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ABSTRACT

We study node similarity in labeled networks, using the label se-
quences found in paths of bounded length q leading to the nodes.
(This recalls the g-grams employed in document resemblance, based
on the Jaccard distance.) When applied to networks, the challenge
is two-fold: the number of g-grams generated from labeled paths
grows exponentially with ¢, and their frequency should be taken
into account: this leads to a variation of the Jaccard index known as
Bray-Curtis index for multisets. We describe NSIMGRAM, a suite of
fast algorithms for node similarity with g-grams, based on a novel
blend of color coding, probabilistic counting, sketches, and string
algorithms, where the universe of elements to sample is exponential.
We provide experimental evidence that our measure is effective and
our running times scale to deal with large real-world networks.
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1 INTRODUCTION

Heterogeneous networks are prevalent in the real world (e.g., social,
bibliographic, biological networks), and take into account the fact
that objects and relations are of various types (e.g. see [23]). Many
papers for similarity in networks involve structural features but a
few exploits their heterogeneous structure, such as node labeling.
Node labels in this domain help filter out a lot of paths [10, Sect.4].

This paper considers the real-world networks that, in addition to
their linked structure, have labels that characterize the properties
of the nodes. We investigate how to apply g-grams and sketching
algorithms to network analysis in this scenario, where g-grams are
strings of g consecutive symbols from an alphabet X. Our suite of
fast algorithms for node similarity with g-grams, called NSIMGRAM
(node Similarity with g-Grams), proceeds in two phases. First, at
preprocessing time, it builds a data structure from the network,
where the paths traversing g nodes are color-coded and their con-
catenated labels form g-grams. Second, for any two nodes a and b
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queried by the user, it computes their similarity using that data
structure and these g-grams. (This easily extends to sets of nodes A
and B.) As an example, the table below shows the top-15 venues
similar to KDD using g-grams.!

Top-15 publication venues similar to KDD

1 KDD 9 PAKDD

2 ICDM 10 CIKM

3 SDM 11 ICDE

4 Data Min. Knowl. Discov. 12 SIGMOD Conference
5  SIGKDD Explorations 13 VLDB

6 PKDD 14 WWW

7 IEEE Trans. Knowl. Data Eng. 15 VLDB].

8  Knowl. Inf. Syst.

This and more examples are discussed in Sections 2 and 4. We
borrow ideas from document processing and sequence analysis,
which make great use of g-grams for many large-scale applications
in several areas, ranging from web engines to bioinformatics. Per-
haps the best known is document similarity using the sketches for
the Jaccard index [5]. We adapt these ideas to labeled graphs.

Multisets of g-grams. Given an undirected labeled network
G = (V,E,{), where { : V +— X is the node labeling over an
alphabet ¥, we consider the g-grams related to a node. Specifically,
for an integer ¢ > 0 and a node u € V, consider all the simple paths
of length g — 1 landing in u. (In this way, we are looking also at
the nodes in N <7(u), namely, those at distance less than ¢ from u.)
Each such path will give rise to a g-gram from X9, i.e., a sequence
of g labels ¢(x) obtained by traversing the nodes x along the path,
following the direction from its beginning to the destination u. We
denote by L(u) the multiset of g-grams thus obtained (see Figure 1).
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Figure 1: A graph with labels a,b, ¢, and the multisets of 3-
grams for nodes a and b: L(a) = [baa, bca, bca, caa, cba] and
- _ 4+4

L(b) = [baa, bba, bca, caa, cba, cba]. Note that BC(a, b) = £2.
Similarity index. To compare any two nodes a and b, we adopt
the Bray-Curtis similarity index BC(a, b) that is a Jaccard related
index defined on multisets L(a) and L(b) using the frequency of
their g-grams. This index takes into account a bounded context
of the neighborhoods N<9(a) and N<9(b). It is illustrated in the

't is not necessary to use graphs and g-grams in this example, but it scales well to
arbitrary graphs, e.g. NETINF in Section 2.



example below and formally described in Section 2. It is based on
the observation that a and b are similar if they have relationships
with neighbours of the same kind and also their neighbours are
similar, iterating this idea g levels for both a and b.

Example. Consider the cpa graph built on the DBIS conference
dataset [26], and suppose that we want to establish similarity of
conferences as illustrated in the top-15 table from the previous page.
Each conference is seen as a collection of papers, and each paper is
seen as a set of authors. Thus cpa is a tripartite graph with node set
C U P U A, where each conference node in C is linked to its papers
in P, and each paper node in P is also linked to its authors in A.

For any two conferences a and b, we have a plethora of simi-
larity indices based on their neighborhoods N(x) and N(y). The
highly cited survey [21] reports many similarity indices based on
N(a) and N(b) and their sizes. Let us use the Bray-Curtis index
BC(a,b) = fa )
eq.5]. To extend this index to g-grams, we need first to label the
nodes of the cpa graph: we label conferences in C with the same
symbol c, papers in P with the same symbol p, and each author in
A with its unique name or ID.

What if we just use the individual labels instead of the g-grams?
We can extend the Bray-Curtis index, redefining it as BC’(a, b) =

2|L" (@)L’ ()]
[L’(a)|+|L(b)]
of a, i.e. [N(a)| copies of symbol p (same for L’(b)). This is not
satisfying as conferences are considered similar iff they accept
roughly the same number of papers. We need to involve the nodes
at distance 2 or less from of x and y, and take their multisets of
labels L (a) and L”(b). As the labels of authors from A appear in
2|L"(a)nL"(b)|

[L”(a)|+]L"(b)|

conferences are similar iff they share common authors.

