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In this study, we investigate some counterintuitive but frequent performance issues that arise when
doing high-speed networking (or I/O in general) with Virtual Machines (VMs). VMs use one or
more single-producer/single-consumer systems to exchange I/O data (e.g. network packets) with their
hypervisor. We show that when the producer and the consumer process packets at different rates,
the high cost required for synchronization (interrupts and ‘kicks’) may reduce throughput of the sys-
tem well below the slowest of the two parties; moreover, accelerating the faster party may cause the
throughput to decrease. Our work provides a model for throughput, efficiency and latency of produ-
cer/consumer systems when notifications or sleeping are used as a synchronization mechanism; iden-
tifies different operating regimes depending on the operating parameters; validates the accuracy of
our model against a VirtIO-based prototype, taking into account most of the details of real-world
deployments; provides practical and robust strategies to maximize throughput and minimize energy
while keeping the latency under control, without depending on precise timing measurements nor
unreasonable assumptions on the system’s behavior. The study is particularly interesting for
Network Function Virtualization deployments, where high-rate producer/consumer systems in vir-

tualized environments are the core components.
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1. INTRODUCTION

Computer systems have many components that need to
exchange data and synchronize with each other, to determine
when new data can be sent or received. The timescales of
these interactions span from the nanosecond range for on-
chip hardware (CPU, memory), to hundreds of nanosecond or
microseconds for processes or Virtual Machines (VMs) and
their hypervisors, up to milliseconds or more for peripherals
with moving parts (such as disks or tapes), or long-distance
communication.
Synchronization can be implicit, e.g. when a piece of hard-

ware has a guaranteed response time; or it can be explicit, rely-
ing on polling (i.e. repeatedly reading memory or I/O registers
to figure out when to proceed, possibly using short sleeps to low-
er CPU usage) and/or asynchronous notifications, e.g. interrupts.
The cost of synchronization can be highly variable, and some-
times even much larger than the data processing costs. This used
to be a well-known problem when accessing magnetic tapes,

which must be kept streaming to avoid abysmal performance
(and mechanical wear) due to frequent start/stops. Large buffers
in that case came to help in achieving decent throughput; the
inherently unidirectional (and sequential) nature of tape I/O does
not call for more sophisticated solutions.
We are interested in a similar problem in the communication

between a process that runs in a VM, issuing I/O operations at
high speed, and the hypervisor software implementing the corre-
sponding ‘virtual’ I/O device. In these cases, we aim at through-
puts of tens of Gigabits per second, millions of I/O operations
per second, and reasonably low delays (tens of microseconds) in
the delivery of data. The problem is particularly interesting
when the type of I/O is networking. The latency aspect, tightly
related with the bidirectional nature of network communication,
is what makes the problem a hard one. Moreover, mechanisms
that allow VMs to exchange network packets between each
other at high speed are an enabler technology for the Network
Function Virtualization paradigm [1]. Any optimization
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addressing these basic mechanisms can potentially impact thou-
sands deployments, through popular cloud management soft-
ware like OpenStack [2].
Synchronization in these scenarios typically requires inter-

rupts, context switches and thread scheduling for incoming
traffic, system calls and I/O register access (which translates
in expensive ‘VM exits’ on VMs) for outgoing traffic. The
high cost of these operations (often in the microsecond range)
means we cannot afford a synchronization on each packet
without killing throughput.
Amortizing the synchronization cost on batches of packets

[3–5] greatly improves throughput, but has an impact on
latency, which is why several network I/O frameworks [6–9]
rely on busy waiting to remove the cost of asynchronous noti-
fications and keep latency under control.
Busy wait polling has, however, a significant drawback

related to resource usage: it consumes a full CPU core, may
keep busy the datapath to the device or the memory being mon-
itored, and the power dissipated in the polling loop may prevent
the use of higher clock speeds on other cores on the same chip.
Using short sleeps instead of busy waiting can help reduce the
CPU consumption while preserving good throughput.
A middle ground between asynchronous notifications and

busy waiting is implemented by modern ‘paravirtualized’ VM
devices [10] and interrupt handling [11] strategies. In these
solutions, the system uses polling under high load conditions,
but reverts to asynchronous notifications after some unsuc-
cessful poll cycles.
The key problem in these solutions is that strategies to

switch from one mechanism to another are normally not
adaptive, and very susceptible to fall into pathological situa-
tions where small variations in the speed of one party cause
significant throughput changes. In our tests, we have fre-
quently seen systems moving from 100–200 Kpps to 1Mpps
with minuscule changes in operating conditions [4]. Even
when the throughput shows less dramatic variations, the sys-
tem’s resource usage may be heavily affected, which is why
we need to understand and address this instability.
Note that these kinds of problem mostly show up under

extreme operating conditions, e.g. when a system is processing
a large number of packets-per-second during a DOS attack. In
those situations, real-world applications may suffer from a num-
ber of other, unrelated problems. To isolate the synchronization
problem from the rest, this study is limited to mathematical
modeling, simulation and synthetic-workload experiments.
The rest of the paper is organized as follows. In Section 2,

we provide a model for a single-producer/single-consumer
system under different synchronization mechanisms, explain-
ing how different operating regimes may arise and what kind
of impact on performance comes by speed differences, delays
and queues. In Section 3, we analyze our models and derive
criteria to compare the different operating regimes against
each other, basing on the value of operating parameters. In
Section 4, we give suggestions on how the system designer

may obtain estimates of these parameters. In Section 5, we
experimentally validate our models using a representative
implementation of a VirtIO producer/consumer system. In
Section 6, we relax some of the simplifying assumptions
adopted in the model and study the consequences using both
our VirtIO implementation and a simulator; here we show
how our model is useful to understand real-world perform-
ance issues. In Section 7, we present some practical method
to identify the operating regime of a system; then we suggest
how to choose the synchronization method and the tunable
parameters to improve performance depending on the regime.
In Section 8, we apply these strategies to two representative
design examples and experimentally show their benefits. In
Section 9, we discuss some of the limitations of the proposed
model and suggest some possible extensions. Finally,
Sections 10 and 11 report related works and our conclusions.

2. SYSTEM MODEL

To gain a better understanding of the problem of our interest,
in this section, we will study the behavior of a system made
of two communicating parties, as in Fig. 1: a Producer P and
a Consumer C, where P sends one or more messages at a
time to C through a shared FIFO queue with L slots.
The basic assumptions of the model are that P and C can

work in parallel and the the cost of inspecting the shared state
(e.g. to ascertain the number of messages in the queue) is
negligible if compared with the cost of all other operations
that they must perform. These operations include the process-
ing of the messages, sending and receiving notifications,
going to sleep, waking up and so on. These assumptions are
typically true in VM environments, where P and C are two
threads that live on the opposite sides of a VM boundary in a
multi-core system. In this environment, accessing shared
memory is much cheaper than, e.g. sending notifications.1 On
the contrary, non-virtualized I/O where either the producer
(for reception) or the consumer (for transmission) is imple-
mented as part of a peripheral device, does not perfectly

R Producer Consumer

FIGURE 1. System model. Producer and consumer exchange mes-
sages through a queue, blocking, sleeping or busy waiting when
full/empty, and possibly exchanging notifications to wake up the
blocked peer. The producer receives request to produce new mes-
sages from a request queue R.

1Note that at very high message rates (say, several tens of millions of mes-
sages per second) the costs of accessing the shared memory can no longer be
neglected, since the time spent producing and consuming each message
becomes comparable to the time spent stalling on cache misses. Such scen-
arios are out of the scope of this paper.
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match this model. In fact, the peripherals can only access
memory using relatively expensive DMA operations that go
through the PCIe bus. Moreover, P can block and packets are
never dropped when the FIFO is full (packets may still be
dropped in the stages that come before P and after C, but this
activities are outside of our model). This is typically true for
the VM/backend boundaries we are interested in, but it is
conspicuously false if we map P to a network interface. For
this reason, models such as [12], that were developed in the
past for hardware-based interrupt and polling, do not transfer
easily to virtualized environments and new models, such as
the one propose in this work, need to be studied.
In our model, because of the assumptions on threading and

the cost of shared memory operations, many situations may
arise in which P and C are able to work in parallel without
incurring any synchronization cost. Whenever C has finished
processing the last message from the queue, it can inspect the
queue again and immediately see if new messages have
become available, in which case it can process them right
away. Similarly, whenever P has finished producing a mes-
sage that has filled the queue, it can look again and see if C
has freed up some space in the meantime, allowing P to pro-
duce some more messages. Each message that P produces
keeps C active for some more time, in turn giving more time
to P to produce more messages. In this way, P and C can sus-
tain each other for long.
If their speed does not match, however, the faster party

will eventually run out of work and will have to wait for the
slower one. C cannot proceed if it finds an empty queue after
the consumption of the last message, and dually P cannot pro-
ceed if it finds a full queue. In these cases, the parties must
take special actions to find out when their activity is pos-
sible/needed again. We consider three kinds of special
actions:

• polling by busy waiting, continuously checking the
state of the queue without leaving the CPU core to any
other task;

• polling by sleeping for a fixed amount of time, pos-
sibly repeatedly, if nothing has changed after the wake
up;

• blocking (yielding the CPU core to other tasks) and
asking for an explicit notification from the other party.

Busy waiting can waste large amounts of CPU cycles when
there is no communication. Notifications on the other hand
involve extra work to be sent and received, and may be deliv-
ered with some delay. Sleeping, finally, may increase the
latency of messages that arrive at the wrong time.
In our model, P tries to produce a new message as soon as

it receives a new request from a private, infinite queue R.
Once started, however, an operation cannot be interrupted.
Therefore, requests may queue up in R since P may be busy
serving a previous request, or it may be inactive (either

blocked or sleeping) because it had previously seen a full
queue, or it may be busy sending a notification to C. The
main purpose of this additional queue is to decouple the time
when new messages ‘should be produced’ from the time they
are actually produced when the other communication activ-
ities of P are taken into account.
Ideally, we would like our system to process messages at a

rate set by the slowest of the two parties, and with the min-
imum possible latency and energy per message. As we will
see, actual performance may be very far from our expecta-
tions and from optimal values.
Before starting our analysis, we define below the para-

meters used to model the system (see Table 1).
We measure the cost (i.e. the amount of work) of the vari-

ous operations in clock cycles rather than time. This will ease
reasoning about efficiency when our system has the option to
use different clock speeds to achieve a given throughput.
Some parameter-specific additional assumptions: (i) all the

time spent in SC and SP is actual work that the CPU must per-
form to complete the notification and schedule the notified task;
(ii) the sleep cost YE , which is a system-dependent parameter, is
also the minimum length of any sleep interval (YC or YP).
Throughput, energy and latency all depend on the pattern

of requests coming to the producer. For throughput and
energy measurement, we assume greedy regimes, where R is
never empty, which means that the producer generates new
messages continuously, and we observe the corresponding
values at regime.
Regarding latency, we observe the time elapsed between

the moment a request reaches the extraction point of the R
queue and the moment the same request is served by C, for
any possible pattern of previous requests coming from R. The
rationale of this definition is to study how much service delay
a latency-sensitive request can experience, especially when the
system is under load—e.g. requests arriving on R at high rate.

TABLE 1. The parameters used in the analysis.

