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ABSTRACT: We present the implementation of a Born−Oppenheimer (BO) hybrid quantum mechanics/molecular mechanics
(QM/MM) molecular dynamics (MD) strategy using density functional theory (DFT) and the polarizable AMOEBA force field.
This approach couples the Gaussian and Tinker suite of programs through a variational formalism allowing for a full self-
consistent relaxation of both the AMOEBA induced dipoles and the DFT electron density at each MD step. As the DFT SCF
cycles are the limiting factor in terms of computational efforts and MD stability, we focus on the latter aspect and compare the
time-reversible BO (TR-BO) and the extended BO Lagrangian approaches (XL-BO) to the MD propagation. The XL-BO
approach allows for stable, energy-conserving trajectories offering various perspectives for hybrid simulations using polarizable
force fields.

1. INTRODUCTION

In recent years many efforts have been devoted to improve
both the efficiency and the applicability of polarizable molecular
mechanics (MM) force fields (FF).1−3 In contrast to standard
force fields, polarizable ones include many-body effects, which
makes them in principle more flexible and accurate. Naturally, a
fully classical description, even if including polarization, is not
sufficient for many important chemical and physical problems,
such as the study of chemical reactivity and photoinduced
processes. In that context, a hybrid QM/MM approach that
couples a polarizable FF with a quantum mechanical (QM)
approach represents a very promising strategy as it combines
the computational efficiency of an accurate classical model with
the required quantum description of the subsystem of interest.
Many examples in this direction have been presented so far in
the literature, where the polarizable FF can be obtained in
terms of fluctuating charges,4−8 drude oscillators,9,10 or induced

dipoles.11−19 In the framework of induced dipoles formulations,
we recently presented a polarizable QM/MM implementation
based on density functional theory (DFT) and the AMOEBA
polarizable FF.20 Such an implementation is based on a
variational formalism21,22 and couples the induced dipoles and
the electron density in a fully self-consistent way. Both ground-
and excited-state energies have been presented; the latter are
obtained within the framework of time-dependent DFT (TD-
DFT), either in a linear response or in a state-specific picture.
Our work complements several other QM/AMOEBA
implementations within various other suite of programs, such
as LICHEM,23 ONETEP/TINKER24 and the Q-Chem/
LibEFP interface.25
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In our last work, however, the QM/AMOEBA computations
were performed on snapshots obtained from a purely classical
molecular dynamics (MD) simulation. In other words, the MD
and the QM/MM calculations were decoupled and performed
using different methods. We pursue here a genuine QM/MM
MD strategy, which is achieved by coupling together the
Tinker26 MD package and the Gaussian27 suite of programs
and by implementing analytical gradients for the polarizable
QM/AMOEBA energy.
QM/MM MD simulations28−31 have been proposed within

both Born−Oppenheimer MD (BOMD)32 and Lagrangian
Car−Parrinello MD (CPMD).33 In BOMD the electronic
QM(/MM) equations are solved at each time step to obtain the
ground-state potential energy and forces acting on the nuclei.
In CPMD the electronic degrees of freedom are rather
propagated together with the nuclear ones, which avoids the
cost of solving at each step the QM electronic problem. CPMD
is thus computationally much more efficient that BOMD. This
comes, however, at a cost, as CPMD can produce different
results from BOMD.32,34,35

The efficiency of BOMD can be majorly improved by
building a better initial guess for the SCF equations using
information that is available along the trajectory.34,36−38

Over the years, many strategies have been proposed to
accelerate the SCF procedure in ab initio dynamics.34,36−38

Among them, the time-reversible BOMD developed by
Niklasson and co-workers39 represents an efficient and accurate
method, preserving the time-reversal symmetry, thus avoiding
systematic errors in energy and gradients and, consequently,
memory effects in the nuclear trajectory and an unphysical
systematic drift in the system’s total energy.
They observed, however, that the perfect time reversibility

leads to instabilities under noisy conditions, requiring a
sufficiently accurate electron density for longer simulations.
To address this issue, they proposed an extended Lagrangian
approach,40 including the coupling to a fictitious external
“dissipative reservoir” to remove the numerical error fluctua-
tions without introducing any significant energy drift or
modification of the nuclear forces. In ref 40 the authors show
how the dissipative scheme is capable of efficiently removing
numerical noise artificially generated by introducing a
perturbation during the dynamics of a model system. The
same has been done with the lossless approach, producing a
noisy trajectory, where the extra noise never disappears.
In the present contribution we apply the extended

