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Abstract

MESH is an ε-approximate algorithm to find the minimum zone center of a given roundness profile,

with ε=10
-d

, where d is the number of required decimal digits.

The proposed MESH algorithm is able to provide only the accuracy that is necessary to find the

minimum zone error roundness (circularity). The basic principle is to exhaustively assess all MZR

center candidates located at the cross points of a mesh, with spacing directly related to the target

accuracy. Criteria for the selection of the required manufacturing (designer’s) target accuracy

(product specifications) are discussed. This result has been made possible by previous work on the

limit search space to be searched. The algorithm effectiveness has been shown by computation

experiments up to 16,384 cloud datapoints and by comparison with genetic algorithms and an exact

method from the literature. The MESH algorithm can also serve for benchmarking purposes to

assess the performance of other algorithms in terms of both accuracy and speed. The extension to

other form tolerances of the exhaustive mesh based approach is discussed.

Keywords: geometrical tolerancing, circularity, minimum zone tolerance, ε−approximation,

centroid neighborhood, computation time

1. Introduction

According to ISO [1] and ANSI [2], the minimum zone tolerance (MZT) method requires that the

data sampled by a measuring tool on a machined surface is included within two Euclidean

geometric features placed at the minimum distance. The minimum zone roundness (MZR) meets the

ISO definition: it determines two concentric circles that contain the roundness profile and such that

the difference in radii is the least possible value. The center of the two concentric circles is the

minimum zone center CMZ and their difference in radii is the MZR error EMZ.



Coordinate Measuring Machines (CMM) are used to measure roundness errors by collecting an

increasing number of datapoints from the profile of rotational parts [3]. CMMs may acquire

thousands of datapoints in a circle.

The strategy to equiangular datapoints on the roundness profile is generally adopted in the

literature. Conversely, alternative distributions of data are used to assess roundness deviations and

number of undulations per revolution [4].

To process a large number of cloud datapoints, the least squares technique is efficient in

computation and is widely used on most CMMs, however it does not meet the above mentioned

standards, i.e. for roundness the minimum difference in radii of two concentric circles that contain

the roundness profile. LSQ is efficient in computation and can be used with a large number of

measured points, but in general the roundness error determined is larger than that obtained by MZR

algorithms. Therefore, good parts can be rejected resulting in an economic loss. On the other hand,

MZR algorithms require the solution of a non-linear problem; they are computationally intensive

and sensitive to the number of cloud datapoints.

Two approaches to the MZR problem have been proposed in the literature: computational geometry

techniques and nonlinear optimization (Figure 1).
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Figure 1: Classification of approaches to the minimum zone roundness (MZR) problem.

The first approach operates directly on the cloud datapoints and is, in general, very computationally

intensive, especially when the dataset size is large because, with geometric methods, global optima

are found by exhaustively checking every candidate. Samuel and Shunmugam [5] established a

minimum zone limaçon based on computational geometry. Other examples of approaches are: the



Voronoi diagram [6] [7], the Chebyshev approximation [8], the simplex search / linear

approximation [9] [10], and the steepest descent algorithm [11].

Wang et al. [12] and Jywe et al. [13] presented a generalized non-linear optimization procedure

based on the developed necessary and sufficient conditions to evaluate the roundness error. In order

to meet the standards, the minimum zone reference circles should pass through at least four cloud

datapoints of the roundness profile. This can occur when two cloud datapoints lie alternating on

each of the concentric circles. By satisfying this criterion, the problem is solved to the optimality.

The computation time required to meet these conditions increases exponentially with the dataset

size. The evaluation of the best among all the simple combinations of 4 elements from n is

( )!4!4

!

−n

n
. For example, for a dataset containing 4,000 cloud datapoints, approximately 1.1 × 10

13

pairs of concentric circles should be evaluated.

Despite the computation time (proportionally to the dataset size), this method finds an exact

solution (optimum) by an exhaustive approach. Gadelmawla [14] used a heuristic approach to

drastically reduce the number of cloud datapoints used by the alternating criterion.

