1	Multiple behavioural asymmetries impact male mating success in the khapra
2	beetle, Trogoderma granarium
3	
4	Giovanni Benelli ^a *, Donato Romano ^b , Nickolas Kavallieratos ^c , Giuseppe Conte ^a ,
5	Cesare Stefanini ^d , Marcello Mele ^a , Christos Athanassiou ^e , Angelo Canale ^a
6	
7	^a University of Pisa, Department of Agriculture, Food and Environment, via del
8	Borghetto 80, 56124 Pisa, Italy
9	^b Sant'Anna School of Advanced Studies, The BioRobotics Institute, viale Rinaldo
10	Piaggio 34, Pontedera, 56025 Pisa, Italy
11	^c Agricultural University of Athens, Department of Crop Science, Laboratory of
12	Agricultural Zoology and Entomology, 75 Iera Odos str., 11855, Athens, Attica,
13	Greece
14	^d Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu
15	Dhabi, UAE
16	^e University of Thessaly, Department of Agriculture Crop Production and Rural
17	Environment, Laboratory of Entomology and Agricultural Zoology, Phytokou str.,
18	38446, N. Ionia, Magnesia, Greece
19	
20	* Corresponding author. University of Pisa, Department of Agriculture, Food and
21	Environment, via del Borghetto 80, 56124 Pisa, Italy. E-mail address:
22	benelli.giovanni@gmail.com (G. Benelli).

24 Key message

25	
26	• Little is known on mating behavioural asymmetries in insects, with special
27	reference to beetles
28	• We studied mating behavioural asymmetries in the khapra beetle <i>Trogoderma</i>
29	granarium
30	• Four population-level lateralized mating traits were reported in this beetle
31	• Male recognition, mounting and female post-copulation kicks were left-biased
32	• Left-biased asymmetries in the recognition approach affected male mating
33	duration and success
34	
35	Author contribution statement
36	
37	GB conceived and designed research. All authors conducted experiments and
38	contributed new reagents and analytical tools. GB and GC analyzed data. GB, NK
39	and CA wrote the manuscript.
40	

42 Abstract

44	Recently, extensive research has been conducted to shed light on mating
45	behavioural asymmetries in various species of vertebrates. However, little is
46	available on this key issue for invertebrates, especially for species of the order
47	Coleoptera. In the present study, we highlighted the presence of four population-level
48	lateralized mating traits in the mating behaviour of an alien and invasive pest of
49	stored products, the khapra beetle, Trogoderma granarium (Dermestidae). Male
50	recognition and mounting, as well as the female post-copulation kicks were left-
51	biased, while male foreleg tapping acts were right-biased. Notably, left-biased
52	asymmetries in the recognition approach led to significant differences in recognition
53	duration, number of head wagging acts, whole mating duration and, most
54	importantly, male mating success. Overall, results reported here represent a rather
55	unique example of four subsequent mating traits lateralized at population-level,
56	which influence the male mating success. From an applied perspective, the
57	quantification of lateralized mating traits is expected to contribute to a better
58	understanding of key biological traits of this species, that can be used for prediction
59	of its spread and population growth parameters.
60	
61	Keywords: brain laterality; invasive species; stored-product pest; population-level
62	lateralization

65 Introduction

66

67	It is widely recognized that left and right asymmetries in the brain and
68	behaviour (i.e., lateralization) may enhance brain efficiency in cognitive tasks
69	involving concurrently but differently both hemispheres (Vallortigara 2000;
70	Vallortigara and Rogers 2005; Vallortigara et al. 2010; Rogers et al. 2013a, 2013b).
71	However, while extensive research has been conducted to shed light on mating
72	behavioural asymmetries in vertebrates, very few information is available on this
73	key issue for invertebrates (Frasnelli et al. 2012, Frasnelli 2013), especially insect
74	species (Benelli et al. 2015a,b,c; Romano et al. 2016a). Among the insect species
75	tested, Coleoptera are the less-studied, as the presence of behavioural asymmetries
76	during mating approaches has been documented in only two beetle species, both of
77	economic importance at the post-harvest stages of agricultural commodities
78	(Benelli et al. 2016; Romano et al. 2016b).
79	The khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae)
80	is considered as a stored-product insect species of high phytosanitary importance, as
81	it is classified among the 100 most invasive species (Hill 2003, Myers and Hagstrum
82	2012; EPPO 2013, 2016). It has spread from India in numerous countries of Africa,
83	Asia and Europe, and it is a quarantine species for many countries with high cereal
84	production, such as USA, Australia and Canada (Aitken 1975, Myers and Hagstrum
85	2012, Athanassiou et al. 2015, EPPO 2016). Larvae of <i>T. granarium</i> can be easily
86	spread through international trade, as they feed on variable different commodities of