Yet authors publish frequently in some conferences and occa-
sionally in some other conferences, and thus the above index is
biased: all the conferences where an author publishes are equally
considered, even though the author publishes once in some of them.

Let us see how g-grams can improve over this. Given u = a, b

and g = 3, each g-gram in the multiset L(u) is of the form w; pc
2|L(a)NL(b)|
[L(a)|+]L(D)]
now weighs how frequently the shared authors publish in both

conferences, so as to obtain the aforementioned top-15 table.

(also called Sgrensen’s index) from [21,

where L’(a) is the multiset of labels of the neighbors

these multisets, in the resulting index BC"'(a, b) =

for some author w;. The resulting index BC(a,b) =

Novelty. Although the idea of using path labels in NSIMGRAM
has been exploited by PATHSIM [26] and other papers on link predic-
tion, our similarity index has a different goal and takes advantage
of the widespread success of g-grams on large-scale analysis [27].

We use Figure 1 to illustrate this observation, where nodes a and
b are quite similar for our index BC(a, b): even though a and b do
not share common paths of 3 nodes, their corresponding multisets
of 3-grams have a large overlap. We model in this way the fact that
both a and b interact in the same way with their neighborhood.

This is in contrast with the above similarity measures relying on
shared paths of given length, e.g. connecting a and b. In our example
a and b can be made far apart each other (just replace the edge
with both endpoints labeled b by an arbitrarily long path or large-
diameter subgraph) but still remain similar, which is not necessarily
true with other measures, where the number of connecting paths
of unbounded length can explode. Indeed we will see that one of

the features of NSIMGRAM is its efficient performance. We refer the
reader to Sections 4-5 for further discussion of the related work.

Contributions. NSIMGRAM provides the following operational
context. Given an unordered labeled graph G with n nodes and m
edges, and a positive integer ¢ = O(log n), it provides an O(29m)-
time randomized algorithm, called preprocess,(G), that builds
a data structure on a suitable set of the g-grams from G. After
that, it can answer user queries of the following form. For any
two nodes a and b, and a sampling size r chosen by the user, a
call to query,(a, b) provably returns an unbiased estimator for the
Bray-Curtis similarity index BC(a, b) for the set of g-grams stored
in the data structure, that is, a randomized method whose expected
outcome is BC(a, b). This takes O(rq) time, using a sample of r
q-grams, where r = O(qlog n) in our experiments.

Note that the brute-force approach to compute the BC index does
not scale, whereas NSIMGRAM gives a guaranteed performance on
real-world networks. For instance, it allows us to approximate the
similarity between any two movies in the IMDB network, which
has more than 280 million edges, in relatively few seconds for g = 6.
The number of paths of length g is simply unmanageable otherwise.
In summary, NSIMGRAM gives the following contributions.

o Exploit the usage of g-grams in large-scale network analysis,
and adopt a node similarity based on variations of the Jac-
card index that apply also to multisets of g-grams. We show
that our measure outperforms popular state of the art node
similarity measures on real world datasets.

e Show how to estimate node similarity in a randomized fash-
ion, as its exact computation is too demanding in terms of
space and running time. We give theoretical bounds and
experimental running times on the data sets.

e Employ several ideas to handle this situation: randomized
color coding of the nodes of G, probabilistic counting and
sketches, string algorithms, etc. The resulting code is easy
to make parallel on multi-core machines.

Other similarity indices. Among the 30 similarity indices sur-
veyed in [21, Sect.3], several are based on neighborhood N(u) and
thus can benefit of the ideas in NSIMGRAM. There is a computational
hurdle as the g-grams can exponentially explode for increasing val-
ues of g and |X|. Contrarily to the g-grams found in a document of
n symbols, which are at most n — g + 1, the g-grams in a graph with
n nodes can be |X|? > n in number. To worsen this situation, the
multiset of all g-grams in G is potentially generated by n? paths
in G. This gives a twist to our problem, as we cannot afford to go
through all those paths in large graphs, unless X, g, n are very small.

NSIMGRAM proves to be very useful in this scenario because of its
guaranteed performance. Note that it does not belong to the family
of graph-based methods in supervised learning, such as [7, 18, 20],
as the implicit assumption that there is no supervising data makes
the similarity problem intrinsically different [22].

2 LABELED PATHS AND NODE SIMILARITY

Consider an undirected labeled graph G = (V, E, {) over an alphabet
3 of symbols. We use n = |V|, m = |E|, and N(u) as the set of
neighbors of node u. Observe that |2| < n without loss of generality.

For a fixed integer ¢ > 0, consider an arbitrary simple path
P = uj,up,...,uq traversing q — 1 edges in G (i.e. u; # uj and



{uj,ui+1} € Efor1 < i < j < q). We call the orientation u; —
ugz — -+ — ug of P a g-path leading to ug, and its g-gram L(P) =
C(u1)t(uz) - - - L(uq) € 29 is the corresponding string obtained by
concatenating the labels of its nodes.?

For a node a € V, we define L(a) as the corresponding multiset
of g-grams for all g-paths P leading to a.3

L(a) = [x € 27 : g-path P leading to a with L(P) = x]

For a g-gram x, we consider the frequency of x within multiset
L(a), i.e., the number of g-paths P leading to a whose g-grams are
x, and define a frequency vector ranging over all strings x € 29
(a.k.a. graph kernel)

falx] = |{P : P is a g-path leading to a and L(P) = x}|

Note that each multiset L(a) can be equivalently seen as the set
of pairs {(x, fa[x]) : x € X9 and fz[x] > 0}. For example, in
Figure 1 L(a) can be seen as {(baa, 1), (bca, 2), (caa, 1), (cba, 1)},
where fy[baa] = 1, fy[bca] = 2, and so on.

