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Abstract—Modern networks have critical security needs and a
suitable level of protection and performance is usually achieved
with the use of dedicated hardware cryptographic cores. Al-
though the Advanced Encryption Standard (AES) is considered
the best approach when symmetric cryptography is required, one
of its main weaknesses lies in its measurable power consumption.
Side-Channel Attacks (SCAs) use this emitted power to analyse
and revert the mathematical steps and extract the encryption
key. Nowadays they exist several dedicated equipments and
workstations for SCA weaknesses analysis and the evaluation
of the related countermeasures, but they can present significant
drawbacks as an high cost for the instrumentation or, in case of
cheaper instrumentation, the need to underclock the physical
circuit implementing the AES cipher, in order to adapt the
circuit clock frequency accordingly to the power sampling rate
of ADCs or oscilloscopes bandwidth. In this work we proposed
a methodology for Correlation and Differential Power Analysis
against hardware implementations of an AES core, relying only
on a simulative approach. Our solution extracts simulated power
traces from a gate-level netlist and then elaborates them using
mathematical-statistical procedures. The main advantage of our
solution is that it allows to emulate a real attack scenario based on
emitted power analysis, without requiring any additional physical
circuit or dedicated equipment for power samples acquisition,
neither modifying the working conditions of the target application
context (such as the circuit clock frequency). Thus our approach
can be used to validate and benchmark any SCA countermeasure
during an early step of the design, thereby shortening and helping
the designers to find the best solution during a preliminary phase
and potentially without additional costs.

I. INTRODUCTION

The amount of data flowing over communication networks
is continuously increasing and any disclosure or modification
of such private data can have severe consequences. Typical
applications in which the access should be limited only to
authorized entities are industrial controls [1], private banking
[2] and next-generation automotive networks [3]. Furthermore,
in the Internet of Things (IoT) world every object will interact
with each other, providing malicious attackers a wide surface
with multiple entry points. Security countermeasures aim
to ensure that the data is hidden to unwanted parties and
unauthorized modifications of the content can be immediately
identified.

A typical security solution for communications is symmetric
cryptography [4]. This is based on the encryption of the
data bit-stream performed on the transmission side and the
decryption on the reception side. The encryption/decryption

functions receive as input the data and a specific parameter
called key. In symmetric cryptography the key is the same
for encryption and decryption. Therefore the transmitter and
receiver share this secret value and only the entities owning the
key can understand the content of the message. A malicious
entity monitoring the channel would notice only a meaningless
flow of information. The most common symmetric encryption
algorithm is the Advanced Encryption Standard, also known as
Rijndael [5], released by the National Institute of Standards
(NIST) in 2001 [6]. The AES can use 128-, 192- and 256-
bit keys depending on the level of security required. The
data is sub-divided into 128-bit blocks and each block is
encrypted/decrypted independently.

The AES can be implemented both in software and hard-
ware depending on the security needs and the performance
required. Anyway both solutions show the drawback to be
prone to power emission Side-Channel Attacks (SCA) [7].
Such kind of attacks belong to the category of the Power
Analysis (PA) attacks, where the power consumption of the
chip is the side-channel which leaks information about the
secret data to be hidden to external unauthorized entities, i.e.
the symmetric key. PA attacks are based on the idea that a
chip implementing the AES (both a dedicated hardware unit
and processor executing software code) emits power that is
statistically related to the key used in the encryption process.
This means that by repeatedly observing the power traces,
the attacker could extract the key and understand the data
flow. Extracted power traces are elaborated using mathematical
techniques like first-order Differential Power Analysis (DPA)
[8] and first-order Correlation Power Analysis (CPA) [9],
which are the most diffused PA attacks because of their high
feasibility in practice.