Lagrangian formalism in the context of the hybrid QM/
AMOEBA BOMD, showing that stable and accurate dynamics
can indeed be performed. To do so, we will first recall the
working equations for the QM/AMOEBA implementation in a
variational formulation. Then a special focus will be given on
the presentation of the analytical derivatives of the QM/
AMOEBA energy and on the comparison of the two
predictor−corrector schemes by Niklasson et al.39,40 that we
applied to the computation of the QM part to reduce the
computational cost at every hybrid MD step.

2. POLARIZABLE QM/MM WITH THE AMOEBA FORCE
FIELD

In this section, we will briefly sum up the coupled QM/
AMOEBA equations for a SCF-based QM method. A full
derivation can be found in a previous work of some of us.20

Detailed information on the AMOEBA force field and the way

it treats the polarization problem can be found in the relevant
literature.22,41,42

Here, we report the QM/AMOEBA variational energy
functional

μ μ μ

μ

= + +

= +

P P P

P P

( , ) ( ) ( ) ( , )

( ) ( , )

QM MM Coup

QM Env (1)

where we introduced an environment term Env , which is given
by the sum of three contributions:

μ= + +P P( ) ( , )Env FF
QM/MM
El

QM/MM
Pol

(2)

The first term in eq 2 includes the MM bonded and
dispersion−repulsion interactions, which depend on neither
the electron density nor the induced dipoles. This term
includes also the “van der Waals” interactions between the
classical and quantum subsystems, which in our implementa-
tion are treated with the AMOEBA force field. The second
term is given by the electrostatic interaction between the
AMOEBA static multipoles and the QM density

μ Θ= − −† † †P q V P E P G P( ) ( ) ( ) ( )QM/MM
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s
QM QM

(3)

where qi, μ⃗s,i, and Θi are the fixed charges, dipoles, and
quadrupoles, respectively, and the potential, field, and field
gradient produced by the QM density at the ith MM atom are
each written as the sum of a nuclear and an electronic
contribution:
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In eqs 4−6 the index k runs over the NQM QM nuclei, and Zk
and R⃗k denote the charge and position of the kth nucleus,
respectively. The electronic contributions are written in terms
of the density matrix Pμν, where μ and ν label atomic orbitals,
and the integrals Vμν, E⃗μν, and Gμν

αβ read
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Finally, the last term in eq 2 is the variational polarization
energy
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This term accounts for the mutual polarization of the QM
density and the AMOEBA induced dipoles. A more detailed
derivation of the variational formulation of the AMOEBA
polarization energy can be found in ref 22, whereas details on
the AMOEBA induced dipoles μp and μd and the related
electric fields are discussed in ref 41.
The use of a variational formalism makes the derivation of

the coupled equations straightforward. The QM/AMOEBA
Fock matrix is obtained as the gradient of the functional in 1
with respect to the density matrix:

μ̃ = ∂
∂

= ° +F
P
P

F F
( , ) Env

(11)

In eq 11, F° is the standard Fock matrix, whereas FEnv is the
contribution due to the embedding:

μ μ μΘ= − − − +μν μν μν μν μν
† † † †F q V E G E

1
2

( )Env
s p d (12)

The Fock operator in eq 11 can be used to set up a self-
consistent field procedure. Because it depends on the
AMOEBA induced dipoles, the AMOEBA polarization
equations need to be solved at each SCF iteration. These are
obtained by differentiating the energy functional in eq 1 with
respect to both sets of dipoles and setting the derivative to zero,
which yields

μ
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The two linear systems in eq 13 can be easily solved by using an
iterative method, as discussed in detail in refs 42 and 43. In
particular, in the present work we use Jacobi iterations together
with the direct inversion in the iterative subspace (DIIS)
method44 to accelerate convergence. To reduce the drift issue
(see discussion in the Numerical Tests section), all simulations
are performed with a tight convergence threshold (10−8 D) for
the dipoles.
2.1. Analytical Derivatives of the QM/AMOEBA