Given a graph G, let £ C X7 be the set of distinct g-grams found
in the g-paths of G. Applying the Bray-Curtis similarity index, we
get the following measure for any two nodes a and b,

2 X Yixexa min(falx], fp[x])
2xeza falx]+ fplx]

Note that ranging x over L, instead of 29, is necessary and
sufficient in the above formula for any a and b. As a side note,
Bray-Curtis is a relevant index for multisets, and is also known as
Steinhaus similarity, Pielou’s Similarity, Serensen’s quantitative,
and Czekanowski’s similarity [16]. The numeral ecology book [16,
p-265] reports also some historical notes.

The BC index applied to NETINF is an interesting study case. It
is a graph representing the flow of information on the web among
blogs and news websites (see Section 4 for more details). The edges
represent the “who copies who” relationships. We label the nodes of
NETINF using labels a, b, ¢, d: a node with label a is ranked among
the top 4% by Amazon’s Alexa ranking [2]; a node with label b is in
the following 15%, with label c is in the following 30%, and the rest
with label d. Surprisingly, this simple labeling gives a high-quality
similarity index, as it can be inspected in the table below.

BC(a,b) =

Web Site | Web Site | BC index
nytimes.com huffpost.com 0.760524
nytimes.com | washingtonpost.com | 0.732766
nytimes.com sportingnews.com 0.330400
nytimes.com rollingstone.com 0.056660

NETINF, similarity between pairs of news web sites

3 EFFICIENT COMPUTATION OF NODE
SIMILARITY

For any two nodes a,b € V, the similarity indices described in
Section 2 require the computation of the frequency vectors fg| |
and fp[ ], which is one of the main hurdles to overcome as (i) the

2Even if the graph is undirected, traversing P in one direction can be seen as an
oriented path of g nodes, the g-path. Each path gives rise to two g-paths, one for each
traversal direction. In this way, the cardinality of the set of g-paths in G equals the
cardinality of the multiset of g-grams in G.

30verloading the usage of L() is not a problem as it is clear from the context.

Algorithm 1: preprocess (G):

Input : G = (V, E) undirected graph and an integer g > 0 for color
coding.
Output: M = dynamic programming table for color coding.
1 parallel foreach u € V. do My, = (x(u), 1)
forie {23, ...,q}do
parallel foreach u € V do
foreach v € N(u) do
foreach (C, f) € M;_1 o such that y(u) ¢ C do
[l Miu (CU{xw)})
Miy — (CU{x)}, f"+f)

Qg A W N

=

8 return M

size of each vector is potentially |29| and (ii) its definition requires
to explore n? g-paths. In this section we propose a random estimator
based on color coding, sketching, and string algorithms, which can
be computed efficiently and is unbiased, that is, its expected value
is the actual similarity index.

We proceed in steps. First, we address issue (ii) and use color cod-
ing to reduce the number of potentially explored g-paths from n? to
20y, making it thus feasible for large n and g = O(log n). Then,
we address issue (i) by computing sketches of f,[ ] and f3[ ], with
the constraint that we cannot explicitly go through all the strings
in the universe 9. The size of the sketches is small compared to
|2|4, which is a significant benefit when ¥ or q are large.

3.1 preprocess,(G): color coding of the g-paths

We here describe the preprocessing of the input graph G. Following
color coding [4], we restrict our attention to ¢ = O(logn) and
assign a random coloring y : V — [q] to the nodes of G, where
[q] =[1,...,q]. We remark that, in addition to its input label £(u),
each node u € V now has color y(u) independently and uniformly
chosen from [q]. We say that a g-path uy, up, . .., ug is colorful iff
x(;) # x(uj) for 1 < i < j < g (hence all the g different colors
appear in the g-path). As a colorful g-path can use g! colorings of
its nodes out of g7 possible ones, the probability that a g-path is
colorful is q!/q? > 9.

We use color coding for two reasons: (1) to guarantee that we
choose simple paths, rather than walks, and (2) to reduce the number
of g-paths by roughly a factor of q!/g? > 1/e9 to colorful g-paths.

Algorithm 1 reports the dynamic programming approach in [4].
We create a new node s that is connected to all the other nodes.
With a little abuse of notation, denote by G the resulting graph, and
let n be the number of nodes and m the number of edges. To list all
colorful g-paths in the original graph, we can equivalently list all
the colorful (q + 1)-paths in G starting from s. In order to alleviate
the notation, we can equivalently discuss how to list the colorful
g-paths starting from s (just rename g + 1 as q).

Algorithm 1 returns a table M where M; ; stores the collection
of pairs (C, f) where C C [q] is a color set such that |C| = i and
there are f colorful i-paths from s to node j, with each i-path using
all colors in C. As q¢ = O(log n), we store each set C as a bit vector
of length g in which there are i 1s, which fits a machine word and
can be interpreted as an integer of size polynomial in n. Using bit



Algorithm 2: query: COLORFUL-SAMPLER

Input : X = {a, b} a pair of nodes from graph G; M = color coding
table for G; r = number of colorful paths to sample.
Output: W = random sample set of colorful grams x € L(X) with
probability px (x).
1 R[]
2 parallel for j € [r] do
3 u « randomly chosen v € X with
probability po = 52 oy
4 P «— RANDOM-PATH-TO(u)

5 | AddPtoR
6 return W = {L(P): P € R}

7 Function RANDOM-PATH-TO(u)

8 P—(u) De[g]\{xw}
9 forie{g-1...,1}do
10 u « randomly chosen v € N(u) with
probability py, = s—-2DL
2eN(u) Mi,z(D)
1 P—u-P D«D\{yu}
12 return P

manipulations, we can implement in O(1) time the update of any
entry in M. Note that M; ; contains at most (?) sets, each with i
colors. Hence computing row i from row i — 1 requires O(m (ifl))
time (as we scan all the adjacency lists). The entire computation
requires thus O(m Z?:l (iﬁl)) = O(m29) time.

