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Abstract

In the present letter, it is demonstrated how full configuration interaction (FCI) results

in extended basis sets may be obtained to within sub-kJ/mol accuracy by decomposing the

energy in terms of many-body expansions in the virtual orbitals of the molecular system at

hand. This extension of the FCI application range lends itself to two unique features of the

current approach, namely that the total energy calculation can be performed entirely within

considerably reduced orbital subspaces and may be so by means of embarrassingly parallel

programming. Facilitated by a rigorous and methodical screening protocol and further aided

by expansion points different from the Hartree-Fock solution, all-electron numerical results

are reported for H2O in polarized core-valence basis sets ranging from double-ζ (10 e, 28 o)

to quadruple-ζ (10 e, 144 o) quality.
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The full configuration interaction (FCI) wave function represents the exact solution to the elec-

tronic Schrödinger equation within a given fixed-sized one-electron basis set. This formal attrac-

tiveness aside, its practical realization is generally impeded by a twofold curse of dimensional-

ity;1–3 within a basis set of a certain quality, the scaling of the FCI model is exponential with re-

spect to the number of electrons, and even for a fixed system size, the computational requirements

grow exponentially with respect to the number of molecular orbitals (MOs). To circumvent this

despairing intractability, various classes of approximations to the FCI model are usually invoked,

not to mention the powerful approaches that derive from density matrix renormalization group

(DMRG) theory4–6 and stochastic solutions to the Schrödinger equation.7–10 In the most popular

and conventional of these classes, a truncation of the wave function expansion is enforced; this

type of approach encompasses established and successful methods such as those of the configura-

tion interaction (CI) and coupled cluster (CC) hierarchies.11,12 Alternatively, one might conceive

approximations aimed directly at the energy expression; in such approaches, the energy is initially

decomposed followed by a feasible truncation. This change of target from the wave function to

the energy motivates the use of many-body expansions (MBEs), which provide access to an incre-

mental take on electron correlation phenomena. In recent years, computational strategies based on

MBEs have experienced a notable rise in popularity.13–21 However, whereas the objects entering

these expansions have typically been the individual monomer molecules or molecular moieties of

a supersystem, as, for instance, in the context of the local incremental scheme,22–25 these may also

be chosen as the occupied spatial MOs of a system (labelled with indices {i, j,k, . . .}), in which

case the master equation becomes the so-called Nth-order Bethe-Goldstone equation26–28

EFCI = ∑
i

εi +∑
i> j

∆εi j + ∑
i> j>k

∆εi jk + . . .

= E(1)+E(2)+E(3)+ . . . (1)

In the decomposition of the FCI energy, EFCI, in Eq. 1, the increases in electron correlation (incre-

ments) from correlating the electrons of two orbitals over one (∆εi j), three over two (∆εi jk), etc.,
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are given as

∆εi j = εi j− (εi + ε j) (2a)

∆εi jk = εi jk− (∆εi j +∆εik +∆ε jk)− (εi + ε j + εk) . (2b)

The calculation of order approximations to EFCI thus presupposes knowledge of the components of

all contributions at lower orders, in the sense that lower-order increments enter the expressions for

higher-order increments.29 To nth order, E(n), or—in the present context—for the account of 2n-

electron correlation in the typical case of a closed-shell molecule, closed-form energy expressions

exist in the literature,30,31 albeit only in the limit where the full orbital space remains untruncated

(vide infra).

If the expansion in Eq. 1 is left untouched, one does nothing but calculate the FCI energy in

an immensely cumbersome fashion. However, and this was the main motivation behind Nesbet’s

earlier work in terms of generalized Bethe-Goldstone equations,26–28 the expansion might become

of practical value if contributions from higher-order combinations of orbitals (denoted as tuples in

the present work) turn out to be negligible. In that case, the exact FCI limit may be approached—at

least in principle—by correlating an increasing number of electrons independently and in succes-

sion. Here, it is worth noting that the two most celebrated features of CI, the orbital invariance

and upper bound of the ground state energy, are in general sacrificed following any pragmatic

truncation of Eq. 1. However, such a sacrifice will prove beneficial for the sake of being able to

incrementally approximate EFCI, if the total error with respect to a conventional result—which is

anyways only obtainable in the most modest of basis sets—is sufficiently low. In the present work,