The second approach is based on the minimization of the EMZ as a function of CMZ (Figure 2) and

considers primarily the location of the center of the concentric circle pairs (center-based). The

inconvenience is that this function has several local minima making the exploration computationally

intensive. Examples include metaheuristics like particle swarm optimization (PSO) [15] [16], ant

systems [17], simulated annealing (SA) [18], immune evolutionary [19] and genetic algorithms

(GAs) [20] [21] [22] [23] [24] [25]. The authors developed a cross-validation method to assess the

kind of manufacturing signature [26] on the roundness profile in order to detect critical points such

as peaks and valleys [27]. Optimization techniques such as genetic algorithms were developed to

minimize the computation time in the roundness error evaluation. A fast genetic algorithm, with

convergence speed greater than 0.1 µm per 30 generations as the selected stop condition, was

developed and for large signature-based samples in [20] and for non-manufacturing signature

specific in [25] with validation by certified software. [25] discussed the statistical distribution of the

GA error as a function of the cloud datapoints size and of the search space size because by NPL

Chebyshev best-fit circle certified software the minimum zone center is known (for example, it is

fixed in (0,0)). Also, the deviations on the roundness profile are equally distributed in the range of

the difference of radii between inner and outer minimum zone circles, so results are more general

and not manufacturing signature specific. The (known) error of the GA obtained with the best

configuration decreases down to 2⋅10
-5

 for ∅ 40. In practical application of center based

approaches, the minimum zone center is just the unknown of the MZR problem and requires a first



estimation, like the centroid position. Non equiangular cloud datapoints do not satisfy the

hypothesis in [31] because the centroid position is also affected by the cloud datapoint spacing and

a correctly sized search space may not include the minimum zone center. Similarly, the centroid of

a partial feature is far from the centroid of a complete feature. If the search region is too large

and/or if the geometry of the profile is adverse [28], optimization search techniques, like genetic

algorithms, tend to be trapped in local optimal solutions and not reach (converge to) the required

accuracy. To avoid these problems the proposed method is compared with the genetic algorithm

previously optimized by the authors on the MZR problem [20] with the condition on the search

space in [31].

In industrial applications an optimal (not optimum) solution satisfying the design specifications

(tolerance), i.e. not exact but acceptable, is usually preferred.

In order to reduce the computation time, through the years, a number of approximate approaches

was developed for both computational geometry and nonlinear optimization, including heuristics

and metaheuristics (Figure 1). The target accuracy can be met and the computation time can be

lower, but one drawback of metaheuristics is that the computation time necessary to meet the target

accuracy is undefined a priori (approximate solutions) and it may turn out that it is unpredictably

unacceptable in practical applications, e.g. for larger dataset size.

With the proposed MESH method, the time required to meet the target accuracy or the target

accuracy that can be met with the given time can both be known in advance (ε-approximate

algorithm).

2. Search space for the minimum zone center

The proposed heuristic exploits an approximate region for the location of the minimum zone center

CMZ by exhaustively searching the center candidates on a mesh, rather than the best quartet of cloud

datapoints. It still produces an ε-approximate solution matching the requested tolerance, but with

known computation time.

The idea of an exhaustive method based on a mesh located in the search space was presented in

[29]. Lei et al. proposed a mesh in polar coordinates centered at the least-square center, obtained as

intersection of m concentric circles and n radius lines where the center of the mesh is the least

square center. They considered a mesh size of 
2

LSE
, where LSE is the least-square error. However,

they did not provide appropriate experimentation on the fact that this mesh centered at the least-

square center includes the minimum zone center.



If, on one hand, the inclusion of CMZ into the mesh is mandatory, on the other hand, the mesh must

be dimensioned to prevent exploration of needless areas of the search space. The mesh has two

critical parameters to meet the accuracy requirements and be minimal: the mesh position and size;

however either the mesh size is about the radius of the roundness profile or there is no guarantee

that the minimum zone center is included. Based on authors' previous papers [30] [31], the focus of

this work is to give the minimum mesh size that covers the search space size, which offers the

guarantee of including the minimum zone center.

Only few contributions are currently available in the literature regarding the setting of the search

space of the nonlinear optimization problem. The centroid is usually considered as the center of the

search space. In [21] the search space is a square of fixed 0.2 mm side, in [20] it is 5% of the circle

diameter [32], the side is determined by the distance of the farthest point and the nearest point from

the mean center which is approximated to 2 EC n, where EC n is the roundness error related to the

centroid of n equiangular datapoints, defined in equation (6) below. In [33] it is the rectangle

circumscribed to the cloud datapoints.

Authors' previous works provide closed form upper bounds of the distance between centroid Cn and

minimum zone center CMZ. A first theoretical analysis that provides a closed form expression to

minimize the search for a GA with genetic parameters optimized for MZR criterion [20] is available

in [31], where the center of the search space S is the centroid and the radius is the upper bound

extrapolated asymptotically from the distance between centroid and minimum zone center. This

general result is not sampling and form deviation specific. The search space radius of about 0.43 EC

was significantly reduced with respect to those available in the literature.