87 both plant and animal origin (Burges 2008). Moreover, they have the ability to pass

through an unusually long diapause that may exceed 8 years when conditions

89	prevailing are not suitable for larval development (Wilches et al. 2016). Also, this
90	species is able to develop within a wide range of temperatures (21-40 °C), and
91	populations decrease significantly when exposed to a temperature of 20°C or below,
92	while at elevated temperatures it can build easily high population densities, as these
93	conditions are unsuitable for the development of other major stored product insect
94	species (Aitken 1975, Burges 2008). Finally, this species can infest very dry stored-
95	products (i.e., 2% moisture content), which are not suitable for the development of
96	other species (Hadaway 1956, Burges 1959, 1962; Peacock 1993; Hagstrum and
97	Subramanyam 2009; Athanassiou et al. 2016). For all the above reasons, T .
98	granarium is considered a serious threat for grains and other related commodities in
99	specific zones, while the number of its interceptions in quarantine countries has been
100	gradually increased, indicating that this species is spreading (Myers and Hagstrum
101	2012). Considering the pest's plasticity in temperature requirements, T. granarium
102	was able to expand in colder climates as in the case of Western Central Europe
103	(EPPO 2016). Apart from the direct losses of stored products, the pest's status
104	becomes more important since it contaminates the commodities with cast skins and
105	hairs of its larvae that may endanger human health (Morison 1925; Pruthi and Singh
106	1950).
107	Previous studies have shown that mating behaviour in major stored-product
108	beetle species is particular and are linked with specific biotic and abiotic conditions,
109	which can seriously affect the concomitant population growth (Benelli et al. 2016,
110	Romano et al. 2016b). For example, in an earlier study, Benelli et al. (2016), reported

- 111 that there were specific mating patterns of the rice weevil, *Sitophilus oryzae* (L.)
- 112 (Coleoptera: Curculionidae) and the confused flour beetle, *Tribolium confusum*

113	Jacquelin du Val (Coleoptera: Tenebrionidae), that determine the success of mating,
114	and, apparently, the concomitant progeny production and population growth.
115	Notably, limited information is available on the courtship and mating ecology of T .
116	granarium, while most of the studies have been focused on its pheromone-based
117	communication (Adeesan et al. 1969; Levinson and Ilan 1970; Rahalkar et al. 1972;
118	Cross et al. 1976; Levinson et al. 1978; Hammack and Burkholder 1981). This
119	species seem to have different population growth patterns, which are directly linked
120	with larval diapause, since diapausing larvae provide adults that are able to produce
121	more eggs and, as a result, to cause rapid population outbursts (Karnavar 1972). Still,
122	mating of T. granarium has not been investigated in detail, and the overall
123	behavioural patterns at the adult stage are rather overlooked, despite the quarantine
124	importance of this species. In addition, current knowledge on the presence,
125	magnitude and potential function of behavioural asymmetries in the order Coleoptera
126	is extremely patchy (Benelli et al. 2016; Romano et al. 2016b). Therefore, in this
127	study, we quantified the courtship and mating behaviour of T. granarium, showing
128	the presence of population-level behavioural asymmetries for four different mating
129	traits. Furthermore, we highlighted selected behavioural parameters that are
130	correlated with high male mating success in this key noxious species of stored-
131	products
132	
133	Materials and methods
134	

135 Ethics statement

137	This research adheres to the guidelines for the treatment of animals in
138	behavioural research and teaching (ASAB/ABS 2014). All treatments of
139	experimental animals complied with the laws of the country in which they were
140	performed, as well as European Union regulations (European Commission 2007).
141	
142	T. granarium rearing
143	
144	T. granarium was reared on whole-wheat kernels at 30 °C and 65% R.H. in
145	continuous darkness at the Laboratory of Agricultural Zoology and Entomology, the
146	Agricultural University of Athens. The insect colony was started in 2014 from insects
147	collected in Greek storage facilities. T. granarium pupae of the same age were
148	separately placed in 30 ml plastic cups and sexed according the characters provided by
149	Partida et al. (1969). After emergence, males and females were kept separately in the
150	cups, under the same conditions. The closure of the cups had a hole covered with gauze
151	for adequate ventilation (Athanassiou et al. 2016).
152	
153	Behavioural asymmetries during mating interactions
154	
155	Virgin mature males and females of <i>T. granarium</i> were used in all experiments,
156	which we conducted from June to August 2016. T. granarium can start lay eggs 2-3 d
157	after eclosion while it can mate immediately after eclosion (Lindgren et al. 1955, Hill
158	2002). All observations were carried out in a Petri dish arena (diameter 50 mm; height:
159	10 mm) from 11.00 to 19.00 h, at 30°C and 65% RH. We made slightly rough the floor
160	of the Petri dish arena by using sand paper on the plastic surface for 10 s, in order to

161 improve the insect's grip during walking activity. Before the beginning of the 162 experiments, males and females were exposed for 3 h to laboratory light conditions in 163 Petri dishes. The room was illuminated with fluorescent daylight tubes [16:8 (L:D) photoperiod, lights on at 06:00]. Neon tubes (Philips 30W/33) were used, and the light 164 165 intensity in close proximity of the testing arena was 1000 lux, estimated over the 300-1100 nm waveband using a LI-1800 spectroradiometer (LI-COR Inc., Lincoln, NE, 166 167 USA), equipped with a remote cosine receptor (Benelli and Canale 2016). A white wall 168 of filter paper (Whatman n.1, height 30 cm) surrounded the experimental arena in order to avoid visual cues from the observer, which might affect the behaviour of the tested 169 170 beetles (Romano et al. 2016b).

