1 2	1	Eco-friendly pheromone dispensers – a green route to manage the European
2 3 4	2	grapevine moth?
5 6 7	3	
7 8 9	4	Andrea Lucchi ¹ , Edith Ladurner ² , Andrea Iodice ² , Francesco Savino ² , Renato
10 11	5	Ricciardi ¹ , Francesca Cosci ¹ , Giuseppe Conte ¹ , Giovanni Benelli ^{1,3} *
12 13 14	6	
15 16	7	¹ Department of Agriculture, Food and Environment, University of Pisa, via del
17 18 19	8	Borghetto 80, 56124 Pisa, Italy
20 21	9	² CBC (Europe) Srl, Biogard Division, via E. Majorana 2, 20834 Nova Milanese (MB),
22 23 24	10	Italy
24 25 26	11	³ The BioRobotics Institute, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34,
27 28	12	56025 Pontedera, Pisa, Italy
29 30 31	13	
32 33	14	
34 35 36	15	* Corresponding author. Tel.: +39-0502216141. Fax: +39-0502216087. E-mail:
37 38	16	giovanni.benelli@santannapisa.it; benelli.giovanni@gmail.com (G. Benelli)
39 40 41	17	
42 43	18	
44 45 46	19	
47 48		
49 50 51		
52 53		
54 55 56		
57 58		
59 60		
6⊥ 62 63		
64 65		1

20 Abstract

The development of environmental sustainable control strategies to fight insect pests is a key challenge nowadays. Pheromone-mediated mating disruption (MD) is based on the release of synthetic sex attractants into a crop, interfering with mate finding of a given pest species. However, a limited number of research items has been published on the optimization of MD strategies against the European grapevine moth, Lobesia botrana, as well as on the use of biodegradable dispensers to reduce waste production in vineyards, despite the high economic importance of this pest. Therefore, the present study evaluated the efficacy of the MD products Isonet[®] L TT and the biodegradable Isonet[®] L TT BIO, applied at various densities, in reducing *L. botrana* damage on grapevine in comparison to an untreated control and the reference MD product Isonet[®] L. Experiments were conducted in three different areas of grapevine cultivation, located in Central and Northern Italy, over three different years. Our MD approach allowed a reliable control of the three generations of L. botrana during the whole grape growing season, leading to a significant reduction in the infested bunches and number of nests per bunch, if compared to the untreated control. The performances of Isonet[®] L TT BIO, Isonet[®] LTT and Isonet[®] L did not differ in terms of infested flower clusters and bunches, as well as nests per flower cluster and bunch. This was confirmed in all experimental sites over three years of field experiments. Overall, the present research provides useful information for the optimization of mating disruption programs against L. botrana, highlighting the interesting potential of biodegradable pheromone dispensers that can be easily applied at low densities in vineyards, reducing the use of chemical pesticides to control moth pests.

- **Keywords:** chemical ecology; Integrated Pest Management; *Lobesia botrana*; mating
- 46 disruption; pesticide-free farming; sex pheromones

Currently, about 1.8 billion people are involved in agricultural activities worldwide, and most of them rely on pesticides to protect crops and livestock (Aktar et al. 2009; Alavanja 2009). Nowadays, the European Commission Directives are directed towards a significant reduction in pesticide use in the short to medium term (Hillocks 2012), to produce residue-free foods and reduce the toxicological impact of pesticides on human health and the environment (Hicks et al. 2017; Silver et al. 2017). Therefore, growing research attention is devoted to the development of environmentally friendly and sustainable strategies to control insect pests of agricultural importance (Todd et al. 2015; Gonzalez-Chang et al. 2016; Holland et al. 2016). Besides classical biological control programs, the manipulation of insect chemical ecology has also been considered to develop novel, effective and eco-friendly control tools (Witzgall et al. 2010; Kaplan 2012; Pérez-Staples et al. 2013).

In this scenario, a prominent role is played by pheromone-mediated mating disruption, which is based on the release of synthetic sex attractants into a crop, thus interfering with mate finding of a given pest species (Cardé 1990; Cardé and Minks 1995; Suckling 2000; Millar et al. 2006). In Lepidoptera, mate finding is generally routed by female sex pheromones, which mediate scramble competition among males for access to females (Tcheslavskaia et al. 2005; Witzgall et al. 2008; Lance et al. 2016). Moth females release small amounts of their sex pheromone and the males detect these plumes relying on their highly sensitive neurosensory structures (Cardé and Haynes 2004; Cardé and Willis 2005). Since moths strongly rely on sex pheromones to find their mates, dispensers releasing synthetic sexual pheromones can be efficaciously

73	exploited in mating disruption programs to suppress pest reproduction in selected areas.
74	This can be achieved by both non-competitive and competitive mechanisms, the first
75	covering camouflage, desensitization, and sensory imbalance, the latter mainly due to
76	false-plume following (Millar et al. 2006; Millar and Gut 2015). Notably, up to now, no
77	negative effects on non-target organisms have been observed, making this method
78	compatible with modern Integrated Pest Management strategies (Welter et al. 2005;
79	Miller et al. 2006; Witzgall et al. 2010; Ioriatti et al. 2012; Ioriatti and Lucchi 2016).
80	Concerning insect pests of vineyards, pheromone mating disruption was proven
81	to be a reliable and effective tool for the control of the European grapevine moth,
82	Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae) (Ioriatti et al.
83	2008, 2011; Cooper et al. 2014). In mating disruption programs, a major issue to deal
84	with - to allow large-scale use - is the optimization of the dispensers' performances,
85	their comparative assessment of efficacy and their cost-effectiveness, which is linked to
86	the time required for field application. In particular, a reduced number of pheromone
87	dispensers in the field allows a strong reduction in the time required for their
88	deployment, thus in labor costs (Gut et al. 2004; De Lame et al. 2010). Moreover, the
89	development of biodegradable pheromone dispensers will also allow to reduce
90	operational costs in the field (potentially no removal and plastic disposal at the end of
91	the season required), as well as environmental pollution (Guerrini et al. 2017).
92	However, while the optimization of the above-mentioned features has been
93	considered in researches on other insect pest species (e.g., Meissner et al. 2010; Funes
94	et al. 2016; McGhee et al. 2016; Sharon et al. 2016, Vacas et al. 2016), limited research
95	has been done on L. botrana (Hummel et al. 2017), despite the high economic
96	importance of this pest. Most importantly, to the best of our knowledge, the use of

