
ar
X

iv
:1

61
1.

09
10

7v
2

 [
m

at
h.

N
A

]
 4

 A
ug

 2
01

7

Efficient Solution of Parameter Dependent

Quasiseparable Systems and Computation of

Meromorphic Matrix Functions

P. Boitoa,b, Y. Eidelmanc, and L. Gemignanid

aXLIM–MATHIS, UMR 7252 CNRS Université de Limoges, 123
avenue Albert Thomas, 87060 Limoges Cedex, France. Email:

paola.boito@unilim.fr
bCNRS, Université de Lyon, Laboratoire LIP (CNRS, ENS Lyon,
Inria, UCBL), 46 allée d’Italie, 69364 Lyon Cedex 07, France.

cSchool of Mathematical Sciences, Raymond and Beverly Sackler
Faculty of Exact Sciences, Tel-Aviv University, Ramat-Aviv, 69978,

Israel. Email: eideyu@post.tau.ac.il
dDipartimento di Informatica, Università di Pisa, Largo Bruno

Pontecorvo, 3 - 56127 Pisa, Italy. Email: l.gemignani@di.unipi.it

Abstract

In this paper we focus on the solution of shifted quasiseparable
systems and of more general parameter dependent matrix equations
with quasiseparable representations. We propose an efficient algorithm
exploiting the invariance of the quasiseparable structure under diagonal
shifting and inversion. This algorithm is applied to compute various
functions of matrices. Numerical experiments show that this approach
is fast and numerically robust.

Keywords: Quasiseparable matrices , shifted linear system, QR factor-
ization, matrix function, matrix equation.
2010 MSC: 65F15

1 Introduction

In this paper we propose a novel method for computing the solution of
shifted quasiseparable systems and of more general parameter dependent
linear matrix equations with quasiseparable representations. We show that
our approach has also a noticeable potential for effectively solving some
large-scale algebraic problems that reduce to evaluating the action of a qua-
siseparable matrix function to a vector.

1

http://arxiv.org/abs/1611.09107v2

Quasiseparable matrices, characterized by the property that off-diagonal
blocks have low rank, have found their application in several branches of
applied mathematics and engineering. In the last decade there has been
major interest in developing fast algorithms for working with such matri-
ces [6, 7, 19, 20]. The quasiseparable structure arises in the discretization
of continuous operators, as a consequence of the local properties of the
discretization schemes, and/or because of the decaying properties of the
operator or its finite approximations.

It is a celebrated fact that operations with quasiseparable matrices can
be performed in linear time with respect to their size. In particular, the
QR factorization algorithm presented in [5] computes in linear time a QR
decomposition of a quasiseparable matrix A ∈ C

N×N . This decomposition
takes the special form A = V · U · R, where R is upper triangular, whereas
U and V are banded unitary matrices. It turns out that the matrix V only
depends on the generators of the strictly lower triangular part of A. This
implies that any shifted linear system A+ σIN , σ ∈ C, can also be factored
as A+ σIN = V · Uσ · Rσ for suitable Uσ and Rσ.

Relying upon this fact, in this paper we design an efficient algorithm
for solving a sequence of shifted quasiseparable linear systems. The invari-
ance of the factor V can be exploited to halve the overall computational
cost. Section 2 illustrates the potential of our approach using motivating
examples and applications. In Section 3 we describe the novel algorithm by
proving its correctness. Finally, in Section 4 we present several numerical
experiments where our method is applied to the computation of f(A)v and
to the solution of linear matrix equations. The results turn out to be as ac-
curate as classical approaches and timings are consistent with the improved
complexity estimates.

2 Motivating Examples

In this section we describe two motivating examples from applied fields that
lead to the solution of several shifted or parameter dependent quasiseparable
linear systems.

2.1 A Model Problem for Boundary Value ODEs

Consider the non-local boundary value problem in a linear finite dimensional
normed space X = R

N :

dv

dt
= Av, 0 < t < τ, (2.1)

1

τ

∫ τ

0
v(t) dt = g (2.2)

2

where A is a linear operator in R
N and g ∈ R

N is a given vector.
The nonlocal problem of the form (2.1), (2.2) has been a subject of

intensive study, see the papers by I. V. Tikhonov [17,18], as well as [8] and
the literature cited therein.

Under the assumption that all the numbers µk = 2πik/τ, k = ±1,±2,±3, . . .
are regular points of the operator A the problem (2.1), (2.2) has a unique
solution. Moreover this solution is given by the formula

v(t) = qt(A)g, qt(z) =
τzezt

ezτ − 1
. (2.3)

Without loss of generality one can assume that τ = 2π.
Expanding the function qt(z) in the Fourier series of t we obtain

qt(z) = 1 +
∑

k∈Z/{0}

zeikt

z − ik
, 0 < t < 2π.

We consider the equivalent representation with the real series given by

qt(z) = 1 + 2

∞
∑

k=1

z(z cos kt− k sin kt)(z2 + k2)−1, 0 < t < 2π.