LEmMA 3.1. Given an undirected graph G of n nodes and m edges,
such that G has a random coloring in [q], where ¢ = O(log n), Algo-
rithm 1 (preprocessgy(G)) returns the dynamic programming table
M of color coding in O(m 29) time and space.

REMARK 1. From now on, colorful path is an equivalent term for
colorful g-path, and a colorful g-gram is the g-gram corresponding
to a colorful path. To avoid cumbersome notation, we reuse notation
for L, fa, L, etc. for colorful paths as the domain is clear at this point.

Asq!/q? > 1/e9, color coding asks to repeat the random coloring
of nodes for e9t times, so that success probability becomes > 1—e™ .
However this is just to establish if a g-path exists (when g = n, it is
the famous NP-complete Hamiltonian path problem [9]). As it is
unreasonable to generate all possible ¢ colorings, we use the idea
of balanced hashing [3], which requires just O(e‘”o(10g3 9 logn)
colorings, so that each subset of g nodes from V is colorful roughly
the same number of times, apart from a multiplicative constant. On
the other end, counting exactly g-paths is #W[1]-complete, thus
difficult to parameterize [8]. In practice, choosing a single random
coloring is working pretty well on real-world networks.

3.2 query,(a,b): sampling and sketching
colorful paths

We have reduced the number of g-paths to examine using Algo-
rithm 1, and it is not difficult to modify it to list also the colorful
g-grams, printing L(P) for each colorful path P. This provides an
inefficient implementation of query,(a, b) for two nodes a and b.
Indeed we still have an issue as it could be £ ~ 39.

Our key idea is to single out a sample of r colorful g-grams
from £, without actually exploring all colorful paths (which is ex-
pensive). Sketching is performed usually on an explicit set, whereas
we have to sketch an implicit set £ and the colorful paths. If we
achieve this goal, our sampling cost can be made proportional to a
user-selectable parameter r < | £] < 2|9 < n9.

Algorithm NSIMGRAM-COUNT to answer query,(a, b) works as
follows.

(1) Compute a suitable sample W € £ such r = |W| is at most
r, using Algorithm 2.

(2) Compute f,[x] and f;[x] for each x € W, using Algorithm 3.

(3) Approximate BC(a, b) by returning the value of BCyy(a, b)
shown next.

3 minlfls]. <)

2
BCw(a,b) = = % 5 m

Wi

Phase 1. Algorithm 2 can sample from the multiset L(X) of
colorful paths for a pair of nodes X = {a,b}. Here x € L(X) is
falx1+fplx]
Lyer falyl+fulyl®
Using table M computed by Algorithm 1, a suitable set W is

sampled from the colorful g-grams in £ C 9. In particular the
sample depends on the frequencies of the g-grams ending in a
and b, as in the case of consistent weighted sampling, where more
frequent g-grams need to be sampled more often. One additional
challenge in our case is that we do know a priori the frequency of
q-grams before sampling.

sampled with probability px(x) =

Phase 2. We generate only the g-grams x € W that originate
from colorful paths ending in a or b. In the case of a (the same
is done for b), we proceed as described in Algorithm 3 for steps
i=1,2,...,q, by expanding in BFS order only the i-paths ending
in a and having i-grams that are suffixes of W (this computation
can be made more space efficient by using tries). We maintain a
multiset T of these i-grams, each represented by a triple (z, x,C)
to indicate that there is an i-path starting from z and ending in a,
whose i-gram is x and colorset is C (note that (z, x, C) can appear
more than once in T as there might be more i-paths from z to u
labeled with the same i-gram x).

Phase 3. We will show that we obtain an unbiased for the ap-
proximation of BC(a, b) in Section 3.3.

LEMMA 3.2. For any two nodes a,b C V, the running time of
NSIMGRAM-COUNT is O(rq) time and space wherer < |L]| < |3|9
and q = O(log n).

3.3 Estimating Bray-Curtis Index

We show that BCyy(a,b) is an unbiased estimator for BC(a, b),
namely, BC(a,b) = IE[BCy(a,b)] where W is the sample and
7 = |W| < rin Algorithm 2 (COLORFUL-SAMPLER). As we are dealing
with multisets, W depends on a and b, as is in consistent weighted
sampling [12, 30]: intuitively we need to sample more frequently
the g-grams that are more frequent in L(a) and L(b) (and we cannot
resort to their frequency in L(V) as it can be totally different). This
is what is done in Algorithm 2.

THEOREM 3.3. BC(a, b) = IE[BCy(a, b)].



Algorithm 3: NSIMGRAM-COUNT, exactly counting frequencies
of sampled g-grams

Input : a = anode from graph G; W = sample of its colorful
q-grams.
Output: f,[x] = frequency of each x € W.
1 T[] //stepi=1
2 T —TU[(a t(a) {x(@)})]
3 forie{2,3,...,q}do
4 T « ]
5 parallel foreach (z, x, C) € T do
6 foreach v € N(z) such that y(v) ¢ C do
7 if £(v) - x is a suffix of a q-gram in W then
8 L L T « T'U[{v, £(v)-x, CU{x(v)})] /lcriticals.