L The length of the queue
WP Cost for P to process one message and enqueue it
WC Cost for C to dequeue one message and process it
kP Threshold used by P to notify C. When C is blocked and P

queues a message, a notification is sent when the queue
reaches kP messages (typically k 1P = )

kC Threshold used by C to notify P (notifications are sent when
kC slots are available)

NP The cost for P to notify C about a queue state change
NC The cost for C to notify P about a queue state change
SP The cost for P to start after a notification from C
SC The cost for C to start after a notification from P
YC The length of the sleep interval for C
YP The length of the sleep interval for P
YE The cost of a sleep operation
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The combinations of synchronization methods and para-
meters can give rise to a large number of operating regimes,
which we describe next. As we will see, some regimes are
more favorable than others, so we will try to determine the
conditions that cause the system operate in a given regime x,
and, for each of them, we will determine (i) the average time
between messages, Tx (the inverse of the throughput); (ii) the
total energy per message Ex (which includes the work of
both P and C); and (iii) an upper bound Dx for the latency (as
defined above) experienced by any request.
To study the evolution of the system, we will draw many

diagrams that show the parallel activities of P and C over
time, using the following symbols:

Symbol Description

producer processing a message
consumer processing a message
producer busy waiting
consumer busy waiting
producer sleeping
consumer sleeping
producer sending a notification
consumer receiving a notification
consumer sending a notification
producer receiving a notification

The length of the symbol measures the time spent by P or
C in the corresponding activity.
For latency measurements, we focus on a single message

and use the following additional symbols:

Symbol Description

message at extraction point of R/leaves the system
producer processing the selected message
consumer processing the selected message

2.1. Polling by busy waiting

When the system uses busy waiting (BW), P and C are
always active, and the slowest of the two spins for the other
to be ready. On each message, this requires on average a
number of cycles W WP C-∣ ∣ equal to the difference in pro-
cessing work between the two parties.
In order to compute the latency as defined in Section 2, we

consider all the possible states the system can be when a
request arrives at the extraction point of R, and find the one
that has the worst latency.
An example of evolution of the system over time for

the case W WC P< is shown below, with rectangles repre-
senting processing and the two vertical arrows

representing the worst case service latency, where the
request arrives immediately after P has started to serve a

previous request.

P: . . . . . .

C: . . . . . .

In case (W WP C< ), the worst case latency has to take into
account the time needed by C to process the L messages
already in the queue. Hence, we have
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In the BW regime, throughput and latency are optimal, with
latency only depending on the processing times and the
length of the shared queue.

2.2. Polling by sleeping

Here we assume that P and C synchronize by going to sleep
for a fixed amount of time: YC units of time for the consumer
and YP for the producer. We can identify three greedy regimes
depending on whether the producer processes messages faster
or than the consumer or not, and also depending on whether
the queue between P and C is sufficiently long to absorb the
sleep times YC and YP.
When the queue is sufficiently long, the slowest party is

always actively working, and the system throughput only
depends on its processing time. The fastest party instead peri-
odically sleeps, waiting for its peer to catch up and make
more work available. If the fastest party sleeps for too long,
however, also the slowest one will run out of work and sleep,
so that the system works at reduced throughput.
In our model, the system may be in one of the three operat-

ing regimes, depending on the relative size of the system
parameters. The conditions to check can be grouped in three
inequalities, whose possible states are summarized in Table 2
together with a corresponding acronym. Each regime corre-
sponds to a different combination of the inequality condi-
tions, and it is identified by an acronym (sleeping fast

TABLE 2. Conditions for the sleeping-based regimes (‘−’ means
‘don’t care’). Detailed explanations are in Sections 2.2.1–2.2.3.

L W W1 P C( - ) - L W W1 C P( - ) -

W WC P< YC> − sFC
YC< − sLS

W WC P> − YP< sLS
− YP> sFP
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consumer (sFC), sleeping fast producer (sFP), long sleeps
(sLS)) which is explained in the following sections.
To find the worst service latency for each of the three

regimes, all the possible internal states of the system must be
examined, which means considering all the allowed combina-
tions of P and C being active or sleeping and the number of
messages in the queue. In particular, if a request arrives when
the system is idle, independently of the regime, the upper bound
DsI for the latency can be derived from the following diagram:

P: . . . . . .

C: . . . . . .

where the request arrives right after P starts to sleep, and C
starts to sleep right before the request is published in the
queue. Hence, we have

D Y W Y W . 2sI P P C C£ + + + ( )

This formula will be useful to describe the upper bound latency
for sFC and sFP, as described in Sections 2.2.1 and 2.2.2.

2.2.1. Sleeping fast consumer
If P is slower than C (i.e. W WC P< ), C eventually empties the
queue and goes to sleep for YC cycles. Since the sleep interval is
not too long (i.e. Y L W W1C P C< ( - ) - ), C never allows P to
fill up the queue, so that P can work at its maximum rate, produ-
cing a packet every WP cycles. Each time C wakes up, it quickly
empties the queue and goes to sleep. The evolution of the sys-
tem over time is shown below, with horizontal arrows represent-
ing sleeps.

P: . . . . . .

C: . . . . . .

While P is always active, C alternatively consumes a batch
of messages and sleeps. The batch size is generally not con-
stant, but oscillating between two consecutive values. If WC,
WP and YC are rational numbers, the evolution is periodic. If
nC is the number of messages processed by C in a multiple of
the period, and hC the number of sleeps in the same interval,
then b n

h
C

C
= is the average batch size, and we can write

n W n W h Y , 3C P C C C C= + ( )

from which we get b n

h

Y

W W
C

C

C

P C
= =

-
. The batch size oscil-

lates between b⌊ ⌋ and b⌈ ⌉, depending on how P and C inter-

leave during the batch. Knowing b we can determine EsFC,
considering that the sleep cost is amortized over a batch of b
messages on average.
If W YP P³ , the worst case service latency for sFC shows

up with a greedy input pattern, since the request has to wait
an additional YC before being served by C. Otherwise, if
W YP P£ , the worst situation corresponds to the case when
the system is idle. In formulas, we have

T W

E W W
Y

b
D D W Y W

,

,

max , 2 . 4

sFC P

sFC P C
E

sFC sI P C C

=

= + +

£ ( + + ) ( )

Throughput is optimal because the system is processing mes-
sages at the rate of the slowest party (P). Increasing YC

reduces the energy, but increases maximum latency, so a
trade-off is necessary. In any case, YC cannot be increased too
much, to prevent P from fill up the queue and sleep.

2.2.2. Sleeping fast producer
If W WP C< , we have a regime similar to sFC, but with the
roles of P and C reversed. P is faster, so it eventually fills up
the queue and goes to sleep for YP cycles. Since the sleep
interval is short enough (i.e. Y L W W1P C P< ( - ) - ), C is
never able to empty the queue, and can work at its maximum
rate. In this regime, C is always active, while P alternatively
produces a batch of messages and sleeps. With a reasoning
similar to the one reported in Section 2.2.1, we can derive the
average batch size b Y

W W
P

C P
=

-
and write TsFP and EsFP.

Note that as WP approaches WC, the batch b grows to infin-
ity in both sFC and sFP, and P and C proceed in lockstep at
the ideal rate of one message every W WP C= cycles.
The worst case service latency, depending on the relative

size of parameters, may show up when the system is idle or
when a request has to wait for C to process the L packets
already in the queue. The latter case happens when
Y Y LWP C C+ < . Hence we have

D D L Wmax , 1 . 5sFP sI C£ ( ( + ) ) ( )

Also in the sFP regime throughput is optimal, and energy
decreases as YP increases. If the latency is bounded by
L W1 C( + ) , there is no dependency on YP and we can choose
its value as the maximum one that does not cause C to sleep.
Otherwise, YP should be limited to bound latency as needed.

2.2.3. Long sleeps
If the faster party sleeps for too long, also the slower one will
run out of work and sleep. This clearly means that the
throughput will not be optimal as it is for sFC and sFP, i.e.
T WsLS P³ if W WC P< and T WsLS C³ if W WP C< .

As confirmed by our simulations, sLS cause the system evo-
lution to be quite complex, although periodic. Closed formulas
for TsLS and EsLS are hard to find and probably not much use-
ful. Instead, we provide some upper and lower bounds by con-
sidering the best and the worst possible scenarios.
Throughput bounds for sLS: The best scenario is the

one that maximizes the time for which P and C work in
parallel, and the sleeps are perfectly aligned to make the
system process the same number of packets in each peri-
od, as shown in the figure below for the W WC P< case.
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P: . . . . . .

C: . . . . . .

L m

m L

In this scenario, the system processes L m+ messages per

period, with m L W W

W W

1 C P

P C
= é

êê
ù
úú

( - ) -
-

. The number m is derived

noting that P starts filling the queue with a delay WC and then
keeps working in parallel with C until C empties the queue.
Hence, we have

T
L m W Y

L m
W

Y

L m
. 6sLS

C C
C

C³
( + ) +

+
= +

+
( )

If W WP C< , we can write an analogous expression for m
and a lower bound for TsLS by simply swapping P and C.
In the worst case scenario, P and C never work in parallel,

alternatively filling and emptying the whole queue in each
period. This can happen only if Y L W W1C P C> ( - ) - and
Y L W W1P C P> ( - ) - (cf. Table 2). One of the two parties
sleeps only once per batch, while the other may sleep more
times. As a consequence, the length of the period is not larger
than Y LW Y LWmax ,P P C C{ + + }, L packets are processed
during each period and we have

T W
Y

L
W

Y

L
max , . 7sLS P

P
C

C{ }£ + + ( )

Equations (6) and (7) show that inter-message distance tends
to increase linearly with the sleep interval length, and that, in the
worst case, the sleep interval is amortized over L messages.
Energy lower bound for sLS: In Sections 2.2.1 and 2.2.2,

we have seen that the most energy-efficient sleep length is
Y L W W1C P C

opt = ( - ) - when W WC P< and Y L 1P
opt = ( - )

W WC P- when W WP C< . While lower and upper bounds for
EsLS could be obtained with techniques similar to the ones
used for TsLS, for our purposes, it is enough to show that
E E YsLS sFC C

opt> ( ) and that E E YsLS sFP P
opt> ( ). This would

mean that the per-message energy for sLS is worse than the
best possible energy in sFC (or sFP), and consequently that
the energy efficiency of the sleeping mechanism is optimal
when the sleep interval of the faster party is the largest one
that still prevents the slower one to sleep.
Focusing on the case W WC P< , we observe that the maximum

batch size for C is L x+ ⌈ ⌉, with x L W W

W W

1 C P

P C
= ( - ) -

-
, as described

in the throughput lower bound scenario above. The maximum
batch size for P is instead L x2 + ⌈ ⌉, corresponding to the follow-
ing time diagram:

P: . . . . . .

C: . . . . . .

L m L

L m

which is similar to the previous one, with the only difference
that P is not sleeping when C starts. To derive a lower bound

for EsLS, we compute the energy assuming that both P and C
are able to process their maximum batch each time they sleep,
even if this is not actually possible. Thus, we can write

E W W
Y

L x

Y

L x2
. 8sLS P C

E E> + +
+

+
+

( )
⌈ ⌉ ⌈ ⌉

Considering that E Y W WsFC C P C
Y

L x
opt E( ) = + +

+
(as per

Equation (4)), it is enough to prove that following inequality
holds

x
L x L x L x

0,
1 1

2

1
, 9" ³

+
<

+
+

+
( )

⌈ ⌉ ⌈ ⌉

but this can be easily shown to be always true by means of
some algebraic manipulations.
Applying a specular reasoning to the case W WP C< , it can

be inferred that E E YsLS sFP P
opt> ( ). In conclusion, we have

shown that the sLS regime is not convenient in terms of
energy efficiency. This is a useful information, because sLS
is also not optimal for throughput, so that excluding it from
our solution space will not result into a trade-off.
Latency upper bound for sLS: In the worst case, a request

arrives at the extraction point of R when P has just started filling
the last element in the queue, while C is sleeping (possible because
Y L W W1C P C> ( - ) - ).

P: . . . . . .

