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ABSTRACT 18 

In this paper, the vulnerability of two dune fields located in southern Brazil (São Francisco do Sul 19 

Island) and western Italy (Tuscany) has been defined through the implementation of a Coastal Dune 20 

Vulnerability Index (CDVI). As the sites belonged to settings characterized by huge differences in 21 

terms of physical processes (Atlantic Ocean and Mediterranean Sea), the index has been adapted 22 

accordingly to minimize the influence of the dissimilarities in an attempt to define potential 23 

vulnerability parameters they might have in common. Five main groups of factors were taken into 24 

account in the design of the index: Geomorphological Condition of the Dune system (GCD), 25 

Marine Influence (MI), Aeolian Effect (AE), Vegetation Condition (VC), and Human Effect (HE) 26 

for a total of 51 variables. A total vulnerability index was calculated for each site. Cluster analysis 27 

and non-metric multidimensional scaling identified two main groups characterized by medium 28 
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values of vulnerability (0.32 to 0.49): as a result, the vulnerability of both sites can be defined as 29 

“medium”. In more detail, GCD turned out to be the most influent factor on both settings; 30 

subordinately, marine influence also resulted relevant on the Oceanic site. The CDVI proved to be a 31 

flexible tool, as it was easily adjusted to work on such different sites. In this sense it will be of great 32 

support to increase the awareness of coastal managers and decision makers about the mutual 33 

interactions of many factors and processes that contribute to the evolution of coastal dunes 34 

regardless of the geographical setting. 35 

 36 

1. INTRODUCTION 37 

Coastal dunes are fundamental to the equilibrium of a coastal ecosystem (Hesp, 2002; Fenu et al., 38 

2012), since they reduce the impact of the sea processes and their erosive effect on the coastline 39 

(Rocha et al., 2003). Coastal dunes experienced severe stress in recent decades due to several 40 

human-related activities such as exploitation of natural resources, tourism, real estate and maritime 41 

activities (Carter, 1988; Martinez and Psuty, 2004; Maun, 2009; McLachlan et al., 2013; Botero et 42 

al., 2015). Additionally, the natural processes add up to an even worse scenario thanks to sea level 43 

rise projections and increasing occurrence of high-energy events (Germani et al., 2015). In Europe, 44 

86 million people live less than 10 km from the coastline (ETC-CCA, 2011), with the result that 45 

coastal cities are densely populated and located within an extremely dynamic environment. The 46 

complexity of this environment justifies the worldwide concern about the rising sea level in the 47 

coming decades, which will intensify the impact of coastal erosion and flooding on coastal 48 

communities (Rao et al., 2008; USAID, 2009; Özyurt and Ergin, 2010; IPCC, 2014; Germani et al., 49 

2015; Alsahli and AlHasem, 2016). Brazil is one example of the detrimental effects of the erosion 50 

process, and has been struggling to manage the effects all along its coasts (Mazzer, 2007; Mazzer 51 

and Dillenburg, 2009; Figueiredo, 2013; Ribeiro et al., 2013; Lima and Amaral, 2015; Alquini et 52 

al., 2018). In Brazil, 50.7 million people occupy coastal areas or areas near the coast (IBGE, 2011). 53 

Developed countries such as United States, Nederland, England, Japan, Australia and Italy (Sathler, 54 
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2014) already incorporated climate policies in their urban planning and allocated part of the annual 55 

budget on improvements in urban infrastructure (e.g. construction of sea walls to contain the storm 56 

surges during high-energy events, underwater barriers that are raised in the event of flooding, 57 

wetlands restore, efficient alert systems, houseboats, waterways). 58 

The technological improvement in image acquisition, in developing more efficient index-based 59 

tools and dynamic computational models has contributed to the rapid scientific growth of coastal 60 

monitoring methods (Bartolini et al., 2018). Devices such as drones provide a substantial boost to 61 

both terrestrial and underwater topography surveying; they are relatively cheap and easy to use 62 

compared to previous systems like LiDAR and multibeam, and are being utilized more and more  63 

for high-resolution data acquisition on the coastal environment (Scarelli et al., 2016; Scarelli et al., 64 

2017; Garuglieri et al., 2019). The coastal vulnerability index proposed by Gornitz et al. (1994) for 65 

the USA coast is an example of an effective tool that provides useful indications about urban 66 

planning if integrated with the use of Geographic Information System (GIS) software (García-Mora 67 

et al., 2001; Pereira and Coelho, 2013; Ribeiro et al., 2013; Alexandrakis and Poulos, 2014). In 68 

addition, the index is easily upgradeable, and the outcome is quickly understood by coastal 69 

managers and practitioners (Satta et al., 2016). There has been a significant increase over the last 15 70 

years in the production of scientific papers involving the use of coastal vulnerability to classify the 71 

quality and the state of coastal areas. The vulnerability has been correlated to three main factors: i) 72 

rising sea level and flooding (Vafeidis et al., 2008; Rao et al., 2008; Özyurt and Ergin, 2009; 73 

Pendleton et al., 2010; Kumar et al., 2010; Thatcher et al., 2013; Idier et al., 2013; Germani et al., 74 

2015; Gaki-Papanastassiou et al., 2015; Suganya et al., 2015; Alsahli and AlHasem, 2016; Hereher, 75 

2016); ii) erosion in the coastal zone (Menezes and Klein, 2006; Hegde and Reju, 2007; Boori, 76 

2010; McLaughlin and Cooper, 2010; Palmer et al., 2011; Kane et al., 2012; Pereira and Coelho, 77 

2013; Ribeiro et al., 2013; Alexandrakis and Poulos, 2014); iii) vulnerability to natural and 78 

anthropogenic disturbances (Martínez and Psuty, 2004; Martínez et al., 2006; Williams et al., 2011; 79 