9 T T

10 fg—(0,...,0)
11 foreach (z, x, C) € T do fu[x] « fa[x]+1
12 return f,

Without loss of generality, we will deal with the case in which
7 = |W| = r = 1, meaning that just one label / € L is considered
to build the sketches of f; and f},. Our estimator can be seen as
the average result of r > 1 experiments (as in the case of min-r
sketches). Hence, to prove Theorem 3.3 it suffices to prove that:

oy, 2xmin(alll 1)
2P =0

where Pr[W = {I}] is the probability of choosing I in Algorithm 2.
As we can see, to get an unbiased estimator we must prove that
Algorithm 2 provides a sample W = {I} such that Pr[W = {I}] =
Jalll+fp[1]
Zjer falilHfoli]?

rem 3.3.

In the following we show that Algorithm 2 chooses g-grams
according to this desired probability, as stated by the following
lemma.

=BC(a,b), (1)

as by plugging this in Equation 1 we get Theo-

LEMMA 3.4. Given a and b, Algorithm 2 selects a q-gram | with

a7e a l l
probability %.

For a node z € {a, b} denote as E, the event that a colorful path
ending in z is sampled and with E. the event that a colorful path
with g-gram [ and ending in z is sampled. Moreover, denote as P,
and P}Z respectively the number of colorful paths ending in z and
the only ones among these having g-gram . First of all notice that
Yjer falil = Paand Xjc r folil = Pp,.* as they are respectively
the total number of colorful paths ending in a and b. In order to
prove Lemma 3.4, we use the following result.

LEMMA 3.5. Procedure RANDOM-PATH-TO(u) in Algorithm 2 selects
a colorful path ending in u with probability 1/P,,.

PrOOF OF LEMMA 3.5. Let P = vg-1,...,01,% be the path sam-
pled by the procedure and let P, ., x) (With i < g —1) be the
number of colorful paths having (v;, ..., v1,x) as a suffix. Accord-
ing to the choices done in the algorithm: the probability Pr; that vq

“Recall that Py = My, 4([q]) and P = Mg 5([q]).

is selected among the compatible neighbors of x is P(,,, /P, the
probability Prp that v; is selected given v1 is Py, o, x)/P (01, x)>
and so on. As the probability of getting P is Pry - Pry - ... - Prq-2,
we obtain 1/Px. o

PrOOF OF LEMMA 3.4. We have:
PriW = {I}] = Pr[EL|Eq] - Pr[Eq] + PrlEL |Ep] - Pr(Ep]. ()

where the first part is the probability that [ has been sampled
through a colorful path ending in a and, analogously, the second
part is the probability that I has been sampled for b.
By Lemma 3.5 we also obtain:
I Pl
PriEbIE = 22 BB = b ®)
Indeed, once the ending point is fixed as a or b, the probability of
choosing a colorful path is uniform at random, i.e. meaning that
they are respectively 7’%; and P%,‘ This implies that the probability
of extracting a g-gram [ is proportional to the number of paths
having that g-gram, as stated in Equation 3. As the probability of
choosing v € {a, b} is Py, /(Pq + Pp) at line 3, by Equations 2 and 3
we obtain:
prw - ] = Pt Py _ Rl Sl
Pa+ Py Xjer falil + folil

O

In the following we relate the number of experiments, i.e. r, to
an absolute error for the estimate of BC index. As our values are
between 0 and 1, and our estimates are unbiased, we can use the
classical Hoeffding bound [6] to upper bound the absolute error
€ with high probability. In particular by applying this bound, we
obtain that

LEMMA 3.6. The absolute error is bounded by € w.h.p. by setting
_ log Pa+Pyp
r=Q (—62 )

Note that the latter value can be ensured choosing r = Q(ge ™2 log n)
and depends logarithmically on the number of colorful paths lead-
ing to a and b. In our experiments, we estimate £, + #p by looking
at our color coding dynamic programming table M computed by
Algorithm 1 (preprocessy(G)).

3.4 Estimating Frequencies of g-grams

In some instances Algorithm 3 can explore many colorful paths.
To alleviate this issue, we show in Section 3.4 that we can avoid to
execute Algorithm 3.

In this section we show how to improve Phase 2 of NSIMGRAM-
COUNT to avoid to explicitly generate all the g-grams x € W as
in Algorithm 3 to get their frequencies. In particular, once W has
been chosen using our Phase 1, in order to approximate BCyy (a, b)
we show how to approximate f;[x] and f;[x]. However, it is not
enough to replace f4[x], fp[x] in BCy (a, b) with their approxima-
tion, as the ratio of approximated quantities could easily lead to a
biased estimator.

To overcome this obstacle, we rewrite our estimators BCyy (a, b)
in a different equivalent way and reuse our suitable sample W to
approximate them.



Algorithm NSIMGRAM-COUNT to answer query,(a, b) works as
follows.
(1+2) Compute f/[x] and fb' [x] using Algorithm 3 where the last
line W = {L(P) : P € R} is replaced by the code
f2 =(0,...,0); foreach P € R ending in a do f}[L(P)] =
FILPY] +1
fb’ = (0,...,0); foreach P € R ending in b do fb'[L(P)] =
L) +1
(3) Approximate BC(a, b) by returning the value of BCyy(a, b)
shown next.

BCw(a,b) =2 Z min
lew

s

r

fan £
T

Recall that we denote as $, the number of paths ending in a node
z € V,and as Pi the ones with g-gram I. The BCyy approximation
can be rewritten as follows.