Energy. We will now proceed with the derivation of the
QM/AMOEBA gradients. We will focus the discussion on the
QM/MM interaction energy, and in particular on the
electrostatic and polarization terms, given in eqs 3 and 10,
respectively. Thanks to our variational formulation, we are only
concerned with partial derivatives. By differentiating eq 3 with
respect to the coordinates of a QM nucleus k, we get
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Equation 14 contains the derivatives of the potential, field and
field gradient, as given in eqs 4−6:
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where the integral derivatives are defined as follows:
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Similarly, the gradient of the QM/AMOEBA polarization
energy with respect to the position of a QM nucleus is

μ μ
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∂
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with the derivative of the QM field given in eq 15.
We now proceed to differentiate the QM/AMOEBA energy

with respect to the positions of a MM atom. The electrostatic
term gives rise to two different contributions. The first arises
from the derivatives of the potential, field, and field gradient,
which are, respectively, the field, field gradient, and field second
derivative. The second contribution, which we will denote with
F⃗rot,i, comes from the matrices that are used to rotate the static
dipoles and quadrupoles from the molecular frame to the lab
frame. The latter contribution is straightforward, but very
cumbersome, and will not be discussed here. The reader can
find a complete derivation in ref 42. The derivative of the
electrostatic energy with respect to the position of a classical
atoms thus reads
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where we introduced the second field derivative OQM, whose
components are given by
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and
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The derivatives of the QM/AMOEBA polarization energy
with respect to the position of a MM atom are given by
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The derivatives of the T matrix and of the Ed and Ep fields are
again detailed in ref 42.
2.2. Acceleration of the QM Part through an Extended

Lagrangian Formalism. The so-called extended BO (XBO)

Lagrangian, XBO, defined in eq 22, includes auxiliary electronic
degrees of freedom (EDF), here expressed in terms of
orthogonal electron density matrices, P* and its time derivative
Ṗ*, evolving on a harmonic potential centered at the SCF
ground-state solution PSCF. In our implementation, the latter is
defined as the QM/AMOEBA SCF ground-state potential

μR P( ; , )SCF for the real EDF. The third and fourth terms of
the RHS of eq 22 are the fictitious kinetic and potential
energies of the auxiliary EDFs, relative to the fictitious
electronic mass m and frequency ω.

∑ μ
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̇ * ̇* = ̇ −

+ ̇* − − *

M R
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I I
XBO 2 SCF

2 SCF 2

Z
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In the limit m → 0, →XBO BO and the evolution in time
of the system is described by the Euler−Lagrange equations of
motion

μ̈ = − ∂
∂

M R
R

R P( ; , )
I I

SCF

I (23)

ω̈* = − *P P P( )2 SCF
(24)

As shown in eq 23, the nuclear degrees of freedom remain
unaffected by the extended ones as in a regular BOMD.
The auxiliary EDFs are propagated in a Verlet scheme, as

well as the nuclear coordinates, introducing a dissipative force
term in a Langevin-like approach,40 resulting in the following
expression:

∑α* = * − * + − * + *
=

+ − −
k cP P P P P P2 ( )t t t t t

l

K

l t
0

n n n n n n l1 1
(25)

where α is the coupling coefficient between the auxiliary EDFs
and the external dissipative bath. Further details can be found
in ref 40 where also various optimized values for k, α, and the
linear combination parameters cl are reported. This expression
represents the improved density, which will be used as a guess
in the SCF procedure. Because the Gaussian code works with
nonorthogonal density matrices, we propagate P̃tn* = S1/2Ptn*S

1/2

Figure 1.Work-flow diagram of the implementation and Gaussian/TINKER interface. The driver is a bash script overseeing the writing of input files
and the exchange of informations between TINKER and Gaussian codes. TINKER is the main program as it collects the energy gradients computed
by Gaussian and takes care of the nuclear classical dynamics. Gaussian solves the time-independent Schrödinger equation, computing the electronic
PES on-the-fly and its derivative at each nuclear configuration.
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rather than Ptn*, as proposed by Skylaris et al.45 The initial guess

is again given by eq 25, after multiplying P̃tn+1* by S−1/2 on the
left and right.