the energetic tolerance, with which we will be concerned, is that of thermochemical (sub-kJ/mol)

accuracy. Various schemes formulated around this fundamental idea have recently been proposed,

such as the CCEMBE approach by Ruedenberg and Windus32–34 (albeit not targeted at the FCI

limit) and notably the incremental FCI scheme by Zimmerman.35–37

However, while N may be small (as for, e.g., H2O, in which case N = 10), extended basis sets
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are compulsory for solving the Schrödinger equation, and the FCI curse of dimensionality hence

still prevails. Also, for code parallelization to be effective—an aspect that becomes increasingly

important when developing novel algorithms that aim at embracing current as well as future super-

computer architectures—the total number of independent calculations must add up to a significant

figure. Now, at any given order in Eq. 1, the number of individual calculations is determined

by sheer combinatorics, and returning to the case of water, the total number of calculations to be

distributed will thus be a fixed ∑
5
k=1

(5
k

)
= 31, regardless of the choice of basis set. Furthermore,

as the number of virtual MOs rises steeply along with an increase in basis set size, even low-order

approximations to Eq. 1 are soon to become unachievable. For this reason, we propose to turn

things around by considering the objects of the MBE not to be the occupied, but rather the vir-

tual MOs of the system. Thus, while a possible disadvantage of such an approach might be that

some of the intuitive physical interpretation of the expansion itself is lost, clear advantages include

the huge potential in terms of inherent massive parallelism as well as the fact that all basis sets

become accessible for systems such as H2O. Indeed, the number of independent calculations will

now increase upon moving to larger basis sets, while the cost of the individual calculations remains

marginal, operating under the assumption that Eq. 1 still converges reasonably fast.

Having decided on virtual MOs as the expansion parameters in Eq. 1, the question remains as

to whether such a procedure will in general be capable of eliminating the well-known redundancy

of the FCI wave function.38–40 In general this is not so, and in order to avoid accounting for a

colossal amount of vanishing contributions at various orders in the expansion, we have devised a

rigorous screening protocol which is built into the expansion. In this way, the current algorithm

strives towards being able to compress the set of variable parameters to the largest extent possible

subject to an a priori threshold. Thus, the philosophy is akin to, but at the same time significantly

different from that behind so-called selected and projector CI methods,41–49 and it may hence—on

par with these—be viewed as a deterministic counterpart to stochastic FCI quantum Monte Carlo

(FCIQMC).7–10

More specifically, the screening protocol proceeds in the following manner. At orders k≤ 3, all
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possible complete active space CI (CAS-CI) calculations involving one, two, or three virtual and

the complete set of occupied MOs are performed. At all subsequent orders, possible child tuples at

order k+1 are generated from the complete set of parent tuples at order k in a graph-like fashion.

For each parent tuple at order k, denoted as [a,b, . . . ,c], we probe whether or not to consider the

child tuple at order k+1, [a,b, . . . ,c,d], which is constructed by appending the parent tuple by an

MO d > c. This is done by defining the following set of tuples of order (length) k

{Λ}k = Sk−1{[a,b, . . . ,c]}⊗{[d]} (3)

where the action of Sk−1 onto the parent tuple is to construct all possible subsets of length k− 1,

and the direct product produces all combinations that append the MO d to any of these lists. The

following condition now governs the potential screening of the child tuple, [a,b, . . . ,c,d]

Tk < |ελ | ∀ λ ∈ {Λ}k (4)

for some numerical energy threshold, Tk, see below. That is, if the orbital d is sufficiently correlated

with all combinations of orbitals present in the parent tuple, then said child tuple will be among

the tuples that are considered at order k+ 1, and vice versa, if the condition in Eq. 4 fails to be

satisfied. The main assumption behind the screening protocol is thus that the increase in correlation

from correlating the MOs of the parent tuple in the presence of the new MO will be minuscule to

within the desired accuracy. Furthermore, the implications of the screening propagates implicitly

to higher orders, as all potential child and grandchild tuples from [a,b, . . . ,c,d] will automatically

be neglected as well.