Using the formula

−
k

z2 + k2
=

z2

k(k2 + z2)
−

1

k

we find that

qt(z) = 1+2
∞
∑

k=1

z(z cos kt+
1

k
z2 sin kt)(z2+k2)−1−2z

∞
∑

k=1

1

k
sin kt, 0 < t < 2π

and since

2
∞
∑

k=1

1

k
sin kt = π − t, 0 < t < 2π

we arrive at the following formula

qt(z) = 1 + 2

∞
∑

k=1

(z cos kt+
1

k
z2 sin kt)(z2 + k2)−1 − z(π − t), 0 < t < 2π.

Thus we obtain the sought expansion of the solution v(t) of the problem
(2.1), (2.2):

v(t) = g−(π−t)Ag+2
∞
∑

k=1

(A cos kt+
1

k
A2 sin kt)(A2+k2IN)−1Ag, 0 ≤ t ≤ 2π.

(2.4)

3

Under the assumptions

‖(A − ikIN)−1‖ ≤
C

|k|
, k = ±1,±2, . . . (2.5)

and by using the Abel transform one can check that the series in (2.4)
converges uniformly in t ∈ [0, 2π]. Hence, by continuity we extend here
the formula (2.4) for the solution on all the segment [0, 2π]. The rate of
convergence of the series in (2.4) is the same as for the series

∑∞
k=1

1
k2 . The

last may be improved using standard techniques for series acceleration but
by including higher degrees of A. Indeed set

Ck(t) = A cos kt+
1

k
A2 sin kt.

Using the identity

(A2 + k2I)−1 =
1

k2
I −

1

k2
A2(A2 + k2I)−1

we get

∞
∑

k=1

Ck(t)(A
2+k2IN)−1Ag =

∞
∑

k=1

1

k2
Ck(t)Ag−

∞
∑

k=1

1

k2
Ck(t)(A

2+k2I)−1A3g.

The first entry here has the form

∞
∑

k=1

1

k2
Ck(t)Ag =

∞
∑

k=1

(

cos kt

k2
A2g +

sin kt

k3
A3g

)

.

Using the formulas

∞
∑

k=1

cos kt

k2
=

π2

6
−

π

2
t+

t2

4
,

∞
∑

k=1

sin kt

k3
=

π2

6
t−

π

4
t2 +

t3

12
,

we get

v(t) = V0(t)g+V1(t)Ag+V2(t)A
2g+V3(t)A

3g−2
∞
∑

k=1

1

k2
Ck(t)(A

2+k2I)−1A3g.

(2.6)
with

V0(t) = 1, V1(t) = t− π, V2(t) =
π2

3
− πt+

t2

2
, V3(t) =

π2

3
t−

π

2
t2 +

t3

6
.

Summing up, our proposal consists in approximating the solution v(t)
of the problem (2.1), (2.2) by the finite sum

vℓ(t) = g−(π−t)Ag+2
ℓ
∑

k=1

(A cos kt+
1

k
A2 sin kt)(A2+k2IN)−1Ag, 0 ≤ t ≤ 2π,

(2.7)

4

or using (2.6) by the sum

v̂ℓ(t) =

3
∑

j=0

Vj(t)A
jg

−2

ℓ
∑

k=1

1

k2
(A cos kt+

1

k
A2 sin kt)(A2 + k2IN)−1A3g, 0 ≤ t ≤ 2π, (2.8)

where ℓ is suitably chosen by checking the convergence of the expansion.
The computation of vℓ(ti) ≃ v(ti), 0 ≤ i ≤ M + 1, requires the solution

of a possibly large set of the shifted systems of the form

(A+ σiIN)xi = y, i = 1, . . . , ℓ. (2.9)

The same conclusion applies to the problem of computing the function
of a quasiseparable matrix whenever the function can be represented as a
series of partial fractions. The classes of meromorphic functions admitting
such a representation were investigated for instance in [14]. Other partial
fraction approximations of certain analytic functions can be found in [12].
In the next section we describe an effective algorithm for this task.

As additional context for this model problem, note that a numerical
approximation of the solution can be obtained by using the discretization of
the boundary value problem on a grid and the subsequent application of the
cyclic reduction approach discussed in [1]. This approach can be combined
with techniques for preserving an approximate quasiseparable structure in
recursive LU-based solvers: see the recent papers [2,4,10]. The approximate
quasiseparable structure of functions of quasiseparable matrices has also
been investigated in [13].

2.2 Sylvester-type Matrix Equations

As a natural extension of the problem (2.9), the right-hand side y could
also depend on the parameter σ, that is, y = y(σ) and yi = y(σi), i =
1, . . . , ℓ. This situation is common in many applications such as control
theory, structural dynamics and time-dependent PDEs [11]. In this case,
the systems to be solved take the form

AX +XD = Y, A ∈ R
N×N , D = diag [σ1, . . . , σℓ] , Y = [y1, . . . ,yℓ] .

Using the Kronecker product this matrix equation can be rewritten as a
bigger linear system A vec(X) = vec(Y), where A = Iℓ ⊗ A + DT ⊗ IN ∈

R
Nℓ×Nℓ, vec(X) =

[

x
T
1 , . . . ,x

T
ℓ

]T
, vec(Y) =

[

y
T
1 , . . . ,y

T
ℓ

]T
.