More recently, the authors provided a new closed form expression of the search space radius for the

roundness problem with the MZT criterion, further decreased by 27% [31]. This upper bound was

based on a worst case geometrical feature formed by two concentric-opposite arcs. The search space

size of π 
-1

 EC is the current lowest upper bound. The computation time with current PCs is

negligible for datasets up to 100 equiangular datapoints to achieve estimations of the circularity

error better than EC. By reducing the search space, the computation time decreases but there is still a

guarantee that the minimum zone center CMZ is included in the search space. This evaluation can be

used outright as a first estimation of the minimum zone center position or as the starting point for a

local search, e.g. a search neighborhood of metaheuristics, such as genetic algorithms, particle

swarm optimization, taboo search etc. By reducing the search area, the algorithm complexity and

the computation time can be reduced. Among possible approaches, current work proposes an

exhaustive search within the proposed search space, taking advantage of current processors.



The proposed Minimal Exhaustive Search Heuristic (MESH) finds a (practical) solution to the

minimum zone roundness problem for any dataset size achieving the accuracy required by the

(designer’s) specifications. It will be shown that MESH achieves an arbitrary accuracy expressed as

a fraction of the roundness error related to the centroid EC: 10
-d

 EC, where d is the number of

decimal digits required. According to the golden rule of metrology (or ten-to-one gagemaker's rule),

d should be such that the uncertainty of the result should not exceed 1/10 of the tolerance. There is

an ongoing discussion (e.g. ASME B89.7.3.1) about shifting this ratio to 1/4; in the remainder, for

clarity, the 1/10 ratio is conservatively considered.

3. Minimum Zone Roundness (MZR) problem formulation

Figure 2 shows two pairs of concentric circles that include the cloud datapoints centered

respectively at CMZ and C and where EMZ and EC are their differences in radii.
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Figure 2: CMZ and C are possible locations of the centers of the two concentric circles (roundness

substitute features) containing all the cloud points and their differences in radii are the roundness

errors EMZ and EC, scaled for clarity. With the minimum zone center, CMZ the difference in radii of

the MZR substitute feature is minimal and it equals to the minimum zone error EMZ. In the example,

the requirement of the alternation theorem [12] [13], represented by the circled red cloud datapoints,

is satisfied.

The MZR is the solution of the following optimization problem [20]:
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where S⊂ ℜ
2
 is the search space, θi = i×

n

π2
, i=1,...,n are the angular locations of n equiangular

datapoints of the roundness profile rp(x,y,θi) of the reference circle of center (x,y).

The solution of problem (1) is the minimum zone error defined as:
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where CMZ = (xMZ, yMZ) is the minimum zone center.

The search space S for MZR is characterized by its center, CS∈ℜ×ℜ, and its size, RS∈ℜ, which

represents the maximum distance between CS and the minimum zone center CMZ. The current

lowest upper bound of the search space size RS for MZR according to [31] was based on the

maximum distance between centroid C and minimum zone center CMZ

CS ≡ C

(3)

This result was extended to the discrete case with Cn for C, considering the hypothesis of

equiangular datapoints (xi, yi) instead of a continuous profile, and

CS ≡ nC  ≡ ( ∑ =

n

i ix
n 1

1
, ∑ =

n

i iy
n 1

1
)

(4)

The maximum distance RS was evaluated in [31] by a worst case geometrical feature formed by two

concentric opposite semicircles of different radius. The distance RS between centroid Cn and

minimum zone center CMZ, i.e. the current lowest upper bound of the search space S, is evaluated in

closed form by the expression:

RS = π 
-1

 EC n

(5)



where EC n with n cloud datapoints is
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4. The proposed method: Minimal Exhaustive Search Heuristic
(MESH)

MESH is based on an exhaustive search on all the cross points of a two-dimensional mesh M

included in the search space S shown in Figure 2.

In MESH, each cross point CMZ* ≡ (x,y)∈M is considered as the center candidate for CMZ of the

roundness profile of the n equiangular datapoints; the related roundness error is given by the

objective function evaluated for minimum

EMZ* = 
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4.1. Mesh parameters

Equation (7) is obtained from (1) where the two-dimensional search space S is discretized on the

two-dimensional array M with the following mesh parameters and symbols:

CM mesh centre

RM mesh size

εM mesh spacing

N
2

number of cross points

4.2. The mesh covers the search space

The mesh M is centered at the search space center CS

CM ≡ CS

(8)

with its same size

RM = RS



(9)

4.3. The mesh parameters after current lowest upper bound

Based on the current lowest upper bound for the search space according to [31], and without loss of

generality, the mesh M is centered at the centroid Cn of the n equiangular datapoints in equation (4):

CM ≡ Cn

(10)

The mesh size, RM, is evaluated considering that the distance between centroid and minimum zone

center is lower than (or equal to) the upper bound RS

RM = π 
-1

 EC n

(11)

according to [31], where EC n is the roundness error considering the centroid as the center of the

roundness profile of the n equiangular datapoints in equation (6).