Several solutions have been designed to protect AES im-
plementations against first-order PA. They are based on the
modifications of the hardware or of the software to essentially
re-shape the profile of the emitted power, without changing
the result of the algorithm itself. Usually, a SCA counter-
measure introduces a dummy power emission that is added
to the original one, reducing the statistical relation with the
key. Nonetheless, a PA attack can be performed even after
countermeasures, but the number of power traces required to
be observed is increased, making it infeasible or, at least,
making the required attack time longer than the key exhaustion



time (i.e. the key cryptoperiod). The ratio of the number
of power traces required to extract the key after and before
the application of a specific SCA countermeasure is often
used as benchmark factor to evaluate the effectiveness of that
solution, thus to compare multiple solutions and choose the
most appropriate one for the final application and its context
of use. Evaluating and benchmarking SCA countermeasures
can be costly, both in terms of time (for emitted power
acquisition and its statistical analysis) and additional resources
or equipments dedicated to this purpose. In this sense, the
most efficient approach is the one which requires less time
and less resources. While software implementations of AES
can count on efficient methodologies such the ones presented
in [10] and [11], the benchmark of hardware solutions can be
much more challenging and expansive, also considering their
physical implementation or the implementation of a suitable
circuit prototype [12]. Therefore, a simulated approach can
represent a good workaround to evaluate a countermeasure
before its implementation and limit the effort in terms of time
and cost.

We present an approach to characterize an SCA countermea-
sure using simulated data alone. The methodology simulates
all the steps that a potential attacker performs, including power
trace extraction and statistical elaboration.

The remainder of this paper is organized as follows: Section
II describes SCAs on hardware implementations of the AES,
Section III explains material and methods of our approach and
illustrates an use case of it, Section IV analyses and discusses
the results, and finally Section V gives the conclusions.

II. SIDE-CHANNEL ATTACKS ON HARDWARE
IMPLEMENTATIONS OF AES

The AES algorithm is based on the iteration of a sequence
of mathematical steps called round. The steps which form
the round are: SubBytes, ShiftRows, MixColumns and Ad-
dRoundKey. The number of rounds is 10, 12 and 14 for 128-,
192- and 256-bit master keys. Each round uses as input the
output of the previous round and for each round a round-
key derived from the master one (i.e. the secret key) is used.
Therefore a key expansion algorithm to generate the round-
key for each round is required. Figure 1 depicts the AES
algorithm, highlighting the difference between the rounds. As
shown, there is a preliminary AddRoundKey step, while the
last round is less complex than the others, because it skips the
MixColumns step.

A SCA is based on the concept that the power emitted into
the external environment by an integrated circuit performing
operations is related to the processed data. The same approach
can be applied to the circuit implementing the AES round
where the input data is the output of the previous round and
the round key is derived from the encrypting/decrypting master
key. Therefore, an entity monitoring the output and the emitted
power of the AES core for a sufficient number of encryptions
can disclose the key. An attacker who wants to carry out an
SCA needs to collect several power traces relative to different
plaintext encryptions.
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Fig. 1. The AES algorithm in the case of 128-bit keys. For 192- and 256-bit
keys the number of rounds increases to 12 and 14, respectively.

Many different architectural approaches can be used when
implementing the AES algorithm, but hardware solutions
typically implement one round in a clock cycle. When a
single round per clock cycle is executed, the implementa-
tion is called single-round pipelined, otherwise multi-round
pipelined. Furthermore, in the former case the pipeline stage
can be placed between each round (inter-round pipelined
solution) or inside the rounds (intra-round pipelined solution).
An accurate description of hardware AES implementations
highlighting the difference between intra- and inter-round
pipelined solutions can be found in [13]. This work focuses on
single-inter-round pipelined implementations, but the approach
can be extended to the other pipelined architectures with minor
mathematical modifications. Figure 2 shows an example of a
single-round pipelined approach in which the set of registers
between different rounds can easily be identified.
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Fig. 2. The inter-round AES hardware approach. The preliminary round
(preliminary AddRoundKey step) is included within the first round (Round
1). Other inter-round AES architectures can implement a dedicated pipeline
stage for the preliminary round.