The extension to the case where D is replaced by a lower triangular
matrix L = (li,j) ∈ R

ℓ×ℓ is based on the backward substitution technique

5

which amounts to solve

(A+ li,iIN)xi = yi −
ℓ
∑

j=i+1

li,jxj, i = ℓ : − 1: 1. (2.10)

Such approach has been used in different related contexts where the consid-
ered Sylvester equation is occasionally called a sparse-dense equation [16].
The classical reduction proposed by Bartels and Stewart [3] makes it possible
to deal with a general matrix F by first computing its Schur decomposition
F = ULUH and then solving A(XU) + (XU)L = Y U . The resulting ap-
proach is well suited especially when the size of A is large w.r.t. the number
of shifts. If A is quasiseparable then (2.10) again reduces to computing a se-
quence of shifted systems having the same structure in the lower triangular
part and the method presented in the next section can be used.

3 The basic algorithm

Let us first recall the definition of quasiseparable matrix structure and qua-
siseparable generators. See [6] for more details.

Definition 3.1. A block matrix A = (Ai,j)
N
i,j=1, with block entries Ai,j ∈

R
mi×mj , is said to have lower quasiseparable generators P (i) ∈ R

mi×rLi−1 (i =

2, . . . , N), Q(j) ∈ R
rLj ×mj (j = 1, . . . , N − 1), Ξ(k) ∈ R

rL
k
×rL

k−1 (k =
2, . . . , N − 1) of orders rLk (k = 1, . . . , N − 1) and upper quasiseparable gen-

erators G(i) ∈ R
mi×rUi (i = 1, . . . , N − 1), H(j) ∈ R

rUj−1
×mj (j = 2, . . . , N),

Θ(k) ∈ R
rU
k−1

×rU
k (k = 2, . . . , N − 1) of orders rUk (k = 1, . . . , N − 1) if

Ai,j =

{

P (i)Ξ>
i,jQ(j) if 1 ≤ j < i ≤ N,

G(i)Θ<
i,jH(j) if 1 ≤ i < j ≤ N,

where Ξ>
i,j = Ξ(i − 1) · · ·Ξ(j + 1) for i > j + 1 and Ξj+1,j = IrLj

, and,

similarly, Θ<
i,j = Θ(i+ 1) · · ·Θ(j − 1) for j > i+ 1 and Θi,i+1 = IrUi

.

If A admits such a representation, is is said to be (rL, rU)-quasiseparable.
Diagonal entries are stored separately, that is, we set Λ(i) = Ai,i ∈ R

mi×mi .
The same representation can be applied to complex matrices.

We have denoted the quasiseparable generators by capital letters, as it is
often done for matrices. Note however that the generators can be numbers,
vectors or matrices, depending on the quasiseparable orders rLi

, rUj
and on

the block sizes mi,mj .
To solve the systems (2.9), (2.10) we rely upon the QR factorization

algorithm described in [5] (see also Chapter 20 of [6]). At first we compute
the factorization

A+ σI = V · Tσ (3.11)

6

with a unitary matrix V and a lower banded, or a block upper triangular,
matrix Tσ. It turns out that the matrix V does not depend on σ at all and
moreover an essential part of the quasiseparable generators of the matrix
Tσ do not depend on σ either. So a relevant part of the computations for
all the values of σ only needs to be performed once. Thus the problem is
reduced to the solution of the set of the systems

Tσxσ = V H
yi, σ = σi, i = 1, . . . , ℓ. (3.12)

The inversion of every matrix Tσ as well as the solution of the correspond-
ing linear system is significantly simpler than for the original matrix. We
compute the factorization

Tσ = UσRσ (3.13)

with a block upper triangular unitary matrix Uσ and upper triangular Rσ

and solve the systems
Rσxσ = UH

σ V H
yi. (3.14)

Thus we obtain our main algorithm, which takes as input a set of quasisepa-
rable generators for A, shifts σi and right-hand block vectors yi, and outputs
the solutions xi of the linear systems (A + σiI)xi = yi. The algorithm is
comprised of two parts.

• Part 1 computes useful quantities that are common to all the linear
systems, namely, quasiseparable generators for V in the factorization
(3.11), and some quasiseparable generators for each Tσi

that do not
actually depend on σi.

• Part 2 uses the results of Part 1, along with input data, to solve
efficiently each linear system (which is why it begins with a loop over
all the systems). For each i = 1, . . . , ℓ it computes the factorization
(3.13), and then solves the triangular system (3.14).

Note that each of the matrices V and Uσi
can also be factored as the prod-

uct of N “small” unitary matrices, which are denoted as Vk and U
(i)
k , re-

spectively, in the algorithm that follows. Throughout the algorithm, these
factored representations are computed via successive QR factorizations of
suitable matrices and then used to compute products by V H or UH

σi
in O(N)

time: see the proof of the algorithm for more details.
The sentences in italics explain the purpose of each block of instructions.

Main algorithm

Input:

• quasiseparable generators for the block matrix A, with entries (Ai,j)
N
i,j=1

of sizes mi ×mj, namely:

7

– lower quasiseparable generators P (i) (i = 2, . . . , N), Q(j) (j =
1, . . . , N−1), Ξ(k) (k = 2, . . . , N−1) of orders rLk (k = 1, . . . , N−
1),

– upper quasiseparable generatorsG(i) (i = 1, . . . , N−1), H(j) (j =
2, . . . , N), Θ(k) (k = 2, . . . , N−1) of orders rUk (k = 1, . . . , N−1),

– diagonal entries Λ(k) (k = 1, . . . , N);

• complex numbers σi, i = 1, . . . , ℓ;

• block vectors yi = (yi(k))
N
k=1 with mk- dimensional coordinates y(k).