97	biodegradable dispensers for L. botrana mating disruption programs has not yet been
98	considered, with the unique exception of Ecodian (Isagro) dispensers - composed by
99	Mater Bi® (Novamont, Novara) and cellulose - that have been tested with partial
100	success (Anfora et al. 2008), without achieving substantial commercial interest.
101	On this basis, Shin-Etsu Chemical Co. (Japan) and CBC (Europe) S.r.l, (Italy)
102	developed the two new pheromone dispensers for the mating disruption of L. botrana,
103	namely $Isonet^{\mathbb{R}}$ LTT and $Isonet^{\mathbb{R}}$ L TT BIO. Both products consist of two parallel
104	capillary tubes filled with the main component [i.e., (7E,9Z)-7,9-dodecadien-1-yl
105	acetate] of L. botrana sexual pheromone blend, joined and sealed at the ends. The gap
106	in the middle allows each dispenser to form a loop that can be easily and quickly
107	deployed by placing the dispenser over the end of spurs or by looping it around cordons,
108	instead of twisting it around cordons as required for the commercially available
109	reference product Isonet [®] L. Furthermore, both products can be applied at a lower rate
110	than the conventional reference product $\textsc{Isonet}^{\circledast}\sc{L}$ (200-250 dispensers/ha vs. 500
111	dispensers/ha, respectively). Notably, Isonet [®] LTT and Isonet [®] L TT BIO differ in the
112	material of which the dispensers are made, which is polyethylene for Isonet [®] L TT and
113	biodegradable polymers for Isonet [®] LTT BIO.
114	The research herein reported aimed at evaluating the efficacy of the mating
115	disruption products $\textsc{Isonet}^{\texttt{R}}\ L$ TT and the biodegradable $\textsc{Isonet}^{\texttt{R}}\ L$ TT BIO in reducing
116	European grapevine moth (L. botrana) damage on grape in comparison to an untreated
117	control and the reference mating disruption product Isonet® L. The trials were
118	conducted in three different areas of grapevine cultivation, one located in Tuscany
119	(Central Italy) and two in Emilia Romagna (Northern Italy) over three different years
120	(2014, 2015 and 2016). Each year, the impact of the mating disruption products on the

121	three generations of <i>L. botrana</i> was evaluated by determining the percentage of infested	
122	bunches and the number of nests per bunch. Furthermore, the tested dispensers were	
123	periodically collected during the grapevine growing season, extracted and analyzed by	
124	GC-MS. Evaluating their residual content of $(7E,9Z)$ -7,9-dodecadien-1-yl acetate, we	
125	estimated the pheromone release in mg/ha/day during the whole grapevine growing	
126	season.	
127		
128	Materials and methods	
129		
130	Experimental sites	
131		
132	All experiments were conducted in areas representative for grapevine cultivation	
133	in Italy. Three trials were carried out in the area of Bolgheri, Livorno province, Tuscany	
134	region, Central Italy, an area representative for high-value grapevine cultivation in Italy,	
135	while additional two trials were conducted in Emilia-Romagna region, Northern Italy,	
136	respectively one in Ravenna province (Campiano) and one in Forlì-Cesena province	
137	(Villafranca di Forlì). Details on the location of the study vineyards can be found in	
138	Table 1, and a detailed description of the characteristics of the crop in Table 2.	
139		
140	Experimental design of mating disruption trials	
141		
142	Since a randomized block design does not apply to large plots required for	
143	studies on mating disruption products (European and Mediterranean Plant Protection	
144	Organization, 2009), each treatment was applied to 1 large plot, and 10 subplots, big	
	7	

enough to allow for assessments on at least 100 bunches per subplot (32-40 plants in size), were selected within each large plot (=treatment). All mating disruption products, both test and reference items, were deployed before the beginning of the first flight of the target pest in spring. Details on the size of the plots and the date of application of the MD products in the different trials can be found in Table 3. The reference product Isonet[®] L, applied at a rate of 500 dispensers per ha, was included in 4 out of 5 trials. Both Isonet[®] L TT and Isonet[®] L TT BIO were tested at 200 dispensers per ha in 2014, and at 250 dispensers per ha in 2015 and 2016. Crop damage and L. botrana population density evaluation In all trials, crop damage caused by L. botrana was assessed at the end of the 1st generation (=G1, BBCH 69-71), at the end of the 2nd generation (=G2, BBCH 79-81), and at harvest (=G3, BBCH 89). To assess the method effectiveness, we considered the following variables: (i) number of male captures per trap (Trap Test Isagro[®], 1 trap per sampling site) per week; (ii) rate of infested bunches; (iii) number of nests per inflorescence (G1) or number of larvae per bunch (G2 and G3), and (iv) number of damaged berries per bunch. Within each subplot and at each damage assessment, the number of flower clusters (G1) or bunches (G2 and G3) damaged by L. botrana was counted on 100 flower clusters per subplot at G1 and G2, and on 50 bunches per subplot at G3. The percentage of L. botrana-damaged flower clusters or bunches at each assessment was then calculated. Furthermore, at each assessment, the number of L. botrana nests per flower cluster (G1) or bunch (G2 and G3) was noted.

169	In detail, G1 infestation was measured through on-site surveys on non-
170	destructively sampled inflorescences. As to the two carpophagous generations (G2 and
171	G3), an estimate of the infested bunches was made on samples collected in the
172	vineyards and carefully dissected. This is necessary above all for the compact-bunch
173	varieties, such as Sangiovese, Pinot and Chardonnay, for which a mere field inspection,
174	would often lead to a marked underestimation of the infestation level.
175	
176	Pheromone release of the tested dispensers
177	
178	For all tested dispensers, evaluating the residual content of $(7E,9Z)$ -7,9-
179	dodecadien-1-yl acetate, we estimated the pheromone release in mg/ha/day during the
180	whole grapevine growing season. Groups of $Isonet^{\ensuremath{\mathbb{R}}} L$, $Isonet^{\ensuremath{\mathbb{R}}} L$ TT and $Isonet^{\ensuremath{\mathbb{R}}} L$ TT
181	BIO dispensers (n=5 per group) were periodically collected during the grapevine
182	growing season and stored at -30 °C until chemical analysis. The dispenser residual
183	content in (7E,9Z)-7,9-dodecadien-1-yl acetate was measured based on internal (SEC)
184	standard GC-MS analysis. The analysis was achieved on an Agilent 6890 N gas
185	chromatograph equipped with a 5973 N mass spectrometer (MS). MS settings were as
186	follows: EI mode, 70 eV, mass to charge ratio (m/z) scan between 35 and 400. HP-5 MS
187	capillary column (30 m x ID 0.25mm x 0.25 μm film thickness, J & W Scientific,
188	Folsom, CA, USA) with He gas flow (1.0 ml/min) was used for separation. GC
189	temperature program was as follows: initial 50 °C for 5 min, then increasing with 20
190	°C/min to 300 °C. The injector temperature was 150 °C. The GC-MS estimate of the
191	dispenser residual content, allowed us to calculate the pheromone release during the
192	field exposure of the dispenser, as mg/ha/day. Each value was a mean of 5 replicates.