C: . . . . . .

hpYp

Yc hcYc

L − 1

L

P has to wait for C to wake up and empty the queue (pos-
sible because Y L W W1P C P> ( - ) - ), before it can produce
the request. From the diagram, it is clear that
Y Y h 1P C P³ =⟹ (otherwise this would not be the worst
case). When P wakes up and serves the request, in the worst
case, C misses the new event and pays an additional sleep. If
we ignore that P and C sleep together for a while before C
starts draining the queue, pretending the two sleeps are serial-
ized, then we have D Y Y W Y WsLS C P P C C£ + + + + when
Y YP C³ . Similarly, Y Y h 1C P C³ =⟹ . When C wakes up
after the queue has been emptied, it will find the request pro-
duced and can serve it, hence D Y LW Y WsLS C C C C£ + + + .
Using the inequality Y L W W1P C P> ( - ) - , we can upper
bound the term LWC . In conclusion, independently on the
relative size of YC and YP we have

D Y Y W W2 2 . 10sLS C P P C£ + + + ( )

As a particular yet interesting case, if Y YP C» then we
have h h 1P C= = , which means that the worst case service
delay is bounded by only two times the sleep interval:

D Y W W2 . 11sLS P C£ + + ( )
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2.3. Notification-based regimes

When the system uses notifications, we can identify five differ-
ent regimes. Similar to what we described in Section 2.2, the
regime depends on the relative size of WP and WC and also on
whether the queue is able to absorb the startup times SP and SC .
With a sufficiently long queue, also in this case, the slow-

est party will determine the overall throughput, but the need
to periodically stop and restart using notifications will add an
overhead (which can be significantly large) to the average
message processing time.
When the queue becomes too short to absorb the notifica-

tion latency, one party may block despite being slower than
the other one, significantly reducing throughput.
Two non-intuitive results of our analysis are that (i) the sys-

tem’s performance can be improved by slightly slowing down
the fastest party, in order to reduce the overhead of notifications,
and (ii) the threshold for notifications has opposite effects
depending on whether we are in a long or short-queue regime.
As a consequence, correctly identifying the operating

regime is fundamental for properly tuning (either manually,
or automatically) the system’s parameters.
Similar to what we presented in Section 2.2, the five operat-

ing regimes (notified fast consumer (nFC), notified fast producer
(nFP), slow consumer startup (nSCS), slow producer startup
(nSPS) and slow producer and consumer startup (nSS)) are told
apart by means of three inequalities, summarized in Table 3.

2.3.1. Notified fast consumer
When C is faster than P (i.e. W WC P< ), C will start after the
notification from P and eventually drain the queue and block. If
C starts fast enough (i.e. S L k W WC P P C< ( - ) - ), the queue
will never become full and, therefore, P will never block. The
periodic evolution of the system over time is shown below,
with triangles indicating notifications and wake-ups.

P: . . . . . .

C: . . . . . .

kP

b

In this regime, P is always active, and periodically gener-
ates notifications when C is blocked and the queue contains
kP messages. The number of messages processed by C (and

P) in each round is b kS k W

W W P
1C P C

P C
= ê

ëê
ú
ûú
++ ( - )

-
. The number b is

derived noting that C starts processing with an initial delay
SC , and then catches up draining the queue a little bit at a
time. Knowing b, it is easy to determine TnFC and EnFC, con-
sidering that the notifications and startup costs are amortized
over batches of b messages:

T W
N

b

E W W
N S

b

;

. 12

nFC P
P

nFC P C
P C

= +

= + +
+

( )

A large b improves the performance of the system, and since
b kP³ we would like kP to be large. However, systems nor-
mally use k 1P = for two reasons: a larger kP often increases
the latency of the system and more importantly, P often can-
not tell whether there will be more messages to send after the
current one.
Assuming k 1P = , the worst case delay experienced by a

request at the head of R includes the cost of a producer notifi-
cation and a consumer startup. When m 1= , in particular, the
request has to wait for two producer notifications before
being served, as illustrated in the following diagram:

P: . . . . . .

C: . . . . . .

so that we have

D W N S W2 2 . 13nFC P P C C£ + + + ( )

2.3.2. Notified fast producer
When W WC P> , we can identify a different regime, which we
call nFP (fast producer), which behaves like nFC but with
the roles of P and C reversed. P is faster than C, so the queue
eventually fills up and P blocks. The notification from C to
restart P is sent when there are kC empty slots in the queue. If
P starts fast enough (i.e. S L k W WP C C P< ( - ) - )), it refills
the queue before it becomes empty and, therefore, C never
blocks.
We omit the TnFP and EnFP formulas for brevity, but the ana-

lysis and graphs in the rest of the article also cover this regime.
The latency analysis is more interesting, since a request at

the head of R has to wait for C to process the L messages
already in the shared queue; since C periodically notifies P,
the latency is delayed by a number of notifications that is pro-
portional to L and inversely proportional to the batch b:

D W LW N
L k

b
2 1 . 14nFP P C C

C£ + +
æ
è
ççç

+
ê

ë
ê
ê

- ú

û
ú
ú

ö
ø
÷÷÷ ( )

2.3.3. Slow consumer startup
Regime nSCS differs from nFC in that C is fast but has a
long startup delay, so P can fill the queue before C has a

TABLE 3. Conditions for the notification-based regimes (‘−’ means
‘don’t care’). Detailed explanations are in Sections 2.3.1–2.3.5.

L k W WP P C( - ) - L k W WC C P( - ) -

W WC P< SC> − nFC
SC< SP> nSCS

W WC P> SC> SP< nSPS
− SP> nFP

− SC< SP< nSS
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chance to remove the first message. This forces P to block
until kC messages are drained and C generates a notification.
The situation then repeats periodically once C has drained
the queue, as shown by the following diagram:

P: . . . . . .

C: . . . . . .

L − kP

kC

m kP

L − kC
m

The cycle contains L m+ messages, where

m
L k W S W

W W
1. 15C C P P

P C
=

ê

ë
ê
ê
( - ) - ( + )

-

ú

û
ú
ú
+ ( )

We omit the formulas for TnSCS, EnSCS and DnSCS as they are
long and not particularly useful. The worst case latency ana-
lysis reported in Section 2.3.5 is also also valid for nSCS. In
any case, important insights on throughput for this regime
come from the analysis of the above diagram and
Equation (15). The slow party (P) has to wait because of a
large SC , and increasing kC reduces m, thus extending the idle
time for P and increasing the amortized cost of notifications
and startups.
Note that kC has opposite effects on performance in the

two regimes nSCS and nFP, due to the slow startup time: in
nFP, a large kC improves performance, whereas in nSCS, we
should use a small kC.

2.3.4. Slow producer startup
This regime is symmetric to nSCS, and it appears when the
producer is faster than the consumer, but slow to respond to a
notification. For brevity, we omit the formulas, which be
obtained from the nSCS case by swapping every P with C.
The long startup time leads to different choices for the param-
eter kP: in regime nFC, we aim for a large kP, whereas in
regime SPS, we should use a small value for that parameter.

2.3.5. Slow producer and consumer startup
This regime combines the previous two. P and C alternate
operation due to the large startup delays, and individual speeds
only matter in relation to the startup times. An example of evo-
lution over time is shown in the following diagram.

P: . . . . . .

C: . . . . . .

L − kC

L − kP

kC

kP

Each round in this case comprises exactly L messages, and
TnSS and EnSS have a relatively simple form:

T
k W k W N S N S

L

E W W
N S N S

L

;

. 16

nSS
P P C C P P C C

nSS P C
P P C C

=
+ + + + +

= + +
+ + +

( )

Just looking at the equation, it might seem that there is a
good amortization of the notifications and wake-up costs
(once per L messages). However, the timing diagram shows
clearly that P and C alternate their operation, making the
throughput less than half of that of the fastest party.
In the worst case, latency scenario for nSS, assuming k 1P = ,

a request arrives at the extraction point of R when P has just
started producing the last available slot in the queue, while C is
slowly starting up. Once C wakes up, it starts draining the queue,
notifying P after kC messages. When P wakes up, it produces the
request and notifies C that serves the request as soon as it wakes
up again.

P: . . . . . .

C: . . . . . .

kC L − kC

It is clear from the diagram that the delay experienced by
the sensitive request includes all the notification (NP, NC) and
startup times (SP, SC). The exact formula for nSS latency is
not shown, as it is more useful to present an upper bound that
is also valid for the nSCS and nSPS regimes

D W k W S N N S2 1 2 . 17SQ P C C C C P P£ + ( + ) + + + + ( )

In general, regimes with short queues are unfavorable and
we should avoid operating the system in them.

3. ANALYSIS OF THROUGHPUT, LATENCY AND
EFFICIENCY

Using the equations for Tx, Ex and Dx derived in Section 2,
we now explore how throughput, efficiency and latency
change depending on the parameters, for each of the three
synchronization mechanisms modeled (busy waiting, sleep-
ing, notifications). We also compare the mechanisms against
each other, highlighting advantages and drawbacks.

3.1. Throughput

We start our analysis looking at the average time between
messages, Tx. Since busy waiting (BW) is optimal for this per-
formance indicator, we first compare the other two mechan-
isms against BW.

3.1.1. Throughput for notification regimes
In Fig. 2, we plot Tx for notification-based regimes, for a
given WC (consumer processing time) and variable WP (produ-
cer processing time). The region to the left of W WP C= corre-
sponds to a fast producer.
There are three curves of interest here. The dotted line at

the bottom represents the minimum inter-message time,
which is T W Wmax ,BW P C= { }. This corresponds to the best
throughput we can achieve if efficiency is not an issue, and
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can be obtained with busy waiting, i.e. keeping the fastest
party continuously spinning for new opportunities to work.
The next curve (solid line) represents TnFC and TnFP, corre-

sponding to the first two notification regimes. Here the dis-
tance between messages is higher than in the ideal case due
to the effect of notifications and startup times. These are
amortized on the number b of messages per notification; b
changes in a discrete way with the ratio W WP C/ , hence, the
curve has a staircase shape.
It should be noted that depending on the queue size L and

the values of the operating parameters, we cannot guarantee
that the system operates in regimes nFC or nFP. Sections
2.3.3, 2.3.4 and 2.3.5 indicate the conditions for which we
may enter one of the three regimes nSCS, nSPS or nSS, all of
which have a larger inter-message time than nFC and nFP.
Hence, our third curve of interest is labeled TnSS, which

corresponds to W W N L N LP C P C+ + / + / and marks the best
possible performance in regime nSS. Operating curves for
nSCS and nSPS are not shown for the sake of simplicity, but
they lay above TnFC and TnFP, and partially also above TnSS.
It is important to note that performance can jump among

TnFC, TnFP and TnSS even for small variations of the operating
parameters. Hence, it is imperative to either make the region
between the two curves small, or set parameters to minimize
the likelihood of regime changes.
Going back to the analysis of operating regimes, we note

that both nFC and nFP have two different regions, separated
by the vertical dotted lines in the figure. These boundaries
occur when the batch of messages processed on each notifica-
tion reaches the minimum value, respectively, kP and kC. The
fact that kP is usually 1 makes the jump much higher in
regime nFC than in regime nFP.

Since the equations governing the system are completely
symmetric, the curves for a fixed WP and variable WC have a
shape similar to those in Fig. 2. This shows that there are
regions of operation where increasing the processing costs
(WP in nFP, WC in nFC) increases throughput.
While the graphs focus on variations of WP and WC, they

also show the sensitivity of the curves to other parameters.
As an example, the distance among TnFC, TnFP and the optimal
value TBW is bounded by N kC C/ and N kP P/ , so we have
knobs to reduce the gaps. Also, the position of the last big
jump in throughput in regime nFC can be controlled by
increasing SC . This means that all the rest being the same, a
slower wake-up time improves performance.

3.1.2. Throughput for sleeping regimes
In Fig. 3, we plot Tx as a function of YC for sleeping regimes,
assuming W WC P< . While YC is small enough (i.e.
Y L W W1C P C£ ( - ) - ), the curve corresponds to TsFC ,
where the inter-message time is constant and optimal, match-
ing the one achieved with busy polling. This happens because
P works at full speed, never finding the queue full and never
spending time for synchronization.
For larger values of YC , we reach the sLS regime, where the

queue is not able to absorb the sleep interval anymore and P
repeatedly fills the queue and goes to sleep. As explained in
Section 2.2.3, the average distance between packets increases
and the exact dependency from YC is complex. Lower and
upper bound curves (dashed lines) envelope the exact values

TBW

WC

TnSS

WP

T

WCWC −SP
kC

NC
kC

TnFP

kP WC + SC

NP
kP

TnFC

nFP nFP nFC nFC

FIGURE 2. The time for each message as a function of WP, for the
notification-based regimes. The message rate decreases as WP moves
away from WC . The curve for TnSS represent the best case for regime
nSS, actual values may be much larger.