Output: solutions x(i) = xσi
, i = 1, . . . , ℓ of the systems (3.12).

Part 1.

1. Initialize auxiliary quantities:

ρN = 0, ρk−1 = min{mk + ρk, r
L
k−1}, k = N, . . . , 2, ρ0 = 0,

ρ′k = ρk + rUk , k = 1, . . . , N − 1, νk = mk + ρk − ρk−1, k = 1, . . . , N.

2. Compute the quasiseparable representation of the matrix V (that is,
generators with subscript V) and the basic elements of the representa-
tion of the matrix Tσ (that is, generators with subscript T), as well as
the vector wi = V H

yi. Note that this is done through the computation
of the “small” unitary factors Vk of V .

– Using the QR factorization or another algorithm compute the
factorization

P (N) = VN

(

XN

0νN×rL
N−1

)

, (3.15)

where VN is a unitary matrix of sizes mN ×mN , XN is a matrix
of sizes ρN−1 × rLN−1.

Determine the matrices PV (N),ΛV (N) of sizes mN×ρN−1,mN×
νN from the partition

VN =
(

PV (N) ΛV (N)
)

. (3.16)

Compute
(

HT (N)
ΛT (N)

)

=

(

H(N)
V H
N Λ(N)

)

, (3.17)

(

cN,i

wi(N)

)

= V H
N yi(N), 1 ≤ i ≤ ℓ (3.18)

with the matrices HT (N),ΛT (N), cN,i, wi(N) of sizes ρ′N−1 ×
mN , νN ×mN , ρN−1 × 1, νN × 1 respectively.

8

Set

ΓN =

(

0rU
N−1

×mN

PH
V (N)

)

. (3.19)

– For k = N − 1, . . . , 2 perform the following.

Using the QR factorization or another algorithm compute the
factorization

(

P (k)
Xk+1Ξ(k)

)

= Vk

(

Xk

0νk×rL
k−1

)

, (3.20)

where Vk is a unitary matrix of sizes (mk + ρk)× (mk + ρk), Xk

is a matrix of sizes ρk−1 × rLk−1.

Determine the matrices PV (k), QV (k),ΞV (k),ΛV (k) of sizes mk×
ρk−1, ρk × νk, ρk × ρk−1, mk × νk from the partition

Vk =

(

PV (k) ΛV (k)
ΞV (k) QV (k)

)

. (3.21)

Compute

(

HT (k) ΘT (k)
ΛT (k) GT (k)

)

=

(

IrU
k−1

0

0 V H
k

)





H(k) Θ(k) 0
Λ(k) G(k) 0

Xk+1Q(k) 0 Iρk



 .

(3.22)
with the matrices HT (k),ΘT (k),ΛT (k), GT (k) of sizes ρ′k−1 ×
mk, ρ

′
k−1 × ρ′k, νk ×mk, νk × ρ′k respectively.

Set

Γk =

(

0rU
k−1

×mk

PH
V (k)

)

(3.23)

and compute

(

ck,i
wi(k)

)

= V H
k

(

yi(k)
ck+1,i

)

, 1 ≤ i ≤ ℓ (3.24)

with the vector columns ck,i, wi(k) of sizes ρk−1, νk respectively.

– Set V1 = Iν1 and

ΛT (1) =

(

Λ(1)
X2Q(1)

)

, GT (1) =

(

G(1) 0
0 Iρ1

)

, Γ1 =

(

Im1

0ρ1×m1

)

,

(3.25)

wi(1) = V H
1

(

yi(1)
c2,i

)

, 1 ≤ i ≤ ℓ. (3.26)

9

Part 2.

For i = 1, . . . , ℓ (that is, for each shifted linear system) perform the
following:

3. Compute the factorization Tσi
= Uσi

Rσi
and the vector v

(i) = vσi
=

UH
σi
wi, wi = V H

yi. In particular, compute the “small” unitary factors

U
(i)
k of Uσi

and use this factorization to determine the quasiseparable
generators of Tσi

, denoted by the subscript T , and the vector v
(i).

– Compute the QR factorization

ΛT (1) + σiΓ1 = U
(i)
1

(

Λ
(i)
R (1)

0ρ1×m1

)

, (3.27)

where U
(i)
1 is a ν1 × ν1 unitary matrix and Λ

(i)
R (1) is an upper

triangular m1 ×m1 matrix.

Compute
(

G
(i)
R (1)

Y
(i)
1

)

= (U
(i)
1)HGT (1), (3.28)

(

v(i)(1)

α
(i)
1

)

= (U
(i)
1)Hwi(1) (3.29)

with the matrices G
(i)
R (1), v(i)(1), Y

(i)
1 , α

(i)
1 of sizes m1 × ρ′1,m1 ×

1, ρ1 × ρ′1, ρ1 × 1.

– For k = 2, . . . , N − 1 perform the following.