Tabajara et al., 2013; Portz et al., 2014; Ribeiro and Melo Jr., 2016; Ciccarelli et al., 2017; da Costa 80 
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Cristiano et al., 2018). The vulnerability can be understood as, a) the result of an arrangement of 81 

different variables that are exposed to high-energy events and b) as the capacity of the system to 82 

recover from the effects of those conditions (Smit and Wandel, 2006; Ciccarelli et al., 2017). Our 83 

research addressed the following questions: (1) Which parameters do affect the most the 84 

vulnerability of the dunes considering the different physical characteristics of the sites? (2) which 85 

actions should coastal managers take into consideration to develop appropriate strategies of 86 

conservation and management for these ecosystems in different parts of the world? 87 

 88 

2. STUDY AREA 89 

The study was carried out on two separate sites characterized by a well-developed coastal dune field 90 

(Figure 1), namely the São Francisco do Sul Island (Santa Catarina State, Brazil) and the Pisan 91 

coast (Tuscany, Italy). These areas were selected in order to compare the vulnerability index on two 92 

sites located in extremely different settings: the Atlantic Ocean and the Mediterranean Sea, 93 

respectively. Two stretches of beach of about 2 km in length were selected from both sites (A and B 94 

in Brazil; C and D in Italy) according to physical characteristics (accretion/erosion state), vegetation 95 

cover, and anthropogenic influence. On each sector 3 cross-shore transects were traced out from the 96 

shoreline to the woody vegetation, 12 transects as a whole. The plant communities of coastal sand 97 

dunes show different assemblages in different world regions because of climatic variability, 98 

geographic location, physiography of the dune system and other factors peculiar to each location 99 

(Maun, 2009). 100 

São Francisco do Sul Island is located in the northern part of the Santa Catarina State (southern 101 

Brazil). The geological setting of the Brazilian coast is related to the opening of the Atlantic Ocean 102 

during the Mesozoic. In particular, the northern sector of the Santa Catarina State is considered part 103 

of a broad structural arc that extends from Cabo Frio (23°S) to Florianópolis (28°S). The Santos 104 

sedimentary basin is comprised within the arc and has been filled by sediments coming from the 105 

Serra do Mar range, which  formed in the Upper Cretaceous (Angulo et al., 2009). São Francisco do 106 
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Sul Island is presently defined by a western sector where pre-Mesozoic metamorphics and igneous 107 

rocks outcrop in hills and headlands, and by an eastern sector mainly characterized by a sequence of 108 

two strandplain systems, Pleistocenic and Holocenic in age (Possamai et al., 2010). The two sectors 109 

(A and B) are located in the eastern coast along Grande beach, which is the island’s longest beach 110 

(about 18 km long), facing the Atlantic Ocean. The northern sector (Figure 2A) is mainly defined 111 

by a series of NNE oriented parabolic dunes, with maximum frontal dune height of 6 m; the 112 

maximum backshore width is about 25 m. Conversely, the dune field in the southern sector is 113 

different than those to the north: it is characterized by transverse dunes with lower crest heights 114 

(Figure 2B). The vegetation is not characterized by the same association throughout the study area: 115 

Sector A shows lower species diversity, among which there are some exotic species, such as 116 

Centella asiatica, Cyperus sp, Brachiaria sp, and Portulaca oleracea. The exotic species are not 117 

present in Sector B. The vegetation cover is usually decreasing from the primary dunes to the 118 

secondary dunes, except for two transects (B1 and B2) in Sector B. The whole area is encompassed 119 

within the Acaraí State Park, which is a Conservation Unit established by State Decree 2005/3517 120 

due to high naturalistic relevance (PROBIO, 2003; Melo Júnior and Boeger, 2015). In accordance 121 

with the classification of Köppen (1948) the climate is mesothermic (Cfa) with hot summer; the 122 

annual rain precipitation is comprised between 1600 and 1900 mm and the annual mean air 123 

temperature range between 20 and 22 °C (Alvares et al., 2013). The most frequent wind direction is 124 

from SW, subordinately from NE and S; the predominant wave directions are from SE and E. The 125 

strongest storms in terms of significant wave height most frequently occur from SSE, with typical 126 

values ranging from 1 to 3.5 m; the littoral drift is northwards trending (Alquini et al., 2016b). Tidal 127 

range is mesotidal, on average between 1.3 and 1.9 m (Bogo et al., 2015). The beaches are generally 128 

composed of medium sands (Abreu, 2011).  129 

The Pisan coast is located in the central part of Tuscany (western Italy). It developed on two coastal 130 

plains (Viareggio and Pisa plains) that overlie the Viareggio extensional basin, which is a half-131 

graben (active since late Miocene) roughly parallel to the NW-SE oriented Apennines chain 132 
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(Mariani and Prato, 1988). This formation is associated to the opening of the Tyrrhenian Sea back-133 

arc basin (Malinverno and Ryan, 1986). In particular, the Pisa plain was formed by sediments 134 

supplied by the Arno and Serchio rivers: alternations of alluvial and nearshore deposits related to 135 

the last two glacial-interglacial cycles suggest the identification of several transgressive-regressive 136 

sequences (Amorosi et al., 2013; Sarti et al., 2017). The coastal dune field in this area is defined by 137 

a dune ridge system composed of transverse dunes, which can be identified up to 3 km inland. The 138 

northern sector is well developed (backshore width more than 50 m and frontal dune height of about 139 

