, by following the same approach we have earlier employed, the FOCs lead

to the following system of PDEs:

∂px,t
∂t

= d
∂2px,t
∂x2

+ (η − δ) px,t − ηux,t (38)

∂ux,t
∂t

= ρux,t − d
∂2ux,t
∂x2

− ηpx,t − (η − δ)ux,t, (39)

which, jointly with the following boundary conditions:

px,0 = p0(x) (40)

ux,T = η
1− θ
θ

px,T (41)

∂pxa,t
∂x

=
∂pxb,t
∂x

= 0 ∀t ∈ [0, T ] (42)

∂uxa,t
∂x

=
∂uxb,t
∂x

= 0 ∀t ∈ [0, T ], (43)

completely characterize the optimal level of intervention and pollution in the global economy along with

the optimal global environmental tax, given by τx,t =
ux,t
px,t

.. Therefore the global solution is represented by

the pair (τx,t, px,t) satisfying the above FOCs, given by (38) and (39) subject to (40) - (43). Comparing
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the global solution with the local one earlier derived, we can notice that the pollution dynamic equations

are exactly the same (by substituting ux,t = τx,tpx,t in (38)), while the evolution of the environmental tax

presents some dissimilarity. Indeed, even if the expressions are similar, the presence in the local FOCs of the

Neumann’s boundary conditions at the borders between local economies (which is not present in the global

FOCs) eventually introduces a discepancy between the optimal level of intervention at local and global level.

This difference is entirely driven by the different treatment of the transboundary pollution externality, which

is totally accounted for in the optimization process in the global solution while it is not considered at all in

the local solution.

3.3 Local vs Global Policymaking

Having characterized the local and global solutions, we now wish to compare them in order to understand

whether and how they eventually differ in order to understand whether a global approach to policymaking

is effectively superior to a local approach. The analysis of the optimality conditions earlier derived in

a centralized and a decentralized setting allows us to derive some interesting results about the eventual

differences between the local and global solutions. These are summarized in the following Propositions 1

and 2.

Proposition 1. Assume that p0(x) = p0 along with τx,t = τx,t and px,t = px,t satisfying (26) - (31) along

with (32) - (33). Then the pair (τx,t, px,t) represents the optimal solution of the control problem (34) – (37).

Proposition 2. Assume that p0(x) 6= p0 along with τx,t = τx,t and px,t = px,t satisfying (26) - (31) along

with (32) - (33). Then the pair (τx,t, px,t) does not represent the optimal solution of the control problem (34)

– (37).

Proposition 1 states that in a framework in which there is no spatial heterogeneity in the initial pollution

distribution, then the local approach to policymaking is optimal also from a global perspective, since the

global solution coincides with the local solution. Proposition 2 states that, whenever there exists some spatial

heterogeneity in the initial pollution distribution, the local approach to policymaking is suboptimal from a

global perspective, since the local solution does not solve the global control problem. These results are quite

intuitive: in the absence of heterogeneity transboundary pollution externalities do not play any role and so

they are not a source of efficiency loss with respect to the global social optimum, thus local policymakers

can safely determine their optimal intervention levels without taking into account what is happening in the

surrounding local economies. In the presence of heterogeneity transboundary pollution externalities become

critical since they place a wedge between the global social optimum and the locally determined outcome,

therefore designing local policies without accounting for such externalities will lead to suboptimal results

globally. Since a large number of studies document the existence of sizeable environmental inefficiencies due

local policymaking (Helland and Withford, 2003; Sigman, 2005; Monogan III et al., 2017), from a real world

perspective, our results suggest that the existence of initial spatial heterogeneity is the most interesting and

realistic situation, as confirmed also by the fact that different local economies are characterized by idiosyn-

cratic economic and environmental disturbances which have determined their economic history impacting

on their specific initial pollution levels.6 In such a scenario Proposition 2 provides strong support for the

think globally, act locally argument. In a completely different static setting with heterogeneous jurisdic-

tions subject to transboundary (static) pollution externalities, Ogawa and Wildasin (2009) show that local

policymaking generally leads to globally efficient outcomes; different from them, our results are derived in a

spatio-temporal dynamic framework and are more general since we show that the global efficiency of local

policymaking is only one possibility whose occurrence strictly depends on the spatial features of the initial

pollution distribution.

6This is consistent with the path-dependency argument frequently discussed in the economic geography literature resulting

from agglomeration and external economies (Krugman, 1991; Fujita et al., 1999; Fujita and Thisse, 2002).
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From our above discussion, it is clear that in the most realistic situations policy coordination across

local economies is essential in order to deal with environmental problems. However, understanding how to

implement coordination is not simple since it is not straightforward to quantify what the intervention level of

single local economies should be. We will now try to shed some light on this by analyzing the patterns of the

pollution and the environmental tax dynamics in a framework with heterogeneous initial spatial pollution

distribution. It is then possible to prove the following results, summarized by Propositions 3, 4 and 5

Proposition 3. Let (τx,t, px,t) ≥ 0 be the globally optimal solution of the spatial optimal control problem

(34) – (37) with initial pollution level given by p0(x), along with τmin = min(x,t)∈[xa,xb]×[0,T ] τx,t. Define the

global total pollution at the time t ∈ [0, T ] as follows:

ptott =

∫ xb

xa

px,tdx. (44)

If τmin >
η−δ
η , then ptott will be non-increasing over time.

Proposition 4. Let (τx,t, px,t) ≥ 0 be the globally optimal solution of the spatial optimal control problem

(34) – (37) with initial pollution level given by p0(x). Let τmin = min(x,t)∈[xa,xb]×[0,T ] τx,t; then px,t ≤
e(η−δ−ητmin)thx,t where hx,t is the solution of the following problem:

∂hx,t
∂t

= d
∂2hx,t
∂x2

on (xa, xb)× (0, T ) (45)

∂hxa,t
∂x

=
∂hxb,t
∂x

= 0 ∀t ∈ [0, T ] (46)

hx,0 = p0(x) in (xa, xb) (47)

Proposition 5. If τmin >
η−δ
η then limT→+∞ px,T = 0 for any x ∈ [xa, xb].

Proposition 3 identifies a lower bound for the environmental tax in any local economy allowing to achieve

a reduction in the global total pollution level. If each local economy implements at any moment in time

an environmental policy stringent enough (τ jx,t >
η−δ
η , ∀x, t) then it will be possible to effectively observe a

pollution reduction in the global economy. This result can be interpreted from a normative perspective to

determine the minimal policy that needs to be implemented locally. Proposition 4 states that, independently

of what single local economies do, the minimum of the tax rate in different local economies at different

moments in time, τ jmin = min(x,t)∈[xa,xb]×[0,T ] τ
j
x,t, allows to determine an upper bound for the pollution

stock at global level. Therefore, the lowest tax rate implemented by single local economies provides us

with important information about the maximal pollution level that the global economy will need to bear.

Proposition 5 states that if the minimum of the tax is large enough (i.e., τ jmin > η−δ
η ) then it will be

possible for the global economy to achieve a completely pollution-free status in the long run. The lowest tax

rate implemented by single local economies can thus be informative also of whether the pollution problem

can be effectively eliminated in the long run. These three propositions jointly allow us not only to clearly

understand that some collaboration across local economies is needed, but also to quantify from a normative

perspective the minimal level of policy intervention required to achieve the globally desirable goal of pollution

elimination.

3.4 An Analytical Solution

Our results thus far have been derived by focusing on the FOCs for our global and local control problems.