193	
194	Statistical analysis
195	
196	Differences in the incidence of infested flower clusters or bunches (%) and nests
197	per flower cluster or bunch (n) among treatments (i.e., tested pheromone dispensers and
198	untreated control), years and study site were assessed using non-parametric tests
199	(Kruskal–Wallis test followed by Steel–Dwass multiple comparison) at the 5%
200	significance level, since data did not show homogeneity of variance (Shapiro-Wilk
201	test, $P \le 0.05$). All statistical analysis was performed using JMP [®] 9 (SAS Institute).
202	
203	Results
204	
205	First generation trials
206	
207	Figure 1 summarizes the field efficacy of mating disruption against the first
208	generation of L. botrana. Isonet [®] L TT BIO, Isonet [®] L TT and Isonet [®] L led to a
209	significant reduction in the percentage of infested flower clusters if compared to the
210	untreated control (Z=5.756, P<0.0001; Z=5.156, P<0.0001; Z=4.811, P<0.0001,
211	respectively), while no significant differences were noted among the efficacy of the
212	three tested dispensers (Figure 1a). Furthermore, also the number of nests per flower
213	cluster was significantly lower in Isonet [®] L TT BIO, Isonet [®] L TT and Isonet [®] L than in
214	the untreated control (Z=5.681, P<0.0001; Z=5.238, P<0.0001; Z=4.792, P<0.0001,
215	respectively), while no significant differences were noted among the efficacy of the
216	three tested dispensers (Figure 1a).

217	Both the percentage of infested flower clusters and number of nests per flower
218	cluster varied significantly among the years (Figure 1b). Concerning infested flower
219	clusters (%), EGVM incidence was higher in 2014 and 2016 than in 2015 (Z=4.534,
220	P < 0.0001; Z=-2.728, P=0.018), while no significant differences were noted between
221	2014 and 2016. The number of nests per flower cluster followed the same trend
222	(Z=4.561, P<0.0001; Z=-2.574, P=0.027) (Figure 1b).
223	The experimental site also played a significant role, showing varying L. botrana
224	infestation levels (Figure 1c). Concerning infested flower clusters (%), EGVM
225	incidence was highest in Campiano (RA, Emilia Romagna), followed by Bolgheri (LI,
226	Tuscany) and Villafranca di Forlì (FC, Emilia Romagna), with significant differences
227	among them (Z=7.398, P<0.0001; Z=-4.669, P<0.0001; Z=-7.711, P<0.001,
228	respectively) A comparable trend was observed concerning the number of nests per
229	flower cluster (Z=7.141, P<0.0001; Z=-4.899, P<0.0001; Z=-7,741, P<0.0001,
230	respectively) (Figure 1c).
231	
232	Second generation trials
233	
234	Mating disruption achieved significant results also in controlling the second
235	generation of L. botrana, as shown in Figure 2. In this generation as well, $Isonet^{\mathbb{R}} L TT$
236	BIO, Isonet [®] L TT and Isonet [®] L significantly reduced the percentage of infested
237	bunches compared to the untreated control (Z=6.608, P<0.0001; Z=6.236, P<0.0001;
238	Z=5.597, P <0.0001, respectively), with not significant differences among the three
239	tested dispensers (Figure 2a). Also, the number of nests per bunch was significantly
240	lower in the Isonet [®] LTT BIO-, Isonet [®] LTT- and Isonet [®] L-treated plots than in the
	11
	 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

241	untreated control (Z=6.189, P<0.0001; Z=5.936, P<0.0001; Z=6.012, P<0.0001,
242	respectively), and no significant differences were observed among the three dispensers
243	(Figure 2a).
244	Infested bunches (%) and nests per bunch (n) varied significantly among the
245	years (Figure 2b). L. botrana infested bunches were significantly more abundant in
246	2014 over 2015 and 2016 (Z=-4.126, P=0.0001; Z=-4.993, P=0.018), while no
247	significant differences were noted between 2015 and 2016. The number of nests per
248	bunch followed the same trend (Z=-4.722, P<0.0001; Z=-5.554, P<0.0001) (Figure 2b).
249	Significantly different infestation levels of L. botrana were found in mating
250	disruption tests carried out in the three geographical sites (Figure 2c). The percentage of
251	EGVM infested bunches was significantly higher in Campiano (RA) than in Bolgheri
252	(LI) and Villafranca di Forlì (FC) (<i>Z</i> = 6.956, <i>P</i> <0.0001; <i>Z</i> = -7.588, <i>P</i> <0.0001,
253	respectively), while no significant differences were found between the latter two sites.
254	A comparable trend was observed concerning the number of nests per bunch ($Z=5.958$,
255	<i>P</i> <0.0001; <i>Z</i> = -7.650, <i>P</i> <0.0001, respectively) (Figure 2c).
256	
257	Third generation trials
258	
259	The third generation of EGVM was effectively controlled by the application of
260	mating disruption dispensers, irrespective of the type of dispenser tested (Figure 3).
261	Isonet [®] L TT BIO, Isonet [®] L TT and Isonet [®] L resulted in a significant reduction in the
262	percentage of infested bunches in comparison to the untreated control ($Z=4.783$,
263	<i>P</i> <0.0001; <i>Z</i> =4.271, <i>P</i> <0.0001; <i>Z</i> =3.470, <i>P</i> =0.029, respectively), and no significant
264	differences emerged among the three tested dispensers (Figure 3a). The same trend was
	12
	241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 256 257 258 259 260 261 261 261 262 263 264

1 2	265	observed for the number of nests per bunch: significantly lower values were recorded in
3 4	266	plots treated with $Isonet^{\mathbb{R}} L TT BIO$, $Isonet^{\mathbb{R}} L TT$ and $Isonet^{\mathbb{R}} L$ than in untreated
5 6 7	267	control plots (Z=5.014, P<0.0001; Z=4.379, P<0.0001; Z=3.612, P=0.0017,
8 9	268	respectively), with differences among treated plots not being significant (Figure 3a).
10 11 12	269	Infested bunches (%) and nests per bunch (n) varied significantly among the
12 13 14	270	years (Figure 3b). The percentage of L. botrana infested bunches was significantly
15 16	271	higher in 2014 than in 2015 and 2016 (Z=-5.554, P<0.0001; Z=-4.608, P<0.0001),
17 18 19	272	while no significant differences were noted between 2015 and 2016. The number of
20 21	273	nests per bunch followed the same trend (Z=-5.213, P<0.0001; Z=-4.112, P<0.0001)
22 23 24	274	(Figure 3b).
25 26	275	Also at harvest, significantly different EGVM infestation levels were observed
27 28 20	276	in the mating disruption trials carried out in the three geographical sites (Figure 3c).
29 30 31	277	Percent EGVM infestation was significantly higher in Campiano (RA) than in Bolgheri
32 33	278	(LI) and Villafranca di Forlì (FC) (<i>Z</i> = 9.356, <i>P</i> <0.0001; <i>Z</i> = -7.671, <i>P</i> <0.0001,
34 35 36	279	respectively), with the latter two sites differing from each other (Z = 4.959, P <0.0001).
37 38	280	A comparable trend was observed concerning the number of nests per bunch ($Z=9.355$,
39 40 41	281	<i>P</i> <0.0001; <i>Z</i> = -7.639, <i>P</i> <0.0001, and <i>Z</i> = 4.433, <i>P</i> <0.0001, respectively) (Figure 3c).
42 43	282	In all mating disrupted vineyards, L. botrana males were not captured by Trap
44 45 46	283	Test Isagro [®] during the whole grape growing seasons, providing a further evidence of
40 47 48	284	proper (7E,9Z)-7,9-dodecadien-1-yl acetate dispersion within the tested fields. Lastly,
49 50	285	Figure 4 showed the continuous release (mg/ha/day) of synthetic $(7E,9Z)$ -7,9-
51 52 53	286	dodecadien-1-yl acetate, by the three mating disruption products $\textsc{Isonet}^{\circledast}L$, $\textsc{Isonet}^{\circledast}L$
54 55	287	TT and Isonet [®] L TT BIO.
56 57 58	288	
59 60		
61 62		
აკ 64 65		13