Compute the QR factorization

(

Y
(i)
k−1(HT (k) + σiΓk)

ΛT (k) + σiΛ
H
V (k)

)

= U
(i)
k

(

Λ
(i)
R (k)

0ρk×mk

)

, (3.30)

where U
(i)
k is an (mk+ρk)× (mk+ρk) unitary matrix and Λ

(i)
R (k)

is an mk ×mk upper triangular matrix.

Compute

(

G
(i)
R (k)

Y
(i)
k

)

= (U
(i)
k)H

(

Y
(i)
k−1ΘT (k)

GT (k)

)

, (3.31)

(

v(i)(k)

α
(i)
k

)

= (U
(i)
k)H

(

α
(i)
k−1

wi(k)

)

(3.32)

with the matrices G
(i)
R (k), v(i)(k), Y

(i)
k , α

(i)
k of sizes mk × ρ′k,mk ×

1, ρk × ρ′k, ρk × 1.

10

– Compute the QR factorization

(

Y
(i)
N HT (N) + σiΓN

ΛT (N) + σiΛ
H
V (N)

)

= U
(i)
N Λ

(i)
R (N), (3.33)

where U
(i)
N is a unitary matrix of sizes (νN +ρN−1)× (νN +ρN−1)

and Λ
(i)
R (N) is an upper triangular matrix of sizes mN ×mN .

Compute

v(i)(N) = (U
(i)
N)H

(

α
(i)
N−1

wi(N)

)

. (3.34)

4. Solve the system Rσi
x
(i) = v

(i), using the previously computed qua-
siseparable generators.

– Compute

x(i)(N) = (Λ
(i)
R (N))−1v(i)(N),

η
(i)
N−1 = (HT (N) + σiΓN)v(i)(N)

– For k = N − 1, . . . , 2 compute

x(i)(k) = (Λ
(i)
R (k))−1(v(i)(k)−G

(i)
R (k)η

(i)
k),

η
(i)
k−1 = ΘT (k)η

(i)
k + (HT (k) + σiΓk)x

(i)(k).

– Compute

x(i)(1) = (Λ
(i)
R (1))−1(v(i)(1) −G

(i)
R (1)η

(i)
1)

Proof of correctness. The shifted matrix A + σIN has the same lower
and upper quasiseparable generators as the matrix A and diagonal entries
Λ(k) + σImk

(k = 1, . . . , N). To compute the factorization (3.11) we apply
Theorem 20.5 from [6], obtaining the representation of the unitary matrix
V in the form

V = ṼN ṼN−1 · · · Ṽ2Ṽ1, (3.35)

where

Ṽ1 = V1 ⊕ Iφ1
, Ṽk = Iηk ⊕ Vk ⊕ Iφk

, k = 2, . . . , N − 1, ṼN = IηN ⊕ VN

with ηk =
∑k−1

j=1 mj , φk =
∑N

j=k+1mj and (mk + ρk) × (mk + ρk) unitary
matrices Vk, as well as the formulas (3.15), (3.16), (3.20), (3.21), V1 =
Iν1 . Here we see that the matrix V does not depend on σ. Moreover the
representation (3.35) yields the formulas (3.18), (3.24), (3.26) to compute
the vectors wi = V H

yi, 1 ≤ i ≤ ℓ.

11

Next we apply the corresponding formulas from the same theorem to
compute diagonal entries Λσ

T (k) (k = 1, . . . , N) and upper quasiseparable
generators Gσ

T (i) (i = 1, . . . , N − 1), Hσ
T (j) (j = 2, . . . , N), Θσ

T (k) (k =
2, . . . , N − 1) of the matrix Tσ. Hence, we obtain that

(

Hσ
T (N)

Λσ
T (N)

)

=

(

IrU
N−1

0

0 V H
N

)

(

H(N)
Λ(N) + σImN

)

,

(

Λσ
T (1) Gσ

T (1)
)

=

(

Λ(1) + σIm1
G(1) 0

X2Q(1) 0 Iρ1

)

,

and for k = N − 1, . . . , 2,

(

Hσ
T (k) Θσ

T (k)
Λσ
T (k) Gσ

T (k)

)

=

(

IrU
k−1

0

0 V H
k

)





H(k) Θ(k) 0
Λ(k) + σImk

G(k) 0
Xk+1Q(k) 0 Iρk



 .

From here we obtain the formulas

Hσ
T (k) = HT (k) + σΓk, k = N, . . . , 2,

Λσ
T (k) = ΛT (k) + σΛ∗

V (k), k = N, . . . , 2, Λσ
T (1) = ΛT (1) + σΓ1,

Gσ
T (k) = GT (k), k = 1, . . . , N − 1, Θσ

T (k) = ΘT (k), k = 2, . . . , N − 1
(3.36)

with HT (k),ΛT (k), GT (k),ΘT (k) and Γk as in (3.17), (3.19), (3.22), (3.23)
and (3.25).

Now by applying Theorem 20.7 from [6] to the matrices Tσi
, i = 1, 2, . . . ,M

with the generators determined in (3.36) we obtain the formulas (3.27),

(3.28), (3.30), (3.31), (3.33) to compute unitary matrices U
(i)
k and quasisep-

arable generators of the upper triangular Rσi
such that Tσi

= Uσi
Rσi

, where

Uσi
= Ũ

(i)
1 Ũ

(i)
2 · · · Ũ

(i)
N−1Ũ

(i)
N (3.37)

with

Ũ
(i)
1 = U

(i)
1 ⊕Iφ1

, Ũ
(i)
k = Iηk⊕U

(i)
k ⊕Iφk

, k = 2, . . . , N−1, Ũ
(i)
N = IηN⊕U

(i)
N .