Now, while the graph-like generation of input tuples necessitates a tight threshold early on in

the expansion, this is less decisive upon moving to higher orders if indeed the sum of the (increas-

ingly manifold) individual energy increments becomes increasingly negligible. Thus, we might

opt to relax the threshold along the expansion. Specifically, at order k = 1, the threshold is fixed to

a value of T1 = Tinit ≡ 1.0×10−10 a.u., which is the value to within which the energy of the indi-
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vidual CAS-CI calculations is converged, and hence a conservative lowest threshold for which the

numerical precision of the calculation may be controlled.50 This is so, as all contributions with en-

ergy increments below this limit will ultimately be tainted from numerical noise. At all subsequent

orders, however, the threshold takes the form

Tk = Tinit ·ak−1 (5)

where a≥ 1.0 is a relaxation factor. For a fixed value of Tinit, a is the sole parameter defining our

expansion. An important aspect when discussing any screening protocol, however, is concerned

with the energy assembly at each order in the expansion, as the use of screening generally hinders

the use of closed formulas31,50 for summing up E(n). Instead, the direct recursive scheme in Eqs.

2 is required for calculating the individual increments.

Finally, we note that we have the freedom to choose an arbitrary base for the expansion in Eq.

1, in particular one that is different from the Hartree-Fock (HF) solution. For instance, we may let

the expansion target the gap in correlation energy between either the second-order Møller-Plesset

(MP2)51 or CC singles and doubles (CCSD)52 solution and FCI instead of the full FCI correlation

energy. While this assumes that an MP2 or CCSD calculation can be performed for the full system

prior to the actual start of the expansion, as well as within each of the CAS spaces of the individual

tuple calculations, the clear advantage of using such an intermediate model is that the individual

energy increments are bound to be significantly smaller in value, leading to a potentially faster

convergence towards the FCI solution. Furthermore, whenever an MP2/CCSD energy calculation

is possible for the full system, one may additionally also diagonalize the virtual-virtual block of

the 1-particle density matrix at that level of theory to obtain a set of virtual natural orbitals (NOs),

which in turn allows for a more effective screening over the use of standard canonical virtual HF

orbitals.53,54 In the following, our choice of base model (HF, MP2, or CCSD) will implicitly also

dictate the choice of virtual MO representation in the expansion (canonical orbitals or MP2/CCSD

NOs, respectively). For the occupied MOs, on the other hand, any rotation of these among each
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other is redundant, and we will hence make use of canonical occupied HF orbitals throughout for

all of the reported calculations.

In the present work, all MBE-FCI calculations have been performed using a novel code writ-

ten exclusively in Python/NumPy,55 of which all program phases have been explicitly parallelized

using the message passing interface (MPI) protocol via its implementation in the MPI4PY Python

module.56–58 This extension hence allows for all computational tasks to be distributed in a par-

allel manner among a group of processes on a large computer cluster. The individual CAS-CI

calculations have been performed using the Python-based PYSCF platform59∗, with initial testing

and verification enabled through an interface to the CFOUR quantum chemical program package as

backend engine.60
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Figure 1: All-electron MBE-FCI/cc-pCVDZ results for H2O with HF, MP2, and CCSD as the base
for the expansion. The reference FCI result is indicated by the dashed line in black color.

In Figure 1, all-electron MBE-FCI results are presented for H2O (R = 0.957 Å, ∠ = 104.2◦)

∗Git hash for the version of PYSCF used herein: 4a07bb9e0a
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in a cc-pCVDZ core-valence basis set61,62 (10 e, 28 o). In comparison, a conventional calcu-

lation, making full use of Abelian point group symmetry (C2v), would involve in excess of two

billion variational parameters, which is close to the computational limit within the scope of any-

thing but the most modern parallel FCI implementations.63 As may be recognized by comparing

the convergence of the three different curves in Figure 1, the use of an intermediate base model

significantly improves the convergence rate towards the conventional FCI result. The MP2 model,

which perturbatively accounts for all double excitations, already reduces the oscillations present in

the HF-based curve, and the same observation—even more pronouncedly—is also true in moving

from an MP2 to a CC expansion base. Furthermore, the use of a dynamic threshold (a > 1.0) is

observed not to have any influence on the final result, as may be seen from the detailed comparison

of the correlation energies (to within 5 decimal points) in Table 1, which also features FCI (as

calculated using the CAS-SCF module in CFOUR 64) and high-level CC (CCSDT and CCSDTQ, as

calculated via the interface to MRCC in CFOUR 65,66) reference data where available.