289 Discussion

291	The development of effective and environmental sustainable control strategies
292	against agricultural insect pests is a crucial challenge nowadays, considering that more
293	than two million tons of pesticides are employed each year in agricultural activities
294	worldwide (De et al. 2014), of which more than 400,000 tons are currently used in
295	European countries (Eurostat 2016). In this framework, the frequent overuse of
296	insecticides rapidly led to the development of resistance in targeted insects (Bourguet et
297	al. 2000; Frank et al. 2007; Thomas and Read 2016; European Food Safety Authority et
298	al. 2017), including moth pests (Reyes et al. 2007; Zhao et al. 2002, 2007).
299	Furthermore, the third generation of the European grapevine moth, which is the
300	most dangerous for late grapevine varieties, is difficult to control, since farmers are
301	experiencing a lack of authorized reliable pesticides characterized by short pre-harvest
302	interval, to avoid pesticide residues in grapes and wine. Mainly, they are toxins from
303	Bacillus thuringiensis subsp. kurstaki and aizawai, acting as microbial disruptors of
304	insect midgut membranes and emamectin benzoate (Muccinelli 2017).
305	Therefore, developing eco-friendly and reliable control tools is crucial. Our
306	results highlighted the high efficacy of the mating disruption programs carried out
307	against L. botrana populations in Northern and Central Italian vineyards. The approach
308	proposed minimize the use of chemical pesticides, since it is based on the employ of
309	different dispensers releasing multiple plumes of (7E,9Z)-7,9-dodecadien-1-yl acetate –
310	the main sex pheromone component of L. botrana females (Ioriatti and Lucchi 2016;
311	Lance et al. 2016).

312	Notably, our mating disruption approach testing the efficacy of $Isonet^{\mathbb{R}} L TT$
313	BIO, Isonet [®] L TT over the standard product Isonet [®] L allowed a reliable control of the
314	three generations of this moth pest during the whole growing season. The field efficacy
315	of the tested approach was validated in three different geographic sites over a study
316	period of three years. As expected, we observed significant differences among
317	experimental sites, mostly due to different pest population sizes in early season in the
318	tested vineyards. In particular, concerning the first generation, we detected a high
319	incidence of L. botrana damage to grapes in Campiano (Emilia Romagna, Northern
320	Italy), highlighting the presence of a larger pest population, if compared to the other
321	sites. Thus, in this context, random encounters between mates may occur, leading to a
322	decreasing efficacy of mating disruption (Millar 2006). In these scenarios, an effective
323	strategy can be the integration of mating disruption with low-impact microbial
324	insecticides (e.g. B. thuringiensis-based ones), since it is well recognized that mating
325	disruption gives its best efficacy on starting pest populations characterized by medium-
326	low densities (Ioriatti and Lucchi 2016).
327	Regarding experiments conducted against the first generation of L. botrana, we
328	noticed a significant reduction in the number of infested flower clusters, and number of
329	nests per flower cluster as well, if compared to the untreated control. Besides, when
330	mating disruption tests were conducted against the second and third generation of L .
331	botrana, a strong reduction in the number of infested bunches and number of nests per
332	bunch was achieved. Earlier, Anfora et al. (2008) observed a significant field efficacy of
333	mating disruption carried out against L. botrana using $Ecodian^{\mathbb{R}}$ dispensers, showing a
334	reduction in the overall attractiveness of traps lured with calling females and monitoring
335	baits. However, the authors tested 1600 dispensers/ha (Anfora et al. 2008), while in the

336	present study the biodegradable dispenser was tested at 200-250 dispensers/ha, still
337	allowing an adequate release of synthetic $(7E,9Z)$ -7,9-dodecadien-1-yl acetate, and
338	achieving a substantial reduction of the incidence of L. botrana damage on grapes.
339	As a general trend, the efficacy of $Isonet^{\texttt{R}}$ L TT BIO, $Isonet^{\texttt{R}}$ L TT and $Isonet^{\texttt{R}}$
340	L was comparable. Indeed, the performances of all the tested dispensers did not differ in
341	terms of infested flower clusters/bunches and nests per flower cluster/bunch. This was
342	noted in all experimental sites over three years of field experiments. As indicate by the
343	curves showing the release of $(7E,9Z)$ -7,9-dodecadien-1-yl acetate over time (Figure 4),
344	the three dispensers tested here can protect treated vineyards from L. botrana infestation
345	during the whole growing season, ensuring a continuous release of sex pheromone
346	plumes.
347	To our mind, there are three practical implications arising from these findings.
348	First, the comparable field performances of $Isonet^{\mathbb{R}} L TT BIO$ and $Isonet^{\mathbb{R}} L TT vs$.
349	Isonet [®] L allow reducing the number of pheromone dispensers needed per hectare (200-
350	250 vs. 500 dispensers/ha), thus direct costs for buying them, the labor cost to apply the
351	dispensers in the vineyard, as well as waste disposal contributing to environmental
352	pollution, which nowadays represent a serious environmental concern (Rochman et al.
353	2013, 2016; Vegter et al. 2014; Jambeck et al. 2015).
354	Second, a lower number of sex pheromones dispensers has a direct impact on
355	farmers' economy, reducing labor cost. Indeed, the time needed to apply sex pheromone
356	dispensers is 3 h/ha for Isonet [®] L, while it drops to 1-1.5 h/ha using Isonet [®] L TT or
357	Isonet [®] L TT BIO, due to the lower number of required dispensers per hectare. When
358	designing this study, we considered that testing a lower number of dispensers per
359	hectare, can lead to reduced efficacy of mating disruption, as earlier outlined by several

authors studying the effective rate of mating disruption dispensers per hectare in the
fight against other moth pests of economic importance, such as *Cydia pomonella* (L.)
(e.g., Epstein et al. 2006; Stelinski et al. 2006b; Patanita 2007; Grieshop et al. 2010).
However, the present results showed that this was not the case, since the tested numbers
of dispensers allowed a reliable control of the *L. botrana* three generations in all the
experimental sites.