However, because the model (16) – (19) has a linear-quadratic structure, it is possible to solve it in closed

form to gain some further understanding on the difference between the local and the global solutions. This

result is summarized in the next two propositions.
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Proposition 6. Let us define:

A0 =
1

xb − xa

∫ xb

xa

p0(x)dx An =
2

xb − xa

∫ xb

xa

p0(x) cos

(
nπ

[
x− xa
xb − xa

])
dx

B0 =

[
θeΘT

21 − η(1− θ)eΘT
11

η(1− θ)eΘT
12 − θeΘT

22

]
A0 Bn =

[
θeΘT

21 − η(1− θ)eΘT
11

η(1− θ)eΘT
12 − θeΘT

22

]
Ane

−d
(

nπ
xb−xa

)2
T

and eΘt is the exponential matrix given in (11). Then, the globally global optimal tax τx,t is given by:

τx,t =
eΘt

21A0 + eΘt
22B0 +

∑
n≥1

(
eΘt

21An + eΘt
22Bn

)
e
−d

(
nπ

xb−xa

)2
t
cos
(
nπ
[
x−xa
xb−xa

])
eΘt

11A0 + eΘt
12B0 +

∑
n≥1

(
eΘt

11An + eΘt
12Bn

)
e
−d

(
nπ

xb−xa

)2
t
cos
(
nπ
[
x−xa
xb−xa

]) ,
while the globally optimal pollution level, px,t, solves the PDE:

∂px,t
∂t

= d
∂2px,t
∂x2

+ (η − δ) px,t − ητx,tpx,t

jointly with the following boundary conditions:

px,0 = p0(x) ∀x ∈ [xa, xb]

∂pxa,t
∂x

=
∂pxb,t
∂x

= 0 ∀t ∈ [0, T ]

and it is provided by the following expression:

px,t = eΘt
11A0 + eΘt

12B0 +
∑
n≥1

(
eΘt

11An + eΘt
12Bn

)
e
−d

(
nπ

xb−xa

)2
t
cos

(
nπ

[
x− xa
xb − xa

])
Proposition 7. Let us define:

Aj0 =
1

xj+1 − xj

∫ xj+1

xj

p0(x)dx Ajn =
2

xj+1 − xj

∫ xj+1

xj

p0(x) cos

(
nπ

[
x− xj

xj+1 − xj

])
dx

Bj
0 =

[
θeΘT

21 − η(1− θ)eΘT
11

η(1− θ)eΘT
12 − θeΘT

22

]
Aj0 Bj

n =

[
θeΘT

21 − η(1− θ)eΘT
11

η(1− θ)eΘT
12 − θeΘT

22

]
Ajne

−d
(

nπ
xj+1−xj

)2

T

and eΘt is the exponential matrix given in (11). Then, the locally optimal tax τ̄x,t is given by:

τ̄x,t = τ jx,t x ∈ [xj , xj+1]

where

τ jx,t =
eΘt

21A0 + eΘt
22B0 +

∑
n≥1

(
eΘt

21An + eΘt
22Bn

)
e
−d

(
nπ

xj+1−xj

)2

t
cos
(
nπ
[

x−xj
xj+1−xj

])
eΘt

11A0 + eΘt
12B0 +

∑
n≥1

(
eΘt

11An + eΘt
12Bn

)
e
−d

(
nπ

xj+1−xj

)2

t
cos
(
nπ
[

x−xj
xj+1−xj

]) ,
while the locally optimal pollution level, p̄x,t, solves the following PDE:

∂p̄x,t
∂t

= d
∂2p̄x,t
∂x2

+ (η − δ) p̄x,t − ητ̄x,tp̄x,t

jointly with the following boundary conditions:

px,0 = p0(x) ∀x ∈ [xa, xb]

∂pxa,t
∂x

=
∂pxb,t
∂x

= 0 ∀t ∈ [0, T ]
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Propositions 6 and 7 determine explicitly the spatio-temporal dynamic path of the the environmental

tax in global and local settings from which it is possible to determine the evolution of pollution, which in

turn is explicitly determined in the global solution but not in the local one. We can notice that the two

solutions differ for the presence of different intervals at which the boundary conditions are associated, which

yields some difference in the environmental tax and thus in the pollution stock between the local and global

solutions. Despite the presence of analytical expressions for the global and local solutions, they turn out to

be particularly cumbersome and thus it is not possible to perform any comparative statics exercises in order

to understand how they depend on the different economic and environmental parameters. Nevertheless,

they allow to explicitly verify Proposition 1. Indeed, as shown in the following proposition, in the absence

of spatial heterogeneity in the initial distribution of pollution, the global solution of our transboundary

pollution control problem boils down to the local solution.

Proposition 8. Suppose p0(x) = p0 for all x ∈ [xa, xb]. Then the globally optimal pair (τx,t, px,t) is given

by

τx,t =
eΘt

21 + eΘt
22

(
θeΘT21 −η(1−θ)eΘT11

η(1−θ)eΘT12 −θeΘT22

)
eΘt

11 + eΘt
12

(
θeΘT21 −η(1−θ)eΘT11

η(1−θ)eΘT12 −θeΘT22

)
and

px,t = eΘt
11 + eΘt

12

(
θeΘT

21 − η(1− θ)eΘT
11

η(1− θ)eΘT
12 − θeΘT

22

)
where eΘt is given by (11). The globally optimal pair (px,t, τx,t) perfectly coincides with the locally optimal

pair (px,t, τx,t).

In order to better understand the extent to which the local and global solutions may differ, we can exploit

our closed-form solutions from Propositions 6 and 7 to visualize such an eventual difference. Therefore, we

now present some numerical example in which the parameters take the same values employed by La Torre

et al. (2017) in their calibration based on global CO2 data under an intermediate degree of sustainability

concern. Specifically, we set parameters as follows: η = 0.051, δ = 0.05, ρ = 0.04, θ = 0.5, T = 30 and

d = 0.01.

Figure 1: Spatio-temporal dynamics of the environmental tax (left) and pollution (right) with no spatial

heterogeneity in the initial pollution distribution. Local and global solutions perfectly coinciding.

We start by illustrating the pollution and environmental tax dynamics in a framework with no spatial

heterogeneity in the initial pollution distribution. Without loss of generality, we assume that p0(x) = p0 =

400.23, representing today’s initial concentration of CO2 (400.23 parts per million in year 2015), and that the

global economy, which develops along the [−1, 1] interval, is composed by three local economies developing

on the [-1, -1/3], [-1/3,1/3] and [1/3, 1] intervals, respectively. From Proposition 1 (and Proposition 8) we
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know that the local and global solutions will coincide, and these identical solutions are shown in Figure

1 where we plot the spatio-temporal evolution of the environmental tax (left panel) and pollution (right

panel). Since in this setting transboundary pollution externalities do not play any role every local economy

behaves exactly in the same way, and optimality implies that the tax rate initially exceeds its final level in

order to effectively achieve a reduction in the stock of pollution.

Figure 2: Spatio-temporal dynamics of the environmental tax (left) and pollution (right) with spatial hetero-

geneity in the initial pollution distribution. Local solution (top) and global solution (bottom) not coinciding.