T

C

YE

YC

WP

(L − 1)WP − WC

FIGURE 3. The average time (T) and energy (C) for each message
as a function of YC , for the sleeping-based regimes. The dashed lines
are the lower and upper bounds for T in the region where both P and
C may sleep. T and C have similar shapes, but they do not differ by
a constant value.
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of Tx, obtained by simulations. The upper bound grows lin-
early with slope L1/ , while the lower bound has a smaller
slope, which becomes close to zero as WP tends to WC and
becomes close to L1/ as WP diverges from WC . This means
that the variability (oscillation) of Tx in the sLS regime is lar-
ger when WP and WC are close, and it is smaller otherwise.
If W WC P< , showing how Tx depends from YP is less inter-

esting, because (i) P may never be sleeping, so Tx may not
depend at all from YP; (ii) to stay away from long sleep regimes
we have to make sure YC is small enough so that P never sleeps,
and so we are interested in the dependency from YC .
In the W WP C< case, since the equations for Tx are sym-

metric, it will be useful to study Tx as a function of YP, and
the shapes will be similar to the ones of Fig. 3.
The analysis clearly shows that YC and YP should be chosen

small enough to keep the throughput to the maximum. With
proper tuning of the operating system—to make sure the
sleep timeliness is respected—this can be actually achieved.
Compared with notification-based regimes, sleeping has a

significant advantage in terms of throughput: the slower party
does not need to slow down in order to notify its peer. The
faster party can indeed wake-up autonomously to poll the
queue for new work.

3.2. Efficiency

While busy waiting (BW) has the highest throughput in gen-
eral, its performance may come at a high cost in terms of
CPU usage. In regime BW, the fast party must burn cycles
proportionally to the difference of processing times,
W WC P-∣ ∣ . This can possibly double the total overall cost in
terms of time/cycles, and can have even worse impact on
energy if the fast party has higher energy consumption per
cycle. As an example, the fast party could be an expensive,
dedicated CPU/NIC/controller.
Therefore, it is important to also take into account the total

energy consumption per message, i.e. the values Ex deter-
mined in Section 2. We see that the Ex values have the form
W W XP C+ + , where the additional term X depends on the
operating regime.
Similar to the analysis conducted for throughput, we start

by comparing notifications and sleeping against BW, and then
compare them between each other.

3.2.1. Efficiency for sleeping regimes
Figure 3 shows Ex as a function of YC for sleeping regimes,
assuming W WC P< . For all the YC values smaller than
Y L W W1C

opt
P C= ( - ) - , the plot corresponds to the sFC

regime (EsFC), where P never sleeps and the energy is
inversely proportional to YC , as the cost of each consumer
sleep is amortized over a larger batch. For larger values of YC ,
the system enters the sLS regime, where also P sleeps, and
the shape of EsLS is irregular, roughly following the shape of

TsLS. In any case, energy efficiency in sLS is worse than the
energy in YC

opt, which is, therefore, the optimal sleep value.
For reasons similar to those explained in Section 3.1.2,
describing how Ex depends from YP is not particularly inter-
esting when W WC P< , since we want to stay away from sLS
regimes in any case.
A specular analysis can be done for the case W WP C< ,

since equations describing Ex are symmetrical. In conclusion,
the energy efficiency analysis shows that YP and YC should be
chosen small enough to avoid entering the unfavorable sLS
regimes, but close enough to the optimum value to amortize
the sleep cost as much as possible.
It should be also noted that choosing very distant values

for YP and YC (e.g. different orders of magnitude) is not con-
venient w.r.t. efficiency. If both peers happen to be sleeping,
the one with the shorter sleep interval will need to sleep
many times if it is waiting for the other to wake up and
advance the queue processing; this results into unnecessary
energy consumption. If the sleep intervals are comparable, on
the contrary, one or two sleeps will usually suffice.
It is important to observe that the energy efficiency of

sFP/sFC regimes is always better than the efficiency of BW,
with WP and WC being the same. This can be evinced from
Equations (1) and (4), noting that both Y

Y
E

C
and Y

Y
E

P
are smaller

than one. A meaningful comparison with notifications can be
done once some estimates for the various parameters are
known. In Section 4.3, we report some measurements for the
sleep cost YE and, in Section 5.2, the notification/startup costs
involved in nFP/nFC regimes that can be taken as a refer-
ence to support the decision process.

3.2.2. Efficiency for notification regimes
In Fig. 4, we show the energy per message in different
regimes. For simplicity, here we use only one graph with
variable WC, having already established that the system is
symmetric and we can repeat the same reasoning for variable
WP. Also in this case, we have three curves of interest, but
they are not as nicely ordered as in Fig. 2.
The curve for BW (solid thin line) is no more the absolute

best in terms of efficiency. This is because the additional term
X in EBW is W WC P-∣ ∣, whereas in other cases the term X is
upper bounded by some constant independent of the differ-
ence W WC P- . As a consequence, the slope of EBW is twice
that of the other curves, and when WC becomes too large (or
more precisely, when W WC P-∣ ∣ becomes large) busy waiting
is the worst option in terms of energy per message.
The energy curve (solid thick in Fig. 4) for regimes nFC

and nFP has the same step-wise behavior as the ones for
inter-message time. The slope is however unitary (it grows as

W Wmax ,P C{ }), and lies within the gray region in the figure
depending on the actual parameters. As the graph shows, the
curves for BW (solid thin) and notifications (solid thick)
regimes may intersect in several points, whose values and
position depend heavily on the actual parameters.
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The shape of the curves and their discontinuities make it
difficult to identify intervals in which one regime is preferable
to another. We can compute them using the equations in
Section 2.3, but these rely on perfect knowledge of the operat-
ing parameters, hence the information is of little practical use.
Comparing the total energy per message in regime BW

with the other regimes, however, can give some useful prac-
tical insight. Busy waiting consumes an extra W WP C-∣ ∣
cycles per message, so it is convenient when the cost is lower
than the extra notification and startup cost, which is N S

b
P C+ in

nFC, N S

b
C P+ in nFP. Since in nFP we have b kC³ and kC is

typically large, it very unlikely that busy waiting can be
energy efficient.
Notifications with short queues: The energy efficiency

when the queue fills up is heavily dependent on the values of
the parameters. Equation (16) for EnSS shows that the extra
term includes all the four startup and notification times instead
of only two of them for EnFC and EnFP. Given that we expect
one of SC , SP to be large, this might be a significant cost.
On the other hand, the energy efficiency of these regimes

is not too bad, because producer and consumer tend to have
significant idle times, and the overheads are amortized over
relatively large batches (e.g. the entire queue size in regime
nSS). This phenomenon is evidenced by the curve EnSS (dot-
ted) in Fig. 4, which also intercepts the others.

3.3. Latency

We now complete our analysis with the latency, using the
upper bounds derived in Section 2. As explained, the worst
case latency is defined as the maximum time that can elapse

from when a request (that we can imagine is latency-sensitive)
arrives at the extraction point of the R queue to when the
same request is serviced by the consumer, considering all the
possible input patterns for R. For each regime, we have
defined the worst case situation that can happen with the cor-
responding relative sizes of parameters (as specified in
Tables 2 and 3), not assuming that R requests arrive greedily,
and we have expressed an upper bound for the latency.
The BW regime, which is optimal for throughput, is also

optimal in terms of latency, that is D Dx BW³ . This happens
because P and C do not have fixed-cost synchronization
overheads (i.e. notifications, startups, sleeps); P can actually
produce the high-priority request as soon as there is an avail-
able slot and C can consume it as soon as it has processed all
the messages already pending in the queue. It is worth
remarking that when W WC P> the latency-sensitive request
needs to wait for C to process up to L elements before it can
be serviced; although this delay (LWC) can be considerable in
practice, no strategy can do better under our FIFO assump-
tion. We, therefore, compare the sleeping and notification
mechanisms against BW, in order to see how these mechan-
isms introduce additional delays that make latency move
away from the optimum.

3.3.1. Latency for notification regimes
The Dx inequalities and the evolution diagrams reported in
Section 2.3 show that for almost all the notification regimes
(nFC, nSCS, nSPS, nSS), the worst case service delay is upper
bounded by some linear combination of the notification/
startup parameters (NP, NC, SP, SC). Moreover, kC has nega-
tive impact in short-queue regimes (nSPS, nSCS, nSS), since
it delays the consumer notification that P needs to wake up
and produce the request at the head of R. In particular, the
nSS regime includes all these latency contributes, and so it is
the most unfavorable one among the ones listed.
The fast producer regime (nFP) deserves a separate ana-

lysis. Since W WP C< , the high-priority request may need to
wait C to consume L messages before it can be served. This
is not an issue by itself, because also the busy waiting (opti-
mal) mechanisms have the same limitation. However, C is
slowed down by the notifications that it needs to send in
order to wake up P periodically. The number of notifications
is not constant, but depends on the queue length and the
batch size. The inequality (14) implies that L

kC
notifications

are needed in the worst case. Since DnFP is not bounded by
a linear combination of the parameters, like for the other
notification regimes, is not possible to tell in general
whether nFP is more favorable than nSS or not. It is useful
to note that kC improves latency in nFP, while it has the
opposite effect with short queues.
As already stated previously, in a real system, the para-

meters are not exactly constant, and thus it is usually difficult
to guarantee that the system never ends up (even temporarily)

EBW

2WP

EnSS

WC

C

WP

NC+SP
kC

NP +SC
kP

FIGURE 4. The total energy per-message as a function of WC .
There may be regions where busy waiting (thin line) is more energy
efficient than notifications (thick and dotted lines).
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in a short-queue regime. As a result, the estimation of the
worst case service latency of a producer–consumer system
based on the notification mechanism should take into account
the latency bounds for both nSS and nFP.

3.3.2. Latency for sleeping regimes
The Dx inequalities presented in Section 2.2 for sFC and sLS
illustrate that the worst case delay for sleeping regimes is upper
bounded by a linear combination of the sleep intervals, namely
YC and YP. As a notable case, we have also seen that if Y YP C»
then the worst case latency does not exceed two times the sleep
interval, plus the time necessary to process the request. The lat-
ter result is particularly interesting, because choosing the sleep
intervals similar to each other is also a good choice in terms of
energy efficiency, as discussed in Section 3.2.
The sFP regime requires a separate discussion, similar to

the corresponding fast producer notification regime (nFP).
The worst case latency for sFP is optimal, because the
latency-sensitive request has to wait for C to consume all
messages already in the queue, which is not distinguishable
from the behavior of BW. In other words, a larger YP does
not impact latency, as long as C does not sleep (so that the
system does not enter the sLS regime).
Compared with BW, the latency of the sleeping mechanism

is worse (idle system, sFC, sLS), but it can be kept under con-
trol by properly limiting YC and YP. A comparison between
the notifications and sleeping mechanisms can be done with
some estimates of the notification parameters and the sleep
cost YE , using the Dx upper bounds. Sleeping can be conveni-
ent if the YC and YP interval values can be chosen sufficiently
small w.r.t. the notification parameters.

4. ESTIMATING THE SYSTEM PARAMETERS

The best mechanism for a given set of requirements—
throughput, energy and latency—can be chosen once the
designer has some estimation of the system parameters, which
heavily depend on the producer and consumer implementa-
tion, the host machine hardware and the O.S. implementation.
In this section, we describe how these parameters can be
obtained in a representative case. Since our work is primarily
focused on virtualization environments, we have chosen to
experiment with VirtIO systems, as illustrated in Section 4.2.