171 *Trogoderma granarium* mating behaviour sequence was visually tracked by 172 an observer after transferring a virgin male and a virgin female into the testing arena 173 and observed for 60 min, or until the end of the sexual interaction, if any (Benelli et 174 al. 2016). Based on preliminary observations, we noticed that T. granarium male, during courtship, starts to explore the female body from a side palpating her body 175 176 with forelegs and pushing her with head, then the male try to mount the female and 177 attempt copulation with several aedeagus tapping acts on the hind part of the 178 abdomen of the female. Copulation occurs when the male inserts the aedeagus into 179 the female genital chamber and stays still on the substrate near the female during genital contact. After copulation, often females unseated and chased away males by 180 181 kicking them with hind legs and sometimes, head butting of females towards males followed. 182

For each mating pair, we noticed asymmetries exhibited by males in the exploration of the female body side, the foreleg used to palpate female and the

185	female side preference of males attempting to mount females (Benelli et al. 2015;
186	Romano et al. 2016b). Furthermore, any females' bias during the kicking behaviour
187	towards males was also recorded. In addition, we recorded the duration of the
188	following phases: (i) preliminary recognition of the female (i.e., time spent by the
189	male palpating and pushing the female), (ii) precopulation (i.e., time spent by the
190	male performing mounting attempts on the female and aedeagus tapping acts, until
191	genital contact), (iii) copulation (i.e., from the male's insertion of the aedeagus into
192	the female genital chamber until genital disengagement), as well as (iv) the duration
193	of the whole courtship and mating sequence. The number of acts regarding males
194	head butting, aedeagus tapping, female kicks and female head butting was also noted.
195	Overall, 119 mating pairs of <i>T. granarium</i> were observed. Males and females
196	that did not engage in any courtship approach or stayed motionless for more than 60
197	min were discarded (n=22 pairs) (Benelli et al. 2016). Therefore, data from 97
198	mating pairs were analysed. For the laterality observations, only females that were
199	free in the middle of the arena when males approached them were evaluated, since
200	those females that were located close to the sides of the arena would affect males'
201	directional approaches, (Romano et al. 2016a,b). The presence of food is not
202	necessary for mating of this species as it has been shown by previous studies (Wojcik
203	1969), thus no kernels or other food sources were provided in the arena in order to
204	avoid any constrain affecting the orientation approach of males. Ninety-seven mating
205	pairs of <i>T. granarium</i> were considered for behavioural analysis.

207 Data analysis

Data were analysed by the linear model, separating the effects of the

Results

235	The courtship and mating behaviour of <i>T. granarium</i> is quantified in Figure 1.
236	During preliminary recognition, the <i>T. granarium</i> male approached the female from a
237	side and started tapping her with his forelegs and mouthparts (head wagging,
238	hereafter). Then, the male reached the backside of the female and attempted
239	copulation, exploring her with the aedeagus. If the mounting attempt was successful
240	(76% of the observed pairs), the male would not mount on the female's body; it
241	remained on the substrate and his body longitudinal axis formed a typical angle with
242	he female body size. In the majority of cases, the angle was 45° or 90 and rarely
243	reached 180°. After the copulation, the <i>T. granarium</i> female actively started to stave
244	off the male, moving her abdomen and performing head-butts or rejection kicks with
245	her hind legs (Figure 1).
246	The presence of four population-level lateralized traits characterizing the
246 247	The presence of four population-level lateralized traits characterizing the courtship and mating behaviour of <i>T. granarium</i> is shown in Figure 2. The male
246 247 248	The presence of four population-level lateralized traits characterizing the courtship and mating behaviour of <i>T. granarium</i> is shown in Figure 2. The male courtship and mounting approach, as well as the female post-copulatory kicks were
246 247 248 249	The presence of four population-level lateralized traits characterizing the courtship and mating behaviour of <i>T. granarium</i> is shown in Figure 2. The male courtship and mounting approach, as well as the female post-copulatory kicks were left-biased, while male foreleg tapping acts were right-biased.
246 247 248 249 250	The presence of four population-level lateralized traits characterizing the courtship and mating behaviour of <i>T. granarium</i> is shown in Figure 2. The male courtship and mounting approach, as well as the female post-copulatory kicks were left-biased, while male foreleg tapping acts were right-biased. Left-biased asymmetries in the recognition approach on a given recognition
246 247 248 249 250 251	The presence of four population-level lateralized traits characterizing the courtship and mating behaviour of <i>T. granarium</i> is shown in Figure 2. The male courtship and mounting approach, as well as the female post-copulatory kicks were left-biased, while male foreleg tapping acts were right-biased. Left-biased asymmetries in the recognition approach on a given recognition side led to differences in recognition duration, number of head wagging acts and
246 247 248 249 250 251 252	The presence of four population-level lateralized traits characterizing the courtship and mating behaviour of <i>T. granarium</i> is shown in Figure 2. The male courtship and mounting approach, as well as the female post-copulatory kicks were left-biased, while male foreleg tapping acts were right-biased. Left-biased asymmetries in the recognition approach on a given recognition side led to differences in recognition duration, number of head wagging acts and overall duration of the courtship and mating approach (Table 1). Furthermore, right-
246 247 248 249 250 251 251 252 253	The presence of four population-level lateralized traits characterizing the courtship and mating behaviour of <i>T. granarium</i> is shown in Figure 2. The male courtship and mounting approach, as well as the female post-copulatory kicks were left-biased, while male foreleg tapping acts were right-biased. Left-biased asymmetries in the recognition approach on a given recognition side led to differences in recognition duration, number of head wagging acts and overall duration of the courtship and mating approach (Table 1). Furthermore, right- biased foreleg tapping behaviour by <i>T. granarium</i> males was linked to a shorter
246 247 248 249 250 251 252 253 254	The presence of four population-level lateralized traits characterizing the courtship and mating behaviour of <i>T. granarium</i> is shown in Figure 2. The male courtship and mounting approach, as well as the female post-copulatory kicks were left-biased, while male foreleg tapping acts were right-biased. Left-biased asymmetries in the recognition approach on a given recognition side led to differences in recognition duration, number of head wagging acts and overall duration of the courtship and mating approach (Table 1). Furthermore, right- biased foreleg tapping behaviour by <i>T. granarium</i> males was linked to a shorter recognition time (Table 2), while the left-biased mounting approach led to no
246 247 248 249 250 251 252 253 254 255	The presence of four population-level lateralized traits characterizing the courtship and mating behaviour of <i>T. granarium</i> is shown in Figure 2. The male courtship and mounting approach, as well as the female post-copulatory kicks were left-biased, while male foreleg tapping acts were right-biased. Left-biased asymmetries in the recognition approach on a given recognition side led to differences in recognition duration, number of head wagging acts and overall duration of the courtship and mating approach (Table 1). Furthermore, right- biased foreleg tapping behaviour by <i>T. granarium</i> males was linked to a shorter recognition time (Table 2), while the left-biased mounting approach led to no differences in copulation duration, as well as number of post-copulation head butts