4.4. The mesh error

Assuming an equally spaced mesh, with a square grid with mesh spacing ε (a first estimation of the

final εM), determines the following errors for the minimum zone center CMZ* and roundness error

EMZ* evaluated by the algorithm with respect to their optima CMZ and EMZ (Figure 3):

|CMZ* - CMZ| ≤ 
2

ε

(12)

EMZ* - EMZ ≤ 2  ε

(13)

In equation (12), 
2

ε
 corresponds to the maximum distance between a cross point (CMZ*) and the

farthest point of the mesh square of side ε, i.e. with CMZ located at the midpoint of the mesh square

diagonal.



In equation (13), 2  ε considers the previous case, with CMZ* coinciding with a cross point and the

closest and the farthest cloud points positioned respectively on the two opposite half lines

connecting CMZ* and CMZ, along a diagonal of the mesh square.

CMZ*

CMZ

r

R

ε

k 10
-d

cross points

mesh square

farthest point

EMZ = R – r

EMZ* = R – r + k 10
-d

Figure 3: MESH algorithm accuracy k 10
-d

 as a function of the relative position between cross

points (or minimum zone roundness center candidates CMZ*) and the farthest possible position of

the actual minimum zone roundness center CMZ.

Also,

k 10
-d

 = 2  ε,            k ∈ ℜ, 1 ≤ k < 10

(14)

where k 10
-d

 is the target algorithm accuracy.

From equations (12) and (13) and from Figure 3, it can be noticed that, in the worst case

represented, the maximum approximation error is double for EMZ with respect to CMZ.

4.5. The MESH algorithm accuracy

The MESH algorithm output are CMZ* and EMZ*; the symbol * expresses that they are an estimation

of CMZ and EMZ. The approximation (an overestimate, necessarily) on EMZ is defined by k 10
-d

. d

represents the order of magnitude or the number of significant digits of the roundness error EMZ and



it depends on the design specifications. As an example, if units are in mm, d = 3 means a maximum

acceptable error of 1 µm and the significant digits from the mesh algorithm are d.ddd. The

acceptable roundness EMZ
limit

 should be expressed with d - 1 = 2 digits (or fewer); e.g. if the

maximum acceptable roundness is EMZ
limit

 = 0.07 (d = 2), parts with roundness error EMZ below

0.070 (d = 3) are acceptable (e.g. 0.0696, d = 4) and above 0.070 (e.g. 0.0703, d = 4) are not.

In order to achieve a better algorithm accuracy, the mesh spacing ε should be reduced

proportionally. The mesh spacing ε determines the algorithm accuracy k 10
-d

 and the approximation

(overestimate) on EMZ according to equation (13)

EMZ* - EMZ ≤ k 10
-d

(15)

In the remainder, without loss of generality,

k = 1

(16)
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Figure 4: Effect of the mesh spacing and algorithm accuracy on the number of rejected parts

Figure 4 shows qualitatively the effect of the MZR algorithm accuracy 10
-d

 on the number of

rejected parts. By increasing the accuracy of the algorithm with d, with



EMZ ≤ EMZ
limit

 | EMZ* > EMZ
limit

(17)

more false parts outside the specification can be identified and fewer parts inside the specification

can be rejected. The case of d+1 is shown in Figure 4 and similarly for d+2 etc. If the distribution of

inspected parts is known, from the statistical process control, the number of parts rejected as a

function of d and EMZ
limit

 is known quantitatively.

The actual algorithm accuracy is defined by Α*, as opposed to the target algorithm accuracy 10
-d

, as

Α* = (EMZ* - EMZ ) / 10
-d

            Α*∈ ℜ, 0 ≤ Α* ≤ 1

(18)

Α* can be expressed as a percentage of the algorithm accuracy fixed by (15)

For exhaustive methods [12] [13],

d → ∞, Α* = 0

(19)

Also, with computational approaches, the algorithm accuracy (10
-d

) improves with the cloud size n

d ∝ n

(20)

To prevent the rejection of parts inside the specification because of algorithm error

EMZ* ≤ EMZ
limit

(21)

consequently, from equation (15),

10
-d 
≤ EMZ

limit
 - EMZ

(22)

The first attempt of mesh spacing ε is 10
-d

 / 2  from (14).