4.1. Description of the test environment

For all the experiments presented in this article, we have con-
figured the testbed to minimize the noise introduced by the O.
S. scheduler and by the power management features of the
modern CPUs: this includes the frequency scaling and the
processor C-states (which are a significant source of latency,
as several microseconds may be necessary for a core to
recover from the deepest C-states). Our reference test

platform has an Intel Core i7–3770 K CPU at 3.50 GHz (4
cores/8 threads), 8 GB RAM DDR3 at 1.33 GHz, and runs
Linux 4.6.4. A recent version of the QEMU hypervisor (git
master 9a48e3, June 2016) is used to run the guest VM using
KVM hardware-assisted virtualization. The guest is given 1
vCPU and runs Linux 4.6.4. In order to improve the reprodu-
cibility of results, all the tests have been run with the follow-
ing configuration (except when explicitly noted):

(1) No load on the machine other than essential operat-
ing system services.

(2) Dynamic frequency scaling disabled, so that all the
CPUs run at maximum frequency.

(3) Sleeping C-states disabled, that is all the CPUs in C0
all the time; the host O.S. never issues the halt
instruction to pause the CPU, even when there is no
active process to schedule. This is not the default
behavior of Linux, and requires the idle=poll
boot parameter to be specified.

(4) Hyperthreading and turbo mode are disabled.
(5) Each thread part of the experiment is pinned to a dif-

ferent physical core.
(6) KVM halt polling2 disabled by setting the

halt_poll_ns module parameter to 0. This is
necessary to isolate the CPU utilization related to our
producer/consumer system, not including the cycles
wasted by KVM because of this optimization that can
take up to 60% of the CPU time in some pathological
cases.

4.2. Description of the system under study

VirtIO [10] is a widely used standard and API for I/O paravir-
tualization; most of Hypervisor software (QEMU, bhyve,
VirtualBox, Xen, etc.) and guest operating systems (Linux,
FreeBSD, Windows) are rapidly converging to VirtIO as the
default I/O infrastructure for VMs. Taking it as a reference for
experimentation is meant to maximize the impact of our work.
VirtIO is a generic producer–consumer API that allows a

guest O.S. to exchange data with its hypervisor (also referred
as the host). It provides a guest-side API and an hypervisor-
side API that are used by the guest and the hypervisor,
respectively, to access VirtIO data structures. The main data
structure is called virtqueue and is implemented in a portion
of memory shared between the guest and the hypervisor; it is
composed of two separate circular arrays (rings): the avail
ring and the used ring.3 A guest driver inserts buffers (in the

2A feature [13] recently added to KVM that lets the vCPU thread polling
for a while when the guest issues an halt instruction, instead of scheduling
out immediately.

3More precisely, a virtqueue also includes a descriptor table, which is an
array containing buffer descriptors. Each slot in the avail and used ring just
references the head of a chain of descriptors (e.g. a scatter–gather list).
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form of scatter–gather lists) in the virtqueue avail ring, where
the hypervisor can extract them (in FIFO order). Once the
hypervisor has consumed a buffer, it pushes it to the used
ring, where the guest can recover them (and possibly do some
cleanup). Each virtqueue has a mechanism to let the guest
send a notification to the hypervisor and vice versa. A VirtIO
device may be composed of one or more virtqueues. As an
example, the VirtIO network device has at least a virtqueue
for packet transmission and another one for packet reception.
To ease measurements and experimentation, we implemen-

ted an ad hoc VirtIO producer/consumer device for QEMU/
KVM on Linux, referred as virtio-pc in the following. The
device has a single virtqueue, where only the producer and
consumer processing is emulated (by means of a program-
mable busy wait); all the other operations involving the virt-
queue are performed using the real VirtIO API. We have
chosen to use the QEMU/KVM Linux hypervisor and Linux
as a guest O.S. for a valid reason: they provide the most com-
plete, updated and optimized implementation of both VirtIO
APIs. In particular, the QEMU/KVM hypervisor supports a
Linux-specific high-performance in-kernel implementation of
the VirtIO hypervisor-side API, known as vhost. With vhost,
the hypervisor-side implementation of a VirtIO device runs in
a dedicated kernel thread, without requiring any intervention
from the associated user-space QEMU process.4 The guest
can write into a VirtIO device register to notify the vhost
thread; the register access is intercepted in host kernel space
by the KVM kernel module, which wakes up the vhost thread
without the need to switch to user-space. If the vhost thread
is scheduled to run on a different core than the one issuing
the notification, an Inter Processor Interrupt (IPI) must be
sent to the destination core. Similarly, the vhost thread can
notify the guest directly instructing the KVM module to inject
an interrupt.
Our producer/consumer experimentation framework is

available as open source software at https://github.com/
vmaffione/qemu/tree/virtio-pc, and includes the following
components:

• The driver for Linux guests (producer.c), exported
to user-space as as a character device (/dev/
virtio-pc), where the producer (P) code runs
entirely in kernel space, in the context of an ioctl() sys-
tem call, which returns only when a test run is finished.
P is implemented by means of the Linux guest-side
VirtIO API.

• The support in the QEMU hypervisor necessary to
expose the VirtIO device to the guest O.S. as a PCI
device.

• The hypervisor device implementation (consumer-
vhost.c), where the consumer (C) code runs in the
context of a vhost thread.

Note that P and C run in two different threads, consistently
with our model. P and C can be configured to set different
values for the WP, WC, YP and YC parameters, and to choose
between the three strategies (notifications, sleeping, busy
waiting). In this way, once the WP and WC and DMAX para-
meters have been fixed, we can experiment with the different
strategies to optimize an objective function (cf. Section 7). It
is worth noting that there is an implicit lower bound for the
validity of the WP and WC parameters, related to the imple-
mentation limits of the Linux guest-side and vhost
hypervisor-side of the VirtIO API we are using. Our measure-
ments show that the virtqueue cannot process more than 8
millions items per second on our testing platform, even when
all costly notifications are suppressed. As a consequence, it is
not meaningful to carry out experiments where WP and WC are
<125 ns. To stay safe and avoid possible border effects, we
will use values equal or greater than 200 ns.

4.2.1. Code instrumentation for time measurements
C is able to compute latencies which include both the W WP C/
costs and the queuing delay. To achieve this, P stores a time-
stamp inside each buffer passed to C, so that the latter can
take its timestamp at the end of its processing cycle and com-
pute the difference. A distribution of latencies gets collected
and the 98th percentile is computed as the representative of
the worst case latency.5 Timestamps are samples using the
x86 TSC register, which is incremented at constant rate and
is consistent across all the cores. However, TSC values read
from the guest O.S. differ by a constant offset from the ones
read on the bare metal. This TSC offset must be taken into
account when computing time difference; it can be obtained
using the Linux ftrace [14] tracing system, once the kvm/
kvm_write_tsc_offset tracepoint is enabled.
To validate our model correctly (and cross-check the mea-

surements), virtio-pc has also been instrumented to measure
all of the parameters we take into consideration. This is
important because sometimes the measured value differs from
the nominal one; for example, this is the case for YC and YP in
our testbed. In the following, we always use the measured
values rather than the nominal ones. Parameter estimation is
done both online and offline: WP, NP and YP are estimated by
P with running averages; WC , NC , YC are measured by C in a
similar way; SC is computed by C using timestamps put by P
in the first packet of each batch of C (similar to how the
latencies are computed).
Finally, since kC is greater than one, SP cannot be measured

online. As a part of the instrumentation, both P and C trace4The usual hypervisor-side VirtIO implementation resides in user-space,
which implies continuous transitions between the user-space VirtIO device
implementation code and the kernel-space code which runs guest code using
hardware-assisted virtualization.

5Higher percentiles are pruned to rule out rare large fluctuations due to
interrupts and scheduling.
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some events of interest, that is (i) P publishing a new item in
the shared queue; (ii) C seeing a new item in the shared
queue; (iii) P completing a notification to C; (iv) P blocking
or sleeping (queue full); (v) C completing a notification to P
and (vi) C blocking or sleeping (queue empty). An event is
made up of an event type, a TSC timestamp, and a sequence
number identifying the next item to be produced or con-
sumed. Both P and C store the events in a local large circular
array (216 elements), so that the tracing overhead is negli-
gible. Once a test run terminates, the two event arrays are
accessed offline using the ftrace facility and merged, taking
into account the TSC offset. The merged logs allow us to
examine the whole evolution of the virtio-pc system, and in
particular also to measure an average for SP and all the other
parameters.

4.3. Estimating sleeping costs

Using the sleeping mechanism requires the value of YE to be
measured, since (i) YE determines the energy efficiency; and
(ii) it is a lower bound for YC and YP, i.e. it is the minimum
sleep interval allowed by the system. In order to evaluate YE

and understand the behavior of the sleep primitive in our refer-
ence test environment, we set up an experiment where a process
invokes the nanosleep system call N times in a tight loop,
with a fixed sleep length passed as argument. The number N is
chosen large enough (in the order of 105) to collect meaningful
statistics. By measuring the total duration of the run (N sleeps),
we can compute the average effective sleep interval length,
which is in general higher than the nominal length.
To measure the sleep cost, we used the cpupower monitor

tool (and in particular the Mperf high precision monitor),
which is able to compute, for each CPU, the fraction of time
the CPU is in the C0 state (i.e. actively executing instruc-
tions). When the CPU is not in C0, it is in the C1 shallow
sleep state; for this particular test, differently from what
described in Section 4.1, we used the default value for the
idle boot parameter, so that the O.S. is allowed to put the
CPUs in C1. Since the sleeping process is pinned to a CPU
during the run, and there are no other processes using observ-
able amounts of processing time on that CPU, we can com-
pute YE as the product between the measured average sleep
interval and the fraction of time the CPU is in the state C0.
The run is repeated for different values of the sleep interval,
ranging from 900 ns to 1 ms; as we will see, this range is suf-
ficient to illustrate the properties of the sleep primitive on our
test platform.
When an application asks the Linux kernel to sleep for

relatively short intervals (e.g. <1 ms), the timerslack per-
process parameter must be considered. Unless the process
has real-time priority, the nanosleep Linux implementa-
tion will silently add the value of this parameter, which
defaults to 50 sm , to the sleep interval length. This is really

undesirable, since we expect YC and YP to be in the range
5–50 sm in common scenarios. To remove this systematic
source of delay, we have set timerslack to 0 for the entire
duration of the tests.
Figure 5 illustrates the results of the test runs, with the x

axis representing the nominal sleep interval (i.e. the argument
passed to the system call) in microseconds. The first curve
shows the measured average sleep interval Y, in microseconds.
For nominal intervals <10 sm , the kernel is not able to support
the sleep with a low relative error: the overheads involved in
programming the timer, updating the kernel data structures
and perform the user-kernel context switches exceed 2 sm , and
the the curve never goes below this value. As the nominal
interval grows, the fixed costs are amortized more and that the
relative error decreases; for nominal intervals over 50 sm the
relative error is close to zero.
The second curve shows the average per-sleep cost. Up to
2.5 s~ m , Y YE » , which means that the CPU is nearly 100%

busy serving the nanosleep system call. No process sched-
uling happens, since the expiration time is already passed
when the call to the scheduler would be performed. For larger
nominal intervals, the scheduling and wake-up start to hap-
pen, and CPU utilization decreases. As expected, the mea-
sured YE is constantly 2.5 sm , not depending on Y n( ), at least
up to 20 s~ m . As Y n( ) increases again, YE grows in a
staircase-shape fashion. This is a consequence of the Linux
implementation of the timer subsystem, which hierarchically
groups expiration events depending of the order of magni-
tude; a bigger order of magnitude means more operations are
needed to insert and remove the expiration event from the
internal data structures.
From this analysis, we can conclude that Y 2.5 sE » m on our

test platform, at least assuming that YC and YP are not chosen to
be larger than 20 sm . If the latency requirements allow for worst
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FIGURE 5. Average effective sleep interval (Y) and per-sleep
energy (YE) versus nominal sleep interval. The system is not able to
deal with sleeps shorter than 2.5 sm , and the cost depends on the
order of magnitude of the sleep interval.
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case latencies larger than 40 sm , YE can be estimated consider-
ing another step of the curve, but this is not common for the
kind of system under study in this work. Our analysis also con-
firms that it does not actually make sense to sleep for less than
YE , because it would just be a convoluted and unreliable way of
doing busy waiting. For the sake of completeness, we have
repeated the measurements giving real-time priorities
(SCHED_FIFO) to the sleeping process, with the Linux kernel
built with real-time support (linux-rt). As expected, no measur-
able differences have been observed, since the tests have been
run with the machine unloaded.