We now move to the most interesting framework in which there is some spatial heterogeneity in the initial

pollution distribution. In order to characterize such heterogeneity we assume that p0(x) = p0 + 1
2p0e

−5x2
,

suggesting that on the average in the entire global economy the concentration of CO2 is roughly 400.23 parts

per million, with a peak in pollution concentration in central locations and lower concentrations in the later

ones. Specifically, the central local economy is characterized by higher levels of pollution at the center and

lower levels towards its borders, while the lateral local economies by higher levels towards the border with

the central local economy and lower levels towards their external borders. From Proposition 2 we know that

global and local solutions do not coincide and thus we will need to analyze them separately. This is shown

in Figure 2 where we represent the local solution (top panels) and the global solutions (bottom panels).In

both the local and global solutions the tax rate starts high to then monotonically decrease over time and

such initially high effort allows to obtain a substantial reduction in the stock of pollution within the spatial

economy. In both the local and global solutions, the spatial heterogeneity in the optimal tax is such that

the tax is initially lower (higher) in the locations where pollution concentrations are higher (lower). This

kind of counterintuitive result is due to the effect of transboundary pollution externalities which consists

of homogenizing the spatial distribution of pollution: provided that the tax is high enough to ensure a

reduction of pollution, in the locations with a high initial stock pollution will tend to fall more rapidly than

in the locations with a lower pollution stock as a natural result of diffusion, and as such environmental policy

can be less stringent in such locations. In other words, from the social planner’s point of view it is more
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effective to let diffusion do its work in rather than imposing a higher tax rate: in a sense, the social planner

internalizes the physical mechanism of diffusion allowing it to optimally interact with the transboundary

nature of pollution in order to minimize the social costs. From a qualitative perspective the local and global

solutions show quite a different pattern, which gives rise to substantially different quantitative outcomes: in

the global solution the environmental tax is on average higher than in the local solution yielding to a lower

pollution stock at the end of the planning horizon. In the central local economy the local environmental

tax is initially higher than in the global one and thus its pollution level is lower, while in the lateral local

economies the local environmental tax is lower than the global one and thus their pollution level is higher;

this can be explained exactly as before by the referring to the physical mechanism of diffusion. Note also

that such differences between the local and global taxes fade away over time while the differences between

the local and global pollution persist also at the end of the planning horizon. As a final remark, note that

both in the local and the global solutions, at the end of the planning horizon pollution and as a result the

environmental tax are almost spatially homogenous: this is again due to the fact that diffusion acts as a

convergence mechanism which tends to smooth spatial differences out (Boucekkine et al., 2009; La Torre et

al., 2015).

4 Extensions

We now consider some extensions of our baseline model in order to show that our main results related to the

suboptimality of the local approach to the pollution problem still hold true even in more general settings.

4.1 Welfare Maximization

We first show that our social cost minimization formulation gives rise to an equivalent social welfare max-

imization problem in which the utility function takes a specific functional form. Consider a framework in

which the social planner wishes to maximize social welfare W by determining the optimal environmental

tax rate. Social welfare is the weighted sum of two different terms: the expected discounted sum of in-

stantaneous utilities, and the discounted damage associated with the remaining level of pollution at the

end of the planning horizon, T . The instantaneous utility function, U(ct, pt), is increasing in consumption

and decreasing in pollution, and consumption is given by the following expression: ct = (1 − τt)yt since

households consume completely their disposable income. The damage function takes the same form earlier

discussed: d(pT ) =
p2
T
2 . Therefore, by focusing only on the a-spatial model, we may consider the following

problem, with p0 given:

max
τt

W =

∫ T

0
U ((1− τt)yt, pt) e−ρtdt−

1− θ
θ

p2
T

2
e−ρT (48)

s.t. ṗt = [η(1− τt)− δ]pt (49)

Since income is completely exogenous (and growing at the constant rate g > 0), the above optimization model

is equivalent to a problem in which the second dynamic constraint is disregarded and U (ct, pt) is replaced by

U(xt, pt) where xt = ct
yt

represents the propensity to consume out of income and thus 0 < xt < 1. Therefore,

given p0, we can equivalently analyze the problem below:

max
τt

W =

∫ T

0
U(1− τt, pt)e−ρtdt−

1− θ
θ

p2
T

2
e−ρT (50)

s.t. ṗt = [η(1− τt)− δ]pt (51)

By focusing on a specific functional form of the utility function, adapted to the peculiarity of the problem

above in which the utility argument xt takes values between zero and one, it is possible to show that the

model is completely equivalent to the cost minimization setup that we have earlier discussed. Specifically,
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let us consider the following utility function: U(xt, pt) = −p2
t
2

[
1 + (1− xt)2

]
, where U ′x > 0, U ′′x < 0, U ′p < 0,

and U ′′p < 0. Since xt = 1− τt, the model boils down to the following:

max
τt

W =

∫ T

0
−p2

t

(
1 + τ2

t

2

)
e−ρtdt− 1− θ

θ

p2
T

2
e−ρT (52)

s.t. ṗt = [η(1− τt)− δ]pt (53)

which with simple algebra can be straightforwardly shown to be totally equivalent to the model below:

min
τt

C =

∫ T

0
p2
t

(
1 + τ2

t

2

)
e−ρtdt+

1− θ
θ

p2
T

2
e−ρT (54)

s.t. ṗt = [η(1− τt)− δ]pt, (55)

which perfectly coincides with our original problem (1 - (2). Therefore, we can conclude that the results that

we have derived from a cost minimization problem apply also in a standard welfare maximization setup.

4.2 Convex Functions

We now go back to our social cost minimization formulation in a spatial context and consider a setup in

which the instantaneous loss function, the end-of-planning damage function and the pollution accumulation

functions are convex. Specifically, we assume that the instantaneous loss function c(px,t, τx,t) is increasing

and convex in both its arguments, that is cp > 0, cτ > 0, cpp > 0 and cττ > 0, and that the end-of-planning

damage function D(px,T ) is similarly increasing and convex in pollution, that is D > 0 and Dpp > 0. We also

assume that pollution accumulation is determined by a function f(px,t, τx,t) which is increasing in pollution

and decreasing in the tax rate, fp > 0 and fτ < 0, but convex in both its arguments, fpp ≥ 0 and fττ ≥ 0.

In a global control framework, the social planner faces the following optimization problem:

min
τ(x,t)

C =

∫ T

0

∫ xb

xa

c(px,t, τx,t)e
−ρtdxdt+

1− θ
θ

∫ xb

xa

D(px,T )e−ρTdx (56)

s.t.
∂px,t
∂t

= d
∂2px,t
∂x2

+ f(px,t, τx,t) (57)

∂τx,t
∂x

=
∂px,t
∂x

= 0, x ∈ {xa, xb}, (58)

px,0 > 0 given, (59)

from which the FOCs read as follows:

cτ + λfτ = 0 (60)

∂λ

∂t
= ρλ− cp − λfp − d

∂2λ

∂x2
(61)

jointly with the following boundary conditions:

px,0 = p0(x) (62)

λ =
1− θ
θ

Dp (63)

∂pxa,t
∂x

=
∂pxb,t
∂x

= 0 ∀t ∈ [0, T ] (64)

∂τxa,t
∂x

=
∂τxb,t
∂x

= 0 ∀t ∈ [0, T ], (65)
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In a local control context, instead, the problem faced by a local social planner in the local economy j

reads as follows:

min
τ jx,t

Cj =

∫ T

0

∫ xj+1

xj

c(pjx,t, τ
j
x,t)e

−ρtdxdt+
1− θ
θ

∫ xj+1

xj

D(pjx,T )e−ρTdx (66)

s.t.
∂pjx,t
∂t

= d
∂2pjx,t
∂x2

+ f(pjx,t, τ
j
x,t) (67)

∂τ jx,t
∂x

=
∂pjx,t
∂x

= 0, x ∈ {xj , xj+1}, (68)

pjx,0 > 0 given, (69)

from which we can derive the following FOCs:

cτ j + λfτ j = 0 (70)

∂λj

∂t
= ρλj − cpj − λfpj − d

∂2λj

∂x2
(71)

jointly with the following boundary conditions:

pjx,0 = pj0(x) (72)

λj =
1− θ
θ

Dpj (73)

∂pjxj ,t

∂x
=
∂pjxj+1,t

∂x
= 0 ∀t ∈ [0, T ] (74)

∂τ jxj ,t

∂x
=
∂τ jxj+1,t

∂x
= 0 ∀t ∈ [0, T ], (75)

By comparing (60) - (65) with (70)- (75), it is straightforward to conclude that the presence in the local

FOCs of the Neumann’s boundary conditions at the borders between local economies introduces a difference

between the local and the global solutions, but such a difference disappears when the initial pollution

distribution is homogeneous. This suggests that Propositions 1 and 2 still hold true independently of the

specific functional forms assumed in the analysis.