4 m) and shows no sign of coastal erosion effects (Figure 2C). Erosion processes are more active in 140 

the southern sector (Figure 2D), where the backshore is narrow (about 10 m wide) and the frontal 141 

dune quite high (9 m) but subjected to scouring at the toe (Bertoni et al., 2014). Plant communities 142 

follow a typical coast-to-inland zonation starting from the annual vegetation of the strandline zone 143 

of the beach, through the embryonic and mobile dunes, to the shrubby communities of the fixed 144 

dunes (Ciccarelli, 2014; Ciccarelli, 2015). The two sectors, C and D, are comprised within the 145 

northern Tuscany littoral cell (from Livorno to the River Magra’s mouth, about 65 km long), facing 146 

the Ligurian Sea. The whole area is encompassed within the Migliarino – San Rossore – 147 

Massaciuccoli Regional Park, which is a Conservation Unit established by Region Tuscany (decree 148 

n.61, December 13th, 1979). It is characterized by a Mediterranean sub-humid climate according to 149 

Rapetti and Vittorini (2012). The mean annual temperature is about 15 °C and mean rainfall is 800-150 

900 mm (Ruocco et al., 2014). The prevailing winds in this region are southwesterly, while the 151 

average wave height is less than 0.5 m; tidal range is microtidal, hardly over 0.3 m (Bertoni et al., 152 

2012). Beach sediments are characterized by medium sand (Bertoni and Sarti, 2011). Ancient dune 153 

ridges extend along almost the entire length of the Park, whereas modern and active dunes are 154 

sometimes interrupted by man-made structures (Bertoni et al., 2014). Littoral drift is northward-155 

trending on the right side of the River Arno’s delta (Pranzini, 2001). 156 

 157 

3. MATERIALS AND METHODS 158 
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3.1. Coastal dune vulnerability index 159 

The coastal dune vulnerability index (CDVI) developed for this research was based on protocols 160 

conceived by García-Mora et al. (2001) for the Spain coast (Gulf of Cadiz, Atlantic Ocean) and by 161 

Idier et al. (2013) for three different sectors along the France coast (Atlantic Ocean, English 162 

Channel and Mediterranean Sea), subsequently modified and adapted to other Mediterranean Sea 163 

sites by Ciccarelli et al. (2017). The index considers 51 variables (35 variables are related to the 164 

biotic and abiotic factors and 16 variables are related to human activities) distributed in five groups 165 

of parameters (Table 1): Geomorphological Condition of the Dune system – GCD; Marine 166 

Influence – MI; Aeolian Effect – AE; Vegetation Condition – VC; and Human Effect – HE. The 167 

index is based on a semi-quantitative approach (García-Mora et al., 2001; Williams et al., 2001; 168 

Judge et al., 2003), and was calculated by associating each value of the variables to a label 169 

categorized in a five-point scale, ranging from 0 (no vulnerability) to 4 (very high vulnerability). 170 

This range of categories is in accordance with the method of calculation firstly reported in Gornitz 171 

et al. (1991), and successively improved by Gornitz and White (1992). The sum of the variables 172 

within the above-mentioned groups was divided by the sum of the maximum achievable rating 173 

within each group, thus generating a partial index expressed as a percentage. The total CDVI was 174 

calculated on the unweighted average of the five partial indices through the algorithm: 175 

CDVI = (GCD + MI + AE + VC + HE)/5. 176 

Based on the different scale of the settings, two variables (namely the length of homogeneous active 177 

dune system and the width of intertidal zone) were adapted to the oceanic features in order to make 178 

the index applicable to the Brazilian coast by changing the unit of measure from meter to kilometer. 179 

 180 

3.2. Data collection for the beach system 181 

The geomorphological variables (Table 1) were defined through a series of topographic surveys 182 

using a Leica RTK-GPS instrument. The surveys were conducted recording a point with the GPS at 183 

each slope change along the cross-shore transect in order to reconstruct the beach profile while 184 
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post-processing the raw data. The real-time differential correction allowed us to reach an accuracy 185 

of about 1 cm in all three dimensions. The differential correction was obtained connecting the GPS 186 

to fixed reference bases located close to the study areas (Estação Geodésica de Araquari for the 187 

Brazilian site and Madonna dell’Acqua base station for the Italian site). The collected data were 188 

then processed in QGIS 2.8.2 in order to obtain indications about the topographic parameters of the 189 

beaches (e.g., beach width and length, dune length and height, beach slope, etc.). The reference 190 

datum was South American Datum 69 (Universal Transverse Mercator, zone 22S) in São Francisco 191 

do Sul, and Roma 40 (Gauss-Boaga, zone 1) in Italy. The sedimentological characterization was 192 

carried out sampling the Brazilian beach in October 2015, while data about the Pisan coast were 193 

gathered from the literature (Bertoni and Sarti, 2011; Ruocco et al., 2014). Sediment collection and 194 

grain-size analysis followed the procedure used in the Mediterranean site in the cited references: 195 

samples of about 0.5 kg were collected from the surface along cross-shore transects that started 196 

from the back-dune area up to the foreshore. Sampling points were chosen from geomorphological 197 

elements (foreshore, backshore, dune ridge, etc.) and vegetational features (frontal dune vegetation, 198 

back-dune vegetation, etc.). The samples were heated to 50°C for 24 hours to dry and to remove 199 

excess moisture, and then dry-sieved for 10 minutes using half-phi mesh interval sieves. The 200 

sedimentological characterization was carried out extracting the Folk and Ward (1957) parameters 201 

such as Mean (Mz) and Sorting (s). The shoreline evolution was based on the evaluation of the 202 

coastlines traced out from orthophotographs spanning from 1938 to 2010 for the São Francisco do 203 

Sul Island (Alquini et al., 2018) and from 1938 to 2014 for the Pisan coast (Bini et al., 2008; 204 