Many information about the weaknesses of the AES when
implemented in hardware have been analysed in detail in
several research projects [14] and some authors have high-
lighted the threat of power-based SCAs [15]. To solve the
power emission vulnerability, various SCA countermeasures
have been proposed based on modifying the AES circuit in
order to change the power emission [16] and the robustness
of SCA solutions has also been evaluated and characterized
[17]. When attacking an AES implementation with CPA or
DPA, the attack requires to target a certain element of the
circuit whose logic state depends on the secret data to be
extracted and a function F() which determines its state. Then
they are acquired the power consumption traces during the



interval time in which such function is executed and finally the
power consumption samples are statistically analysed basing
on the respective logic state or the logic state evolution of the
circuit element during such interval time. Typically the circuit
element of an AES implementation attacked by CPA or DPA
is the state register (i.e. the one which store the output of any
round of the algorithm) or the output bus, while the function
F () is one of the AES rounds or a part of it. In general,
assuming X as the logic state of the circuit element before
the execution of F () and Y as the logic state of the circuit
element after the execution of F (), the target of the CPA/DPA
attack can be expressed as:

Y = F (X,K) (1)

where K is the secret key, i.e. the secret data, to be extracted
and the power traces has to be acquired at least during the
transition of the logic state from X to Y . Then hypotheses
on the value of K are made in order to evaluate the transition
X → Y and find the best correlation with the respective power
trace. Basing on 1 and assuming an hypothesis K∗ for K,
also one between X and Y has to be known, to properly
evaluate the transition X → Y . Once between X or Y is
known, the other logic state can be computed by applying
F () or its inverse F ()−1 and therefore the attack consists in:

• make an hypothesis K∗ for K;
• for any power trace, compute Y ∗ = F (X,K∗) or
X∗ = F (Y,K∗)−1, assuming X or Y to be known,
respectively;

• use Y ∗ or X∗ to evaluate te transition X → Y ∗ or X∗ →
Y and perform a statistical analysis on the power traces.

For our single-inter-round pipelined architecture of the AES
core, the rounds can be easily identified on the power traces
because each of them corresponds to a peak of the emitted
power [18]; therefore the best selection for the transformation
F () is one the round performed by the AES algorithm and the
element of the circuit to be attacked is the pipeline register.
Furthermore, the easiest round which focus on is the last one,
due to its reduced mathematical complexity that lowers the
computational cost of evaluating X → Y . Indeed, the last
AES round skips the MixColumns step that mixes data by 32-
bit words at time, while the other steps of the round are byte-
oriented: this allows an attacker to focus individually on each
byte of the key, rather than the whole 128-bit key, therefore
reducing the computational cost of the attack to the amount
of only 4096 byte hypotheses (i.e. 256× 16, respectively, all
the possible values of a byte and all the bytes composing the
128-bit key), instead of the amount of 2128 ≈ 3.4 × 1038. In
this case X corresponds to the last AES round 128-bit input
data block and Y to the 128-bit output data block, i.e. the
ciphertext, and the known data between X and Y is typically
Y , referring in literature to such attack approach as the known-
ciphertext attack. The guessed key K∗ is the last round-key
and from that the master encrypting key can be recovered by
reverting the AES key expansion algorithm. Similarly, also the

preliminary round can be an easy way of attacking the AES
with CPA/DPA, showing the same mathematical complexity.
In such case X corresponds to the plaintext and Y to the
output of the first SubBytes operation (i.e. the SubBytes of
the first round of AES), while the guessed key is exactly the
master key; typically X is the known data and such attack
scheme is referred in literature as the known-plaintext attack.
Anyway, looking at a plausible attack scenario, the CPA/DPA
attack on the last AES round results to be much more realistic,
because the ciphertext is much more prone to be known than
its respective plaintext, considering that any data transmitted
on a communication bus, encrypted or not, can be sniffed,
hence the ciphertext. Therefore we focus on a SCA on the
last AES round. Under this assumption, Y and X become,
respectively, C, the ciphertext, and I , the second to last AES
round output data, K is K10, the last AES round-key, and
F (I,K10) = ShiftRows(SubBytes(I)) ⊕ K10 = C, from
which