A smaller mesh spacing, ε, would lead to an unjustified increase in computation time, by increasing

the number of cross points N
2
. For a square mesh M circumscribed to the circular search space S, of

size RM, the number of cross points Ncirc∈ℵ is given by rounding up the terms in

Ncirc
2
 = (2 RM / ε +1)

2
 = (2 2  10

d
 RM+1)

2

(23)

Ncirc
2
 reduces by π/4 excluding the cross points outside the circular search space S. From equation

(11)

N
2
 = π/4 Ncirc

2
 = π/4 (2 2  10

d
 RM+1)

2
 = π/4 (2 2  10

d
 ECn / π+1)

2

(24)

An approximate numerical expression is not provided because it is prone to approximation errors

with low N.

In the numerical example above, assuming EC n = EMZ
limit 

= 0.07, the number of cross points for a

circular mesh at different target accuracy N
2
 (d=2) ≅ 31, N

2
 (d=3) ≅ 3,119, N

2
 (d=4) ≅ 311,944.

The first attempt mesh spacing ε will be conservatively reduced in order to accommodate a constant

spacing εM between cross points

εM = 2 RM / (Ncirc - 1) = 2 ECn / (π (Ncirc - 1))

(25)

In the numerical example, εM (d=2) ≅ 0.006, εM (d=3) ≅ 0.0007, εM (d=4) ≅ 0.00007.

The number of operations (and computation time) of the MESH algorithm #MESH is proportional

to

#MESH ≈ O(n N
2
)

(26)

If the algorithm stops as soon as CMZ
*
 is found, on average, half of #MESH operations will be

necessary.
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Figure 5: Setting the MESH algorithm parameters.

The implemented MESH algorithm parameters are set as summarized in Figure 5.

5. Extension to other form tolerances

The proposed MESH approach can be easily extended to other form tolerances both in 2D and in

3D, by the following steps

- definition of the search space (location and size), which should include the mesh;

- definition of the mesh parameters, depending on the approximation required for the form

tolerance.

Given a cloud of points, the centroid used in the roundness case is substituted by likeness with the

principal axis for other form tolerances like straightness, cylindricity, conicity, flatness etc.

For example, as shown in Figure 6, to find the minimum zone straight line, two meshes

perpendicular to the principal axis should be defined. Each straight line passing through each pair of



cross points belonging to both meshes should be exhaustively checked in order to find the minimum

zone straight line. For straightness in 2D, the two meshes degenerate on a single mesh and straight

line candidates pass through cross point pairs taken from that mesh.

Roundness and sphericity are characterized by point symmetry, consequently the principal axis

degenerates to a single point. The feature centers are searched for respectively in a 2D and a 3D

mesh (Figure 7).

In all cases, the mesh should be dimensioned in order to coincide with the search space (9). The

search space shape should be defined for each form tolerance and it should have the minimum size

because it affects directly the MESH algorithm performance, because every single candidate should

be checked.

principal axis

minimum zone
straight line
candidates

meshes

point cloud

search space

cross points

mesh centers

Figure 6: Example extension of the MESH algorithm to other form tolerances with axial symmetry.



Figure 7: Example extension of the MESH algorithm for sphericity evaluation.

6. Results and discussion

Table 1 considers 12 datasets containing 8 to 16,384 equiangular datapoints generated with the

software described in [34] with known CMZ ≡ (0,0), mean radius = 20 and EMZ = 0.06.

For each dataset size n, 
nCE  is calculated by equation (4) and the search space for the minimum

zone center is searched within a circular area of radius RM = π 
-1

 
nCE  by the proposed MESH

algorithm according to equation (11). Three different orders of magnitude d for the accuracy in the

estimation of the EMZ corresponding to the mesh spacing εM are considered. To help the discussion,

three maximum acceptable roundness values EMZ
limit

 at different accuracy levels d are also specified.

The number of necessary mesh cross points N
2
 for the three accuracy levels is determined from

equation (24).



Table 1: Datasets containing equiangular datapoints as in [34] with known CMZ ≡ (0,0), mean radius = 20 and EMZ = 0.06. The results of the

proposed MESH algorithm are identified by *.