Casarosa, 2016). Diretoria de Hidrografia e Navegação (DHN, available at the website 205 

http://www.mar.mil.br) and Servizio Idrologico Regionale (SIR, available at the website 206 

http://bit.ly/2cxGESt) provided data about the tidal range for the Brazilian and the Italian sites 207 

respectively. Wave data from the São Francisco do Sul Island were obtained from the literature 208 

(Alves, 1996). Wave data from the Pisan coast were also provided by Servizio Idrologico Regionale 209 

(http://bit.ly/2cxGESt). Wind data for the Brazilian site were gathered from Zular (2011), while 210 
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those for the Italian site were provided by Consorzio LaMMA (available at the website 211 

http://www.lamma.rete.toscana.it/). 212 

The vegetation characterization was carried out using plots of 2 x 2 m along the same transects that 213 

were traced out for topographic and sedimentologic analyses. The selection of the locations for the 214 

vegetation assessment was random. The percentage of vegetation coverage was estimated by a 215 

visual identification of the species (Causton, 1988; Ciccarelli et al., 2017). The taxonomic 216 

nomenclature of the Brazilian species followed Christenhusz et al. (2011) and APG IV (2016); 217 

species names and authors were in accordance with the Species List of the Botanical Garden of 218 

Brazil Flora of Rio de Janeiro (available at the website http://jbrj.gov.br/nosso-jardim/plantas). The 219 

taxonomic nomenclature of the Mediterranean species followed Conti et al. (2005) and Conti et al. 220 

(2007) for native species and Arrigoni and Viegi (2011) for alien species. The classification of plant 221 

functional types (PFT) were in accordance with the classification of García-Mora et al. (1999). 222 

Fieldwork on the Brazilian site was carried out in October, 2015, and on the Italian site in May, 223 

2016.  224 

A photo-interpretation of digital orthophotographs was carried out to obtain information about the 225 

variables related to human activities: the images were shot in 2010 for the Brazilian site (aerial 226 

orthophoto at 1:10000 scale, 3985 m flight altitude; survey commissioned by the municipality of 227 

São Francisco do Sul - Secretaria de Estado do Desenvolvimento Sustentável - and carried out with 228 

digital aerial cameras directly integrated in the georeferencing systems) and in 2013 for the Italian 229 

site (aerial orthophoto at 1:10000 scale, 4800 m flight altitude; survey commissioned by Regione 230 

Toscana and carried out with an ads40 camera). The percentage of natural origin waste, gravel 231 

cover and other variables was visually estimated on the field. All types of infrastructure (such as 232 

buildings, parking lots, resorts, lifesavers, streets, etc.) were considered in regards to the variable 233 

“visitor pressure”. 234 

 235 

3.3. Statistical analysis 236 
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A matrix of 51 variables x 12 sites was subjected to cluster analysis using average-linkage 237 

clustering and Euclidean distance as the dissimilarity index. The same resemblance matrix was used 238 

to perform non-metric multidimensional scaling (NMDS), which is a technique that represents 239 

samples in a low-dimensional space by optimizing the correspondence between original 240 

dissimilarities and distances in the ordination (Økland, 1996). The Spearman product moment 241 

correlation coefficient was calculated in order to indicate the variable that correlated the most to the 242 

NMDS axes. The nonparametric test of Kruskal-Wallis with Bonferroni correction for multiple 243 

comparisons was applied to compare the partial and total vulnerability values in the groups defined 244 

by cluster analysis. Cluster analysis and NMDS was calculated with the software Primer 6.0 (Clarke 245 

and Warwick, 2001), the nonparametric test of Kruskal-Wallis with Bonferroni correction was 246 

performed using R statistical software (R Development Core Team, 2019) using the “vegan” 247 

package (Oksanen et al., 2012).  248 

 249 

4. RESULTS 250 

The results of the total CDVI ranged from 0.32 in C2 and C3 to 0.49 in A2 (Table 2). The average 251 

total CDVI was 0.46 for the Brazil sites and 0.35 for the Italian sites. The partial GCD showed high 252 

vulnerability values for the two countries, ranging from 0.71 (B2, B3 and D1) to 0.79 (D3). The 253 

cluster analysis revealed two groups (I and II) and four subgroups, with a Euclidean distance of 254 

~13% (Figure 3). Group I was characterized by the Brazilian sites and can be further divided into 255 

two subgroups made of transects B1, B2 and B3 (Zone B) and transects A1, A2 and A3 (Zone A) 256 

respectively. 257 

Group II is characterized by the Italian sites and can be further divided into two subgroups made of 258 

transects C1, C2 and C3 (Zone C) and transects D1, D2 and D3 (Zone D) respectively. This 259 

classification was supported by NMDS (Figure 4), which resulted in a distinct separation (the stress 260 

value of 0.04 corresponds to a very good ordination) between locations (Brazil and Italy) along the 261 

horizontal axis, and between the two sites within the locations (Zone A - Zone B; Zone C - Zone D) 262 
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along the vertical axis. The Brazilian sites were dominated along the horizontal axis by marine 263 

influence (MI3-4, MI6-8) and geomorphological factors (GCD1), while along the vertical axis 264 

transects A1-A3 were particularly influenced by human effect (HE1, HE2, HE7, HE14). The Italian 265 

sites resulted to be mainly affected by, a) human effect (HE16), b) aeolian effect (AE6) and c) 266 

geomorphological factors (GCD2) along the horizontal axis. Similarly to Brazilian Zone A, the 267 

Italian transects C1, C2 and C3 were influenced by human effect (HE1, HE2, HE7, HE14) along the 268 

vertical axis. 269 

The analysis of the average CDVI of Zone B (B1, B2 and B3) showed high values of GCD (0.73), 270 

and low values of HE (0.14) in the Brazilian sites (Table 3 and Figure 5). In contrast, Zone A (A1, 271 