Third, the comparable efficacy of the biodegradable dispenser Isonet[®] L TT BIO over the widely adopted non-biodegradable Isonet[®] L ones, contributes to reducing waste disposal in agricultural systems, replacing them with more eco-friendly materials prepared from natural resources (Ashori 2008; Boghossian and Wegner 2008; Castellano et al. 2008; Scarascia-Mugnozza et al. 2012; Bledzki et al. 2015). Our results also support earlier findings by other authors, focusing on the employ of biodegradable dispensers for mating disruption of insect pests of agricultural importance, including the grape berry moth, Paralobesia viteana (Clemens) (Teixeira et al. 2000; Jenkins and Isaacs 2008), the codling moth, C. pomonella (Angeli et al. 2007), the Oriental fruit moth, Grapholita molesta (Busck) (Frédérique et al. 2007; Stelinski et al. 2005, 2006a, 2007), the light brown apple moth, Epiphyas postvittana (Walker) (Brockerhoff et al. 2012; Suckling et al. 2012), the Asiatic rice borer, *Chilo suppressalis* (Walker) (Vacas et al. 2010a), the California red scale, Aonidiella aurantii Maskell (Vacas et al. 2009, 2010b, 2012), the grub beetle, *Dasylepida ishigakiensis* Nijjima et Kinoshita (Arakaki et al. 2017), and the Oriental beetle, Anomala orientalis Waterhouse (Behle et al. 2008). Overall, the present research provides useful information for the optimization of eco-friendly mating disruption programs against L. botrana populations, highlighting the interesting potential of biodegradable pheromone dispensers that can be easily

1 2	384	applied at low density in vineyards of high economic value, reducing the use of		
3 4	385	chemical pesticides to control moth pests.		
5 6	386			
7 8 9	387	Acknowledgements		
10 11 12	388			
13 14	389	The authors would like to thank Shin-Etsu® Chemicals for providing the tested		
15 16	390	mating disruption products. Furthermore, we are grateful to the staff of Guado al Tasso,		
17 18 19	391	Marchesi Antinori (Bolgheri), Coop. Braccianti Campiano (Ravenna) and Az. Agricola		
20 21	392	Schiumarini (Forlì-Cesena) for kindly allowing fieldwork in their farms.		
22 23 24	393			
25 26	394	Funding		
27 28 29	395			
30 31	396	This study was funded by BIOCONVITO P.I.F. "Artigiani del Vino Toscano"		
32 33 34	397	(Regione Toscana, Italy).		
35 36	398			
37 38 39	399	Conflict of Interest		
40 41	400			
42 43	401	Authors declare no competing interests. Mention of trade names or commercial		
44 45 46	402	products in this publication is solely to providing specific information and does not		
47 48	403	imply recommendation or endorsement by the University of Pisa.		
49 50 51	404			
52 53	405	References		
54 55 57 58 50 61 62 63 64	406	18		
65				

1	407	Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture:		
2 3 4 5 6 7	408	their benefits and hazards. Int Toxicol 2(1):1-12		
	409	Alavanja M C (2009) Introduction: Pesticides use and exposure, extensive worldwide.		
8 9	410	Rev Environ Health 24(4):303-310		
10 11	411	Anfora G, Baldessari M, De Cristofaro A, Germinara G S, Ioriatti C, Reggiori F et al		
12 13 14	412	(2008) Control of Lobesia botrana (Lepidoptera: Tortricidae) by biodegradable		
15 16	413	Ecodian sex pheromone dispensers. J Econ Entomol 101(2):444-450		
17 18 19	414	Angeli G, Anfora G, Baldessari M, Germinara G S, Rama F, De Cristofaro A, Ioriatti C		
20 21	415	(2007) Mating disruption of codling moth Cydia pomonella with high densities		
22 23 24	416	of Ecodian sex pheromone dispensers. J Appl Entomol 131(5):311-318		
25 26	417	Arakaki N, Nagayama A, Kijima K, Yasui H, Tsujii N, Tanaka S et al. (2017) Ground-		
27 28	418	surface application of pheromones through a mini-dispenser for mating		
29 30 31	419	disruption of the white grub beetle Dasylepida ishigakiensis (Coleoptera:		
32 33	420	Scarabaeidae). Appl Entomol Zool 52(1):159-164		
34 35 36	421	Ashori A (2008) Wood-plastic composites as promising green-composites for		
37 38	422	automotive industries! Biores Technol 99(11):4661-4667		
39 40 41	423	Behle R W, Cossé AA, Dunlap C, Fisher J, Koppenhöfer AM (2008) Developing wax-		
42 43	424	based granule formulations for mating disruption of oriental beetles (Coleoptera:		
44 45 46	425	Scarabaeidae) in turfgrass. J Econ Entomol 101(6):1856-1863		
47 48	426	Bledzki A K, Franciszczak P, Osman Z, Elbadawi M (2015) Polypropylene		
49 50	427	biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Ind Crops		
52 53	428	Prod 70:91-99		
54 55	429	Boghossian E, Wegner L D (2008) Use of flax fibres to reduce plastic shrinkage		
56 57 58	430	cracking in concrete. Cement Concr Composit 30(10):929-937		
59 60				
61 62 63				
64 65		19		

1 2	431	Bourguet D, Genissel A, Raymond M (2000) Insecticide resistance and dominance			
3 4	432	levels. J Econ Entomol 93(6):1588-1595			
5 6 7	433	Brockerhoff EG, Suckling DM, Kimberley M, Richardson B, Coker G, Gous S, et al			
7 8 9	434	(2012) Aerial Application of Pheromones for Mating Disruption of an Invasive			
10 11	435	Moth as a Potential Eradication Tool. PLoS ONE 7(8): e43767, doi:			
12 13 14	436	10.1371/journal.pone.0043767			
15 16	437	Cardé R T (1990) Principles of mating disruption. Behavior-Modifying Chemicals for			
17 18 19	438	Pest Management: Applications of Pheromones and Other Attractants. Marcel			
20 21	439	Dekker, New York, pp. 47-71			
22 23 24	440	Cardé R T, Minks A K (1995) Control of moth pests by mating disruption: successes			
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	441	and constraints. Annu Rev Entomol 40(1):559-585			
	442	Cardé R T, Haynes K F (2004) Structure of the pheromone communication channel in			
	443	moths. Adv Insect Chem Ecol, pp. 283-332			
	444	Cardé R T, Willis M A (2008) Navigational strategies used by insects to find distant,			
	445	wind-borne sources of odor. J Chem Ecol 34(7):854-866			
	446	Castellano S, Mugnozza G S, Russo G, Briassoulis D, Mistriotis A, Hemming S,			
	447	Waaijenberg D (2008) Plastic nets in agriculture: a general review of types and			
	448	applications. Appl Eng Agric 24(6):799-808			
44 45 46	449	Cooper M, Varela L G, Smith R J, Whitmer D R, Simmons G A, Lucchi A, Broadway			
47 48	450	R, Steinhauer R (2014) Growers, Scientists and Regulators collaborate on			
49 50	451	European Grapevine Moth program. Calif Agric 4:125-133			
52 53	452	De A, Bose R, Kumar A, Mozumdar S (2014) Targeted Delivery of Pesticides Using			
54 55	453	Biodegradable Polymeric Nanoparticles. Springer Briefs in Molecular Science,			
56 57 58	454	doi: 10.1007/978-81-322-1689-6_2			
59 60					
61 62 63					
64 65		20			