BCw(a,b) = 2 Z min

lew
Now;, consider R as the set of paths sampled by Algorithm 2 and
let Q, be the number of the paths in R and ending in z € {a, b}
and Qi the number of the ones having label [. We have that the
following Equation can be used to approximate BCyy(a, b) thanks

to Theorem 3.7. l
L Q

§ min(&,—b). o
ror

lew

PL P
Pa+Pb’Pa+Pb

THEOREM 3.7. Given the set R of r paths sampled by Algorithm 2

) oL . . . Pl
and given z € {a, b}, =% is an unbiased estimator for Porpy,

PRrOOF. By using Lemma 3.4 and Lemma 3.5, we have that Algo-
rithm 2 samples a path ending in a or b uniformly at random. As
1
the sample set R of r paths is chosen uniformly at random, % can
be seen as

Pr[Pendsina,L(P)=[,P € R|Pendsinaorb,P € R] =
Pr[Pendsina,L(P)=1,P€R] _

Pr[Pendsinaorb,P € R]
Pr[Pendsina,L(P)=1]-Pr[P € R] _

Pr[P ends in a or b] - Pr[P € R]

Pl
Pr[Pendsina,L(P) =1 | P ends i b= —%—
r|P ends in a, L(P) | P ends in a or b] Pat Py
This corresponds to the fraction of paths ending in a having g-gram
I with respect to the size of the sampling space. O

4 EXPERIMENTS

We describe the experimental evaluation for NSIMGRAM, our suite
of algorithms. The computing platform is a machine with Intel(R)
Xeon(R) CPU E5-2620 v3 at 2.40GHz, 24 virtual cores, 128 Gb RAM,
running Ubuntu Linux version 4.4.0-22-generic. Code written in
C++ and compiled with g++ version 5.4.1 with OpenMP. As de-
scribed in Section 3, NSIMGRAM preprocesses the input graph using
Algorithm 1, and performs the queries using NSIMGRAM-SIMPLE

and NSIMGRAM-cOUNT. The source code is open and available at
github.com/GaspareG/SubgraphSimilarity.

4.1 Data sets

DBIS. In order to compare our measure with popular state of the
art measures, we use the same dataset as [26]. This dataset contains
464 venues and top-5000 authors from the database and information
system area and has been chosen in [26] instead of the full DBLP
dataset to alleviate the high computational costs of P-PAGERANK
and SIMRANK. Authors are linked to papers by authorship and
papers are linked to the venues in which they appeared. Considered
query: compute the top-k similar venues to a given one.

NetInf. This graph was computed by the NetInf approach, as
part of the SNAP project [25], by tracking cascades of information
diffusion to reconstruct “who copies who” relationships. Each node
represents a blog or news website, and a website is connected to
those who frequently copy their content. The graph contains 854
nodes and 3824 edges. We labelled websites according to their im-
portance, using Amazon’s Alexa ranking [2]: the labels correspond
to respectively the websites ranked in the top 4%, the following 15%,
the following 30%, and the remaining 51% (i.e. |X| = 4). Considered
query: compute the similarity of between two websites or two sets
of websites.

IMDb. In this graph, taken from the Internet Movie Database [11],
nodes correspond to movies, and there is a link between two movies
if their casts share at least one actor. The graph contains 1060 209
movies (nodes) and 288 008 472 edges. Each movie is labeled with
one of |X| = 36 genres. Considered query: similarity between movies.

4.2 Comparison with Other Measures

Our algorithms in NSIMGRAM are unsupervised, so we do not con-
sider graph-based methods that make extensive use of supervised
learning, like [7, 18, 20].> We compare our method with respect to
the ones in [26], comparing P-PAGERANK [14], SIMRANK [13], RW
(random walk), PRW (pairwise random walk), and PATHSIM [26] for
the DBIS dataset.

Table 1 reports the competing methods when finding the top-10
venues similar to PKDD, where data in columns are taken from [26]
except the last one. Our ranking has been computed with NSIMGRAM-
SIMPLE, with ¢ = 3 and r = 2000.° When setting NSTMGRAM-SIMPLE,
conferences have the same category-label, papers also, and authors
have their own labels. With respect to the first columns of Table 1,
our approach prefers venues that are more similar to PKDD both
for topics and popularity. With respect to PATHSIM, it prefers KDD
to SDM as there is a higher correlation among authors publishing
in PKDD and KDD with respect to PKDD and SDM, and our sam-
pling procedure is guided by these frequencies. For the same reason,
our ranking prefers DaWak to KDID: the former is a second tier
conference (active since 1999) on the same topic while the latter is
not a well-known venue (active from 2002 to 2006) as pointed out
in [26].

5The availability of data for supervising makes the problem intrinsically different [22].
Moreover, the setup phase of such approaches limits their scalability as it may require
hours on graphs with just thousands of nodes.

©This is relatively small wrt the number of g-paths in the graph.


github.com/GaspareG/SubgraphSimilarity

RANK | P-PAGERANK SIMRANK RW PRW PATHSIM OURS
1 PKDD PKDD PKDD PKDD PKDD PKDD
2 KDD Local Pattern Detection KDD Local Pattern Detection ICDM ICDM
3 ICDE KDID ICDM DB Support for DM Appl. SDM KDD
4 VLDB KDD PAKDD Constr.-Bsd. Min. & Induc. DB PAKDD PAKDD
5 SIGMOD Large-Scale Paral. Data Min. SDM KDID KDD SDM
6 ICDM SDM TKDE MCD Data Min. Knowl. Disc. | Data Min. Knowl. Discov.
7 TKDE ICDM SIGKDD Expl. | Pattern Detection and Discovery SIGKDD Expl. SIGKDD Expl.
8 PAKDD SIGKDD Expl. ICDE RSKD Knowl. Inf. Syst. Knowl. Inf. Syst.
9 SIGIR Constr.-Bsd. Min. SEBD WImBI J. Intell. Inf. Syst. J. Intell. Inf. Syst.
10 CIKM Induc. DB TKDD CIKM Large-Scale Paral. Data Min. KDID DaWaK

Table 1: The top-10 venues similar to PKDD according to the measures in [26] and our measure.