A2 and A3) showed high values of GCD (0.74), medium values of MI (0.53), and moderate value 272 

of AE (0.27). The analysis of the average CDVI in the Italian sites (Table 3 and Figure 6) revealed 273 

that Zone C (C1, C2 and C3) was characterized by medium values of GCD (0.59), moderate values 274 

of VC (0.45), and low values of MI (0.13), while Zone D (D1, D2 and D3) by high values of GCD 275 

(0.75) and low values of MI and HE (0.19). 276 

The Kruskal-Wallis test (Table 3) revealed statistical differences in the partial vulnerability indices 277 

between Brazilian and Italian sites regarding MI and HE variables. No differences were found for 278 

the total dune vulnerability indices of each group or subgroup. 279 

 280 

5. DISCUSSION 281 

Based on all the analyses that have been carried out, the overall vulnerability for the two 282 

investigated sites can be classified as medium, which translates to the medium class in accordance 283 

with García-Mora et al. (2001), as the average values for the Brazilian site (A and B) and the Italian 284 

site (C and D) are 0.46 and 0.35 respectively (Table 2). In more detail, the resulting vulnerability of 285 

Zone A at the São Francisco do Sul Island is 0.47 ± 0.02 (Table 3). The group includes the sites 286 

localized in the northern sector of the São Francisco do Sul Island (A1, A2 and A3), which are 287 

characterized by parabolic dunes of NNE orientation. This system is seriously affected by erosion 288 
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processes that lead to scouring at the base of the frontal dune, which generates a steep escarpment at 289 

the transition between backshore and dunes. The frequent occurrence of high-energy waves is a 290 

possible consequence of this process. Coastal erosion is a global problem, but it affects primarily 291 

sandy beaches (e.g., Grande beach) because they are constituted by loose, fine sediments that can be 292 

easily entrained and transported elsewhere even under mild-energy wave conditions (Muehe, 2006; 293 

Neves and Muehe, 2008; Abreu, 2011). Though recent studies proved that also pebble-sized 294 

sediments can be significantly displaced by low-energy waves (e.g., Grottoli et al., 2019), gravel 295 

beaches are more stable and less susceptible to erosion processes (Masselink and Hughes, 2003). As 296 

sand beaches are usually characterized by lower steepness than gravel beaches, they are also more 297 

vulnerable to coastal submersion. Santa Catarina State has been subjected to harsh erosion 298 

processes that affected large portions of urbanized coastal areas. The collapse of the frontal dune 299 

wipes out the structure of the embryonic dune (Maun, 2009), causing loss of biodiversity and 300 

holding back the local biological succession (Ciccarelli, 2014). Vegetation Condition (VC) was 301 

classified with medium values of vulnerability (average of 0.44): as a matter of fact, Grande beach 302 

is characterized by a high dominance of Scaevola plumieri and Spartina ciliata, which are species 303 

known as dune builders (Miot da Silva, 2006; Ripley and Pammenter, 2004); in addition, they 304 

usually reduce the reproduction rate in stable environmental conditions (Maun, 1985). Because the 305 

proximity of this area to the beach resorts built on Grande beach produces high rates of human 306 

pressure, this critically affects the evolution of the dune field (HE: 0.35, medium vulnerability). The 307 

negative effects are represented by: i) destruction of vegetation due to trampling, which prevents 308 

other plants from growing and leads to weed invasion; ii) vehicle traffic/parking on blowouts areas 309 

and frontal dunes; iii) mechanical/manual cleaning of beaches, which is intensified during the 310 

summer period; and iv) litter eviction in the backdune area. This observation is in accordance with 311 

the concerns raised by other authors, who claim that in recent decades the degradation of the 312 

restinga vegetation, which is typical of Brazil, is mainly caused by human-related activities 313 

(Falkenberg, 1999; Rocha et al., 2003; Thomazi et al., 2013; Melo Júnior and Boeger, 2015). 314 
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On regards to Zone B (B1, B2 and B3) the resulting vulnerability is similar to that of Zone A, as it 315 

falls in the medium interval (0.45 ± 0.02, Table 3). The NMDS pointed out that visitor pressure, 316 

visitor frequency, and path network as percentage of the frontal dune were the most critical 317 

variables for this site. The most vulnerable parameters are GCD, MI, and AE, ranging from medium 318 

to high vulnerability. The coastal dunes in the southern sector are morphologically lower compared 319 

to those of the northern sites; they are constituted by transverse dunes with no hints of blowout 320 

occurrence. Likewise, the base of the foredunes is subjected to scouring processes: despite the 321 

erosion effects, the frontal and steady dune plant coverage is dense and characterized by rapid 322 

transition from shrubs to woody vegetation. Human pressure was defined by anthropogenic litter, 323 

especially in B4 site, and path network in the steady dune. 324 

Moving to the Mediterranean location, Zone C (C1, C2 and C3) shows a vulnerability value of 0.33 325 

± 0.01 (Table 3). The results remarked that the variables that mostly affected the segregation of the 326 

transects were visitor pressure and visitor frequency (Figure 4). Zone C is constituted by a coastal 327 

dune ridge system (transverse dunes) that extends for about 1-3 km away inland (Bertoni and Sarti, 328 

2011); it is characterized by a wide backshore and a large backdune area (Ruocco et al., 2014), 329 

which are currently in accretion (Casarosa, 2016) because of the northward-trending littoral drift 330 

(Aiello et al., 1975). The large backdune area (~160 m on average) creates micro-environments 331 

(Hesp et al., 2011) that favor the growth of different plant communities more or less tolerant to the 332 

abiotic variables (Ciccarelli et al., 2012; Ciccarelli, 2014; Ruocco et al., 2014). An example of 333 

abundant stress-tolerant species in the Mediterranean is the Ammophila arenaria (Acosta et al., 334 