I∗ = SubBytes(ShiftRows(C ⊕K∗
10)−1)−1 (2)

Therefore the transition I∗ → C is used to perform the
statical analysis on the power samples and evaluate the best
guess K∗

10 for K10.
Concerning the method to acquire the emitted power sam-

ples, several solutions can be employed. For instance dedicated
equipments such as the DPA Workstation Analysis Platform
[19] by Rambus, the ChipWhisperer toolchain [20] by NewAE
Technology Inc. or the SAKURA-G/SASEBO boards [21].
Without considering the cost of the equipments, that could be
very expansive in some cases, they are all solutions essentially
based on FPGA platforms, thus reducing the cost for a SCA
countermeasure prototype, both in terms of time and resources.
Moreover they typically provide a dual FPGA platform, one
for the circuit to be analysed with PA and one for all reminder
parts of the design, hence isolating the SCA countermeasure
and for this reason performing a more powerful analysis on
it. Anyway the main disadvantage of such solutions resides
in the physical implementation of the SCA countermeasure,
because they require to lower the clock frequency of the circuit
to some tens or units of MHz to gather the power samples,
and that can be very far from the real application and attack
context. Moreover such gap can be increased by the usage of
FPGA platform for SCA countermeasures designed for ASIC
platforms. On the other hand, in literature several authors
proposed creating equivalent circuits for AES implementation
to extract simulated power traces [22], anyway, very few have
investigated the usage of gate-level circuits for AES models
in order to guarantee a more accurate VLSI implementation
model [23]. Often research focuses on oversampling when
extracting power for DPA [24] and this frequently requires
an extremely accurate analog model that in some contexts can
be difficult to implement. A simulated approach based on the
gate-level netlist of the circuit can be a good workaround,
because it does not require any additional equipment and cost
but the typical hardware designer EDA tools, and on the other



hand the gate-level netlist is a quite realistic approximation
of the physical implementation that allows to works closer to
real context conditions (such as the clock frequency). Thus
we proposed a simulation environment that provides a quick
and cheap solution that can be used to make validate and
benchmark SCA countermeasures, without the need for any
hardware prototype.

III. MATERIAL AND METHODS

The proposed methodology has two main steps: power
extraction and statistical analysis. The following sub-sections
explain the methodology by analysing in detail the power
extraction and the two alternative ways of performing the
statistical analysis.

A. Power extraction

The first step in our simulated SCA is based on the extrac-
tion of the power emitted by the circuit. We implemented an
AES core in Verilog and then synthesized the circuit on the 45
nm CMOS technology provided by the NanGate FreePDK45
Open Cell Library. The gate-level netlist obtained as result of
the synthesis represents an approximation of a real physical
implementation of the same core. The switching activity of the
implementation is stored in a Value Change Dump (VCD) file
during the simulation of the gate-level implementation. Finally,
the VCD file together with the standard-cell library leads to the
power consumed for each clock cycle (i.e. each AES round).
This allowed us to simulate a set of encryptions of N plaintexts
and obtain N ciphertexts and a simulated power samples vector
which we call Psimulated = [p0, p1, . . . , pN−1]T , where every
pi element is the mean power consumed during the clock cycle
in which the last AES round is performed while encrypting
the i-th 128-bit block.

In order to extract the bytes of the key, this set of collected
data needs to be processed with specific statistical approaches.
We focus on the CPA and the DPA approaches, which are both
based on finding a statistical relation between the Psimulated

vector and a set of expected vectors, each of which is related to
a key hypothesis and is computed by evaluating the transition
I∗ → C. The vectors with the strongest relation represent the
key guess that matches the last round key if the attack has
been successful.

Figure 3 shows the flow of the implemented power ex-
traction in which synthesis, simulations and power extractions
were performed using Synopsys Design Compiler [25], VCS
[26], and PrimeTime [27], [28], respectively.