4.4. Estimating notification costs

The values of notification parameters depend on how P, C
and the queue are implemented (O.S. processes, VMs, shared
memory, hardware controllers, etc.). The measurements
reported here are related to the virtio-pc reference system
described in Section 4.2, and rely on its event tracing facil-
ities. In a virtualization environment notifications are quite
expensive, involving VM exits, Inter-Processor Interrupt
(IPI), calls to the host scheduler, and VM enters.
In order to measure the four notification constants we have

conducted two kinds of experiments. A fast consumer experi-
ment, with W 2000C = and W 4000P = , is used to compute
NP and SC , as W WP C- is large enough that there is a notifi-
cation for each item. A different fast producer experiment,
with W 2000C = and W 500P = , is used to compute NC and
SP. Since k 1C > , we do not have a C notification for each
item, and so we choose a small L 8= to have enough sam-
ples in the event trace.
Table 4 reports the measured average notification costs,

together with their standard deviations. As expected, the noti-
fication cost is higher for P, since it involves an expensive
VM enter and exit operation. The start-up cost for P is also
extremely expensive, since it involves the cost of interrupt
processing in the guest and context-switch to the user-space
process. The start-up cost for C is less expensive because it is
mostly the time required to wake-up and schedule the kernel
thread, and invoke the processing loop.

5. MODEL VALIDATION

The model illustrated in Section 2 is a mathematical abstrac-
tion where the operating parameters are assumed to be

constant values. In this section, we validate the model predic-
tions by comparing them to actual measurements on the sys-
tem introduced in Section 4.2.

5.1. Validation of sleep-based regimes

This section presents an extended experiment meant to check
how much the virtio-pc system described in Section 4.2
matches our model. For the purpose of validation (and also
for the strategies presented in Section 7), we will slightly sim-
plify our model, assuming that both P and C use the same
sleep length, that is Y YP C= . This practical simplification
does not impact our study, because it has only effect when
the system operates in the sLS regimes that we want to avoid
in any case; moreover, using Y YP C= simplifies latency esti-
mation and entails a simpler, staircase-shaped throughput
curve than the one of Section 3.1.2.
For the experiments, we have chosen a fast consumer scen-

ario with W 2 sP = m , W 1 sC = m and L 512= , while Y varies
between 4 sm and 3 ms, so that we also check that the system
transitions to sLS regimes when Y goes beyond
LW 1024 sP = m . Figure 6 shows that there is a very good
agreement between our model (values for the sLS regime are
obtained by simulation) and virtio-pc. In particular, both
curve agrees on the fact that the average per-item time
increases approximately by W WP C- each time Y increases
by L W WP C( - ). The slight disagreement for large values of
Y (which is not really interesting to us) is explained by the
fact that the measured YP is actually quite larger than Y YC= .
Figure 6 does not validate our energy model, which is

especially interesting in the sFC/sFP regimes. A simple way
to do that (without measuring CPU utilization) is to validate
the overall batch that is the average number of packets pro-
cessed for each sleep, taking into account all of P and C

TABLE 4. Measured average notification costs.

NP 1.10 0.22 s m
NC 0.58 0.03 s m
SP 28.0 3.50 s m
SC 0.42 0.02 s m
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FIGURE 6. Average per-item time versus sleep length, with
Y YP C= ; the dotted curve shows the measured values, whereas the
continuous one shows the model prediction. The system enters LS
regimes beyond s1024 m .

822 G. LETTIERI et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 61 NO. 6, 2018



sleeps. For sFC and sFP regimes, this batch corresponds to
the b parameter described in Sections 2.2.1–2.2.2. The per-
item energy consumption is still connected to the overall
batch b by the second equation in (4). Figure 7 shows again a
very good match between model predictions and the measure-
ments on virtio-pc, also for the sLS regimes.

5.2. Validation of notification regimes

Similar to Section 5.1, we now try to validate the throughput
behavior for nFP and notified fast consumer regimes, as
depicted in Fig. 2, to check to what extent a real system
matches our model. We use long enough queues (L 512= )
to stay away from short-queue regimes. For the validation
experiment, we have chosen a fixed W 2000 nsC = , while WP

varies between 200 ns and 2900 ns; as we will show, this
range is sufficient to show all the properties of the system,
which depend on the difference between WP and WC. For each
value of WP we have run 12 tests, each one 5 s long, measur-
ing the average throughput, P and C notifications rate and
95th percentile of latency over the 5 s. Note that the valid-
ation of the energy model comes as a consequence of the val-
idation of throughput, since in nFC and nFP both throughput
and energy have a strong dependency on the average batch
size b.
The measured average per-packet time is depicted in

Fig. 8, which does not report variance as it is sufficiently
small (<3%). We can see that there is a very good agreement
between the model and virtio-pc, with some minor deviations
that will be explained later on.
For the fast producer zone (W W 2000 nsP C< = ), the

throughput curve is mostly flat, with a very small negative
slope, as the interrupt rate slowly decreases from ~570 to
<10. This is a consequence of the very large kC used by
VirtIO (it is set to L 3843

4
= ). The very small slope is

consistent with the fact that the interrupt rate is always very
small w.r.t. the processing rate, which is approximately
500 000 items per second. In other words, the large kC is very
effective at amortizing the notifications from C to P.
In the fast consumer zone (W W 2000 nsP C< = ), the

virtio-pc system shows the effect of the increasing number of
notifications as the speed difference between the consumer
and the producer increases, lowering the throughput in
accordance with the model. There are nonetheless some min-
or deviations that need to be explained. The slope of the
virtio-pc curve around 2.4 sm is much more smooth than
expected, but this is not very interesting, since it is only an
effect of random variations of the emulated WP and WC around
the desired values (see Section 6). For values of WP between
2 and 2.2 sm , instead, we note that the virtio-pc curve lies
slightly above the model curve, and it features spikes at each
discontinuity point. This discrepancy is more interesting and
it is due to unwanted notifications that the producer sends to
an already running consumer. We call these notifications
spurious: they are the effect of an unavoidable race in the
‘double check’ scheme used by the notification-suppression
algorithm. When the consumer finds an empty queue and
must therefore block (first check), it first re-enables notifi-
cations, then checks the queue again (second check): if
new items are found, it disables notifications again and
processes the new items without blocking. If this double
check were not performed, the consumer might block and
the producer might not notify the next new item: this is the
case if the producer pushes a new item after the first check
by the consumer, but before the notifications have been re-
enabled. The double check avoids this possible stall, but it
opens up the possibility of spurious notifications: these
occur when the producer inserts a new item between the
consumer first and the second check, and sends the notifi-
cation between the enabling and the disabling of
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FIGURE 7. Average overall batch versus sleep length, with
Y YP C= ; the dotted curve shows the measured values, whereas the
continuous one shows the model prediction.
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FIGURE 8. Average per-item time in the mathematical and the syn-
thetic model (notification regimes). WC is fixed at 2 sm , L 512= ,
K 1P = and K 384C = . Notification costs are taken from Table 4.
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notifications. A spurious notification is illustrated in the
following diagram:

P: . . . . . .

C: . . . . . .

spurious proper

The consumer sees no new item in the queue when the
spurious notification is received. Moreover, the consumer will
most likely not be able to see yet another packet after the first
one, so it will go to sleep and the producer will have to send
another notification, this time a proper one. Figure 9 shows
the average number of per-packet spurious notifications
received by the consumer during the same set of experiments
of Fig. 8 in the fast-consumer range. For reference, the figure
also plots the ‘regular’ (i.e. non-spurious) notifications
received per-packet. Since spurious notifications cause add-
itional work for the producer, they increase the per-item aver-
age time. Therefore, the spurious curve in Fig. 9 clearly
explains the differences between the model and the virtio-pc
curves in Fig. 8.
Even if the model does not account for spurious notifica-

tions, it helps in predicting them. Spurious notifications are
more probable the closer the consumer and the producer
are when they look and update the empty queue between
them. The crucial observation here is that depending on the
difference between WP and WC , the model predicts that the
instant tP when the producer pushes the last packet in a
batch and the instant tC when the consumer misses, it (and
therefore goes to sleep) comes recurrently closer as
W WP C- varies. Let us call t tP CD = - the interval between
these two instants, as shown in the following diagram:

P: . . . . . .

C: . . . . . .

Δ

tPtC

Interval Δ is a function of SC , WP, WC and KP (in the dia-
gram we have assumed K 1P = as in the system we are

considering). Figure 10 shows a plot of Δ with W 2 sC = m
and WP varying in the fast consumer range of Fig. 8. We can
see that the probability of spurious notifications increases pre-
cisely when Δ comes closer to zero.

6. RELAXING THE ASSUMPTIONS

The system used in Section 5 to validate the model still
makes some important simplifications, namely:

(1) the system parameters are independent of each other;
(2) processing times (WP and WC) are constant.

Assumption 1 does not hold in real systems, since features
like frequency scaling or C-states may create complex rela-
tions among the parameters. The close match of Fig. 8, in
fact, is only possible because all advanced CPU features have
been disabled. Nonetheless, the model can be useful to better
understand the behavior of the system even with some of
these features turned on. As an example, we now examine the
throughput obtained for the same experiments of Fig. 8, but
with the idle=halt option instead of idle=poll. With
idle=halt, the idle kernel thread will issue the hlt CPU
instruction, putting the core into some C-state higher than 0 (C1
in our case). This is a realistic example, since idle=poll
always keep the CPU busy and is not an option that should be
normally used. Figure 11 shows the new results. We can see
that now, in the fast consumer region, the model and virtio-pc
have significant discrepancies that become worse for higher
values of WP. We can also see that for these values of WP, there
is a somewhat better match if we plot the model for an higher
value of SC . This gives a clue on what is going on: the average
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FIGURE 9. Regular and spurious notifications per-packet measured
during the fast-consumer experiments of Fig. 8.
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and SC taken from Table 4.
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value of SC observed during the experiments now depends on
the value of WP. This is confirmed in Fig. 12, where we show
the average values of SC in the same set of experiments of
Fig. 11 (fast consumer region). The observed SC is generally
higher than the one observed in the idle=poll experiments,
and also shows a complex dependency on WP. This dependency
can be explained as follows, making use of the Δ function
introduced above. When the consumer thread goes to sleep the
kernel will switch to the idle thread, which will execute the
hlt instruction, thus putting the CPU core in the C1 state. The
notification IPI sent by the producer may reach the consumer
core either before or after the core has entered the C1 state.
This clearly affects SC , since coming back from C1 may take
~0.5 sm [15]. Of course, the longer the elapsed time between
the instant the consumer decides to go to sleep and the instant
the producer sends the IPI, the higher is the probability that the
consumer core will have entered the C1 state when the IPI is
received. Therefore, an high Δ should imply an higher (on
average) SC , and a lower Δ should cause a lower SC , which is
essentially what we observe. For example, when WP is between
2.6 sm and 2.8 sm , the Δ is very high and the producer IPI
almost always find the consumer core already in C1, entailing a
large S 0.83 sC » m . This explains why the model with
S 0.83 sC = m closely matches virtio-pc in this region of
Fig. 11. Note that the dependency of SC on Δ is clear, but the
correlation between Figs. 10 and 9 is only qualitative; this is
due to a couple of reasons: Fig. 10 is plotted assuming a con-
stant SC , while we know that SC varies; moreover, spurious
notifications also affect Δ (and, therefore, SC), since they tend
to increase the Δ for the next batch. In particular, this explains
the high values of SC when WP is close to WC , since, in that
region, there are as many spurious notifications as regular ones.
In summary, we have seen that even if real systems are

much more complex than our simplified model, still the

model captures the most important effects, and it may be
used to better understand some of the secondary ones.
Let us now explore some scenarios in which WP and/or WC