4.3 Capital Accumulation

We now consider a setting in which there is capital accumulation and so optimal saving. This framework

brings our analysis into a traditional macroeconomic context in which the objective function represents

social welfare. Social welfare is the sum of two terms: the infinite discounted sum of utilities and the end-of-

planning horizon utility. The finite-time utility function u(cx,t, kx,t, τx,t, px,t) where cx,t denotes consumption

and kx,t capital, is assumed to be increasing in consumption and capital but decreasing in the tax rate and

pollution, and to be concave in all of its arguments. The end-of-planning horizon utility v(kx,T , px,T ) is

increasing in capital and decreasing in pollution and concave in both the arguments. The accumulation

of capital is determined by a function g(cx,t, kx,t, τx,t, px,t) which is increasing in capital, decreasing in the

remaining arguments, and concave in all of them. The accumulation of pollution function f(kx,t, τx,t, px,t),

other than the properties earlier discussed, is increasing and concave in capital. Consistent with economic

growth and environment literature (see Xepapadeas, 2005, for a survey), such a framework allows us to

consider mutual economic-environmental feedbacks: the stock of capital determines the evolution of the

pollution stock, which in turn affects the evolution of capital.

By assuming for the sake of simplicity that the diffusion parameter is the same for both capital and

18



pollution, the social planner’s problem in a global control framework reads as follows:

min
τ(x,t)

W =

∫ T

0

∫ xb

xa

u(cx,t, kx,t, τx,t, px,t)e
−ρtdxdt+

1− θ
θ

∫ xb

xa

v(kx,T , px,T )e−ρTdx (76)

s.t.
∂px,t
∂t

= d
∂2px,t
∂x2

+ f(cx,t, kx,t, τx,t, px,t) (77)

∂kx,t
∂t

= d
∂2kx,t
∂x2

+ g(cx,t, kx,t, τx,t, px,t) (78)

∂τx,t
∂x

=
∂px,t
∂x

=
∂cx,t
∂x

=
∂kx,t
∂x

= 0, (79)

px,0 > 0, kx,0 > 0 given, (80)

where d
∂2kx,t
∂x2 denotes the capital migration externalities (Boucekkine et al., 2009). From the above problem,

by denoting with ξ the costate variable for capital, the following FOCs follow:

uc + λgc = 0 (81)

uτ + λgτ + ξfτ = 0 (82)

∂λ

∂t
= ρλ− uk − λgk − ξfk − d

∂2λ

∂x2
(83)

∂ξ

∂t
= ρξ − up − λgp − ξfp − d

∂2ξ

∂x2
(84)

jointly with the following boundary conditions:

px,0 = p0(x) (85)

λ =
1− θ
θ

vp (86)

ξ =
1− θ
θ

vk (87)

∂pxa,t
∂x

=
∂pxb,t
∂x

= 0 (88)

∂τxa,t
∂x

=
∂τxb,t
∂x

= 0 (89)

In a local control context, instead, the problem faced by a local social planner in the local economy j

reads as follows:

min
τ jx,t,c

j
x,t

Wj =

∫ T

0

∫ xj+1

xj

u(cjx,t, k
j
x,t, τ

j
x,t, p

j
x,t)e

−ρtdxdt+
1− θ
θ

∫ xj+1

xj

v(kjx,T , p
j
x,T )e−ρTdx (90)

s.t.
∂pjx,t
∂t

= d
∂2pjx,t
∂x2

+ f(cjx,t, k
j
x,t, τ

j
x,t, p

j
x,t) (91)

∂kjx,t
∂t

= d
∂2kjx,t
∂x2

+ g(cjx,t, k
j
x,t, τ

j
x,t, p

j
x,t) (92)

∂τ jx,t
∂x

=
∂pjx,t
∂x

=
∂cjx,t
∂x

=
∂kjx,t
∂x

= 0, x ∈ {xj , xj+1}, (93)

pjx,0 > 0, kjx,0 > 0 given (94)

From the above problem the following FOCs follow:

ucj + λjgcj = 0 (95)

uτ j + λjgτ j + ξjfτ j = 0 (96)

∂λj

∂t
= ρλj − ukj − λgk − ξjfkj − d

∂2λj

∂x2
(97)

∂ξj

∂t
= ρξj − upj − λgp − ξjfpj − d

∂2ξj

∂x2
(98)
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jointly with the following boundary conditions:

pjx,0 = pj0(x) (99)

λja =
1− θ
θ

vpj (100)

ξj =
1− θ
θ

vkj (101)

∂pjxj ,t

∂x
=
∂pjxj+1,t

∂x
= 0 ∀t ∈ [0, T ] (102)

∂τ jxj ,t

∂x
=
∂τ jxj+1,t

∂x
= 0 ∀t ∈ [0, T ], (103)

By comparing (81) - (89) with (95) - (103), it is straightforward to conclude that the presence in the local

FOCs of the Neumann’s boundary conditions at the borders between local economies introduces a difference

between the local and the global solutions, but such a difference disappears when the initial pollution

distribution is homogeneous. This suggests that Propositions 1 and 2 still hold true independently of the

fact that we introduce a richer macroeconomic framework with mutual economic-environmental feedback

effects in the analysis.

5 The Spatial Model: Unbounded Spatial Domain

We now consider a further extension of our baseline model, in which the spatial domain is no longer bounded

but rather unbounded. Different from what assumed earlier, now we assume that x ∈ R and thus there are

no natural borders for the global economy and that the initial pollution level is uniformly bounded over R,

that is there exists a positive constant κ > 0 such that 0 ≤ p0(x) ≤ κ for all x ∈ R. In order to distinguish

between global and local solutions, we assume that the global economy is composed by an infinite number

of local economies such that the real line (−∞,+∞) is split into a sequence of infinite intervals [xj , xj+1],

j = 1, ...,∞, such that (−∞,+∞) =
⋃+∞
j=−∞[xj , xj+1]. Modeling the spatial domain as the whole real line

implies that we are considering an integrated global economy (i.e., the world economy, in which countries

all interconnected one another) in which pollution, even if generated in locations very apart one another,

depends on the behavior of all the different locations which compose it (i.e., the national countries within

the world economy). In our baseline setup with a bounded spatial domain the behavior of pollution at

the borders plays a critical role, and in particular the Neumann conditions guarantee that the endogenous

patterns emerging from the optimizing choices of the social planner are not induced by setting the pollution

level at some arbitrary value at the borders. Also in our extension to a unbounded spatial domain in which

natural borders do not exist, Neumann conditions play a similar role but are intended in the limit sense

when the spatial variables tend either to +∞ or −∞. In this setting the global control problem reads as

follows:

min
ux,t

C =

∫ T

0

∫ +∞

−∞

p2
x,t + u2

x,t

2
e−ρtdxdt+

1− θ
θ

∫ +∞

−∞

p2
x,T

2
e−ρTdx (104)

s.t.
∂px,t
∂t

= d
∂2px,t
∂x2

+ (η − δ) px,t − ηux,t on (−∞,+∞)× (0, T ) (105)

lim
x→±∞

∂px,t
∂x

=
∂ux,t
∂x

= 0 ∀t ∈ [0, T ] (106)

px,0 > 0 in (−∞,+∞) (107)
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Most of the calculations presented in section 3 apply in this case as well, and it is possible to show that the

following system of PDEs:

∂px,t
∂t

= d
∂2px,t
∂x2

+ (η − δ) px,t − ηux,t (108)

∂ux,t
∂t

= ρux,t − d
∂2ux,t
∂x2

− ηpx,t − (η − δ)ux,t, (109)

jointly with the following boundary conditions:

px,0 = p0(x) (110)

lim
x→±∞

∂px,t
∂x

=
∂ux,t
∂x

= 0 ∀t ∈ [0, T ] (111)

ux,T = η
1− θ
θ

px,T (112)

characterize our global solution given by the pair (τx,t, px,t) where τx,t =
ux,t
px,t

. The problem faced by the

social planner in the local economy j reads instead as follows:

min
ujx,t

Cj =

∫ T

0

∫ xj+1

xj

(pjx,t)
2 + (ujx,t)

2

2
e−ρtdxdt+

1− θ
θ

∫ xj+1

xj

(pjx,T )2

2
e−ρTdx (113)

s.t.
∂pjx,t
∂t

= d
∂2pjx,t
∂x2

+ (η − δ) pjx,t − ηu
j
x,t (114)

∂ujx,t
∂x

=
∂pjx,t
∂x

= 0, x ∈ {xj , xj+1}, (115)

pjx,0 > 0 given, (116)

It is straightforward to observe that the local control problem in the case of an unbounded spatial domain

perfectly coincide with that earlier presented for the bounded spatial domain case, since all local economies

extend over a finite spatial interval. Therefore, the above problem leads exactly to the same FOCs and the

same local environmental tax τ jx,t earlier derived in our baseline model. Since the local policymaker does not

account for the transboundary nature of pollution generated in other local economies, we determine the true

level of pollution arising in the single local economy by substituting the collection of all local environmental

taxes within the global economy, τx,t = τ jx,t for x ∈ [xj , xj+1], in the evolution of the pollution stock at

global level, which yields:
∂px,t
∂t

= d
∂2px,t
∂x2

+ (η − δ) px,t − ητx,tpx,t (117)

subject to the boundary conditions:

lim
x→±∞

∂px,t
∂x

= 0 ∀t ∈ [0, T ] (118)

The collection of the local environmental taxes and the global pollution stock (τx,t, px,t) characterize our

local solution. Exactly as in our baseline model the constraint imposed by the presence in the local FOCs

of the Neumann’s boundary conditions at the borders between local economies places eventually a wedge

between the local and the global solutions. Therefore, exactly the same results as in Propositions 1 and 2

hold: in the case in which the initial pollution distribution is homogeneous the local solution coincides with

the global one, while in the case in which the initial pollution distribution is heterogeneous the local and the

global solutions differ with the local solution being suboptimal. This suggests that our conclusions regarding

the desirability of a global approach to environmental problems, consistently with the think globally, act

locally motto, are independent of the specific assumptions on the structure of the spatial domain.

Moreover, by applying the same arguments employed in Propositions 4 and 5, it is possible to prove the

following result.
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Proposition 9. Let (τx,t, px,t) ≥ 0 be the globally optimal solution of the spatial optimal control problem

(104) – (107) with initial pollution level given by p0(x). Let τmin = min(x,t)∈(−∞,+∞)×[0,T ] τx,t; then px,t ≤
e(η−δ−ητmin)thx,t where hx,t is the solution of the following problem:

∂hx,t
∂t

= d
∂2hx,t
∂x2

on (−∞,+∞)× (0, T ) (119)

hx,0 = p0(x) in (−∞,+∞) (120)

where hx,t is then the well-known classical solution of the heat equation over an unbounded domain provided

by means of the Green functions as follows:

hx,t =
1

2
√
πdt

∫ +∞

−∞
e−

(x−y)2

4dt p0(y)dy.

Moreover, if τmin >
η−δ
η then limT→+∞ px,T = 0 for any x ∈ R.

Consistent with what discussed in our baseline model, Proposition 9 states that the minimum of the

tax rate in different local economies at different moments in time, τ jmin, determines an upper bound for

the pollution stock in each locations, and if such a minimum of the tax is large enough (i.e., τ jmin >
η−δ
η )

then each location within the global economy will achieve a completely pollution-free status in the long run.

This allows us to quantify the minimal level of policy intervention required to achieve the desirable goal of

pollution elimination in the global economy and such a minimal level of collaboration across local economies

perfectly coincide with that determined in our baseline model, suggesting that also our conclusion regarding

the amount of collaboration needed to reduce global pollution is independent of the specific assumptions on

the structure of the spatial domain.

5.1 An Analytical Solution

Even in the presence of an unbounded spatial domain, given the specific linear-quadratic structure of our

model, it is possible to solve it in closed form to gain some further understanding on the difference between

the local and the global solutions. This result is summarized in the next proposition.

Proposition 10. Define:

z̃1
x,T =

1

2
√
πdT

[
θeΘT

21 − η(1− θ)eΘT
11

η(1− θ)eΘT
12 − θeΘT

22

] ∫ +∞

−∞
e−

(x−y)2

4dT p0(y)dy,

and eΘt is the exponential matrix given in (11). Then, the globally optimal tax, τx,t, is given by:

τx,t =

eΘt
21

(
1

2
√
πdt

∫ +∞
−∞ e−

(x−y)2

4dt p0(y)dy

)
+ eΘt

22

(
1

2
√
πd(T−t)

∫ +∞
−∞ e

− (x−y)2

4d(T−t) z̃1
y,Tdy

)
eΘt

11

(
1

2
√
πdt

∫ +∞
−∞ e−

(x−y)2

4dt p0(y)dy

)
+ eΘt

12

(
1

2
√
πd(T−t)

∫ +∞
−∞ e

− (x−y)2

4d(T−t) z̃1
y,Tdy

) ,
while the globally optimal pollution level, px,t, solves the following PDE:

∂px,t
∂t

= d
∂2px,t
∂x2

+ (η − δ) px,t − ητx,tpx,t

jointly with the following boundary conditions:

px,0 = p0(x)

lim
x→±∞

∂px,t
∂x

= 0 ∀t ∈ [0, T ],

and it is provided in closed-form by the following expression:

px,t = eΘt
11

(
1

2
√
πdt

∫ +∞

−∞
e−

(x−y)2

4dt p0(y)dy

)
+ eΘt

12

(
1

2
√
πd(T − t)

∫ +∞

−∞
e
− (x−y)2

4d(T−t) z̃1
y,Tdy

)
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Proposition 10 determines explicitly the spatio-temporal dynamic path of the pollution level, px,t, and

the environmental tax, τx,t, in the global setting. The local solution is determined by solving an infinite

family of problems, each of them being defined on a bounded domain, and thus it coincides with the local

solution earlier derived in Proposition 7. Therefore, in each interval [xj , xj+1], the local tax is determined

exactly as in the bounded domain case, and so is the collection of locally optimal tax and the evolution of

pollution, with the extremes in the boundary conditions xa and xb replaced by −∞ and +∞, respectively.