3. NUMERICAL TESTS
To perform hybrid polarizable QM/MM MD simulation, an
interface between a locally modified version of Gaussian27 and
Tinker (and Tinker-HP) has been created. The work flow is
described in details in Figure 1. In our implementation,
Gaussian is used to solve the QM/MM equations and to
compute the electrostatic and polarization QM/MM energy
and forces. This allows us to minimize communication between
Gaussian and Tinker and will allow us to exploit our previous
FMM-based linear scaling implementation of the polarizable
electrostatics.19 A fully linear scaling implementation is
currently under active investigation.
Tinker/Tinker-HP computes all MM nonelectrostatic terms

and, given the total forces, integrates the equations of motions.
The QM/MM driver handles the communication between
Gaussian and Tinker and works directly on the input/output of
each program.
As a test case we perform a series of QM/AMOEBA MD

simulations using free (nonperiodic) boundary conditions of
the alanine dipeptide (ADP) in a cubic box of 631 waters (1912
atoms overall, Figure 2). The dipeptide represents the QM
subsystem in our hybrid approach and is treated at the B3LYP/
6-31G level, whereas the water molecules are treated at the
AMOEBA level.

We ran several MD trajectories in the NVE ensemble, using a
time step δt = 0.5 fs for a total simulation time of 1 ps, without
imposing any boundary condition. In general, this can lead to
various issues, and in particular, to the evaporation of the
system, but because our tests were performed for very short
simulation times, comparable to that of a low-energy vibration,
we are not concerned here with these kinds of problems. For
longer simulations, a harmonic repulsive constraint46 is
available to avoid evaporation artifacts. Indeed, the water-
solute cluster can be confined by a spherical boundary with a
van der Waals soft wall represented by a 12-6 Lennard-Jones

potential, which can be set to a fixed buffer distance of 2.5 Å
outside the specified radius.
Here we discuss the tests we carried out to analyze the effect

that the environment, the extrapolation scheme and the SCF
convergence threshold have on the energy conservation. The
SCF convergence thresholds tested are 10−3, 10−5, and 10−8.
Note that convergence in Gaussian is based on the root-mean-
square (RMS) variation of the electron density, rather than the
energy. The loosest value (10−3) is chosen to mimic a strongly
noised dynamics, with poorly converged density and inaccurate
gradients. Because our simulations are run in the micro-
canonical ensemble, we cannot directly control temperature,
except for the sampling of the initial velocities, obtained from a
Maxwell−Boltzmann distribution.
The two extrapolation schemes employed are that of

Niklasson et al.39 (henceforth labeled TR-BOMD) and that
of eq 25 (XL-BOMD) with K = 7. Although different values of
K have been used in the literature,45,47 we follow the work of
Niklasson and co-workers,48 where tight-binding DFT is
applied to different amino acids and different K values are
compared. Finally, we test the effect of the environment by
comparing the simulations in water with gas-phase simulations,
keeping all the other settings unchanged.
We compare the drift in total energy and the noise in each of

the 12 resulting trajectories. The drift is assumed to be linear in
time and is computed as the slope of the best line interpolating
the time sequence of the energy values. The noise is evaluated
as the root-mean square of the energy fluctuations after
removing the drift.38 We also report the pseudotemperature of
the EDFs,45,49 computed as Tr[Ẋ2]/Ne, where X = P* or PSCF,
the dot indicates time derivatives (performed numerically), and
Ne is the number of electrons. As starting geometry, we use a
snapshot extracted from an Amber classical MD and set a low
temperature (50 K) for the initial velocity sampling. Because
the temperature determines the amount of energy per
vibrational degree of freedom, the energy oscillation amplitudes
are temperature dependent. High-temperature simulations have
the effect of increasing the noise, thus affecting the accuracy of
our estimation of the energy drift, as shown in the Supporting
Information where the results of a 300 K dynamics is reported
(Figure S1).
The results are reported in Table 1. In Figure 3, we plot the

total energy as Etot(t) − Eavg for each simulation. Panels A and
B refer to gas-phase and QM/AMOEBA simulations. The red
lines represent the energy of TR-BO, using the 10−3 SCF
convergence threshold. The insets clearly show that the energy
diverges, reaching ∼2000 mEH after 315 fs in the gas phase and
355 fs in water. Due to the high noise (92220 and 74810 μEH,
respectively) and inaccuracy in the drift determination, the
results are not meaningful and conclusion cannot be drawn on
the dynamics conservativity.
Using the XL-BO extrapolation (Figure 3, blue line, panels A,