As shown in Figure 3, the extracted power can be elaborated
using the DPA or the CPA analysis. Both the techniques have
been implemented in MATLAB code and the following two
subsections highlight the main differences between them.

B. CPA statistical analysis

The CPA is based on finding the statistical correlation
between the Psimulated vector and a set of predicted data for
each byte of the key. Therefore, let us define the predicted
data as a set of 16 matrices M0, ...,M15 where each matrix is
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Fig. 3. The complete flow of the proposed approach.

relative to one byte b of the key. We write the matrices in the
following form:

Mb =

 mb,0,0 · · · mb,0,255

...
. . .

...
mb,N−1,0 · · · mb,N−1,255

 =
[
Mb,0 · · ·Mb,255

]
where b = 0, · · · , 15. Each column of the matrix relates to
the h-th key byte hypothesis, starting from 0, {00000000}, to
255, {11111111}. On the other hand, each row relates to the
i-th ciphertext from the collection of N ciphertexts, thus for i
in the range 0 to the N − 1.

To extract the mb,i,h element of the matrix, i.e. the predicted
power trace for a specific byte of the key, ciphertext and key
hypothesis for that byte, we use the following hypotheses,
widely used in literature:

Hypothesis 1. The power consumption is proportional to the
number of 0→ 1 and 1→ 0 transitions of the pipeline register
bits.

Hypothesis 2. The 0→ 1 and 1→ 0 transitions contribute to
the power consumption with the same weight.

Thus the Hamming Distance (HD) between the pipeline
register state before and after the execution of the last AES
round can be used to estimate the predicted power trace, as:

mb,i,h = HDi,h(Cb, I
∗
b )

where Cb and I∗b are the values of the b-th bytes of C and I∗,
respectively, both for the h-th key hypothesis and for the i-th
AES encryption process. Indeed, during the last round of the
AES each byte of the 128-bit block is processed only by one
byte of the key, and there is a unique correspondence between
them. I∗ is reverted from C by applying equation 2. Once
the set of predicted data has been computed, the methodology
simply entails finding the column in each matrix that has the
highest correlation factor with the Psimulated. The correlation



factor used in our approach is the Pearson coefficient defined
as follows:

r(x, y) =

n−1∑
j=0

(xj − x̄)(yj − ȳ)√
n−1∑
j=0

(xj − x̄)2

√
n−1∑
j=0

(yj − ȳ)2

where x̄ = 1
n

n−1∑
j=0

xj and ȳ = 1
n

n−1∑
j=0

yj . In our case x is

the Psimulated vector and y is one column of the selected
Mb matrix, hence it follows that j = i and n = N . For
any Mb matrix related to a key byte guess, we have a set of
256 Pearson coefficients cb,h = rb,h(x, y), for xj = ti and
yj = mb,i,h: one Pearson coefficient for each byte hypothesis
on that key byte b, i.e one cb,h coefficient for each column of
the Mb matrix.

We call Best Guess (BG) the 16 bytes that relate to the 16
Mb,h columns (one for each matrix) with the highest Pearson
coefficient:

BG = BG0 | BG1 | ... | BG15

where
BGb = h∗ : |cb,h∗ | = max

0≤h≤255
(|cb,h|)

The BG represents the result of our methodology and therefore
the result of our simulated attack.

C. DPA statistical analysis

We implemented a multi-bit DPA attack through the Ham-
ming Distance model and the mb,i,h coefficients, instead of
the typical single-bit DPA attack [10], [11]. The usage of a
multi-bit approach on all the bits of byte for DPA is more
effective than a single bit approach, because due to the non-
linearity of the SubBytes() operation, or better, of the S-box()
transformation, there is not a linear correlation between any
bit of the byte and all other bits of that byte.