Moreover the representation (3.37) yields the formulas (3.29), (3.32), (3.34)
to compute the vector v(i) = UH

σi
wi, 1 ≤ i ≤ l.

Finally applying Theorem 13.13 from [6] we obtain Step 2.2 to compute
the solutions of the systems Rσi

x
(i) = v(i). �

Concerning the complexity of the previous algorithm we observe that,
under the simplified assumptions of rLk = rUk = r, mi = mj = m and r ≪ m,
the cost of step 1 is of the order (6r2m + 2m2)(Nm), whereas the cost of
step 2 can be estimated as (2m2ℓ)(Nm) arithmetic operations. Therefore,
the proposed algorithm saves at least half of the overall cost of solving ℓ
shifted quasiseparable linear systems.

12

4 Numerical Experiments

The proposed fast algorithm has been implemented in MATLAB.1 All the
experiments were performed on a MacBookPro equipped with MATLAB
R2016b.

Example 4.1. Let us test the computation of functions of quasiseparable
matrices via series expansion, as outlined in Section 2. We choose A as the
100 × 100 one-dimensional discretized Laplacian with zero boundary condi-
tions, which is (1, 1)-quasiseparable, and g as a random vector with entries
taken from a uniform distribution over [0, 1]. Define

vex = 2πAeAt(e2πA − I)−1g,

as exact solution (computed in multiprecision) to the problem (2.1), (2.2).
Let vℓ and v̂ℓ be the approximate solutions obtained from (2.7) and (2.8),
respectively, with ℓ expansion terms. Figures 1 and 2 show logarithmic plots
of the absolute normwise errors ‖vex − vℓ‖2 and ‖vex − v̂ℓ‖2 for t = π/2
and t = π/12, and values of ℓ ranging from 10 to 500. The results clearly
confirm that the formulation (2.8) has improved convergence properties with
respect to (2.7). Note that the decreasing behavior of the errors is not always
monotone.

It should be pointed out that, in this approach, a faster convergence of the
series expansion gives a faster method for approximating the solution vector
with a given accuracy. Indeed, the main computational effort comes from the
solution of the shifted linear systems (A2+k2IN)xk = Ag or (A2+k2IN)xk =
A3g, and it is therefore proportional to the number of terms in the truncated
expansion.

Example 4.2. This example is taken from [15], Example 3.3. We consider
here the matrix A ∈ R

2500×2500 stemming from the centered finite difference
discretization of the differential operator −∆u + 10ux on the unit square
with homogeneous Dirichlet boundary condition. Note that A has (scalar)
quasiseparability order 50, but it can also be seen as block 1-quasiseparable
with block size 50.

We want to compute the matrix function

A
1

2 b ≈
ℓ
∑

k=1

κk(ω
2
kI −A)−1Ab,

where b is the vector of all ones and the choice of the coefficients κk and
ωk corresponds to the choice of a particular rational approximation for the
square root function.

1
The code is available at http://www.unilim.fr/pages perso/paola.boito/software.html.

13

http://www.unilim.fr/pages_perso/paola.boito/software.html
http://www.unilim.fr/pages_perso/paola.boito/software.html

0 50 100 150 200 250 300 350 400 450 500
number of terms

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
lo

g
10

(e
rr

or
)

formula (2.7)
formula (2.8)

Figure 1: Results for Example 4.1 for t = π/2. This is a logarithmic plot
of the errors given by the application of formulas (2.7) (circles with solid
line) and (2.8) (diamonds with dotted line) for the computation of a matrix
function times a vector.

0 50 100 150 200 250 300 350 400 450 500
number of terms

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

lo
g

10
(e

rr
or

)

formula (2.8)
formula (2.7)

Figure 2: Results for Example 4.1 for t = π/12. This is a logarithmic
plot of the errors given by the application of formulas (2.7) (circles with
solid line) and (2.8) (diamonds with dotted line) for the computation of a
matrix function times a vector. In this example the errors do not decrease
monotonically.

14

Table 1: Relative errors for Example 4.2.

ℓ rel. error (method 2) rel. error (method 3)

6 4.58e−4 3.25e−5
8 3.03e−5 6.77e−7
10 9.67e−7 9.90e−9
12 1.55e−8 1.16e−10
14 2.06e−9 1.56e−12
16 2.25e−11 2.16e−13
18 2.29e−12 2.09e−13
20 2.44e−13 2.14e−13

We apply the rational approximations presented in [12] as method2 and
method3; the latter is designed specifically for the square root function and
it is known to have better convergence properties. Just as for Example 4.1,
the main computational burden here consists in computing the terms (ω2

kI−
A)−1Ab for k = 1, . . . , ℓ, that is, solving the ℓ shifted quasiseparable linear
systems (ω2

kI −A)xk = Ab.
In this example we are especially interested in testing the numerical ro-

bustness of our fast solver when compared to classical solvers available in
MATLAB, in the context of computing matrix functions.