METHOD Accuracy (nDCG)
P-PAGERANK 0.5552
SIMRANK 0.6289
RW 0.7061
PRW 0.5284
PATHSIM 0.7446
Our 0.9128

Table 2: Average ranking accuracy for a sample of venues in
the DBIS dataset [26].

As in [26], we also considered the top-15 results for 15 queries
from venue type (SIGMOD, VLDB, ICDE, PODS, EDBT, DASFAA,
KDD, ICDM, PKDD, SDM, PAKDD, WWW, SIGIR, TREC and AP-
Web) in the DBIS dataset, and we have labeled each result ob-
ject with relevance score as three levels: 0-non-relevant, 1-some-
relevant, and 2—very-relevant. To perform this assignment we have
used the manual assignment done by experts, available at the url
webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html.

Table 2 reports the evaluation of the quality of the output ranking
using the measure Normalized Discounted Cumulative Gain (nDCG,
with value between 0 and 1, the higher the better) and shows that
our method significantly outperforms the competitors.

4.3 Results

In order to validate the efficiency of our approach, we compare
NSIMGRAM-COUNT and NSIMGRAM-SIMPLE against the baseline al-
gorithm BASE, that finds random paths using simple random walks
and compute the BC index using the g-grams from these paths. We
use the exact value computed by brute force as a reference (on small
graphs). We evaluate the approximation of these approaches and
their computational costs.

4.3.1 Approximation. By using the brute force approach in the
NETINF dataset, we have computed the exact value of BC(a, b) for
randomly chosen nodes a and b and different values of q. We have
then fixed the relative error € and, for each approach, we have
computed the size of the sample r and the time T needed to get a
relative error . We have repeated the experiment 100 times and
reported the results in Table 3. For every q and €, NSIMGRAM-COUNT
clearly has the best precision: it needs always a small sample r to get
a relative error € and has a small variance. This is at the cost of the
highest running time, as once the g-grams have been sampled, their
frequencies must be computed exactly. BASE performs surprisingly
fast but its precision gets much worst for increasing g: since BASE

does not sample paths carefully, it needs to sample many more
paths to improve its accuracy obtaining also the worst time. This
is not the case of NSIMGRAM-SIMPLE, which spends more time to
choose the paths to sample, but provides a guaranteed error on top
of a good practical performance.

NSIMGRAM-COUNT NSIMGRAM-SIMPLE BASE

q € r T VAR r T VAR r T VAR

3] 0.20 10 2 0.0011 200 1 0.0014 200 1 0.0010
3] 0.10 50 2 0.0017 400 2 | 0.0029 500 1 0.0030
31 0.05 | 80 3 0.0003 500 2 | 0.0002 600 1 0.0004
4 | 0.20 10 1 0.0079 500 1 0.0054 1000 1 0.0239
4 | 0.10 20 4 | 0.0037 | 1000 | 3 | 0.0039 | 2000 2 0.0264
4 | 0.05| 100 | 5 0.0006 | 2000 | 4 | 0.0020 [ 8000 3 0.0157
5] 0.20 15 7 0.0073 | 3000 | 9 | 0.0012 | 10000 | 36 | 0.0327
51 0.10 | 30 12 | 0.0052 | 4000 | 12 | 0.0087 | 30000 | 83 | 0.0437
5] 0.05 | 100 | 35 | 0.0010 | 8000 [ 20 | 0.0055 | 80000 | 287 | 0.0187

Table 3: Size of the sample r and time T needed to get a rel-
ative error ¢, for several values of ¢ in the NETINF dataset
(average over 100 experiments). VAR is the variance.

4.3.2  Preprocessing. In Table 4, we show the preprocessing time
and space needed by NETINF and IMDB datasets for increasing g,
showing that we can deal with relatively long g-paths even in a
network with millions of nodes. We remark that the preprocess-
ing time needed by our approach in these networks is negligible
with respect to the time needed by other methods. Moreover, in
Figure 2 we show the behaviour of a parallel implementation of
our preprocessing phase when increasing the number of cores and
dealing with the IMDB dataset setting ¢ = 3 and g = 4. The plot
shows that our preprocessing scales quite well and the benefit of
parallelization is steady for both ¢ = 3 and g = 4.

[ Dataser [ g | Time [ Space |
NETINF 3 0.39s 11.20MiB
NETINF 4 0.81s 22.63MiB
NETINF 5 1.66s 45.21MiB
NETINF 6 3.47s 90.93MiB

IMDB 3 48.22s 17.94MiB
IMDB 4 | 105.94s 34.91MiB
IMDB 5 241.22s 69.01MiB
IMDB 6 | 557.48s | 137.26MiB

Table 4: Preprocessing Time and Space of NSIMGRAM-COUNT
and NSIMGRAM-SIMPLE varying ¢
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Figure 2: Scalability of the preprocessing phase varying the
number of cores in the IMDB dataset with respect to the
ideal scaling (gray line). ¢ = 4 red, g = 3 green.