is not constant, therefore, relaxing Assumption 2. In order to
examine a larger number of cases, we run these new experi-
ments in a simulator. Figure 13 shows the results obtained
from the simulator when the system parameters are chosen to
be compatible with Fig. 8. The notification costs (NP, NC , SP

and SC) and the WP and WC parameters are now random vari-
ables, while L, KP and KC are as in Fig. 8. The notification
costs are normally distributed; their averages and standard
deviations are taken from Table 4. The WP parameter is also
normally distributed; in each experiment, the average is taken
from the x axis and the standard deviation is fixed at 5‰. The
average of WP is 2 sm in all experiments, but the distribution
is different for each curve: the first four curves use a normal
distribution with standard deviations of 5‰, 5%, 25% and
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of Fig. 11.
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50%; the fifth curve uses an exponential (Poisson) distribu-
tion. All normal distributions are truncated at zero, to exclude
non-meaningful negative values. These experiments may
model a real-world packet capturing scenario in which we
can expect the incoming packets to arrive rather regularly, but
where each packet may need a different amount of processing
in the consumer.
The first curve ( 5‰s = ) closely matches the experimental

curve in Fig. 8 (once the spurious notifications are dis-
counted) and is used to validate the simulator. We can now
precisely explain why the experimental curve of Fig. 8 does
not feature the discontinuities of the theoretical curves
obtained with constant parameters. In fact, when the system
is working near a discontinuity, the variability of the para-
meters randomly mixes the theoretical regimes expected
before and after the critical point; as a result, the average T
may lie slightly above or slightly below the predicted value.
Something more interesting can be seen in the other curves

produced by the simulator. While we move to higher values
of σ, at first the T curve simply becomes more smooth (e.g.
see the curve for 5‰s = ); for very high values of σ, how-
ever, the entire T curve lies below the theoretical one, i.e. the
throughput is consistently better than predicted. This can be
easily understood for high values of WP (W 2.4 sP > m in
Fig. 13). Recall that in a fast consumer scenario, any slow-
down of the consumer is actually beneficial for throughput,
since it keeps the consumer running, relieving the producer
from the task of sending notifications, while a faster con-
sumer may put more strain on the notification system.
However, if the system is already sending one notification for
each packet, any WC smaller than expected can do no add-
itional harm; on the contrary, any WC larger than expected
may increase the producer batches and improve the through-
put (as long as the queue is not overflowed). Therefore, for
large values of WP, the throughput must improve when larger
variations of WC become statistically more common. Similar,
even if more complex, consideration can be made for the
smaller values of WP. The main point is that the batch of pack-
ets that the producer is able to put in the queue while the con-
sumer is waking up after a notification (i.e. during time SC) are
able to absorb the lower values of WC, while the higher values
of WC continue to be beneficial.
From these experiments, we can see that the theoretical

model actually captures a scenario that is typical more
demanding than usual and may be seen as ‘worst case’ in
practice (even if it is not a worst case mathematically).

7. DESIGN STRATEGIES

The discussion and comparisons reported in Sections 3.1–3.3
illustrate how the three mechanisms (busy waiting, sleeping,
notifications) have different properties in terms of throughput,
energy efficiency and latency, a situation which naturally

leads to some trade-offs. A reasonable choice can, therefore,
be done once the objective function to be optimized is clearly
defined. In this work, we want study how to simultaneously
minimize average inter-message distance (T) and average
per-message energy (E), while keeping worst case service
latency below an user-provided value DMAX , focusing on the
case where the system is under high workload most of the
time (i.e. P has almost always requests to serve).
The rationale behind this objective function is that we tar-

get packet processing systems requiring high throughput but
that do not want to resort to busy waiting, which may waste
considerable amount of energy when the load is low.
Examples of such systems come from the use-cases of NFV:
network middle-boxes like firewalls, Intrusion Detection
Systems (IDSs), load balancers, routers, etc., which are com-
monly deployed by network service providers, Data Center
environments and private business network infrastructures. A
solution which guarantees limited delay is still a good candi-
date for these systems, also considering that the overall
latency experienced by the end users once the producer/con-
sumer system is deployed in a real network is often in the
order of hundreds of microseconds (or more) and not under
control, because introduced by other network middle-boxes.
On the other hand, when minimizing latency is the strongest
requirement—which for instance is the case with high-
frequency trading systems—the only acceptable solution is
busy waiting in any case.
Taking into account the objective function as defined

above and all the analysis carried out so far, we now illustrate
the high-level strategy that should drive the design and
deployment of high-performance producer–consumer systems
under high workloads.

7.1. Regime identification

As a first step, it is necessary to understand whether the system
tends to behave as a fast producer or as a fast consumer. In real
deployments, WP and WC are not constant, so we could at most
measure and average value for these parameters. However,
measuring WP and WC directly often requires some code instru-
mentation, which should be avoided if possible. A better
approach would be to deduce the operational regime by meas-
uring the rate of notifications in both directions. Fast-consumer
systems have a relative high number of P-to-C notifications,
and a low number of C-to-P notifications. The contrary is true
for fast producer systems. The rate of notifications is, therefore,
a simple way to roughly distinguish the two cases. Measuring
these rates is usually easy in the scenarios we are focusing on,
that is with I/O devices emulated by an hypervisor, where P
runs in the guest and C runs in the host (or the other way
around). Notifications from C to P turn into interrupts in the
guest, so that the average interrupt rate for a given workload
can be easily measured from within the guest using the tools
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provided by the guest O.S.6 Also the hypervisor usually pro-
vides statistics useful to measure the rate of notifications from P
to C, since these kinds of notifications cause a VM exit event.7

Measuring notifications would also be easy in the case where
the consumer is an hardware device (e.g. a NIC), since in that
case interrupt O.S. statistics and device driver statistics would
be available.
Finally, the maximum between WP and WC can be deter-

mined by measuring the system throughput when both P and C
use sleeping (so that notifications costs are not involved), with
a sufficiently short YC and YP (or with a sufficiently large L) to
avoid the sLS regime. In practice, the designer can choose
Y Y 200 sC P= = m and measure the throughput while gradually
reducing the sleeping value (and may be gradually increasing
L); once the throughput stops increasing with the sleeping
time, it means that the system is working in the sFP or sFC
regime, and the maximum between WP and WC is the inverse of
the measured throughput (expressed in items per second).

7.2. Fast-consumer design

If the system tends to behave as a fast consumer, increasing kP

is not an option (since P usually does not know when the next
item will be produced), so a general strategy is to use sleeping
on the consumer in order to avoid the notification storms that
are typical of this regime—a notification per item in the worst
case, which is also a common case. In fact, P-to-C notifications
are not used at all when C uses sleeping. To keep latency
under control, we choose YC (and YP) so that the worst case
latency does not exceed the user-provided DMAX, which could
be in the 10–100 sm range. Using inequality (11), we can
derive a suitable value for Y YC P= , once W W Wmax ,C P= ( )
has been estimated as described in Section 7.1. This means
selecting a sleeping length not larger than Y WD

MAX 2
MAX= - .

Note that this strategy is only applicable when the resulting
Y YEMAX > , that is when the O.S. supports sleeping times
smaller than YMAX. If this is not true, it means that the latency
requirements are too stringent to use sleeping (or even unfeas-
ible), and resorting to busy waiting is unavoidable.
The possible choices for the sleeping time are highlighted

in Fig. 14, in the region where the latency constraint is met.
If YMAX falls in the sFC region, we choose Y Y YC P MAX= = ,
to minimize energy and limit latency, while the throughput is
not affected by the choice. If YMAX falls beyond, in the sLS
region, we choose the largest YC which is still in the sFC
region. To make a robust choice we need to avoid the border
effects that may result from the instability of the actual

sleeping time provided by the O.S.; it is therefore a good idea
to stay away from the limit by a small value (e.g. 500 ns).
Also in this case the choice minimizes energy, maximizes
throughput and limit latency as required by the user.

7.3. Fast producer design

If the system tends to behave as a fast producer, our sug-
gested strategy is to use notifications, selecting a value for the
kC parameter which is a large fraction (e.g. 3

4
) of the queue

length L. With this choice, the C-to-P notifications are suffi-
ciently amortized over a large batch of packets, so that the
throughput has little or no practical dependency on the
W WC P- difference, as explained in the following. As
described in Section 2.3.2, the number of packets processed

by P for each notification is b kS k W

W W C
1P C P

C P
= ê

ëê
ú
ûú
++ ( - )

-
, that is b

is the sum of two components. When k LC
3

4
= (i.e. kC is in

the 200–1000 range), b is already large because of the second
component, irrespective of the value of the first component,
that could also be very large. The cost that C needs to pay for
notifications (NC), which is typically <1 sm , is, therefore,
amortized over at least 200–1000 packets, which result into
<1–5 ns per packet. The effect of the first component of b on
the throughput is, therefore, expected to be very little in abso-

lute numbers. As a result, the overall throughput is very close

to the optimal one
W

1

C
( ), because C spends a very little time

to send notifications to P. For similar reasons, the per-item
energy consumption is close to the optimum (W WP C+ ),
because NC and SP costs are amortized over a large b.
As discussed in Section 3.3.1, with a large kC (or a suffi-

ciently small YP), the latency of a fast producer system tends
to be dominated by the queuing delay LWC, which is often in
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FIGURE 14. Average per-item time and energy for the sleeping
mechanism with Y YP C= and variable YC . Dashed vertical bars
delimit the region of valid YC , while the solid one represents the
user-specified latency constraint.

6As an example, interrupts statistics on Linux are exported through the
/proc/interrupts file.

7As an example, the KVM kernel module on Linux exports detailed statis-
tics about the number of VM exits and injected guest interrupts that can be
easily collected using the perf-stat tool (more info at http://www.linux-
kvm.org/page/Perf_events).
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the range 50–1000 sm .8 The queuing delay does not depend
on the synchronization mechanism deployed, and so using
notifications or sleeping does not really make a difference in
practice. The only thing that can be done if the constraint on
DMAX is not met is to reduce L.
The discussion so far indicates that using the sleeping

mechanism in fast producer scenario does not really improve
(nor worsen) the average throughput, energy or latency, at
least assuming the system is under high workload. When the
system is idle or has a very low workload, the sleeping mech-
anism easily becomes more energy inefficient, as both P and
C repeatedly wake up and go to sleep again as there is almost
never work to do, paying YE each time. In conclusion, the
notification mechanism is a good candidate for fast producer
systems, since it provides near optimal throughput, energy
and latency, addressing both the high-workload and low-
workload scenarios.

8. CASE STUDIES

In order to validate the strategies presented in Section 7, we
present some experimental examples of producer–consumer
design, using the virtio-pc system presented in Section 4.2.