257	Contingency analysis carried out between the parameters male recognition
258	laterality and mating success showed significant differences between the observed
259	and expected values (χ^2_1 =10.63; P=0.014) (Supplementary Online Material Table
260	S1), highlighting that the majority of tested males performed left-biased female
261	recognition (88.2%) achieved 75% of the overall male mating success (Figure 3). In
262	addition, contingency analysis between the parameters male recognition laterality
263	and mounting laterality showed significant differences between the observed and
264	expected values (χ^2_1 =41.34; <i>P</i> <0.001) (Supplementary Online Material Table S2),
265	pointing out that the majority of the males that displayed left-biased recognition
266	phase also showed left-biased mounting approach (Figure 4).
267	
268	Discussion
269	
270	The majority of studies on T. granarium reproductive behaviour have been
271	focused on the olfactory cues routing aggregation, as well as male-female
272	interactions. It has been showed that females release an assembling scent starting
273	from their first day after pupal-adult ecdysis (Levinson and Ilan 1970). This scent
274	retains male beetles for variable periods and has an aphrodisiac effect when females
275	
	are present (Levinson and Ilan 1970). However, the excitation of males when they
276	are present (Levinson and Ilan 1970). However, the excitation of males when they were previously exposed to the female pheromone exhausted them and became
276 277	are present (Levinson and Ilan 1970). However, the excitation of males when they were previously exposed to the female pheromone exhausted them and became unable to orient towards females (Rahalkar et al. 1972). The female's response to this
276 277 278	are present (Levinson and Ilan 1970). However, the excitation of males when they were previously exposed to the female pheromone exhausted them and became unable to orient towards females (Rahalkar et al. 1972). The female's response to this scent is weaker than that of males and mainly represented by female temporary
276 277 278 279	are present (Levinson and Ilan 1970). However, the excitation of males when they were previously exposed to the female pheromone exhausted them and became unable to orient towards females (Rahalkar et al. 1972). The female's response to this scent is weaker than that of males and mainly represented by female temporary immobilization. The overall courtship and mating sequence of <i>T. granarium</i> can be

281 attempt, copulation, post-copulatory behaviour. To the best of our knowledge, these 282 findings represent the first quantification of the mating behaviour of this important 283 invasive beetle pest, and can be considered as analogous with recent findings for other major stored-product beetle species (Benelli et al. 2016). However, 284 285 surprisingly, despite the importance of this species, there is still inadequate information on its mating behaviour. It has been previously noted that T. granarium 286 287 females can mate 3-4 times during their lifespan, and lay more eggs when derived 288 from diapausing larvae (Karnavar 1972). Moreover, T. granarium unmated females live longer (20-25 days) than mated females (4-7 days), and no difference in 289 290 longevity was observed for both unmated and mated males (7-12 days) (Karnavar 291 1972).