The proposed DPA methodology works similarly to the
CPA. The Psimulated and the set of 16 Mb matrices are
computed exactly in the same way, but the BG is estimated
differently. This procedure takes the Psimulated vector and, for
each column (i.e. for a specific byte hypothesis h) of a Mb

matrix, splits the Psimulated values in two groups: PG and PL.
The selection factor to split the elements between the PG and
PL is the following one:{

PGb,h
← pi : mb,i,h > 4

PLb,h
← pi : mb,i,h < 4

for i = 0, · · · , N − 1

This means that the selection function for Psimulated is
whether or not the corresponding value in the Mb column
is greater or smaller than 4. Finally, the difference between
the averages of PGb,h

and PLb,h
is computed:

Db,h = |PGb,h
− PLb,h

|

The Mb matrix column that generates the highest ”absolute
difference of means” factor is the one chosen for the BGb on
byte b. Similarly to the CPA case, we can define:

BGb = h∗ : Db,h∗ = max
0≤h≤255

(Db,h)

The procedure is then repeated for the remaining Mb matrices,
thus giving the BG for the DPA approach.

D. SCA simulation environment use case

We applied the proposed methodology to benchmark a SCA
countermeasure for the AES core. Many SCA countermeasure
for hardware implementations of AES can be found in liter-
ature and basically all of them aim to reduce the Signal to
Noise Ratio (SNR) of the power consumption, either adding
power noise or reducing the correlation between the processed
data and the power emission. While the former approach
typically requires the employment of Random Noise Genera-
tors (RNGs), the latter approach usually counts techniques as
masking [29] or threshold implementations [30]. Among many
trade-offs between area overhead, frequency decreasing and
robustness level against SCA introduced, such solutions can in-
troduce significant limitations which are higher as higher is the
protection factor against SCA. Typically masking techniques
can provide a high protection factor against DPA and CPA, but
at the cost of a very high area overhead (usually between the
300% and the 500%, or more [29]), and of a significant clock
frequency decreasing (usually between the 30% and the 55%,
[29]). Threshold implementations techniques show similar
features and in some cases they can also totally protect against
SCA (making DPA and CPA infesable), or they can achieve
better performance, in terms of area overhead and critical path
overhead, but at the cost of a very lower protection factor
against DPA and CPA, as shown in [30]. On the other hand
solutions based on the employment of power noise generators
usually do not affect at all the frequency of the AES circuit
and they can offer a quite discrete robustness level against
SCA at the cost of a tiny area overhead (typically between the
6% and the 11%, being higher as higher is the protection level
provided). As consequence, the overall power consumption of
the AES circuit significantly increases. Anyway also masking
and threshold techniques require RNGs for the generations of
the masks and of the shares, and typically they require more
random bits than the ones required by the power noise gen-
erator approach. Thus we designed a countermeasure against
DPA and CPA based on power noise generator only, because
such solution can show the best efficiency in terms of ratio
between the protection factor offered and the overhead factors
affecting the AES circuit and because it represents however a
preliminary step for the design of other countermeasures such
as masking or threshold implementations, due to the need of
RNGs.

Such power noise generator has been implemented through
a set of several parallel Digital Ring Oscillators (DROs), that
are activated when the AES core works. The DROs have two
levels of enable signals: an overall enable signal, common to
each ring oscillator, and a dedicated enable signal that relies



on a random bitstream. Figure 4 illustrates the high level block
diagram of our SCA countermeasure.

Fig. 4. High level block diagram of the DROs based SCA countermeasure
against DPA and CPA.

To meet the need for random bitstreams we firstly developed
a fully digital True Random Number Generator (TRNG),
based on [31]. Because any simulative approach is not able
to emulate the aleatory physical processes which constitute
the entropy source of our TRNG and trigger the oscillators
(e.g. thermal noise, temperature and voltage fluctuations), we
synthesized the TRNG module on an Intel FPGA platform
(EP4SGX230KF40C2) and then we gathered the required
sequences of random numbers. Once the randomness of the
bitstream has been tested and validated by means of the NIST
Statistical Test Suite (STS) version 2, they have been used
to feed the specific enable input of each DRO, during the
simulations.