8.1. Fast-consumer example

In the first example, we focus on a fast consumer case, with
W 300 nsP = , W 200 nsC = , and we also assume
D 10 sMAX = m . The values of WP and WC include ~100 ns of
virtqueue processing plus 100–200 ns of useful work. These
numbers are realistic for network packet processing scenarios:
as an example, 100 ns may be needed by the consumer to
invoke a NIC driver to program packet transmission; the pro-
ducer may spend 200 ns to allocate (and deallocate) a packet
buffer in the guest O.S., look-up forwarding data structures
and modify packets headers.
Using the notification mechanism on both producer and

consumer threads, we measured an average throughput of
1.81 Mops~ (millions operations per second), corresponding

to 550 ns per item on average, which is almost twice slower
than the slowest party (P). As predicted by our model
(Section 2.3.1), this is due to the high cost of P notifications
(the measured NP is ~1100 ns on average), amortized over
relatively small batches (~5.3 items per batch), which means
that there are almost 350 thousands notifications per second.
In terms of energy, we found that C consumes 62% of its
CPU, while the CPU where P runs is busy all the time; in
total, 1.62 CPUs running at 3.5 GHz are necessary to process
1.81Mops, which means that on average 895 ns of CPU
cycles are spent for each item. Finally, as expected, the worst

case latency measured is relatively low (2240 ns) only includ-
ing WP, NP, SC (600 ns on average) and WC. The theoretical
worst case would also include NC (980 ns) and SP, adding up
to 10 s~ m .
The poor throughput of fast consumer is a common prob-

lem for VirtIO deployments, since it is common for the vhost
thread to quickly start and empty the avail ring. This example
is, therefore, a good candidate to try using the sleeping strat-
egy. We choose Y Y 5 sC P= = m to make sure the worst case
latency is approximately <10 sm (cf. Section 2.2.3) and to
take into account the lower bound of 2.5 sm related to the
sleeping costs (cf. Section 4.3). Our measurements show an
average throughput of 3.31 Mops~ , roughly corresponding to
300 ns, which is the processing time of the slower party. As
predicted by our model (Section 2.2.1), the measured
throughput is optimal. We measured an average of 50.5 items
processed by C for each sleep, whereas the model (using the
nominal value of YC) predicts 50. Actually, the average mea-
sured value of YC is ~5007 ns, while the measured W WP C-
is actually 99 ns; plugging in these values in the batch for-
mula gives approximately 50.6, which is even a closer match.
This batch corresponds to over 65 thousands sleeps per
second, which may still be considered quite high with respect
to energy consumption. In any case, if relaxing the constraint
on DMAX is acceptable, it would be easy to increase the batch
(and thus reduce energy consumption) by increasing YC . The
energy measurement reports C using 76% of its CPU; since
the system uses 1.76 CPUs to process 3.31Mops, the average
per-item energy consumption is ~531 ns, which is consider-
ably better than what could be obtained with the notification
strategy. Finally, the worst case latency measured is
~5500 ns, including YC and the processing costs, which is in
line with our model.
In summary, this fast consumer example shows how the

sleeping strategy can be a better choice than notifications, as
it allows to optimize throughput and energy while keeping
the latency under control.

8.2. Fast producer example

In the second example, we will examine a fast producer scen-
ario, with processing times similar to the ones used in the first
example, that is W 200 nsP = and W 300 nsC = . As reported
in Section 4.2, the VirtIO uses an hardcoded kC which is 3

4
of

the virtqueue length; with L 512= , we have therefore
k 384C = .

Using the notification mechanism, we measured an average
throughput of 3.32Mops, corresponding to roughly 300 ns
per item on average, which matches the speed of the slowest
party (C). This is a good behavior and it is predicted by our
model, as each notification from C to P (interrupt) is amor-
tized over a very large batch of items, so that P is not over-
whelmed by the cost of notifications. More precisely, our

8That is, 51.2 sm when L 256= and W 200 nsC = , and 1 ms when
L 1024= and W 1 sC = m
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measurements report an average batch size of 1480 items,
whereas our model predicts batches of 1429 items (using
S 28 sP = m , cf. Section 4.4). The measured latency is domi-
nated by the queuing delay and it is ~152 sm (512 items,
300 ns each) as expected. Regarding energy, we measured
that P consumes ~74% of its CPUs, which means that the
per-item energy is 524 ns on average.
Using the sleeping mechanism with Y 20 sP = m , we mana-

ged to remove even the few remaining interrupts (~2200 per
second), and measured an average throughput of 3.33 Mops,
which is almost indistinguishable from the throughput mea-
sured with notifications. However, this choice of YP results
into a batch of 200 elements, which is much smaller than the
batch obtained with notifications; as a consequence, the num-
ber sleep rate is relatively high (over 16 thousands sleeps per
second) which means an higher energy per item (87% of
CPU utilization for P, corresponding to 562 ns per item). In
order to increase the batch (so lowering the energy consump-
tion), we would need to increase YP to over 100 sm . This is
feasible, but quite dangerous since it is not very far from the
152 sm threshold for sLS regimes. Finally, since we have
avoided sLS regimes, the latency behavior is again dominated
by the queuing delay.
In conclusion, this fast producer example shows how the

notification mechanism—empowered with a large kC—can be
a better choice than sleeping, as the cost of each notification
is largely amortized over many items, so that the throughout
manages to follow the slower party and the energy consump-
tion remains low.

9. LIMITATIONS

Even if our model matches precisely some important features
of VM networking I/O, it does not of course encompass all
possible scenarios. We discuss here some limitations and pos-
sible extensions that may significantly broaden the scope of
the model.

9.1. VM chaining

Virtualized networking I/O at high packet rates, which is the
main target of our study, is very important for NFV applica-
tions. Our study covers the expected I/O performance of the
input and output I/O paths of a single VM. However, com-
plete NFV applications typically consist of chains of VMs
[16, 17]. Our Consumer can, therefore, be the Producer for
another VM down the chain. As a first approximation, the
throughput of each path can still be studied in isolation, using
our model, if the cumulative effect of the upstream and down-
stream VMs are modeled as random variations in the WP and
WC parameters (using, e.g. the simulator of Section 6). The
chaining, however, also introduces new possibilities for
blocking not considered by our model (e.g. a Consumer is

blocked because the FIFO leading to the next VM is full),
and, therefore, the CPU utilization estimates would be off. It
is important to note, however, that these new, externally gen-
erated, blocking situations never cause notifications not
already accounted by the model: even with chaining, notifica-
tions only depend on the state of the FIFO between each
Producer and Consumer pair.
We expect to observe counterintuitive effect also in chains of

VMs. For example, think of a chain P C P C1 1 2 2 ( / )  (i.e.
Producer P1 in VM1 sending to a Consumer C2 in VM2 through
a thread C P1 2( / ) that acts both as Consumer and Producer) and
assume that both P C P1 1 2 ( / ) and C P C1 2 2( / )  show a
Fast-Consumer problem when run in isolation. Now, C2 may
slow down C P1 2( / ) by forcing it to spend a lot of time sending
notifications, and, as a consequence, hide the Fast-Consumer
problem in the P C P1 1 2 ( / ) path. Conversely, fixing the Fast-
Consumer problem in the downstream path may expose it in the
upstream one. It is clear that further study is necessary to address
all the regimes that may be observed in such scenarios.

9.2. Batching

Batching, i.e. sending several packets at once across an inter-
face, is widely used to improve throughput since it signifi-
cantly amortizes fixed costs. Batching is a prominent feature
in our model, as a single notification may be issued after any
number of new packets have been inserted in the FIFO, or
removed from it.
Still, the model only accounts for the amortization of notifi-

cation and sleep/wake-up costs (NP, NC , SP, SC and YE).
Processing costs (WC and WP) remain constant, independently
of the number of packets that are processed in a single run.
Real systems may have many more fixed costs that are amor-
tized when batches of packets are made available, thanks to
caching effects, reduced context switching and other optimi-
zations. This may be modeled in at least two ways: by letting
WC and WP decrease depending on the number of packets
already processed since last notification, wake-up or sleep; by
assuming that each WC and WP box represents the processing
of a batch of more than one packet.
The latter approach is especially useful in modeling the

behavior of APIs like netmap [3], where producer batching is
controlled by the application and may be approximately taken
as a constant, call it B, especially in the high packet rates
scenarios, we are interested in. A FIFO of L packets between
the netmap producer and the consumer must now be modeled
as a FIFO of L B/ batches, and a large B may easily bring the
system in a ‘short-queue’ regime (one of nSPS, nSPS or nSS,
depending on the wake-up times), where the consumer and the
producer alternatively block without doing any work in paral-
lel. In these situations, reducing the application batching can
increase the throughput, by moving the system into a more
favorable regime—yet another counterintuitive effect [5].
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An aspect of batching that is neglected by our model is
that large batches may lead to other reductions in throughput,
due to large packet drops in the internal queues of the
Producer and/or Consumer when they are implemented by
complex multi-layered software (like, e.g. the OS network
stack). These problems, however, should generally be
addressed in the multi-layered software itself, by properly siz-
ing the queues and making sure that livelock problems are
avoided [18].

10. RELATED WORK

Pure polling (also known as ‘busy wait’ or ‘spinning’) is prob-
ably the oldest form of synchronization, and the most expensive
in terms of system resource usage. Its use is mostly justified by
its simplicity and not reliance on any hardware support. Pure
polling is used by a number of high-speed networking applica-
tions and libraries such as the Click Modular Router [8], Intel’s
DPDK [6] and Luca Deri’s PFRING/DNA [7].
Aside from high-energy consumption, polling may also

abuse of shared resources, such memory or I/O buses. This
worsens the situation from a simple annoyance (high-energy
consumption) to a threat to other parts of the system, and
requires some form of mitigation.
In the FreeBSD polling architecture [18], polling occurs

periodically on timer interrupts and opportunistically on other
events. An adaptive limit on the maximum amount of work to
be performed in each iteration is used to schedule the CPU
between user processes and kernel activities. Adaptive polling
schemes are also widely used in radio protocols, sensor net-
works, multicast protocols.
A seminal work on interrupt moderation [19] points out

how mixed strategies (notifications to start processing, fol-
lowed by polling to process data as long as possible) can
reduce system’s overhead. The Linux NAPI architecture
[11, 20, 21] is based on the above ideas. When an interrupt
comes, NAPI activates a kernel thread to process packets using
polling, and disables further interrupts until done with pending
packets. A bound on the maximum amount of work to be per-
formed by the polling thread in each round helps reducing
latency and fairness on systems with multiple interfaces. NAPI
does not use any special strategy to adapt the speed of produ-
cer and consumer, and as such, it is subject to the performance
instabilities discussed in this paper, and, in particular, to the P-
to-C notification storms typical of a fast consumer scenario (in
this case, the NAPI thread is the consumer for network packets
coming from a physical NIC or from a possibly paravirtualized
NIC emulated by the hypervisor).
The VirtIO framework [10, 22] is the de facto standard

deployed to provide high-performance I/O in virtualized envir-
onments, and uses a notification-based system which matches
the one presented in Section 2, as explained in Section 4.2.
The notification thresholds for VirtIO are typically chosen as

k 1P = , k 3 4C = / of queue occupation. We have shown in
Section 8 that this form of adaptivity is only effective with
high load and slow consumers. Recent versions of vhost (an
optimized in-kernel VirtIO hypervisor-side implementation),
included in the Linux kernel, support an optional short busy
wait to limit the amount of notifications showing up with fast
consumers. This further confirms how the problem of produ-
cer–consumer speed mismatch that we address in our work is
central to high-performance I/O virtualization.
There is an extensive literature on the performance study and

modeling for VMs [23], focusing on the general overhead of
virtualization on CPU-intensive computations [24], but also on
the performance of disk I/O [25], end-to-end networking [26]
and live migration [27]. To the best of our knowledge, how-
ever, little attention has been devoted to the modeling of the
notification/synchronization I/O costs. The works most similar
to our own remain the studies on hybrid interrupt/polling
schemes [12, 21, 28], where several options among interrupt
and polling are modeled and compared. These studies apply to
non-virtualized networking, and, as a consequence, they show
several differences with our own. In particular, delays in notifi-
cations are not accounted for, while we have found that they
have several counterintuitive effects in our model. Moreover,
those studies focus on the receive path only, while our model is
more general and also encompasses transmission. In particular,
the fast consumer problem is usually encountered in the trans-
mission path from a relatively slow producer running in the
VM with a fast backend consumer [29, 30].

11. CONCLUSIONS

We have presented and analyzed a model for the operation of
a producer and consumer in a typical VM environment,
focusing on three synchronization mechanisms: notifications,
sleeping and busy waiting; described how throughput, effi-
ciency and latency are affected by operating parameters for
the three mechanisms; and validated the model against a set
of simulation experiments and a realistic VirtIO-based proto-
type running on a hypervisor.
We have then discussed some strategies that can lead the

design or optimization of a producer–consumer system under
assumptions that are common for NFV scenarios, helping to
decide what synchronization mechanism to use and how to use
it. The main idea, exposed in Section 7, is to first identify the
notification regime and then apply a different strategy according
to it. Finally, we have validated our strategies against our VirtIO
prototype to show the benefits of our analysis in practice.
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