Dataset size

n

8 16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384

nCE  (4) 0.0676 0.0667 0.0632 0.0627 0.0614 0.0616 0.0612 0.061 0.0606 0.0602 0.0603 0.0602

RM =

π 
-1

nCE

(11)

0.0215 0.0212 0.0201 0.0200 0.0195 0.0196 0.0195 0.0194 0.0193 0.0192 0.0192 0.0192

EMZ
limit

 = 0.07 N
2
 = 31 d = 2

EMZ* 0.062 0.060 0.063 0.063 0.061 0.062 0.061 0.061 0.061 0.060 0.060 0.060

time [s] 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.06 0.14 0.22

xMZ* 0.0000 0.0001 0.0007 0.0020 0.0011 0.0008 0.0004 0.0007 0.0002 0.0001 0.0000 -0.0001

yMZ* 0.0012 0.0002 0.0030 0.0006 0.0004 0.0004 0.0007 0.0000 0.0003 -0.0001 -0.0002 0.0000

mean

radius*

20.0000 20.0001 20.0015 19.9994 19.9996 19.9999 20.0001 19.9998 20.0000 20.0000 20.0000 20.0000

εM (25) 0.0054 0.0053 0.0050 0.0050 0.0049 0.0049 0.0049 0.0049 0.0048 0.0048 0.0048 0.0048

A* (18) 17% 3% 32% 27% 14% 16% 12% 10% 6% 2% 3% 2%

EMZ
limit

 = 0.061 N
2
 = 3,119 d = 3

EMZ* 0.0602 0.0603 0.0602 0.0602 0.0604 0.0604 0.0603 0.0601 0.0606 0.0602 0.0603 0.0602

time [s] 0.00 0.01 0.02 0.05 0.10 0.18 0.38 0.74 1.52 3.06 7.51 11.76

xMZ* 0.00000 -0.00010 -0.00010 -0.00010 0.00010 0.00020 0.00020 0.00010 0.00020 0.00010 0.00001 -0.00010

yMZ* 0.00010 0.00020 -0.00020 -0.00010 0.00020 -0.00020 -0.00010 0.00000 0.00030 -0.00010 -0.00017 0.00000

mean

radius*

20.00000 20.00010 20.00000 20.00000 20.00000 20.00000 20.00000 20.00000 20.00000 20.00000 20.00000 20.00000

εM (25) 0.00067 0.00066 0.00063 0.00062 0.00061 0.00061 0.00061 0.00061 0.00060 0.00060  0.00060 0.00060

A* (18) 20% 30% 20% 20% 40% 40% 30% 10% 60% 20% 31% 20%

EMZ
limit

 = 0.0601 N
2
 = 311,943 d = 4



EMZ* 0.06004 0.06001 0.06004 0.06002 0.06003 0.06002 0.06002 0.06002 0.06000 0.06004 0.06003 0.06003

time [s] 0.06 1.12 2.23 4.48 8.96 17.68 35.31 70.46 140.91 281.25 732.94 1131.46

xMZ* 0.000028 -0.000002 -0.000018 0.000009 0.000022 0.000004 -0.000016 0.000002 0.000000 -0.000020 0.000000

8

0.000018

yMZ* 0.000012 -0.000006 0.000026 -0.000008 -0.000004 -0.000011 -0.000008 -0.000021 -0.000003 -0.000014 0.000014 0.000003

mean

radius*

19.99998

7

20.000000 20.000008 20.000001 19.999992 20.000004 19.999996 20.000010 20.000001 20.000000 20.00000

0

19.999996

εM (25) 0.000067 0.000067 0.000063 0.000063 0.000061 0.000061 0.000061 0.000061 0.000061 0.000060 0.000060 0.000060

A* (18) 39% 9% 42% 17% 27% 15% 24% 23% 4% 42% 30% 28%



For completeness, also the center coordinates (xMZ
*,yMZ

*) and mean radiuses* are reported.

The processing time to evaluate EMZ* by the proposed MESH algorithm with 3.1 GHz i-3 Pentium

3.5GB RAM is also listed.

As predicted by (26), the processing time is linear with the cloud size and is in the order of 10 s

with current processor up to d = 3 and for d = 4 up to n = 256.

The processing time to evaluate 
nCE  is negligible for all dataset sizes and has not been included.

The algorithm accuracy A* by equation (18) is as low as 2% and the maximum is 60%. A*

conservatively does not exploit all the available range up to 100% because the mesh spacing

reduces from ε to εM by equation (25) to design a square mesh with Ncirc cross points on each side.

It can be noticed that the target accuracy in the estimation of EMZ (on the d
th

 digit) is achieved for all

dataset sizes as planned by the mesh spacing ε selected with equation (14), starting from 8 cloud

data.
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Figure 8: Roundness error with respect to the centroid (defined in (4)) as a function of the dataset

size (generated as in [34]) for three maximum acceptable roundness values EMZ
limit

 at different

accuracy levels d. By construction of the MESH algorithm EMZ
*
 ≤ EMZ

limit
. Actual EMZ

*
 values are

listed in Table 1.

Figure 8 elucidates the relationship between 
nCE  and EMZ

*
; this latter is always lower than EMZ

limit

by the MESH algorithm.