2007; Ciccarelli, 2015), mainly found on the mobile dunes. The anthropic pressure (HE1/HE2) was 335 

classified with medium values of vulnerability; the main disturbing factors to the dune field resulted 336 

to be path network, beach cleaning programs, beach resorts, and the relative surface (%) forested in 337 

the system (200 m inland from the foredune). This is in accordance with a recent report (ISPRA, 338 

2014) that evaluated the main factors threatening the Mediterranean coast. Subordinate to the 339 

above-mentioned disturbing factors, erosion, presence of solid waste, trampling, expansion of 340 
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agricultural areas, and fire, are all aspects affecting the vulnerability assessment in this site. As well 341 

as the other groups, the vulnerability of Zone D (sites D1, D2 and D3) falls in the medium class, as 342 

it resulted 0.40 ± 0.03 (Table 3). This site is characterized by significantly shorter profiles in 343 

comparison to Zone C; it is also highly variable in terms of morphological features (Bertoni and 344 

Sarti, 2011). The dune system can reach a height of about 9 m, sometimes interrupted by blowouts; 345 

in the most critical points the foredunes are practically nonexistent (e.g., site D3). The narrow 346 

backshore exerts little wave energy dissipation during the extreme events: waves reach the base of 347 

the frontal dune, causing scour of the dune, and its collapse eventually (Alquini et al., 2016a). The 348 

result of this process is the formation of an extremely steep scarp. Even though the overall 349 

vulnerability for this stretch of coast was defined as medium, the values regarding the 350 

geomorphological variables were extremely high, especially in D3 site (GCD 0.79). The VC was 351 

classified as medium (average of 0.42). The low number of species sampled in this sector probably 352 

confirms the stress caused by rapid morphological changes in the dune field, which are not tolerated 353 

by all the species (Bertoni et al., 2014; Ruocco et al., 2014). This result points out that the erosion 354 

can cause absence of plant communities in the embryonic dune (AE6), which is consistent with the 355 

findings described by Ciccarelli et al. (2012). Many authors claim that the distance to the coastline 356 

is a determining factor in the floristic composition of the Mediterranean dunes (Guara-Requena, 357 

1989; Houle, 2008; Nordstrom et al., 2009; Angiolini et al., 2013). At last, the significance of MI 358 

and HE can be defined as low in terms of vulnerability. 359 

The resulting data from the Atlantic and Mediterranean locations allowed us to respond to the two 360 

questions we posed as aims to the research. Concerning the first question, the present data shows 361 

that the most significant variables affecting the vulnerability of the coastal sites were the average 362 

height and length of active dune systems, the marine negative influence, the percentage of vegetated 363 

seaward dune, and human disturbance. In particular, the highest values of vulnerability were 364 
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recorded in the geomorphological group, which includes the major differences in physical processes 365 

and characteristics between the Mediterranean and the Atlantic sites. 366 

The morphology of coastal dunes is the result of the synergy between sand depositions, wind action 367 

and vegetation, which is alike on every coast on the globe in both temperate and cold climates. 368 

Plant species colonizing the dunes vary geographically, but often share the same adaptive responses 369 

to the environment (Maun, 2009). In this sense, beach and dune morphological characteristics such 370 

as active dune length and height are critical factors even though the physical processes acting on 371 

each setting are different. Increasing the awareness about these data allows us to answer to the 372 

second question, suggesting the need to improve the consideration of GCD factors when coastal 373 

managers are called to recommend the best practices in terms of protection and conservation 374 

schemes. Coastal managers should be encouraged to implement actions dedicated to improving the 375 

quality and the frequency of monitoring activities of GCD parameters using as many surveying 376 

systems as possible. Ground instruments such as RTK-DGPS devices should be used to validate 377 

subaerial topographic data acquired from remote sensing systems (e.g., LiDAR, satellite 378 

photogrammetry) in order to optimize time and resources while not decreasing the quality of the 379 

outcome. Underwater topography should also be addressed with single- or multi-beam equipment at 380 

least twice per year, as no survey can be considered thoroughly complete without merging 381 

terrestrial and subaqueous data. According to Ciccarelli et al. (2017), coastal managers are 382 

encouraged to minimize human pressure, particularly where vulnerability was due to this group of 383 

variables (i.e. A1, A2, A3). Moreover, all restorations actions should promote the natural dune 384 

forming processes with the reintroduction of native dune builder plants (Martínez et al., 2006). 385 

However, we reiterate that the predictive significance of a CVI is always dependent upon quality 386 

and homogeneity of data input. This aspect might severely affect data replicability and compromise 387 

comparisons between different sites. Currently there are no clear-cut guidelines about how to 388 

acquire/collect the data that will be used to calculate the CVI, for instance taking into consideration 389 

also the effects that instrument accuracy, survey frequency, etc. may have on CVI outcome. In this 390 
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sense we are working on a standard, replicable protocol that should be followed by anyone who is 391 

willing to apply a CVI on a given site. Finally, a multidisciplinary approach must be implemented 392 

to exploit every surveying/analysis technique to match and compare all the data acquired from 393 

different sources (Bartolini et al., 2018). The index can also be used for different purposes, such as 394 

the prioritization of the factors that mostly affect shoreline evolution (Hegde and Reju, 2007; 395 