Exactly as in the bounded domain case, the presence of different intervals at which the boundary conditions

are associated introduces some difference in the environmental tax and thus in the pollution stock between

the local and global solutions. The same comments presented for the closed-form solution of our baseline

model apply: the analytical expressions in Proposition 10 are so cumbersome to prevent the possibility to

understand how they depend on the different economic and environmental parameters.

Note that the closed-form expression for the dynamic path of the environmental rate and the pollution

level in Proposition 10 can be expressed in a simpler form by interpreting it as the expected value of a

random variable. More precisely, recall that if Z is a standard normal distribution, its density is given by:

fZ(x) =
1√
2π
e−

z2

2

and the expected value of the composition g(Z), where g : R→ R is a real function, is given by

E[g(Z)] =

∫ +∞

−∞
g(s)fZ(s)ds

By introducing the change of variable z = y−x√
2dt

and replacing dy =
√

2dtdz, the expressions for the global

solution in Proposition 10 can be rewritten as follows:

τx,t =
eΘt

21Ep0(x+
√

2dtZ)) + eΘt
22Ez̃1(x+

√
2d(T − t)Z, T ))

eΘt
11Ep0(x+

√
2dtZ)) + eΘt

12Ez̃1(x+
√

2d(T − t)Z, T ))

px,t = eΘt
11Ep0(x+

√
2dtZ)) + eΘt

12Ez̃1(x+
√

2d(T − t)Z, T ))

The above stochastic formulation in terms of the expected value of a rescaled normal distribution allows

to express the closed-form solutions in global setting in a more compact form and to use a Monte-Carlo

simulation to approximate the optimal paths in our following numerical example. From an economic per-

spective, the pollution expression states that, as expected, in the long-run the level of pollution in a single

location x will get more and more affected by pollution externalities over time. Despite the difficulties in

interpreting the spatio-temporal dynamic path of the pollution level and the environmental tax, Proposition

10 allows us to explicitly verify Proposition 1. Indeed, as shown in the following proposition, in the absence

of spatial heterogeneity in the initial distribution of pollution, the globally optimal dynamic path of our

transboundary pollution control problem boils down to the locally optimal one.

Proposition 11. Suppose that p0(x) = p0 for all x ∈ (−∞,+∞). The globally optimal pair (τx,t, px,t) is

given by:

τx,t =
eΘt

21 + eΘT
22

(
θeΘT21 −η(1−θ)eΘT11

η(1−θ)eΘT12 −θeΘT22

)
eΘt

11 + eΘT
12

(
θeΘT21 −η(1−θ)eΘT11

η(1−θ)eΘT12 −θeΘT22

)
and

px,t = eΘt
11 + eΘT

12

(
θeΘT

21 − η(1− θ)eΘT
11

η(1− θ)eΘT
12 − θeΘT

22

)
where eΘt is given by (11). The globally optimal pair (px,t, τx,t) perfectly coincides with the locally optimal

pair (px,t, τx,t).
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In order to better understand the extent to which the local and global solutions may differ, we can

exploit our closed-form solutions from Proposition 10 to visualize such an eventual difference. Therefore, we

now present some numerical example based on the same parameter values employed in our baseline model,

by focusing only on the most interesting case in which the initial pollution distribution is heterogeneous

in x ∈ R (while in our baseline model x ∈ [−1, 1]). For the sake of simplicity, we assume that out of the

[−1, 1] region, the spatial economy is uninhabited and thus the initial pollution level is null and thus also the

environmental tax is null, while in the inhabited region [−1, 1] the initial pollution distribution is exactly as

in our bounded domain case, that is p0(x) = p0 + 1
2p0e

−5x2
. Our numerical example is illustrated in Figure 3

Figure 3: Spatio-temporal dynamics of the environmental tax (left) and pollution (right) with spatial hetero-

geneity in the initial pollution distribution. Local solution (top) and global solution (bottom) not coinciding.

where we represent both the local solution (top panel) and the global solution (bottom panel) in the spatial

interval [-1, 1], that is a small subset of the entire spatial domain. From a qualitative point of view, the

local and global solutions behave as in our baseline model in which the spatial domain is bounded: the

tax rate starts high to then decrease over time in order to allow for a monotonic reduction in the pollution

stock, and the physical mechanisms of pollution diffusion lead to a spatially heterogeneous pattern in both

the environmental tax and the pollution level. Also in the unbounded domain case, there exist important

qualitative and quantitative differences between the local and global solutions, and at the end of the planning

horizon the global solution leads to a lower level of pollution than the local solution. By comparing the

pollution stock in the global solution between the bounded and unbounded domain cases, we can observe

that the final pollution stock is lower in the former case, and this is simply due to the effects of diffusion:

since pollution diffuses across a larger spatial domain it tends to fall more rapidly in the [-1,1] region where

it is initially higher.
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5.2 Extensions

By following exactly the same arguments presented earlier in the bounded spatial domain case, it is straight-

forward to show that the results of Propositions 1 and 2 apply also in more general settings than the specific

one just discussed. In particular, even in an unbounded spatial domain framework, by allowing the instan-

taneous loss function, the end-of-planning damage function and the pollution accumulation functions to be

convex, the FOCs in the local and global cases will be given by (70)- (75) and (60) - (65), respectively (with

the extremes in the boundary conditions xa and xb replaced by −∞ and +∞). By introducing capital accu-

mulation and optimal consumption, along the lines discussed in section 4, the FOCs in the local and global

cases will be given by (95) - (103) and (81) - (89), respectively (again, with the extremes in the boundary

conditions xa and xb replaced by −∞ and +∞). Therefore, exactly the same comments we highlighted

earlier hold true, confirming that the suboptimality of the local approach to the pollution problem (in the

case of heterogeneous initial spatial pollution distribution) still applies in general settings and independently

of the specific structure of the spatial domain.

6 Conclusion

Environmental policy is essential in order to achieve sustainable development but understanding the optimal

level of policy intervention is not simple, especially because of the presence of transboundary externalities.

The popular motto think globally, act locally summarizes the view that policy coordination across individual

policymakers is necessary to preserve our common environment. In this paper we try to formally analyze

whether this is really the case by focusing on a pollution control problem over a finite horizon and in a

spatial framework. This setting gives rise to a regional optimal control problem which allows us to contrast

the local and global solutions in which, respectively, the transboundary externality is and is not taken

into account in the determination of the optimal policy by individual local policymakers. We show that

whenever the initial spatial distribution of pollution is homogeneous then the local and the global solutions

coincide, while whenever this is heterogeneous the two solutions differ meaning that the local solution is

suboptimal. Therefore, the transboundary externalities per se are not a source of inefficiency in locally

determined outcomes, but the inefficiency arises from the interaction between transboundary externalities

and spatial heterogeneity in the initial pollution distribution. In the context with heterogeneous initial

pollution distribution, which represents the most realistic case from a real world perspective, coordination

across local policymakers is the best approach consistently with the think globally, act locally argument.

We also quantify the minimal level of policy intervention that needs to be implemented locally in order

to achieve the globally desirable goal of pollution elimination. Indeed, we show that whenever every local

economy implements an environmental policy stringent enough, then the global pollution level will fall and

over the long run the entire global economy will be able to achieve a completely pollution-free status. We

also show that our main conclusions do not depend on the peculiarities of our model’s formulation but they

rather extend to more general and complicated frameworks.