B), the results are more stable, as the energy does not diverge in
either the gas or condensed phase, although the drift is quite
large (∼2000 and ∼1000 μEH/ps). Furthermore, the average
number of SCF cycles along the whole trajectory, N, in XL-BO
is almost half that in TR-BO (∼3 for XL-BO vs ∼5 for TR-
BO), as expected. Because the dissipative extended Lagrangian
approach removes the numerical noise, the dynamics is more
stable, even though the noise remains rather large (∼3 and ∼4
mEH in the gas phase and QM/AMOEBA, respectively).
The different behavior of the two approaches can be easily

understood by plotting the pseudotemperature of the auxiliary

Figure 2. Snapshot extracted from an MD run. The ADP molecule in
the center is the QM subsystem, surrounded by water molecules
described with the AMOEBA polarizable FF.
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and real EDFs in the two cases. Figure 4 shows the overheating
of the auxiliary variables for TR-BO, which diverge significantly
and quite rapidly (after ∼200 fs) from the real converged
density. This leads to a loss of computational efficiency, because
the SCF procedure is no longer able to reach convergence
quickly. In the XL-BO case the two pseudotemperatures remain
quite close to each other. However, even if the XL-BO
extrapolation stabilizes the trajectory, the still large values of the
energy drift and noise prevent one from considering it as safe
and reliable at such low convergence thresholds.
Increasing the convergence threshold to 10−5, we obtain

consistently better results, and we can observe a non-negligible
difference between TR- and XL-BO (Table 1 and Figure 3,
panels C and D). In the gas phase (red lines) both approaches
give substantially no drift; nevertheless, XL-BO still exhibits a
better behavior, showing a smaller noise value and ∼30% less
SCF cycles on average.
Comparing these results with the QM/AMOEBA ones (blue

lines), we find that the drift and the noise are 2 and 1 orders of
magnitude greater (XL-BO and TR-BO, respectively) than the
corresponding values in the gas phase. This is mainly due to the
effect of the MM polarization, because the iterative resolution

for the induced dipoles causes the term
μ

∂
∂

E to be not exactly

zero, with a consequent nonzero Hellmann−Feynman residual
force. TR- and XL-BO schemes are almost equivalent in the
condensed phase, where the energy drift in our 1 ps test (panel
D in Figure 3) is noticeable although very small (10−1 mEH).

Table 1. Comparison of the Average Number of SCF Cycles (N), Total Energy Drift, and Noise between Different Convergence
Criteria, for Both Gas-Phase and QM/AMOEBA BOMD, Using Eq 7 in Ref 39 [(TR-BOMD) and Eq 25 (XL-BOMD) with K =
7 for the SCF Guess Extrapolation]

gas phase QM/AMOEBA

conv (10−N) method N drift (μEH/ps) noise (μEH) N drift (μEH/ps) noise (μEH)

3 TR-BOa 5.4 72340 ± 79320 92220 5.1 54930 ± 53770 74810
XL-BO 2.8 2090 ± 470 3190 2.7 1060 ± 530 3630

5 TR-BO 5.18 −9.0 ± 0.67 4.6 5.46 −82 ± 3.2 22
XL-BO 3.62 −0.66 ± 0.74 5.0 3.78 −72 ± 3.2 22

8 TR-BO 7.29 −0.20 ± 0.19 1.3 7.40 −70 ± 3.2 22
XL-BO 7.83 −0.21 ± 0.19 1.3 8.09 −70 ± 3.2 22

aIn this case the trajectory explodes around 315 fs in the gas phase and 355 fs in water, so the average number of SCF cycles, the drift, and the noise
are computed over these time intervals.