Anyway, also in this case some drawbacks can occur when
simulating ring oscillators, because simulations cannot take in
consideration the variation of the physical parameters, such as
short-term and long-term fluctuations in voltage and tempera-
ture. Such physical processes randomly affect the propagation
delay and transition times of the logic gates in the circuit,
therefore affecting the randomness of the signals propagation
along the ring oscillators and, as consequence, of their power
consumption. If not integrated within the simulations, the
DROs would evolve in a deterministic way, reducing the over-
all randomness contribution expected by such countermeasure.
To emulate the uncertainty of the signals propagation delays,
we introduced programmable delays among the logic gates of
the DROs, reasonably of the same magnitude order of the
logic gate delays variation due to temperature and voltage
fluctuations. This has been realized inserting within the HDL
code some delay specifications on continuous assignments and
exploiting the ‘define statement of HDL preprocessor. Figure 5
shows the schematic architecture of DROs with programmable
delays.

Fig. 5. DROs schematic architecture highlighting programmable delays (i.e.
τi).

The programmable delays are statically defined at logic

synthesis time and thus unmodified for the whole simulation
duration. We split the overall number of AES encryption pro-
cesses used for DPA and CPA in sub-blocks of 10 ones each,
and for each sub-block we modified the several programmable
delays, without repetitions across the sub-blocks.

IV. RESULTS AND DISCUSSION

The proposed methodology was characterized to quantify
the number of AES executions such that BG is equal to the
encryption key. Figure 6 shows an execution of the technique
using CPA analysis with a fixed key and a set of 8000
plaintexts. In the particular case showed, each of the 15 blue
stars is a byte of the BG that correctly correspond to an
encryption key byte. Figure 7 shows an execution of the
technique using DPA analysis with the same data used for
the CPA analysis of Figure 6: here only 12 blue stars denotes
12 bytes of the BG that match an encryption key byte. This
confirms that typically CPA requires less samples than DPA to
recover the whole encryption key, as expected from literature.
Indeed, our methodology required around 15000 of average
power samples in case of DPA and 10000 ones in case of
CPA, to find a BG matching with the encryption key.

Fig. 6. Example of CPA results for 8000 samples in which each colour
represents a different byte: 15 bytes of the encryption key have been recovered.
On the abscissas axis the key byte hypotheses, from 0 to 255, and on the
ordinates axis the corresponding Pearson coefficient values.

The number of samples required to extract the key is not
a meaningful value per se, without knowing the relationship
between real and simulated samples. Let’s call Ns and Nr

the number of samples required to extract the key from the
original AES circuit in a simulated SCA and in a physical
SCA, respectively.

We can hypothesize the following simplified relationship:

Ns = βNr

This relationship has to be specifically characterized in the real
cases, as parasitic capacitance and routing resistance heavily



Fig. 7. Example of DPA results for 8000 samples in which each colour
represents a different byte: 12 bytes of the encryption key have been recovered.
On the abscissas axis the key byte hypotheses, from 0 to 255, and on the
ordinates axis the corresponding ”difference of averages” values.

affect power emission. The extraction and characterization of
the β will be addressed in our future works.

Assuming the above expression, let’s suppose that we have
a set of SCA countermeasures that increase the complexity
of an attack. We expect that the number of power traces that
the attacker would thus have to extract in order to carry out
an SCA is increased. Therefore, for each countermeasure we
have Nsi = βNri . The ratio between the number of samples
required to perform a real physical SCA with and without the
countermeasure is the same as the ratio between the samples
required to perform a simulated attack. It is thus possible
to define a benchmark factor SR (i.e. SCA Resistance) that
measures the effectiveness of each solution:

SRi =
Nri

Nr
=
βNri

βNr
=
Nsi

Ns

The higher the SRi value for a specific countermeasure, the
higher the level of security it guarantees against SCAs. The
designer can choose the best solution to be integrated into
the system by comparing the SRi parameter of different
approaches and evaluating the specific trade-off of the host
system.