To the best of our knowledge, no other paper has explicitly analyzed a regional optimal control problem in

economics nor the potential differences between local and global solutions arising from an economic problem

in spatial settings in a way comparable to ours. The approach has therefore been a bit simplistic and the

analysis could be extended along multiple directions. Some further heterogeneity in the characteristics or the

objectives of local policymakers can be introduced in order to represent the realistic situation in which some

local economies (due for example to binding budget constraints) within the global economy cannot optimally

determine their level of intervention. A certain degree od strategic interaction between local policymakers can

be introduced in order to account for the possibility of free-riding on the environmental policies implemented

in neighbor locations and understand the efficiency implications of such strategic interactions for local

policymaking. In our analysis we have considered only dynamic transboundary pollution externalities while
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it may be interesting to understand whether the introduction of static transboundary externalities may

affect our qualitative results. These further issues are left for future research.

A Technical Appendix

In this section we present all the proofs of the results discussed in the paper.

Proof of Proposition 1

The proof is straightforward and it easily follows by noticing that the objective function is convex and the

pair (p, τ) solves the first-order optimality conditions over each interval (xj , xj+1) and, because both p and

τ are homogeneous over x, they can be extended to the whole interval [xa, xb] and, therefore, they satisfy

(38) and (39) over [xa, xb].

Proof of Proposition 2

The proof is straightforward and it easily follows by noticing that (τ jx,t solves the first-order optimality

conditions over each interval (xj , xj+1) along with the optimal local level of pollution pjx,t), but the local

solution τ̄x,t and p̄x,t do not satisfy the optimality conditions described by equations (38) and (39) over the

whole interval [xa, xb] (for instance over the points xj) and the boundary conditions (40) - (43).

Proof of Proposition 3

As (p, τ) is optimal, it satisfies the first-order optimality conditions. In particular, by defining u = τp, it is

true that:
∂px,t
∂t

= d
∂2px,t
∂x2

+ (η − δ) px,t − ηux,t (121)

Then, by using the fact that ux,t = τx,tpx,t and the definition of τmin, we can prove that the following

inequality is true:
∂px,t
∂t
≤ ∂2px,t

∂x2
+ (η − δ − ητmin)px,t (122)

By integrating from xa to xb we obtain:

d

dt

∫ xb

xa

px,tdx ≤
∫ xb

xa

∂2px,t
∂x2

+ (η − δ − ητmin)

∫ xb

xa

px,tdx, (123)

which implies:
d

dt
ptott ≤ (η − δ − ητmin)ptott ≤ 0, (124)

and then the thesis follows.

Proof of Proposition 4

The following proposition will be instrumental to proving Proposition 4.

Proposition 12. (Friedman, 2008) Let ρ be smooth and suppose that:

∂ρ

∂t
− d∂

2ρ

∂x2
≥ −cρ in (xa, xb)× (0, T ) (125)

∂ρ

∂n
≥ 0, on {xa, xb} × (0, T ) (126)

ρ(0, x) ≥ 0 in (xa, xb) (127)

where d is a positive real number and c ∈ R. Then ρ ≥ 0 in (xa, xb)× (0, T ).
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From the above proposition we can now prove our thesis. If (px,t, τx,t) ≥ 0 is the optimal solution of the

spatial optimal control problem (16) – (19) and, by defining ux,t = τx,tpx,t, then it has been already proved

that
∂px,t
∂t
≤ ∂2px,t

∂x2
+ (η − δ − ητmin)px,t (128)

Let us denote by p̃x,t the solution to the following problem:

∂px,t
∂t

= d
∂2px,t
∂x2

+ (η − δ − ητmin)px,t (129)

px,0 = p0(x) (130)

∂pxa,t
∂x

=
∂pxb,t
∂x

= 0 ∀t ∈ [0, T ] (131)

Let us define ρx,t = p̃x,t − px,t. By computing the equation for ρ, we get:

∂ρx,t
∂t

≥ d
∂2ρx,t
∂x2

+ (η − δ − ητmin)ρx,t (132)

ρx,t = 0 (133)

∂ρxa,t
∂x

=
∂ρxb,t
∂x

= 0 ∀t ∈ [0, T ] (134)

From the above result Proposition 12, we can deduce that ρ ≥ 0 and then px,t ≤ p̃x,t. On the other

hand, by using the following change of variable

p̃x,t = e(η−δ−ητmin)thx,t (135)

it is easy to show that if p̄ solves the above problem given by (129) - (131), then hx,t will be the well-known

classical solution of the heat equation with Neumann boundary conditions, given by the following expression:

hx,t =
∑
n≥0

Bne
−d

(
nπ

xb−xa

)2
t
cos

[
nπ(x− xa)
xb − xa

]
(136)

where:

B0 =
1

xb − xa

∫ xb

xa

p0(x)dx (137)

and:

Bn =
2

xb − xa

∫ xb

xa

p0(x) cos

[
nπ(x− xa)
xb − xa

]
dx (138)

Proof of Proposition 5

The proposition follows as a corollary of Proposition 4 which states that px,t ≤ e(η−δ−ητmin)thx,t. If τmin >
η−δ
η , for any x ∈ [xa, xb] it is straightforward to conclude the following:

lim
T→∞

px,T ≤ lim
T→∞

e(η−δ−ητmin)Thx,T = 0. (139)

Proof of Proposition 6

By defining the variable ux,t = τx,tpx,t, the vector-value variable zx,t, and the matrix Θ as for the one

dimensional case,

zx,t =

[
px,t
ux,t

]
, Θ =

[
η − δ −η
−η ρ− η + δ

]
,

and the diffusion matrix D as follows:

D =

(
d 0

0 −d

)
,
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we can write the first-order optimality conditions in a more compact form as follows;

∂zx,t
∂t

= D
∂2zx,t
∂x2

+ Θzx,t,

This is a system of two heat equations. By using the change of variable z̃x,t = e−Θtzx,t it is easy to show

that the solution to this equation takes the following form:

zx,t = eΘtz̃x,t

where z̃x,t is the solution to the classical heat equation given by

z̃x,t =

 A0 +
∑

n≥1Ane
−d

(
nπ

xb−xa

)2
t
cos
(
nπ
[
x−xa
xb−xa

])
B0 +

∑
n≥1Bne

−d
(

nπ
xb−xa

)2
(T−t)

cos
(
nπ
[
x−xa
xb−xa

])


and

eΘt =


e
ρt
2

(
cosh

(
ξt
2

)
− (2(δ−η)+ρ) sinh( ξt2 )

ξ

)
−2

e
ρt
2 sinh( ξt2 )η

ξ

−2
e
ρt
2 sinh( ξt2 )η

ξ e
ρt
2

(
cosh

(
ξt
2

)
+

(2(δ−η)+ρ) sinh( ξt2 )
ξ

)
 (140)