Alexandrakis and Poulos, 2014), human pressure (Coelho et al., 2006) and spatial/temporal 396 

evolution of the vulnerability (Idier et al., 2013). 397 

 398 

6. CONCLUSIONS 399 

The resulting data from the Atlantic and Mediterranean locations highlight that the most important 400 

parameter affecting the vulnerability is GDC. Vulnerability was also affected by MI and HE 401 

parameters with different weights depending on the different locations studied. It is essential for 402 

coastal managers to take this outcome into close consideration because especially GDC and MI 403 

factors are not easy to control. They should be encouraged to monitor the physical processes 404 

contributing to subaerial and underwater geomorphological changes in accordance with integrated 405 

approaches (Bartolini et al., 2018) and using modern techniques that provide continuous, low-cost 406 

data acquisition (e.g., Pozzebon et al., 2018), and remote sensing (e.g., Splinter et al., 2018). This 407 

prudent course of action will put the emphasis of the “problems-solutions” binomial on solutions. 408 

Though it will not be a definitive solution, it will lead to a substantial weakening of GDC 409 

vulnerability by raising the resilience of dune systems by increasing their adaptive capacity in 410 

response to disturbance conditions (e.g., storms, erosion, sea-level change, anthropogenic pressure). 411 

The promising results demonstrated by the present study encourage the widespread application of 412 

this approach, developing adjustments to different settings in order to contribute to the coastal 413 

management in an efficient and flexible way. 414 
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Figure captions 765 

 766 

Figure 1. Localization of the study sites. A: Brazil (background map LiDAR 2010 commissioned by 767 
Prefeitura de São Francisco do Sul); B: Italy (background map LiDAR 2016 commissioned by 768 
Regione Toscana). The black squares with the red dots point out the exact location of the transects. 769 

 770 

Figure 2. Pictures of the four sites where the surveys have been carried out. A: Zone A, northern 771 
sector of the Brazilian site; B: Zone B, southern sector of the Brazilian site; C: Zone C, northern 772 
sector of the Italian site; D: Zone D, southern sector of the Italian site (see Figure 1 for exact 773 
locations). 774 

 775 

Figure 3. Dendrogram obtained by average-linkage cluster analysis (CA) based on the Euclidean 776 
distance of 12 Brazilian and Italian sites. The CA separated Brazilian coastal sites (Group I) from 777 
Italian ones (Group II) with a distance of ~13%. Sample abbreviations: B and A = Brazilian sites; C 778 
and D = Italian sites (see Figure 1 for exact locations). 779 

 780 

Figure 4. NMDS diagram based on dissimilarity (measured by Euclidean distance) for 12 dune 781 
sites. All shown variables have a Spearman correlation coefficient > 0.8 with the two axes. Sample 782 
abbreviations: A and B = Brazilian sites; C and D = Italian sites (see Figure 1 for exact locations). 783 
Variable abbreviations: visitor pressure (HE1), visitor frequency (HE2), percentage of vegetated 784 
seaward dune (AE6), average height of second dunes (GCD2), percentage of relative surface 785 
forested in the system (200 m inland from the foredune) (HE14), grazing on the active dunes 786 
(HE16), particle size of the beach (MI8), width of the intertidal zone (MI3), width of the zone 787 
between HWSM and dune face (MI6), length of homogeneous active dune systems (GCD1), tidal 788 
range (MI4), breaches in the frontal dune (MI7), path network as percentage of the frontal dune 789 
(HE7). 790 

 791 

Figure 5. Graphical representation of CDVI partial values for Zone B and A. 792 

 793 

Figure 6. Graphical representation of CDVI partial values for Zone C and D. 794 
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Table 1. Variables used to classify the vulnerability of coastal dunes; 0 = absence of vulnerability 818 

and 4 = very high vulnerability (modified after Ciccarelli et al., 2017). 819 

Variable Class of Vulnerability 

1. Geomorphological Condition of Dune system 

(GCD) 
0 1 2 3 4 

1 
Length of homogeneous active dune system 

(km) 
> 20 > 10 > 5 > 1 > 0.1 

2 Average height of secondary dunes (m) > 25 > 10 > 5 > 1 < 1 

3 Average height of frontal dunes (m) > 25 > 15 > 10 > 5 < 5 

4 Foredune, slope steepness Moderate  Gentle  Steep 

5 
Relative area of wet slacks measured from map 

(%) 
Moderate  Small  None 

6 Degree of dunes system fragmentation Low  Medium  High 

7 Particle size of the frontal dune (phi) < -1 0 1 2 3 

2. Marine Influence (MI) 0 1 2 3 4 

1 Orthogonal fetch (km) < 25 < 100 < 250 > 500 > 1000 

2 Berm slope (degrees) Moderate  Gentle  Steep 

3 Width of intertidal zone (km) > 0.5 > .2 > .1 > .05 < .05 

4 Tidal range (cm) < 2  2-4  > 4 

5 Coastal orientation to wave direction (degrees) 10-45°  0-10°  0° 

6 
Width of the zone between HWSM and dune 

face (m) 
> 75 < 75 < 25 < 10 0 

7 
Breaches in the frontal dune due to wash over, 

relative total area 
0 < 5% < 25% < 50% > 50% 

8 Particle size of the beach (phi) 0  0-2  > 2 

9 Shoreline changes since 1980 
No 

retreating 
   Retreating 
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10 Mean wave height - MWH (m) ≤ 0.5 0.5-1 1-1.25 
1.25-