292 Concerning behavioural lateralization, this study showed the presence of four 293 population-level lateralized mating traits in T. granarium. Indeed, the male 294 recognition and mounting, as well as the female post-copulatory kicks were leftbiased, while male foreleg tapping acts were in majority right-biased. We observed 295 296 that the left-biased asymmetries in the recognition approach led to significant 297 differences in recognition duration, number of head wagging acts, whole mating 298 duration and, most importantly, male mating success. Currently, extremely scarce 299 information is available on behavioural asymmetries in the order Coleoptera. 300 Recently, Benelli et al. (2016) showed population-level lateralization of mating traits 301 in two important stored product pests, the rice weevil, *Sitophilus oryzae* (Coleoptera: 302 Curculionidae), and the confused flour beetle, Tribolium confusum (Coleoptera: 303 Tenebrionidae). In agreement with the present study, males of both species showed 304 population-level left-biased copulation approaches of potential mates, achieving

305 higher mating success over right-biased males (Benelli et al. 2016). In addition, in 306 that series of experiments, it was demonstrated that the geographical origin, as well 307 as different mass rearing practices, might affect the existence and magnitude of lateralization. Recently, the impact of geographical origin and rearing media on male 308 309 mating success and lateralization was studied in three strains of S. oryzae (i.e., a 310 Greek strain reared on wheat, a Greek strain reared on maize and a Peruvian strain 311 reared on maize), shedding light on the factors impacting mating behavioural trends 312 (Romano et al. 2016b). In that study, S. oryzae males showed right-biased head 313 wagging and left-biased copulation attempts, regardless of the tested strains. Again, 314 in agreement with our study, mating success was higher in males performing left-315 biased copulation attempts followed by right-biased head wagging behaviour, 316 without significant differences among the tested strains. Therefore, the findings 317 reported above evidenced the common presence of population left-biased copulation 318 attempts in at least three important families of Coleoptera, i.e., Curculionidae, Dermestidae and Tenebrionidae. Although we did not examine different rearing 319 320 commodities for T. granarium in our current study, Romano et al. (2016b) reported 321 that the rearing substratum significantly impacted the mating behavioural parameters 322 of S. oryzae. Similar phenomena may also characterize the mating behaviour of T. 323 granarium, considering in addition the newer reports which show that T. granarium 324 enzymatic activity, population development, fecundity, fertility, larval and pupal 325 weight significantly differ among different commodities (Borzoui et al. 2015, Athanassiou et al. 2016). However, further experimental work is needed towards this 326 hypothesis. In general, courtship of T. granarium was shorter than that observed in 327 328 the case of S. oryzae and T. confusum, but mating success was overall at the same

329	level (Benelli et al., 2016, Romano et al. 2016b). In contrast with <i>S. oryzae</i> and <i>T</i> .
330	confusum, adults of T. granarium are short-lived, and this characteristic may be
331	related with shorter copulation duration. For another short-lived stored product
332	species at the adult stage, the cowpea seed beetle, Callosobruchus maculatus
333	(Coleoptera: Bruchidae) mating was also short (der Hollander and Gwynne 2009).
334	Overall, results reported here represent a rather unique example of four
335	subsequent mating traits lateralized at population-level, which influence the male
336	mating success. In light of our findings, lateralization of T. granarium is
337	quantitatively different than that for other major stored product beetle species
338	(Romano et al. 2016b, Benelli et al. 2016). Based on the results of the present study,
339	it becomes evident that T. granarium mating is generally faster than that for other
340	beetle species that share the same environment, and this characteristic may lead
341	rapidly to increased progeny production when the conditions prevailing are suitable.
342	This may be related with the fact that adults of <i>T</i> . granarium are short lived, in
343	contrast with the majority of other key stored product beetle species. As a result,
344	mating and oviposition has to be completed in a short interval, which may lead to
345	short intervals that this species can build with ease high population densities. A
346	better understanding of mating asymmetries and courtship plasticity variables in <i>T</i> .
347	granarium can contribute on the utilization of some of these cues for beetle control,
348	i.e., by inducing parameters that can moderate mating success. Successful paradigms
349	of this perception have been documented in the case of fruit flies, i.e., in Sterilized
350	Insect Technique (SIT) programs, where adults should have specific mating
351	characteristics (Benelli et al. 2015a). Further experimental work is required to

352	investigate the potential utilization and practical moderation of these parameters for
353	T. granarium, under the basis of an area-wide management of this invasive species.
354	
355	Acknowledgements
356	
357	We are grateful to R. Canovai for technical assistance.
358	
359	Funding
360	
361	This research was partially supported by the H2020 Project "Sub- marine
362	cultures perform long-term robotic exploration of unconventional environmental
363	niches" (subCULTron) [640967FP7]. G. Benelli is sponsored by PROAPI (PRAF
364	2015) and University of Pisa, Department of Agriculture, Food and Environment
365	(Grant ID: COFIN2015_22). Funders had no role in the study design, data collection
366	and analysis, decision to publish, or preparation of the manuscript.
367	
368	Compliance with ethical standards
369	
270	All applicable international and national guidelines for the care and use of
370	An applicable international and national guidelines for the care and use of
371	animals were followed. All procedures performed in studies involving animals were
372	in accordance with the ethical standards of the institution or practice at which the
373	studies were conducted.
374	