5 De Lame F M, Epstein D, Gut L J, Goldfarb H, Miller J R (2010) Effect of varying	
dispenser point Source Density on Mating Disruption of <i>Grapholita molesta</i>	
7 (Lepidoptera: Tortricidae). J Econ Entomol 103(4):1299-1305	
Epstein D L, Stelinski L L, Reed T P, Miller J R, Gut L J (2006) Higher densities of	
9 distributed pheromone sources provide disruption of codling moth (Lepidopter	a:
Tortricidae) superior to that of lower densities of clumped sources. J Econ	
Entomol 99(4):1327-1333	
Eurostat (2016) Pesticide sales statistics (http://ec.europa.eu/eurostat/statistics-	
explained/index.php/Pesticide_sales_statistics), accessed October 2016.	
European and Mediterranean Plant Protection Organization (2016) Efficacy evaluation	1
of plant protection products. Mating disruption pheromones	
(http://pp1.eppo.int/). First approved in 2008-09. Last update December 2016.	
European Food Safety Authority, Grégoire JC, Miret JAJ, González-Cabrera J,	
Heimbach U, Lucchi A, Gardi C, Erdos Z, Koufakis I (2017) Protocol for the	
9 evaluation of data concerning the necessity of the application of insecticide1	
active substances to control a serious danger to plant health which cannot be	
1 contained by other available means, including non-chemical methods. EFSA	
2 Technical Report, 29 March 2017 doi: 10.2903/sp.efsa.2017.EN-1201	
Franck P, Reyes M, Olivares J, Sauphanor B (2007) Genetic architecture in codling	
4 moth populations: comparison between microsatellite and insecticide resistance	e
5 markers. Mol Ecol 16(17):3554-3564	
Frédérique M, Miller J R, Atterholt C A, Gut L J (2007) Development and evaluation	of
7 an emulsified paraffin wax dispenser for season-long mating disruption of	
	า ₁
	21

478	Grapholita molesta in commercial peach orchards. J Econ Entomol			
479	100(4):1316-1327			
480	Funes H, Zerba E, Gonzalez-Audino P (2016) Monolithic dispensers for pheromones			
481	and their use in mating disruption of the ambrosia beetle Megaplatypus mutatus			
482	in poplar plantations. Agric Forest Entomol 18(1):52-58			
483	González-Chang M, Wratten S D, Lefort M C, Boyer S (2016) Food webs and			
484	biological control: A review of molecular tools used to reveal trophic			
485	interactions in agricultural systems. Food Webs 9:4-11			
486	Grieshop M J, Brunner J F, Jones V P, Bello N M (2010) Recapture of codling moth			
487	(Lepidoptera: Tortricidae) males: influence of lure type and pheromone			
488	background. J Econ Entomol 103(4):1242-1249			
489	Gut L J, Stelinski L L, Thomson D R, Miller J R (2004) Behaviour-modifying			
490	chemicals: prospects and constraints in IPM, In: Integrated pest management:			
491	potential, constraints, and challenges. Eds. Koul, Dhaliwal and Cuperus, CABI			
492	Publishing, Cambridge, MA, pp. 73-121.			
493	Guerrini S, Borreani G, Voojis H (2017) Biodegradable Materials in Agriculture: Case			
494	Histories and Perspectives. Malinconico M. (Ed.), Soil Degradable Bioplastics			
495	for a Sustainable Modern Agriculture, Green Chemistry and Sustainable			
496	Technology. Springer-Verlag GmbH Germany			
497	Hicks S, Wang M, Doraiswamy V, Fry K, Wohlford E M (2017) Neurodevelopmental			
498	delay diagnosis rates are increased in a region with aerial pesticide application.			
499	Front Pediatr 5:116			
500	Hillocks R J (2012) Farming with fewer pesticides: EU pesticide review and resulting			
501	challenges for UK agriculture. Crop Protect 31(1):85-93			
	22			
	478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 490 491 492 493 494 495 496 497 498 499 500 501			

1 2	502	Holland J M, Bianchi F J, Entling M H, Moonen A C, Smith B M, Jeanneret P (2016			
3 4	503	Structure, function and management of semi-natural habitats for conservation			
5 6 7	504	biological control: a review of European studies. Pest Manag Sci 72(9):1638-			
8 9	505	1651			
10 11 12 13 14	506	Hummel H E (2017) A Brief Review on Lobesia botrana Mating Disruption by			
	507	Mechanically Distributing and Releasing Sex Pheromones from Biodegradable			
15 16 17	508	Mesofiber Dispensers. Biochem Mol Biol Journal 3:1			
18 19	509	Ioriatti C, Lucchi A (2016) Semiochemical strategies for tortricid moth control in apple			
20 21	510	orchards and vineyards in Italy. J Chem Ecol 42(7):571-583			
22 23 24	511	Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical			
25 26	512	ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ			
27 28 29	513	Entomol 104(4):1125-113			
30 31	514	Ioriatti C, Lucchi A, Bagnoli B (2008) Grape Areawide Pest Management in Italy. In:			
32 33 34	515	Koul et al. "Areawide Pest Management: Theory and Implementation", CAB			
35 36	516	International, pp. 208-225			
37 38 39 40 41	517	Ioriatti C, Lucchi A, Varela L G (2012) Grape Berry Moths in Western European			
	518	Vineyards and their recent movement into the New World. In N.J. Bostanian et			
42 43	519	al. (eds) "Arthropod Management in Vineyards: pests, approaches, and future			
44 45 46	520	directions", doi: 10.1007/978-94-007-4032-7_14, Springer Science + Business			
47 48	521	Media B.V. 2012			
49 50 51	522	Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M, Andrady A et al. (2015)			
52 53	523	Plastic waste inputs from land into the ocean. Science 347(6223):768-771			
54 55 56					
57 58					
59 60 61					
62 63		23			
64 65					