A sharp reduction of 
nCE  (and consequently of the search space (5)) as a function of n is also shown

in Figure 8 in the range 8 – 128.

A minimum dataset size is required for 
nCE  to achieve the target roundness EMZ

limit
, corresponding

respectively to 8, 1,024 and 4,096 cloud datapoints for the different orders of required accuracy d =

2, 3 and 4, as opposed to the MESH algorithm that matches the target roundness EMZ
limit

 for all

cloud sizes n.

Increasing the dataset size n reduces 
nCE  and the search space is reduced proportionally according

to (5). Of course, by increasing the dataset size n, the sampling time increases. A tradeoff should be

met in order to minimize the total time spent for cloud sampling and computation time by the MZR

algorithm.

In summary, it has been shown that, although EC is always greater than EMZ (or equal), with larger

dataset size, EC can be an adequate replacement.

Using EMZ versus EC has the benefit of reducing the number of rejected parts with roundness outside

of the specification tolerance.

From a practical viewpoint, directly calculating EC (closed form) with a larger cloud or using a

more accurate MZR algorithm to calculate EMZ (higher computation time) with a smaller cloud

depends on a case by case basis on the ratio between sampling time by the CMM and computation

time O(n N
2
) (26); this latter is a function of the cloud size n and of the mesh spacing (23). As

technology advances, on one hand users can benefit of faster data sampling by continuous probe

scanning and high resolution optical scanning, while on the other they can benefit of faster

processors.

6.1. Benchmarking with literature

In this section, it will be shown that the MESH algorithm is incumbent with respect to the GAs in

[25] and in [20].The search space of the minimum zone center by the GA in [25] is restricted to an

arbitrary (large) search space centered on the centroid. The centroid in turn is farther from the

minimum zone center (about 50 times with respect to MESH), because the cloud datapoints

generated by the NPL certified software are not equiangular. Table 2 shows the better performance

of the MESH algorithm in term of computation time and EMZ
*
, as a result of the lower search space

radius, which produces a density of center candidates hundreds of times higher despite the lower

MESH cross points number.Table 3 compares the minimum zone roundness error EMZ* of the

proposed MESH algorithm with results obtained by a new implementation of the genetic algorithm



previously optimized by the authors on the MZR problem [20] with the condition on the search

space in [31] on the same datasets of Table 1 containing equiangular datapoints generated as in

[34], with known CMZ ≡ (0,0), mean radius = 20 and EMZ = 0.06.



Table 2: Comparison between the proposed exhaustive MESH approach and the best result of a metaheuristics from the literature, with cloud

datapoints parameters ∅ 40, EMZ = 0.06 and target accuracy d = 2. The CMZ candidates density is given by CMZ candidates/search space.

Algorithm
Cloud

size n

Search space

size RM

CMZ

candidates

CMZ candidates

density
EMZ

* Pentium®

CPU
Time [s]

4,096 0.0192 26,767 0.06 0.06
MESH

256 0.0196

31

(cross points) 25,686 0.062
3.1 GHz i3

0.00

GA [25] 10,000 1

70

(chromosome

population)

70 0.0617 1.2 GHz M
4.48

(n 500)

Table 3: Comparison between the exhaustive MESH approach and a metaheuristics on datasets of Table 1. The results of the two algorithms are

identified by *. For EMZ
*
 the significant digit is enhanced; red if the tolerance EMZ

limit
 is not met.

Cloud

size
MESH parameters EMZ

limit
EMZ

*
mean radius

*
Algorithm complexity

# n d εεεεM Ncirc MESH
GA

[20] [31]
MESH

GA

[20] [31]

GA time

[s]

#MESH (26)

≈≈≈≈

#GA (28)

#EXACT

(30)

1. 32 0.063 0.062 20.0006 19.9977 0.00 1,608 35,960

2. 256 0.062 0.063 20.0000 19.9991 0.01 12,868 174,792,640

3. 2,048 0.061 0.061 20.0000 19.9997 0.07 102,944 730,862,190,080

4. 16,384

2 0.0050 8 0.07

0.060 0.060 20.0000 20.0001 0.28 823,550 3,001,300,362,981,380

5. 32 0.0602 0.0605 19.99999 19.99768 0.00 102,944 35,960

6. 256 0.0604 0.0603 19.99999 19.99909 0.01 823,550 174,792,640

7. 2,048 0.0606 0.0610 20.00000 19.99972 1.72 6,588,397 730,862,190,080

8. 16,384

3 0.00063 64 0.061

0.0602 0.0602 19.99999 20.00014 1.78 52,707,179 3,001,300,362,981,380

9. 32 0.06004 0.06025 19.999992 19.997684 2.88 10,230,132 35,960

10. 256 0.06002 0.06028 19999998 19.999092 20.97 81,841,052 174,792,640

11. 2,048 0.06000 0.06104 20.000008 19.999715 200.44 654,728,417 730,862,190,080

12. 16,384

4 0.000063 638 0.0601

0.06003 0.06019 20.000002 20.000140 1871.23 5,237,827,339 3,001,300,362,981,380



In order to compare the performance of the MESH and the genetic algorithm, the number of

operations of the genetic algorithm, #GA, should be of the same order of that of the MESH

algorithm, #MESH, in (26)