Conflict of interest

376	
377	The authors declare no conflicts of interest.
378	
379	References
380	
381	Adeesan C, Rahalkar G W, Tamhankar A J (1969) Effect of age and previous mating
382	on the response of khapra beetle males to female sex pheromone. Entomol
383	Exp Appl 12:229-234
384	Aitken AD (1975) Insect Travelers, 1: Coleoptera. Technical Bulletin 31. H. M. S. O,
385	London
386	ASAB/ABS (2014) Guidelines for the treatment of animals in behavioural research
387	and teaching. Anim Behav 99:1–9
388	Athanassiou CG, Kavallieratos NG, Boukouvala MC, Mavroforos ME, Kontodimas
389	DC (2015) Efficacy of alpha-cypermethrin and thiamathoxam against
390	Trogoderma granarium Everts (Coleoptera: Dermestidae) and Tenebrio
391	molitor L. (Coleoptera: Tenebrionidae) on concrete. J Stor Prod Res 62:101-
392	107
393	Athanassiou C G, Kavallieratos N G, Boukouvala M C (2016) Population growth of the
394	khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) on
395	different commodities. J Stor Prod Res 69:72-77
396	Benelli G, Canale A (2016) Aggressive behavior in olive fruit fly females:
397	oviposition site guarding against parasitic wasps. J Insect Behav 29:680-688

398	Benelli G, Romano D, Messing RH, Canale A (2015a) Population-level lateralized
399	aggressive and courtship displays make better fighters not lovers: evidence
400	from a fly. Behav Process115:163-168
401	Benelli G, Romano D, Messing RH, Canale A (2015b) First report of behavioural
402	lateralisation in mosquitoes: right-biased kicking behaviour against males in
403	females of the Asian tiger mosquito, Aedes albopictus. Parasitol Res
404	114:1613-1617
405	Benelli G, Donati E, Romano D, Stefanini C, Messing RH, Canale A (2015c)
406	Lateralization of aggressive displays in a tephritid fly. Sci Nat Naturewiss
407	102:1. doi: 10.1007/s00114-014-1251-6
408	Benelli G, Romano D, Stefanini C, Kavallieratos NG, Athanassiou CG, Canale A
409	(2016) Asymmetry of mating behaviour affects copulation success in two
410	stored product beetles. J Pest Sci. doi: 10.1007/s10340-016-0794-z
411	Borzoui E, Naseri B, Rahimi Namim F (2015) Different diets affecting biology and
412	digestive physiology of the khapra beetle, Trogoderma granarium Everts
413	(Coleoptera: Dermestidae). J Stor Prod Res 62:1-7
414	Burges HD (1957) Studies on the dermestid beetle Trogoderma granarium Everts. I.
415	Identification and duration of the developmental stages. Entomol Monm Mag
416	93:105-110
417	Burges H D (1959) Studies on the Dermestid Beetle Trogoderma granarium Everts:
418	Ecology in Malt Stores. Ann Appl Biol 47:445-462
419	Burges D H (1962) Diapause, pest status and control of the khapra beetle,
420	Trogoderma granarium Everts. Ann Appl Biol 50:614-617

421	Burges H D (2008) Development of the khapra beetle, <i>Trogoderma granarium</i> , in
422	the lower part of its temperature range. J Stor Prod Res 44:32-35
423	Cross J H, Byler R C, Cassidy Jr R F, Silverstein R M, Greenblatt R E, Burkholder
424	W E, Levinson R, Levinson H Z (1976) Porapak-Q collection of
425	pheromone components and isolation of (Z)-and (E)-14-methyl-8-
426	hexadecenal, sex pheromone components, from the females of four species
427	of Trogoderma (Coleoptera: Dermestidae). J Chem Ecol 2:457-468
428	der Hollander M, Gwynne DT (2009) Female fitness consequences of male harassment
429	and copulation in seed beetles, Callosobruchus maculatus. Anim Behav
430	78:1061-1070
431	EPPO (European and Mediterranean Plant Protection Organization) (2013)
432	Diagnostics. PM 7/13 (2) Trogoderma granarium. EPPO Bulletin 43:431-
433	448
434	EPPO (European and Mediterranean Plant Protection Organization) (2016) A2 list of
435	pests recommended for regulation as quarantine pests. Trogoderma
436	granarium. https://gd.eppo.int/taxon/TROGGA
437	European Commission (2007) Commission recommendations of 18 June 2007 on
438	guidelines for the accommodation and care of animals used for experimental
439	and other scientific purposes. Annex II to European Council Directive 86/609.
440	See 2007/526/EC
441	http://eurex.europa.eu/LexUriServ/LexUriServ.do?uri¼OJ:L:2007:
442	197:0001:0089:EN:PDF
443	Frasnelli E (2013) Brain and behavioral lateralization in invertebrates. Front Psychol
444	4:939