1 2	524	Jenkins P E, Isaacs R (2008) Mating disruption of Paralobesia viteana in vineyards			
- 3 4	525	using pheromone deployed in SPLAT-GBM TM wax droplets. J Chem Ecol			
5 6 7	526	34(8):1089-1095			
8 9	527	Kaplan I (2012) Attracting carnivorous arthropods with plant volatiles: the future of			
10 11	528	biocontrol or playing with fire? Biol Control 60(2):77-89			
12 13 14 15 16 17 18 19	529	Lance D R, Leonard D S, Mastro V C, Walters M L (2016) Mating disruption as a			
	530	suppression tactic in programs targeting regulated lepidopteran pests in US. J			
	531	Chem Ecol 42(7):590-605			
20 21	532	McGhee P S, Miller J R, Thomson D R, Gut L J (2016) Optimizing Aerosol Dispensers			
22 23 24 25 26	533	for Mating Disruption of Codling Moth, Cydia pomonella L. J Chem Ecol			
	534	42(7):612-616			
27 28 29	535	Meissner H E, Atterholt C A, Walgenbach J F, Kennedy G G (2000) Comparison of			
30 31	536	pheromone application rates, point source densities, and dispensing methods for			
32 33 34 35 36 37 38 39 40 41	537	mating disruption of tufted apple bud moth (Lepidoptera: Tortricidae). J Econ			
	538	Entomol 93(3):820-827			
	539	Millar J G (2007) Insect pheromones for integrated pest management: promise versus			
	540	reality. Redia 90:51-55			
42 43	541	Miller J R, Gut L J, De Lame F M, Stelinski L L (2006) Differentiation of competitive			
44 45 46	542	vs. non-competitive mechanisms mediating disruption of moth sexual			
47 48	543	communication by point sources of sex pheromone (Part 2): case studies. J			
49 50 51	544	Chem Ecol 32(10):2115			
52 53	545	Miller J R, Gut L J (2015) Mating Disruption for the 21st Century: Matching			
54 55 56 57 58 59 60 61 62	546	technology with mechanism. Environ Entomol 44(3):427-453			
63 64 65		24			

1 2	547	Muccinelli M (2017) Prontuario dei fitofarmaci. Edagricole		
3 4	548	(http://www.prontuariomuccinelli.it/), accessed October 2017.		
5 6 7	549	Patanita MI (2007) Biotheonical methods for the control of main pests of walnut. Rev		
8 9	550	Ciências Agr 30:518-526		
10 11 12 13 14	551	Pérez-Staples D, Shelly T E, Yuval B (2013) Female mating failure and the failure of		
	552	'mating' in sterile insect programs. Entomol Exp Appl 146(1):66-78		
15 16	553	Reyes M, Franck P, Charmillot P J, Ioriatti C, Olivares J, Pasqualini E, Sauphanor B		
17 18 19	554	(2007) Diversity of insecticide resistance mechanisms and spectrum in European		
20 21	555	populations of the codling moth, Cydia pomonella. Pest Manag Sci 63(9):890-		
22 23 24	556	902		
25 26	557	Rochman C M, Browne M A, Halpern B S, Hentschel B T, Hoh E, Karapanagioti H K		
27 28 29	558	et al (2013) Policy: Classify plastic waste as hazardous. Nature 494(7436):169-		
29 30 31 32 33 34 35 36	559	171		
	560	Rochman C M, Cook A M, Koelmans A A (2016) Plastic debris and policy: Using		
	561	current scientific understanding to invoke positive change. Environ Toxicol		
37 38 30	562	Chem 35(7):1617-1626		
40 41	563	Scarascia-Mugnozza G, Sica, C, Russo G (2012) Plastic materials in European		
42 43	564	agriculture: actual use and perspectives. J Agric Eng 42(3):15-28		
44 45 46	565	Sharon R, Zahavi T, Sokolsky T, Sofer-Arad C, Tomer M, Kedoshim R, Harari A R		
47 48	566	(2016) Mating disruption method against the vine mealybug, <i>Planococcus ficus</i> :		
49 50 51	567	effect of sequential treatment on infested vines. Entomol Exp Appl 161(1):65-69		
52 53	568	Silver M K, Shao J, Zhu B, Chen M, Xi Y, Kaciroti N, Lozoff B, Meeker J D (2017)		
54 55 56 57 58 59 60 61	569	Prenatal naled and chlorpyrifos exposure is associated with deficits in infant		
62 63 64 65		25		

1 2	570	motor function in a cohort of Chinese infants. Environ Int doi: 10.1016/j.			
3 4	571	envint.2017.05.015			
5 6 7	572	Stelinski L L, Gut L J, Mallinger R E, Epstein D, Reed T P, Miller J R (2005) Small			
7 8 9 10 11 12 13	573	plot trials documenting effective mating disruption of oriental fruit moth by			
	574	using high densities of wax-drop pheromone dispensers. J Econ Entomol			
	575	98(4):1267-1274			
15 16	576	Stelinski L L, Miller J R, Ledebuhr R, Gut L J (2006a) Mechanized applicator for large-			
17 18 19	577	scale field deployment of paraffin-wax dispensers of pheromone for mating			
20 21	578	disruption in tree fruit. J Econ Entomol 99(5):1705-1710			
22 23 24	579	Stelinski L L, Gut L J, Miller J R (2006b). Orientational behaviors and EAG responses			
25 26	580	of male codling moth after exposure to synthetic sex pheromone from various			
27 28 29 30 31 32 33 34 35 36 37 38	581	dispensers. J Chem Ecol 32(7):1527-1538			
	582	Stelinski L L, Miller J R, Ledebuhr R, Siegert P, Gut L J (2007) Season-long mating			
	583	disruption of Grapholita molesta (Lepidoptera: Tortricidae) by one machine			
	584	application of pheromone in wax drops (SPLAT-OFM). J Pest Sci 80(2):109-			
	585	117			
39 40 41	586	Suckling D M (2000) Issues affecting the use of pheromones and other semiochemicals			
42 43	587	in orchards. Crop Prot 19(8):677-683			
44 45 46	588	Suckling D M, Brockerhoff E G, Stringer L D, Butler R C, Campbell D M, Mosser L K,			
47 48	589	Cooperband M F (2012) Communication disruption of Epiphyas postvittana			
49 50	590	(Lepidoptera: Tortricidae) by using two formulations at four point source			
51 52 53	591	densities in vineyards. J Econ Entomol 105(5):1694-1701			
54 55					
56 57 58					
59 60					
6⊥ 62 63					
64 65		26			

1	592	2 Tcheslavskaia K S, Thorpe K W, Brewster C C, Sharov A A, Leonard D S, Reard			
2 3 4	593	C et al (2005) Optimization of pheromone dosage for gypsy moth mating			
5 6 7	594	disruption. Entomol Exp Appl 115(3):355-361			
8 9	595	Teixeira L A F, Mason K, Mafra-Neto A, Isaacs R (2010) Mechanically-applied wax			
10 11	596	matrix (SPLAT-GBM) for mating disruption of grape berry moth (Lepidoptera:			
12 13 14	597	Tortricidae). Crop Prot 29(12):1514-1520			
15 16	598	Thomas M B, Read A F (2016) The threat (or not) of insecticide resistance for malaria			
17 18 19	599	control. Proc Natl Acad Sci 113(32):8900-8902			
20 21	600	Todd J H, Barratt B I, Tooman L, Beggs J R, Malone L A (2015) Selecting non-target			
22 23 24	601	species for risk assessment of entomophagous biological control agents:			
25 26	602	Evaluation of the PRONTI decision-support tool. Biol Control 80:77-88			
27 28 29	603	Vacas S, Alfaro C, Navarro-Llopis V, Zarzo M, Primo J (2009) Study on the optimum			
30 31	604	pheromone release rate for attraction of Chilo suppressalis (Lepidoptera:			
32 33	605	Pyralidae). J Econ Entomol 102(3):1094-1100			
34 35 36	606	Vacas S, Alfaro C, Navarro-Llopis V, Primo J (2009b) The first account of the mating			
37 38	607	disruption technique for the control of California red scale, Aonidiella aurantii			
39 40 41	608	Maskell (Homoptera: Diaspididae) using new biodegradable dispensers. Bull			
42 43	609	Entomol Res 99(4):415-423			
44 45 46	610	Vacas S, Alfaro C, Navarro-Llopis V, Primo J (2010) Mating disruption of California			
47 48	611	red scale, Aonidiella aurantii Maskell (Homoptera: Diaspididae), using			
49 50	612	biodegradable mesoporous pheromone dispensers. Pest Manag Sci 66(7):745-			
52 53	613	751			
54 55	614	Vacas S, Vanaclocha P, Alfaro C, Primo J, Verdú M J, Urbaneja A, Navarro-Llopis V			
56 57 58	615	(2012) Mating disruption for the control of Aonidiella aurantii Maskell			
59 60					
61 62 63					
64 65		27			