Table 1 shows 2-norm relative errors with respect to the result computed
by the MATLAB command sqrtm(A)*b, for several values of ℓ (number
of terms in the expansion or number of integration nodes). We have tested
three approaches to solve the shifted linear systems involved in the expansion:
classical backslash solver, fast structured solver with blocks of size 1 and
quasiseparability order 50, and fast structured solver with blocks of size 50
and quasiseparability order 1. For each value of ℓ, the errors are roughly the
same for all three approaches (so a single error is reported in the table). In
particular, the fast algorithms appear to be as accurate as standard solvers.

Example 4.3. The motivation for this example comes from the classical
problem of solving the Poisson equation on a rectangular domain with uni-
form zero boundary conditions. The equation takes the form

∆u(x, y) = f(x, y), with 0 < x < a, 0 < y < b,

and its finite difference discretization yields a matrix equation

AX +XB = F with X,F ∈ R
Nb×Na , (4.38)

where Na is the number of grid points taken along the x direction and Nb is
the number of grid points along the y direction. Here A and B are matrices
of sizes Nb×Nb and Na×Na, respectively, and both are Toeplitz symmetric

15

Table 2: Relative errors for Example 4.3.

Na 10 25 50 75 100
Nb

50 9.58e−16 1.98e−14 2.05e−14 9.34e−14 2.14e−13
100 5.55e−15 2.30e−14 4.58e−14 2.11e−13 5.61e−13
150 4.93e−15 3.20e−14 1.22e−13 1.75e−13 2.36e−13
200 1.25e−14 6.48e−14 2.33e−13 3.97e−13 6.23e−13
250 3.20e−15 1.23e−14 6.80e−14 8.98e−14 1.54e−13
500 3.77e−15 1.82e−14 4.85e−14
1000 6.08e−15 3.02e−14

tridiagonal with nonzero entries {−1, 2, 1}. See e.g., [21] for a discussion of
this problem.

A widespread approach consists in reformulating the matrix equation
(4.38) as a larger linear system of size NaNb × NaNb via Kronecker prod-
ucts. Here instead we apply the idea outlined in Section 2.2: compute the
(well-known) Schur decomposition of B, that is, B = UDUH , and solve
the equation A(XU) + (XU)D = FU . Note that, since D is diagonal, this
equation can be rewritten as a collection of shifted linear systems, where the
right-hand side vector may depend on the shift. This approach is especially
interesting when Nb is significantly larger than Na.

Table 2 shows relative errors on the solution matrix X, computed w.r.t.
the solution given by a standard solver applied to the Kronecker linear sys-
tem. Here we take F as the matrix of all ones. The results show that our
fast method computes the solution with good accuracy.

In the next examples we test experimentally the complexity of our algo-
rithm.

Example 4.4. We consider matrices An ∈ R
n×n defined by random qua-

siseparable generators of order 3. The second column of Table 3 shows the
running times of our structured algorithm applied to randomly shifted sys-
tems (An + σiIn)xi = y, for i = 1, . . . , 50 and growing values of n. The
same data are plotted in Figure 3: the growth of the running times looks
linear with n, as predicted by theoretical complexity estimates.

The third column of Table 3 shows timings for the structured algorithm
applied sequentially (i.e., without re-using the factorization (3.11)) to the
same set of shifted systems. The gain obtained by the fast algorithm of
Section 3 w.r.t. a sequential structured approach amounts to a factor of
about 2, which is consistent with the discussion at the end of Section 3.
Experiments with a different number of shifts yield similar results.

16

Table 3: Running times in seconds for Example 4.4.

system size n fast algorithm sequential algorithm ratio

100 0.6016 1.2049 2.0029
200 0.8473 1.6382 1.9334
300 1.2291 2.4377 1.9833
400 1.6639 3.2492 1.9528
500 2.1976 4.0544 1.8449
600 2.6654 5.1508 1.9325
700 2.9765 5.8691 1.9718
800 3.3367 6.5671 1.9681
900 3.8411 7.6630 1.9950
1000 4.2435 8.4006 1.9796

100 200 300 400 500 600 700 800 900 1000
matrix size

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

tim
e

(s
ec

)

running times
 linear fit

Figure 3: Running times for Example 4.4. The linear fit appears to be a
good approximation of the actual data. Its equation is y = 0.0042x+0.071.

17

Table 4: Running times in seconds for Example 4.5.

block size m running time (sec)

400 0.1481
800 1.0527
1200 3.4238
1600 7.6118
2000 15.2020
2400 26.3695
2800 40.1458
3200 61.2488

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6
log10 (block size)

-1

-0.5

0

0.5

1

1.5

2

lo
g1

0
(

tim
e

)

data
 linear fit

Figure 4: Log-log plot of running times versus block size m for Example
4.5. The equation of the linear fit is y = 2.9x− 8.4, which confirms that the
complexity of the algorithm grows as m3.

Example 4.5. In this example we study the complexity of our algorithm
w.r.t. block size (that is, the parameter m at the end of Section 3). We
choose N = 2, ℓ = 2, rL = rU = 1, with random quasiseparable generators,
and focus on large values of m. Running times, each of them averaged over
ten trials, are shown in Table 4. A log-log plot is given in Figure 4, together
with a linear fit, which shows that the experimental growth of these running
times is consistent with theoretical complexity estimates.