445	Frasnelli E, Vallortigara G, Rogers L (2012) Left-right asymmetries of behaviour and
446	nervous system in invertebrates. Neurosci Biobehav R 36:1273-1291
447	Hadaway AB (1956) The biology of the dermestid beetles Trogoderma granarium
448	Everts and Trogoderma versicolor (Creutz.). B Entomol Res 46:781-796
449	Hagstrum DW, Subramanyam Bh (2009) Stored-product insect resource. AACC
450	International, St. Paul, MN
451	Hammack L, Burkholder W E (1981) Calling behaviour in female Trogoderma
452	granarium Everts (Coleoptera: Dermestidae). J Stor Prod Res 17:25-29
453	Hill DS (2002) Pests of storage foodstuffs and their control. Kluwer Academic
454	Publishers, NY
455	Karnavar G K (1972) Mating behaviour and fecundity in Trogoderma granarium
456	(Coleoptera: Dermestidae). J Stor Prod Res 8:65-69
457	Kavallieratos NG, Athanassiou CG, Barda MS, Boukouvala MC (2016). Efficacy of
458	five insecticides for the control of Trogoderma granarium Everts
459	(Coleoptera: Dermestidae) larvae on concrete. J Stor Prod Res 66:18-24
460	Kharel K, Arthur FH, Zhu KY, Campbell JF, Subramanyam Bh (2014) Susceptibility
461	of different life stages of Tribolium confusum to pyrethrin aerosol: effects of
462	a flour food source on insecticidal efficacy. J Pest Sci 87:295-300
463	Levinson HZ, Ilan ARB (1970) Olfactory and tactile behaviour of the Khapra beetle,
464	Trogoderma granarium, with special reference to its assembling scent. J
465	Insect Physiol 16:561-572
466	Levinson AR, Levinson HZ, Schwaiger H, Cassidy Jr R F, Silverstein RM (1978)
467	Olfactory behavior and receptor potentials of the khapra beetle Trogoderma
468	granarium (Coleoptera: Dermestidae) induced by the major components of

469	its sex pheromone, certain analogues, and fatty acid esters. J Chem Ecol
470	4:95-108
471	Lindgren DL, Vincent LE, Krohne HE (1955) The khapra beetle, Trogoderma
472	granarium Everts. Hilgardia 24:1-36
473	Morison GD (1925) The khapra beetle (Trogoderma granarium Everts). P Roy Soc
474	Edinb A 21:10-13
475	Myers SW, Hagstrum DW (2012) Quarantine. In: Hagstrum DW, Phillips TW,
476	Cuperus G (Eds) Stored Product Protection. Kansas State University,
477	Manhattan, KS, 297-304
478	Partida GJ, Archer TL, Strong RG (1969) A method of sexing Trogoderma
479	(Coleoptera: Dermestidae) pupae. J Econ Entomol 62:1186-1189
480	Peacock ER (1993) Adults and larvae of hide, larder and carpet beetles and their
481	relatives (Coleoptera: Dermestidae) and of derodontid beetles (Coleoptera:
482	Derodontidae). St Edmundsbury Press, Suffolk, UK
483	Pruthi HS, Singh M (1950) Pests of stored grain and their control. Indian J Agr Sci
484	18:1-88
485	Rahalkar GW, Tamhankar A J, Adeesan C (1972) Influence of prior exposure of
486	male khapra beetle (Trogoderma granarium) to female sex pheromone on
487	their mating ability. Experientia 28:1123-1124
488	Rahalkar GW, Tamhankar A J, Gothi KK (1985) Selective breeding for reduced
489	male response to female sex pheromone in Trogoderma granarium Everts
490	(Coleoptera: Dermestidae). J Stor Prod Res 21:123-126

491	Rogers LJ, Vallortigara G, Andrew RJ (2013a) Divided Brains: the Biology and
492	Behaviour of Brain Asymmetries. Cambridge University Press, Cambridge,
493	UK
494	Rogers LJ, Rigosi E, Frasnelli E, Vallortigara G, (2013b) A right antenna for social
495	behaviour in honeybees. Sci Rep 3:2045. http://dx.doi.org/10.1038/srep02045
496	Romano D, Donati E, Canale A, Messing RH, Benelli G, Stefanini C (2016a) First
497	evidence of lateralized courtship in a parasitic wasp. Laterality 21:243-54
498	Romano D, Kavallieratos NG, Athanassiou CG, Canale A, Stefanini C, Benelli G,
499	(2016b). Impact of geographical origin and rearing medium on mating success
500	and lateralization in the rice weevil, Sitophilus oryzae (L.) (Coleoptera:
501	Curculionidae). J Stor Prod Res 69:106-112
502	Vallortigara G (2000) Comparative neuropsychology of the dual brain: a stroll through
503	animals' left and right perceptual worlds. Brain Lang 73:189-219
504	Vallortigara G, Chiandetti C, Sovrano VA (2010) Brain asymmetry (animal). Wiley
505	Interdiscip Rev Cogn Sci 2:146-157
506	Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and
507	disadvantages of cerebral lateralization. Behav Brain Sci 28:575-633
508	Wei C, Ren B, Chen X, Zhou X, Wang W, Wang Z (2015) Scanning electron
509	microscope observations on the antennal sensilla of two stored grain pests
510	Trogoderma granarium and Trogoderma variabile (Coleoptera:
511	Dermestidae). Fla Entomol 98:140-148
512	Wilches DM, Laird RA, Floate KD, Fields PG (2016) A review of diapause and
513	tolerance to extreme temperatures in Dermestids (Coleoptera). J Stor Prod
514	Res 68:50-62