If we plug t = 0 we get that eΘ0 = I and then the first component of z boils down to

z̃0
x,0 = p0(x) = A0 +

∑
n≥1

An cos

(
2nπ

[
x− xa
xb − xa

])
which implies that A0 and An are the Fourier coefficients of p0, that is

A0 =
1

xb − xa

∫ xb

xa

p0(x)dx

and

An =
2

xb − xa

∫ xb

xa

p0(x) cos

(
nπ

[
x− xa
xb − xa

])
dx

For the terminal condition, instead, let us plug t = T into the expression of zx,t. We get

zx,T = eΘT

[
z̃0
x,T

z̃1
x,T

]
= eΘT

 A0 +
∑

n≥1Ane
−d

(
nπ

xb−xa

)2
T

cos
(
nπ
[
x−xa
xb−xa

])
B0 +

∑
n≥1Bn cos

(
nπ
[
x−xa
xb−xa

])


and by using the terminal condition

ux,T = η
1− θ
θ

px,T

we get the system

θ

η(1− θ)
=
eΘT

11 (A0 +
∑

n≥1Ane
−d

(
nπ

xb−xa

)2
T

cos
(
nπ
[
x−xa
xb−xa

])
) + eΘT

12 (B0 +
∑

n≥1Bn cos
(
nπ
[
x−xa
xb−xa

])
)

eΘT
21 (A0 +

∑
n≥1Ane

−d
(

nπ
xb−xa

)2
T

cos
(
nπ
[
x−xa
xb−xa

])
) + eΘT

22 (B0 +
∑

n≥1Bn cos
(
nπ
[
x−xa
xb−xa

])
)

which can be transformed into

θ

η(1− θ)
=

eΘT
11 A0 + eΘT

12 B0 +
∑

n≥1

(
eΘT

11 Ane
−d

(
nπ

xb−xa

)2
T

+ eΘT
12 Bn

)
cos
(
nπ
[
x−xa
xb−xa

])
eΘT

21 A0 + eΘT
22 B0 +

∑
n≥1

(
eΘT

21 Ane
−d

(
nπ

xb−xa

)2
T

+ eΘT
22 Bn

)
cos
(
nπ
[
x−xa
xb−xa

])
28



and then

θ

eΘT
21 A0 + eΘT

22 B0 +
∑
n≥1

(
eΘT

21 Ane
−d

(
nπ

xb−xa

)2
T

+ eΘT
22 Bn

)
cos

(
nπ

[
x− xa
xb − xa

]) =

η(1− θ)

eΘT
11 A0 + eΘT

12 B0 +
∑
n≥1

(
eΘT

11 Ane
−d

(
nπ

xb−xa

)2
T

+ eΘT
12 Bn

)
cos

(
nπ

[
x− xa
xb − xa

])
and finally we can get the expressions of Bn and B0 in terms of An and A0 by noticing that

θ
(
eΘT

21 A0 + eΘT
22 B0

)
= η(1− θ)

(
eΘT

11 A0 + eΘT
12 B0

)
(
θeΘT

21 − η(1− θ)eΘT
11

)
A0 =

(
η(1− θ)eΘT

12 − θeΘT
22

)
B0

which implies that

B0 =

[
θeΘT

21 − η(1− θ)eΘT
11

η(1− θ)eΘT
12 − θeΘT

22

]
A0 (141)

and (
θeΘT

21 − η(1− θ)eΘT
11

)
Ane

−d
(

nπ
xb−xa

)2
T

= η(1− θ)eΘT
12 Bn − θeΘT

22 Bn(
θeΘT

21 − η(1− θ)eΘT
11

)
Ane

−d
(

nπ
xb−xa

)2
T

=
(
η(1− θ)eΘT

12 − θeΘT
22

)
Bn

which allows to determine Bn as

Bn =

[
θeΘT

21 − η(1− θ)eΘT
11

η(1− θ)eΘT
12 − θeΘT

22

]
Ane

−d
(

nπ
xb−xa

)2
T

(142)

This completes the proof and the calculations of the Fourier coefficients.

Proof of Proposition 7

The proof of this result is equal to the one presented in Proposition 6 where the interval [xa, xb] is replaced

by [xj , xj+1].

Proof of Proposition 8

The proof follows by noticing that if p0(x) = p0 for all x ∈ [xa, xb] then the Fourier coefficients are equal to:

A0 = p0

An =
2

xb − xa

∫ xb

xa

p0(x) cos

(
2nπ

[
x− xa
xb − xa

])
dx = 0

B0 =

[
θeΘT

21 − η(1− θ)eΘT
11

η(1− θ)eΘT
12 − θeΘT

22

]
p0

Bn =

[
θeΘT

21 − η(1− θ)eΘT
11

η(1− θ)eΘT
12 − θeΘT

22

]
Ane

−d
(

2nπ
xb−xa

)2
T

= 0

and this implies the thesis.

Proof of Proposition 9

The proof of this result is equal to the one of Proposition 4 in which the bounded interval is replaced with

the unbounded one.
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Proof of Proposition 10

By repeating the same steps as in the baseline model, the first-order conditions can be written in a more

compact form as
∂zx,t
∂t

= D
∂2zx,t
∂x2

+ Θzx,t

and by introducing the change of variable z̃ = e−Θtz it is easy to show that the solution to this equation

takes the following form:

zx,t = eΘtz̃x,t.

Now the first component of z̃, z̃0
x,t, solves the following heat equation

∂z̃0
x,t

∂t
= d

∂2z̃0
x,t

∂x2

with initial condition z0
x,0 = p0(x). The solution is then provided by means of the Green functions as follows:

z̃0
x,t =

1

2
√
πdt

∫ +∞

−∞
e−

(x−y)2

4dt p0(y)dy

The second component of z̃, z̃1
x,t, satisfies the following backward heat equation

∂z̃1
x,t

∂t
= −d

∂2z̃1
x,t

∂x2

and the solution is then provided by means of the Green functions as follows:

z̃1
x,t =

1

2
√
πd(T − t)

∫ +∞

−∞
e
− (x−y)2

4d(T−t) z̃1
y,Tdy

Using the terminal condition for u and p, we get

θ

η(1− θ)
=
px,T
ux,T

=
eΘT

11 z̃
0
x,T + eΘT

12 z̃
1
x,T

eΘT
21 z̃

0
x,T + eΘT

22 z̃
1
x,T

which implies that

θeΘT
21 z̃

0
x,T + θeΘT

22 z̃
1
x,T = η(1− θ)eΘT

11 z̃
0
x,T + η(1− θ)eΘT

12 z̃
1
x,T[

θeΘT
21 − η(1− θ)eΘT

11

]
z̃0
x,T =

[
η(1− θ)eΘT

12 − θeΘT
22

]
z̃1
x,T

and, finally,

z̃1
x,T =

[
θeΘT

21 − η(1− θ)eΘT
11

η(1− θ)eΘT
12 − θeΘT

22

]
z̃0
x,T

This completes the proof as it allows to determine the closed-form expression of both components of the

vector z.

Proof of Proposition 11

The proof follows by noticing that when p0(x) = p0, then

z̃1
x,T =

[
θeΘT

21 − η(1− θ)eΘT
11

η(1− θ)eΘT
12 − θeΘT

22

]
p0

by using the fact that
1

2
√
πdT

∫ +∞

−∞
e−

(x−y)2

4dT dy = 1

30



Then the globally optimal pair (px,t, ux,t) and the locally optimal pair (px,t, ux,t) are given by[
px,t
ux,t

]
=

[
px,t
ux,t

]
= p0e

Θt

[
1[

θeΘT21 −η(1−θ)eΘT11

η(1−θ)eΘT12 −θeΘT22

] ] (143)

which implies that

τ̄x,t = τx,t =
eΘt

21 + eΘt
22

(
θeΘT21 −η(1−θ)eΘT11

η(1−θ)eΘT12 −θeΘT22

)
eΘt

11 + eΘt
12

(
θeΘT21 −η(1−θ)eΘT11

η(1−θ)eΘT12 −θeΘT22

)
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