5 Conclusion

In this paper we have presented an effective algorithm based on the QR
decomposition for solving a possibly large number of shifted quasisepara-
ble systems. Two main motivations are the computation of a meromorphic

18

function of a quasiseparable matrix and the solution of linear matrix equa-
tions with quasiseparable matrix coefficients. The experiments performed
suggest that our algorithm has good numerical properties.

Future work includes the analysis of methods based on the Mittag-
Leffler’s theorem for computing meromorphic functions of quasiseparable
matrices. Approximate expansions of Mittag-Leffler type can be obtained
by using the Carathéodory-Fejér approximation theory (see [9]). The appli-
cation of these techniques for computing quasiseparable matrix functions is
an ongoing research.

References

[1] P. Amodio and M. Paprzycki. A cyclic reduction approach to the numer-
ical solution of boundary value ODEs. SIAM J. Sci. Comput., 18(1):56–
68, 1997.

[2] J. Ballani and D. Kressner. Matrices with Hierarchical Low-Rank Struc-
tures. In Exploiting Hidden Structure in Matrix Computations: Algo-
rithms and Applications, pages 161–209. Springer, 2016.

[3] R. H. Bartels and G. W. Stewart. Solution of the matrix equation
ax+ xb = c. Comm. of the ACM, 15(9):820–826, 1972.

[4] D. A. Bini, S. Massei, and L. Robol. Efficient cyclic reduction for
quasi-birth–death problems with rank structured blocks. Appl. Numer.
Math., 116:37–46, 2017.

[5] Y. Eidelman and I. Gohberg. A modification of the Dewilde-van der
Veen method for inversion of finite structured matrices. Linear Algebra
Appl., 343/344:419–450, 2002. Special issue on structured and infinite
systems of linear equations.

[6] Y. Eidelman, I. Gohberg, and I. Haimovici. Separable type representa-
tions of matrices and fast algorithms. Vol. 1, volume 234 of Operator
Theory: Advances and Applications. Birkhäuser/Springer, Basel, 2014.
Basics. Completion problems. Multiplication and inversion algorithms.

[7] Y. Eidelman, I. Gohberg, and I. Haimovici. Separable type representa-
tions of matrices and fast algorithms. Vol. 2, volume 235 of Operator
Theory: Advances and Applications. Birkhäuser/Springer Basel AG,
Basel, 2014. Eigenvalue method.

[8] Yu. S. Eidelman, V. B. Sherstyukov, and I. V. Tikhonov. Applica-
tion of Bernoulli polynomials in non-classical problems of mathematical
physics. In Systems of Computer Mathematics and their Applications,
pages 223–226. Smolensk, 2017. (Russian).

19

[9] R. Garrappa and M. Popolizio. On the use of matrix functions for
fractional partial differential equations. Mathematics and Computers
in Simulation, 81(5):1045–1056, 2011.

[10] J. Gondzio and P. Zhlobich. Multilevel quasiseparable matrices in pde-
constrained optimization. Technical Report ERGO-11-021, School of
Mathematics, The University of Edinburgh, 2011.

[11] G.-D. Gu and V. Simoncini. Numerical solution of parameter-dependent
linear systems. Numer. Linear Algebra Appl., 12(9):923–940, 2005.

[12] N. Hale, N. J. Higham, and L. N. Trefethen. Computing Aα, log(A),
and related matrix functions by contour integrals. SIAM J. Numer.
Anal., 46(5):2505–2523, 2008.

[13] S. Massei and L. Robol. Decay bounds for the numerical quasiseparable
preservation in matrix functions. Linear Algebra Appl., 516:212–242,
2017.

[14] V. B. Sherstyukov. Expansion of the reciprocal of an entire function
with zeros in a strip in the Krĕın series. Mat. Sb., 202(12):137–156,
2011.

[15] V. Simoncini. Extended Krylov subspace for parameter dependent sys-
tems. Appl. Numer. Math., 60(5):550–560, 2010.

[16] V. Simoncini. Computational methods for linear matrix equations.
SIAM Rev., 58(3):377–441, 2016.

[17] I. V. Tikhonov. On the solvability of a problem with a nonlocal integral
condition for a differential equation in a banach space. Differential
Equations, 34(6):841–844, 1998.

[18] I. V. Tikhonov. Uniqueness theorems in linear nonlocal problems for
abstract differential equations. Izv. Math., 67(2):333–363, 2003.

[19] R. Vandebril, M. Van Barel, and N. Mastronardi. Matrix computations
and semiseparable matrices. Vol. 1. Johns Hopkins University Press,
Baltimore, MD, 2008. Linear systems.

[20] R. Vandebril, M. Van Barel, and N. Mastronardi. Matrix computations
and semiseparable matrices. Vol. II. Johns Hopkins University Press,
Baltimore, MD, 2008. Eigenvalue and singular value methods.

[21] Frederic Y. M. Wan. An in-core finite difference method for separable
boundary value problems on a rectangle. Studies in Applied Mathemat-
ics, 52(2):103–113, 1973.

20

	1 Introduction
	2 Motivating Examples
	2.1 A Model Problem for Boundary Value ODEs
	2.2 Sylvester-type Matrix Equations

	3 The basic algorithm
	4 Numerical Experiments
	5 Conclusion