- 515 Wojcik DP (1969) Mating behavior of 8 stored-product beetles (Coleoptera:
- 516 Dermestidae, Tenebrionidae, Cucujidae, and Curculionidae). Fla Entomol
- 517 52:171–197
- 518

Figure 1. Flow chart showing courtship and mating behaviour of *Trogoderma granarium*; the thickness of each arrow indicates the proportion of beetles displaying each behaviour (n=97 analyzed pairs).

the proportion of beetles displaying each behaviour (n=97 analyzed pairs). Figure 2. Lateralized traits characterizing the courtship and mating behaviour of Trogoderma granarium. The thickness of each arrow indicates

percentage of copulation outcomes within each lateralized recognition combination. reported on x-axis, while the outcomes of copulation (i.e. success or unsuccess) are reported on y-axis. The horizontal width of each recognition represents the relative abundance of copulation outcomes over the total number of tested beetles. The number in the each box indicates the laterality indicates the relative abundance of a given lateralized combination over the total number of tested beetles. The bar on the right Figure 3. Contingency analysis between male recognition laterality and mating success of *Trogoderma granarium*. Recognition laterality is

- LL = left-biased recognition side and leg tapping LR = left-biased recognition side and right-biased leg tapping RL = right-biased recognition side and left-biased leg tapping RR = right-biased recognition side and leg tapping yes = the male achieved mating success no = the male did not achieve mating success

different lateralized recognition within each lateralized mounting combination. Mounting laterality is reported on x-axis, while recognition laterality is reported on y axis. The horizontal Figure 4. Contingency analysis between male recognition laterality and mounting laterality in *Trogoderma granarium*. the total number of tested beetles. The bar on the right indicates the relative abundance of recognition width of each mounting laterality indicates the relative abundance of a given lateralized combination over laterality over the total number of tested beetles. The number in each box indicates the percentage of

LLr = left-biased recognition side and leg tapping LRr = left-biased recognition side and right-biased leg tapping RLr = right-biased recognition side and left-biased leg tapping RRr = right-biased recognition side and leg tapping LLm = left-biased mounting side and leg tapping RRm = left-biased mounting side and right-biased leg tapping RLm = right-biased mounting side and left-biased leg tapping RLm = right-biased mounting side and left-biased leg tapping

Table

Parameter	Left side	Right side	P-value
Recognition time (s)	24.82 ± 1.31	17.77 ± 2.63	0.019 *
Head wagging (n)	4.47 ± 0.41	1.61 ± 0.84	0.003 *
Aedeagus tapping time (s)	5.87 ± 0.61	6.07 ± 1.23	0.885 n.s.
Aedeagus tapping acts (n)	3.57 ± 0.39	4.34 ± 0.81	0.394 n.s.
Copulation (s)	65.83 ± 2.03	63.15 ± 4.09	0.561 n.s.
Kicks (n)	3.05 ± 0.36	2.51 ± 0.72	0.506 n.s.
Post-copulation head-butts (n)	1.31 ± 0.26	0.63 ± 0.53	0.256 n.s.
Whole duration (s)	102.15 ± 2.63	88.75 ± 5.32	0.027 *

Table 1. Effect of the recognition side on the main mating traits of *Trogoderma granarium*; the asterisk indicates significant differences (general linear model, P<0.05).

n.s. = not significant

Table 2. Effect of the leg tapping side on the main mating traits of *Trogoderma granarium*; the asterisk indicates significant differences (general linear model, P<0.05).

Parameter	Left side	Right side	P-value
Recognition time (s)	24.48 ± 1.85	18.11 ± 2.29	0.034 *
Head wagging (n)	3.78 ± 0.59	2.30 ± 0.73	0.119 n.s.
Aedeagus tapping time (s)	4.98 ± 0.86	6.96 ± 1.07	0.155 n.s.
Aedeagus tapping acts (n)	3.22 ± 0.56	4.70 ± 0.69	0.104 n.s.
Copulation (s)	64.27 ± 2.87	64.70 ± 3.55	0.926 n.s.
Kicks (n)	2.68 ± 0.50	2.87 ± 0.62	0.817 n.s.
Post-copulation head-butts (n)	0.89 ± 0.37	1.06 ± 0.46	0.766 n.s.
Whole duration (s)	98.10 ± 3.73	92.80 ± 4.62	0.299 n.s.

n.s. = not significant

Table 3. Effect of copulation side on the main mating traits of *Trogoderma granarium* (general linear model, P>0.05).

Parameter	Left side	Right side	P-value
Copulation (s)	67.34 ± 3.43	58.43 ± 4.27	0.187 n.s.
Kicks (n)	3.46 ± 0.57	2.98 ± 0.91	0.656 n.s.
Post-copulation head-butts (n)	0.89 ± 0.30	0.69 ± 0.71	0.809 n.s.

n.s. = not significant