616	(Hemiptera: Diaspididae) may contribute to increased effectiveness of natural
617	enemies. Pest Manag Sci 68(1):142-148
618	Vacas S, Navarro I, Primo J, Navarro-Llopis V (2016) Mating disruption to control the
619	striped rice stem borer: Pheromone blend, dispensing technology and number of
620	releasing points. J Asia-Pacif Entomol 19(2):253-259
621	Vegter A C, Barletta M, Beck C, Borrero J, Burton H, Campbell M L et al (2014)
622	Global research priorities to mitigate plastic pollution impacts on marine
623	wildlife. Endang Species Res 25(3):225-247
624	Welter S, Pickel C, Millar J, Cave F, Van Steenwyk R, Dunley J (2005) Pheromone
625	mating disruption offers selective management options for key pests. Calif Agric
626	59(1):16-22
627	Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and
628	chemical ecology. Annu Rev Entomol 53:503-522
629	Witzgall P, Kirsch P, Cork A (2010) Sex Pheromones and Their Impact on Pest
630	Management. J Chem Ecol doi:10.1007/s10886-009-9737-y
631	Zhao J Z, Li Y X, Collins H L, Gusukuma-Minuto L, Mau R F L, Thompson G D,
632	Shelton A M (2002) Monitoring and characterization of diamondback moth
633	(Lepidoptera: Plutellidae) resistance to spinosad. J Econ Entomol 95(2):430-436
634	Zhao J Z, Collins H L, Li Y X, Mau R F L, Thompson G D, Hertlein M et al (2006)
635	Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to
636	spinosad, indoxacarb, and emamectin benzoate. J Econ Entomol 99(1):176-181
637	

Trial	Site	Province	Region	Longitude	Latitude	Year
1	Villafranca di Forlì	Forlì-Cesena	Emilia-Romagna	12.0277° E	44.3111° N	2014
2	Campiano	Ravenna	Emilia-Romagna	12.2091°	44.3019° N	2014
3	Bolgheri	Livorno	Tuscany	10.602487	43.200687	2014
4	Bolgheri	Livorno	Tuscany	10.5693° E	43.1970° N	2015
5	Bolgheri	Livorno	Tuscany	10.5693° E	43.1970° N	2016

Table 1. Location of study vineyards and year of mating disruption trials.

_	Trial	Cultivar	Rootstock	Training	Row	Spacing within	Plant age
				system	spacing (m)	row (m)	(years)
-	1	Trebbiano	Kober 5 BB	Pendelbogen	3.5-4.0	1.5-2.8	9-50
_	2	Trebbiano	Kober 5 B	Casarsa	3.5	2.0	16
_	3	Vermentino	3309	Guyot	2,5	1	20
_	4	Cabernet	101.14 and	Low cordon	2.0-2.3	0.8	4-15
		Sauvignon	3309				
_	5	Cabernet	101.14 and	Low cordon	2.0-2.3	0.8	5-16
		Sauvignon	3309				

Table 2. Crop description of vineyards where mating disruption dispensers were tested.

Table 3. Size of study plots, number of dispensers applied and date of application of

 dispensers in the different mating disruption trials.

Trial		Date of dispenser				
111ai	Untreated	Isonet [®] L	Isonet [®] L TT	Isonet®	deployment	
	control	TT	BIO	L		
1	0.05	2.10	2.17	1.48	1 April 2014	
1		(200)	(200)	(500)	1 April 2014	
2	0.65	2.98	2.98	2.38	1 April 2014	
2	0.05	(200)	(200)	(500)	1 April 2014	
2	7.50	5.00	5.00		27 March 2014	
3	7.30	(200)	(200)	-	27 March 2014	
4	1.50	8.50	7.8	7.20	19 March 2015	
4		(250)	(250)	(250)	18 March 2015	
5	4.40	8.01	8.40	8.40	20 March 2016	
3	4.40	(250)	(250)	(500)	29 March 2016	

Figures' captions

Figure 1. Field efficacy of mating disruption against the first generation of the European grapevine moth (EGVM) *Lobesia botrana*. Experiments were carried out over three different years and geographical sites. Box plots of infested flower clusters (%) and nests per flower cluster (n) of EGVM showing the effect of (a) the tested dispenser used for mating disruption, (b) the year and (c) the geographical site. Box plots indicate the median (solid line) within each box and the range of dispersion (lower and upper quartiles and outliers) of the median infestation parameter.

Figure 2. Field efficacy of mating disruption against the second generation of the European grapevine moth (EGVM) *Lobesia botrana*. Experiments were carried out over three different years and geographical sites. Box plots of infested bunches (%) and nests per bunch (n) of EGVM showing the effect of (a) the tested dispenser used for mating disruption, (b) the year and (c) the geographical site. Box plots indicate the median (solid line) within each box and the range of dispersion (lower and upper quartiles and outliers) of the median infestation parameter.

Figure 3. Field efficacy of mating disruption against the third generation of the European grapevine moth (EGVM) *Lobesia botrana*. Experiments were carried out over three different years and geographical sites. Box plots of infested bunches (%) and nests per bunch (n) of EGVM showing the effect of (a) the tested dispenser used for mating disruption, (b) the year and (c) the geographical site. Box plots indicate the median (solid line) within each box and the range of dispersion (lower and upper quartiles and outliers) of the median infestation parameter.

Figure 4. GC-MS results showing the continuous release (mg/ha/day) of synthetic (7*E*,9*Z*)-7,9-dodecadien-1-yl acetate, the main sex pheromone component of *Lobesia botrana* females, by the three mating disruption products $Isonet^{\mathbb{R}}$ L, $Isonet^{\mathbb{R}}$ L TT and $Isonet^{\mathbb{R}}$ L TT BIO.

Figure 1. (a)

Isonet LTT

Isonet LTT BIO

Control

(b)

(c)

Figure 2. (a)

Isonet LTT

Isonet L

Isonet LTT BIO

Control

(b)

(c)

Bolgheri (LI)

Campiano (RA)

Villafranca di Forlì (FC)

(b)

(c)