For the proposed AES core implementation we obtained
Ns = 104. Then we applied our methodology to the SCA
countermeasure proposed in III-D and it required about 100
millions of average power samples for a successful CPA
attack and about 150 millions one for successful DPA attack.
Therefore the benchmark factor of our solution is:

SRDRO measure ≈
108

104
= 104

for CPA, as well as for DPA.
Therefore we would expect to find a similar SCA resistance

factor when computing the ratio between the number of

average power samples required to perform a real physical
SCA with and without the countermeasure proposed above.

As expected, such countermeasure does not affect at all the
AES circuit critical path and the resulting area overhead is
about the 7%, while the power consumption overhead is about
the 300%. Table I shows the complexity in terms of gates
equivalent, the maximum frequency and the average power
consumption of the AES core without and with the proposed
countermeasure.

Design Area Max. Frequency Power
consumption

AES core 17.2 kGE 580 MHz 58.6 mW
AES + proposed
countermeasure 18.4 kGE 580 MHz 240.16 mW

TABLE I
FEATURES OF AES CORE AND AES CORE WITH PROPOSED SCA

COUNTERMEASURE.

V. CONCLUSIONS AND FUTURE WORKS

We have described a simulated SCA for hardware imple-
mentations of the AES algorithm. When compared with other
solutions [15], [19], [20] and [21], our methodology guarantees
a completely simulated flow without requiring any physical
circuit, additional equipment or dedicated resource to evaluate
a SCA countermeasure, hence limiting the costs and saving
time required for prototypes realization. A similar work was
presented in [32], in which the authors showed a comparison
of the robustness against SCA of the same implementation
of the AES realized using two different technologies, CMOS
and MCML (MOS Current Mode Logic). The authors used a
transistor level simulation methodology using SPICE software
while managing the coordinated simulation of sub-portions of
the circuit, to reduce the high simulation time. In our work
we present instead a methodology to compare and benchmark
different countermeasures realized with the same technology.
Also [33] presents a similar approach, in which the authors use
a known-plaintext CPA attack context for the AES key guess
and lower the AES circuit frequency to 2.5 MHz, in order
to oversample the power consumption at the frequency of 1
GHz within the simulations. Instead our methodology imple-
ments the known-ciphertext attack, that can exhibits a wider
application range than its counterpart in a real-world scenario,
and it relies on the acquisition of the mean power consumed
during the clock cycle, without need of oversampling, neither
altering the AES circuit clock frequency and reducing the
amount of collected data (thus also of the simulation time as
well). Moreover, in the DPA case, we implemented a multi-
bit approach which is more efficient than the typical single-
bit approaches as [10], [11]. The proposed simulated SCA
methodology is flexible for several reasons: it can be integrated
with any EDA tools at disposal of the design team (for instance
using QuestaSim [34] by Mentor Graphics in place of VCS
for the simulation phase); it can be easily adapted to any AES
hardware architecture (for instance to an intra-round pipelined
architecture) with some minor mathematical modification, as



the target transformation F () and, accordingly, to the attack
point in time (i.e. the clock cycle to be analysed) and the
known data to be used (e.g.: ciphertext, plaintext, s-boxes
output, ...); it can provide evaluation and benchmark of SCA
countermeasures for any technology (both FPGA and ASIC),
according to the technologies libraries at disposal of the design
team.

The SCA results would obviously be different in a real-
world scenario, but our techniques could be easily used to
characterize countermeasures before prototyping, reducing the
time-to-market of designed physical solutions. The results are
therefore valid as a benchmark for comparing SCA counter-
measures and measuring their effectiveness, also being the
analysis leaded in conditions much closer to the a real-world
scenario than our methodologies. Our approach gives a quick
result thus reducing the time required to choose the right
solution for a given context and shortening the characterization
phase.

Future works should include:
• a characterization of the relationship between simulated

and physical results;
• the benchmarking of several other countermeasures im-

plementations using this methodology;
• the integration of the parasitics in the simulation flow;
• the integration of additional models for the target function
F () and attacking points;

• the development of a GUI, by means of the MATLAB
App Designer tool.
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