#MESH ≈ #GA

(27)

The number of operations of the GA, #GA, is the sum of ps × pc crossover operations (where ps is

the population size and pc is the probability of crossover) and ps × pm mutation operations (where

pm is the probability of mutation) at each generation (for a maximum number of Ngenerations). In

addition, for each MZR center candidate CMZ*, the maximum and minimum distance from all the

(n) cloud points are evaluated

#GA ≈ O(n ps (pc + pm) Ngenerations)

(28)

As opposed to the MESH algorithm, although genetic algorithms iteratively improve solutions, they

may not converge [20], consequently a stop condition should be given on the number of generations

Ngenerations. From (24), (26), (27) and (28)

Ngenerations = π (Ncirc / 2)
2
 / (ps (pc + pm))

(29)

According to the optimal GA in [20], ps = 70 is the population size, pc = 0.7 is the probability of

crossover and pm = 0.007 is the mutation probability.

As anticipated, the number of operations for the exact algorithms from [12] [13] is

#EXACT = 
( )!4!4

!

−n

n

(30)

The cloud size considered are n = 2
5+3j

, j = 0÷3.



The last two columns clearly show the benefit of the MESH (and of the GA) algorithm where the

target accuracy of the MZR error is met at a fraction of the required computation time of an exact

solution.

By comparing EMZ
*
 with EMZ

limit
 in Table 3 it can be observed that the MESH algorithm generally

exceeds the GA, although they both take advantage of the restricted search space defined in the

worst case analysis in [31].

Regarding the algorithm complexity O(n N
2
), by definition, the number of operations is the same

for the two algorithms (27). The cloud size n is the same for both algorithms and it results that also

the number of center candidates is the same: for the MESH algorithm they are all evaluated

sequentially, for the GA the are evaluated in subsequent generations (29). The main difference is

that the MESH algorithm considers a uniform distribution within the search space, which will

satisfy the accuracy requirement by the definition of the mesh spacing εM (25). On the opposite,

generation after generation, the GA restricts the search area in local minima by progressively

increasing the density of MZR center candidates in smaller search spaces. This confirms a known

drawback of metaheuristics, which are prone to being trapped in local minima; the benefit of the

MESH algorithm of considering all regions of the search space S is also highlighted.

The GA parameters that were optimized for fast convergence in the order of d = 3, maybe require

tuning at higher accuracy (d > 3), particularly seeking for a relationship between ps and Ngenerations.

For completeness also the mean radius and computation time of the GA are reported. The

computation time obtained with the cited processor provides an order of magnitude, and is similar

to that listed in Table 1 for MESH by construction (29).

7. Conclusions

The paper presented MESH, an ε-approximate algorithm based on the principle only the accuracy

that is really necessary.

The benefit of the ε-approximate approach is that by an exhaustive search it is able to provide the

target accuracy by construction and the computation time is given and known in advance, as

opposed to most metaheuristics, which may not converge to the target accuracy.

The basic principle is to find an estimate EMZ* of the theoretical minimum zone roundness EMZ with

maximum error k 10
-d

, by exhaustively assessing all MZR center candidates located at the cross

points of a mesh with spacing ε = k 10
-d

 / 2 .



The proposed method is able to provide EMZ* with the desired accuracy within minutes for

thousands of cloud datapoints and in negligible time for few cloud datapoints. As shown in

experiments, an accuracy to the fourth decimal digit (d) can be met using only 300k cross points.

This result has been made possible by previous work on the limit search space to be searched,

currently π 
-1

 EC.

Future research can be directed to use a similar approach to determine the minimum dataset size

(e.g. depending on the profile signature and sampling error) as a function of the desired accuracy

(and mesh spacing).

The proposed MESH method can also be used to separate the sampling error component from the

algorithm error, because it is able to make this latter as negligible as desired.

The proposed MESH method is being extended to spheres [34], cylinders, straight lines and planes

following a similar approach, anticipated in the paper.

The MESH algorithm can also serve for benchmarking purposes to assess the performance of other

algorithms, such as genetic algorithm and exact methods, as experimented in this work.
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