1.4 
> 1.4 

11 Mean wave incident angle - MWA (degrees) ≤ 10 10-15 15-25 24-40 > 40 

12 Storm frequency - SF (event yr-1) ≤ 5 5-15 15-25 25-35 > 35 

13 Storm duration - SD (d) ≤ 1 1-2 2-3 3-4 > 4 

3. Aeolian Effect (AE) 0 1 2 3 4 

1 Sand supply input High  Moderate  Low 

2 Blowouts: % of the system < 5% < 10% < 25% < 50% > 50% 

3 If breaches-depth as % of dune height < 5% < 10% < 25% < 50% > 50% 

4 Natural litter drift cover as % surface 0 < 5% > 5% > 25% > 50% 

5 Pebble cover as % surface 0 < 5% > 5% > 25% > 50% 

6 % seaward dune vegetated > 90 > 60 > 30 > 10 < 10 

4. Vegetation Condition (VC) 0 1 2 3 4 

1 % cover of Type III plants in the beach > 50 > 25 > 15 > 5 < 5 

2 
% cover of Type III plants in the seaside of the 

frontal dune 
> 90 > 60 > 30 > 15 < 15 

3 
Relative proportion of Type II plants in the 

seaside of the frontal dune (% cover) 
< 5 < 15 < 30 < 60 > 60 

4 
Relative proportion of Type I plants in the 

seaside of the frontal dune (% cover) 
< 1 > 1 > 5 > 10 > 30 

5 
Relative proportion of alien species in the 

seaside of the frontal dune (% cover) 
0 < 1 < 5 < 15 > 15 

6 
Relative proportion of alien species along the 

transect (% cover) 
0 < 1 < 5 < 15 > 15 

7 
Relative proportion of endemics in the seaside 

of the frontal dune (% cover) 
> 1  < 1  0 

8 Relative proportion of endemics along the > 1  < 1  0 
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transect (% cover) 

9 Number of associations along the transect ≥ 5 4 3 2 1 

5. Human Effect (HE) 0 1 2 3 4 

1 Visitor pressure Low  Moderate  High 

2 Visitor frequency Low  Moderate  High 

3 Access difficulty High  Moderate  Low 

4 On dune driving None  Some  Much 

5 On beach driving  None  Some  Much 

6 Trampling by animals None  Some  Much 

7 Path network as percent of the frontal dune 0% < 5% > 5% > 25% > 50% 

8 Anthropogenic litter: cover as % surface cover 0% < 5% > 5% > 25% > 50% 

9 Amount of sand (%) extracted for building, etc.  0% < 5% > 5% > 25% > 50% 

10 
Summer beach cleaning frequency (high is 

twice a day; medium, daily) 
Low  Moderate  High 

11 % upper beach cleaned 0 < 25 < 50 < 75 > 75 

12 
% permanent infrastructure replacing active 

dunes (roads, houses, etc.) 
0 < 25 < 50 < 75 > 75 

13 
% ephemeral infrastructure replacing active 

dunes (outdoor facilities, camping, etc.) 
0 < 25 < 50 < 75 > 75 

14 
Relative surface (%) forested in the system (200 

m inland from the foredune) 
0 < 25 < 50 < 75 > 75 

15 
Relative surface (%) of agriculture in the 

system (200 m inland from the foredune) 
0 < 25 < 50 < 75 > 75 

16 Grazing on the active system None Low Moderate High Intensive 

 820 

  821 
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Table 2. Partial and total CDVI for each sampling site. Abbreviations: GCD: Geomorphological 822 

Condition of the Dune system; MI: Marine Influence; AE: Aeolian Effect; VC: Vegetation 823 

Condition; HE: Human Effect. 824 

Dune Site Location 
Partial Vulnerability Total 

CDVI GCD MI AE VC HE 
A1 

Zone A  
0.67 0.59 0.16 0.48 0.35 0.45 

A2 0.78 0.51 0.33 0.47 0.35 0.49 
A3 0.78 0.51 0.33 0.38 0.35 0.47 
B1 

Zone B  
0.78 0.55 0.33 0.3 0.14 0.42 

B2 0.71 0.57 0.5 0.44 0.14 0.47 
B3 0.71 0.59 0.5 0.44 0.14 0.48 

Average 0.73 0.55 0.35 0.41 0.24 0.46 
C1 

Zone C  
0.62 0.13 0.21 0.44 0.27 0.33 

C2 0.62 0.13 0.21 0.39 0.25 0.32 
C3 0.52 0.13 0.21 0.52 0.25 0.32 
D1 

Zone D  
0.71 0.17 0.46 0.56 0.13 0.40 

D2 0.75 0.21 0.33 0.28 0.21 0.36 
D3 0.79 0.19 0.46 0.44 0.23 0.42 

Average 0.66 0.16 0.31 0.43 0.22 0.35 
 825 

  826 
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Table 3. Mean values (±SD) of partial and total coastal dune vulnerability index 827 

(CDVI) values calculated for each group defined by cluster analysis (indicated by 828 

roman letters - see Figure 3). Means followed by the same letters are not significantly 829 

different at 5% according to the non-parametric Kruskal-Wallis test after the Bonferroni 830 

correction for multiple comparisons. 831 

Group Zone B Zone A Zone C Zone D 
GCD 0.73 ± 0.04a 0.74 ± 0.06a 0.59 ± 0.06a 0.75 ± 0.04a 

MI 0.57 ± 0.02a 0.53 ± 0.05a 0.13 ± 0.00b 0.19 ± 0.02b 

AE 0.44 ± 0.09a 0.27 ± 0.10a 0.21 ± 0.00a 0.42 ± 0.08a 

VC 0.39 ± 0.08a 0.44 ± 0.06a 0.45 ± 0.07a 0.43 ± 0.14a 

HE 0.14 ± 0.00c 0.35 ± 0.00a 0.26 ± 0.01ab 0.19 ± 0.05b 

CDVI 0.45 ± 0.03a 0.47 ± 0.02a 0.33 ± 0.01a 0.40 ± 0.03a 

Abbreviations of the variables: GCD = Geomorphological Condition of the Dune system, 832 

MI = Marine Influence, AE = Aeolian Effect, VC = Vegetation Condition, HE = Human 833 

Effect. 834 

 835 