Figure 3. Energy variation (mEH) along 1 ps long trajectories. The
plots on the left (A, C, E) refer to gas-phase simulations; those on the
right (B, D, F), to simulations in water solution. Convergence
thresholds are 10−3 (plots A and B), 10−5 (C and D), and 10−8 (E and
F). The insets in plots A, B, and C show the full energy fluctuation
range.

Figure 4. Comparison between the QM/AMOEBA auxiliary and real EDF pseudotemperature for SCF convergence set to 10−3 in arbitrary units
(au). The values for the auxiliary EDFs are scaled by a factor 10−3 for TR-BO and 10−1 for XL-BO to obtain comparable scales.
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The XL-BO still shows a 30% gain in SCF efficiency, which
can be explained again with the EDFs pseudotemperature
analysis (see Supporting Information, Figure S2). We should
also observe that, compared to the case of a regular BOMD, the
save in elapsed time is almost 50%.
Moving to the tightest convergence criterion (10−8), almost

no difference can be found by comparing TR- and XL-BO
within the same environment, and also no differences with XL-
BO when the SCF convergence is set to 10−5. The same
happens for the pseudotemperature of the electronic variables,
which we are not reporting. As a final remark, we note that,
given the small size of the QM system we employed for our
tests, the impact of the different convergence thresholds on the
overall computational cost of a simulation is limited. However,
we expect that being able to use a less conservative threshold
will speed up real life applications of a factor approximately
proportional to the reduction in SCF cycles.
We can then conclude that

• for XL-BO, convergence for energy and energy gradients
is reached already with a much lower convergence
criterion than that usually suggested when QM forces
have to be computed (10−8);

• as expected from theory, the perfectly lossless TR-
BOMD is affected by the noise due to numerical
approximations in the SCF solution. Nevertheless, as
soon as well-converged densities are used, it is efficient in
reducing the number of SCF cycles and produces a very
stable simulation.

4. CONCLUSIONS
In this contribution, we presented an implementation of the
analytical gradients of the polarizable QM/AMOEBA energy
and of the machinery needed to perform efficient and stable
molecular dynamics simulations. In particular, we used density
functional theory as a quantum mechanical method, and the
extended Born−Oppenheimer Lagrangian technique to provide
an improved guess to the self-consistent field solver. Such a
technique allows one to achieve energy-conserving and stable
simulations, also offering remarkable computational advantages.
We tested it by running several MD simulations on a small
system, the alanine dipedptide (QM) solvated by water
molecules (AMOEBA), comparing the TR- and XL-BO
schemes using different SCF thresholds. We found that the
XL-BO is the most effective approach when a moderately
accurate convergence threshold is used, thanks to its capability
to avoid the “heating” of the auxiliary EDFs, which remain close
to the real ones along the dynamics. Our implementation is
presently limited to systems where the MM portion is not
covalently bonded to the QM one and is therefore suited to
study solute/solvent systems. A further implementation
allowing us to treat covalently bonded QM and MM systems
is currently under investigation, aiming to apply the link atom
strategy as well as a pseudopotential approach, following the
implementation of ref 23. This work represents a first step
toward large scale polarizable QM/MM MD simulations and
reactivity studies. More efficient and parallel computational
strategies need to be used to extend the applicability of the
method. In particular, to be able to treat large to very large
systems, comprising up to tens of thousands of atoms in the
classical subsystem, a linear-scaling, parallel, and efficient
implementation of AMOEBA will be required, such as the
one available in the Tinker HP suite of programs,19,43,50,51

developed by some of us. It should be noted that polarizable
QM/MM simulations are in principle more expensive than
their nonpolarizable counterparts. However, the QM part of the
calculation usually dominates the overall simulation cost,
making the increased cost associated with the classical part
not an issue. Another aspect that needs to be addressed is the
handling of boundary conditions. For nonperiodic, polarizable
QM/MM MD simulations, the use of a polarizable continuum
as a boundary is particularly attractive.52,53 Purely classical
polarizable MD simulations within a polarizable continuum
have already been discussed by some of us22 and are made
possible by ddCOSMO, a fast, domain-decomposition-based
implementation54,55 of the conductor-like screening model.56

An efficient and scalable implementation of a three-layer QM/
AMOEBA/ddCOSMO model for molecular dynamics simu-
lation is currently being investigated.
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