4.3.3 Query. We study the time performance in our experiments
for several values of g and r on the NETINF and IMDB dataset.

For the NETINF dataset, in Figure 3(a) and (b), we fix ¢ = 7,8
and show the time needed by our methods for increasing r. BASE
and NSIMGRAM-SIMPLE have a much lower running time, which
increases following the same trend. In Figure 3(c) and (d), we fix
r = 500, 1000 and show the running times for increasing gq. In this
case, the running time of the exact approach rapidly increases and
becomes unfeasible. Also NSIMGRAM-COUNT is costly when g grows
or the network is big, as it has to compute the exact frequency of
the sampled g-grams. BASE is very fast but as shown in Table 3 it is
not precise. NSIMGRAM-SIMPLE provides the best tradeoft as it can
deal with bigger values of ¢ while ensuring guarantees.

In Table 5, we report similar results for the IMDB dataset, where
both the exact approach and NSIMGRAM-COUNT do not terminate
within reasonable time due to the size of the network (1 hour for
the exact and 15 minutes for NSIMGRAM-COUNT), while NSIMGRAM-
SIMPLE and BASE can deal with relatively large values of q.

Time (ms) |

DATASET | g | EXacT | NSIMGRAM-COUNT | NSIMGRAM-SIMPLE | BASE |
3 - 846 32 3
4 - - 110 5
e - 295 6
6 - B 552 8

Table 5: Time needed by the query to measure the BC index
between two nodes a and b randomly chosen and setting the
size of the sample r = 100. Average over 100 experiments.

5 RELATED WORK

A plethora of specific similarity measures has been designed over
the years and each of them makes sense depending on the appli-
cation. An intrinsic issue of any measure aimed at quantifying
structural properties of nodes is that there are always alternatives
to describe them, thus leading inevitably to a multitude of different
measures [21]. Structural measures can be roughly divided in the
following categories.

e Local measures: this kind of measures often count the com-
mon neighbors of the queried nodes and they differ for the
way they normalize this quantity, like [17].

e Global measures: this is the case of well-known measures
like Katz index [15], random-walk with restart [28], Sim-
RANK [13], personalized PageRank [14]. Some of these are
costly to compute and for this reason variations have been
considered [22].

e Quasi-local: these measures are a good tradeoff of accuracy
and computational complexity [21], like local random walk
and superposed random walk [19].

These measures do not directly extend in the case of labeled net-
works. Some work to address this task has been done in the case
of heterogeneous or typed networks, where social networks are
seen as a collection of entities (as schools, locations, users etc.) that
can be annotated with the respective category [7, 20, 26]. In this
area of research, there are measures for which the similarity can
be expressed through a closed formula like [26] or the result of
an iterative process like [13], or the ones which are a result of a
supervised learning process [7, 20, 26].

The latter works are mainly focused on predicting links and
they do supervised learning aimed to do this task. Our work is
unsupervised, so we have not considered graph-based methods that
make extensive use of supervised learning, as in [22]. In the former
class of measures, there are measures which also uses labeled paths
to compare nodes. Among these, the most closely related measure
to our similarity measure is PATHSIM [26] and its variations [23, 31].
However, they just consider the paths connecting the queried nodes
x and y which are of a given type and fixed length q. As a result, they
neglect possibly similar typed paths starting from x and y. Moreover,
when applied to general graphs (not necessarily multipartite), this
allows to measure just the similarity of nodes connected and within
distance g (using the prescribed paths). This is even more restrictive
in a scenario where there are many different types, like real social
networks.

Some variations of PATHSIM make use of triangle inequality
property to speed up the computation applying local sensitive hash-
ing, while maintaining similar quality performance [31]. There are
extensions of PATHSIM [24] that allows to measure the similarity
between nodes of different types (see [23] for a survey), which
is not the problem considered here. When the labeled graph is
(multi)partite also random-walk with restart [28], SIMRANK [13],
and personalized PageRank [14] can be applied. Other works do
similarity analysis to study social influence in heterogenous net-
works, but they use more information from social influence side
which is available depending on the application [29].

We remark that counting cycles and paths of length g, parameter-
ized by g, is #W[1]-complete [8]. Interestingly, in practice, a recent
work [1] allows to count graphlets of fixed size g in large networks,
but we observe that g < 4. We argue the need of approximation
algorithms to deal with bigger g and larger networks, focusing on
frequent g-grams.

6 CONCLUSIONS AND FUTURE WORK

We presented randomized algorithms and data structures for sketch-
ing node similarity. Samples are relatively small (near logarithmic)
with respect to the size of the universe, and exploit the distributions
of the g-grams involved. We have shown that our similarity measure
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Figure 3: Time needed by the exact approach, NSIMGRAM-COUNT, NSIMGRAM-SIMPLE, BASE varying the size of the sample r,

in (a) setting ¢ = 7 and in (b) setting q = 8, or varying g, in (c) setting r =

experiments).

significantly outperforms popular state-of-the-art works for hetero-
geneous networks is able to spot ground-truth similarities, while
showing good practical performance. Moreover, the algorithms we
propose, NSIMGRAM-SIMPLE and NSIMGRAM-COUNT, guarantee a
good approximation (as unbiased estimators) compared to a less
refined baseline sampler. The steady running time of NSIMGRAM-
SIMPLE on networks with hundreds of millions of edges suggests
its usefulness as an estimator on very large networks.

The assumptions that the graph is undirected and with one
label per node can be easily removed from our model: it would be
interesting to further study similarity indices relevant in real-world
scenarios that can be sketched with our algorithms.
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