Table 1: Total CCSD-based MBE-FCI/cc-pCVXZ correlation energies (in a.u.) for H2O, as
converged to within an uncertainty of 0.1 kJ/mol (3.8×10−5 a.u.). In addition, the number
of determinants, Kdet, entering a conventional FCI calculation as well as reference CC and/or
FCI results are presented for comparison.

Expansion Basis set
threshold cc-pCVDZ cc-pCVTZ cc-pCVQZ

a = 1.0 −0.25569 −0.33283 −0.35636
a = 1.5 −0.25570 −0.33286 −0.35641
a = 2.0 −0.25570 −0.33291 −0.35646
a = 2.5 −0.25571 −0.33295 −0.35650
CCSDT −0.25520 −0.33250 −0.35603
CCSDTQ −0.25566 −0.33284 −0.35643
FCI −0.25568 N/A N/A
Kdet ∼ 2×109 ∼ 4×1013 ∼ 5×1016

Next, we turn to the considerably larger calculations within the cc-pCVTZ (10 e, 71 o) and

cc-pCVQZ (10 e, 144 o) basis sets. In Table 1, MBE-FCI results are again presented for static as

well as dynamic expansion thresholds. As was the case for the cc-pCVDZ calculations above, the
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use of threshold relaxation is observed only to affect the overall accuracy of the present scheme

marginally, in comparison to the sub-kJ/mol precision at which we are aiming. Also, the overall

convergence pattern remains relatively unchanged in the transition to larger basis sets, which is

clear from Figure 2, in which the energetic difference between the CCSD base model and FCI is

depicted vis-à-vis for all three basis sets. This is in perfect accordance with chemical intuition,

in the sense that correlation as a whole is inherently a system- rather than a basis set-specific

phenomenon.
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Figure 2: Recovery of the CCSD–FCI energy difference for H2O in the cc-pCVXZ basis sets.
Reference FCI and CCSDTQ results are indicated by dashed lines in black color.

Finally, we briefly comment on the computational cost associated with the current algorithm.

Allowing for threshold relaxation trivially results in a reduction of the total time-to-solution, as

(i) fewer calculations need to be performed at each order and (ii) even fewer, if any, calculations

need to be performed at high orders in the expansion. In Figure 3, we depict the number of

orbital tuples that need be evaluated at each order in the expansions using a threshold relaxation
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of a = 2.0. As is clear from the comparison to the theoretical number of calculations, the savings

with respect to a conventional calculation grow dramatically with increase in basis set size, as

is particularly manifest in light of the fact that conventional FCI results are hypothetical for the

cc-pCVTZ and cc-pCVQZ basis sets, due to the sheer size of the variational space (cf. Table

1). In terms of the accumulated number of tuples, the calculations in Figure 3 involved a total

of 41k (cc-pCVDZ), 582k (cc-pCVTZ), and 1302k (cc-pCVQZ) individual calculations, and the

relative increase in required tuples is hence observed not to increase proportionally to basis set

size, but rather appear to saturate for higher cardinal numbers. Using our pilot implementation, the

calculations required (in hours:minutes format) 00:13, 02:47, and 33:40 of walltime, respectively,

on 2 nodes with 28 cores @ 2.4 GHz and 256 GB of memory each. In the transition from a cc-

pCVDZ to a cc-pCVTZ basis set, the time ratio between the two calculations (13.3, using exact

timings) corresponds satisfactorily well with the relative increase in individual tuples (14.0, using

exact number of tuples). Moving to the even larger cc-pCVQZ basis, however, the relative increase

in time is significantly worse. For this increase in time to solely reflect the corresponding increase

in individual calculations, a communication bottleneck related to the handling of CAS space 2-

electron integrals for large basis sets remains to be resolved. The necessary modifications to the

code required for resolving this issue are currently being implemented.

In the present letter, we have revisited the application of the MBE to the calculation of FCI

energies, known as the so-called Nth-order Bethe-Goldstone equation. By considering the objects

of the equation not as the occupied MOs of the system at hand, but rather the virtual MOs, we have

been able to extend the application range of FCI to near the limit of what can be reached with mod-

ern stochastic and selective CI approaches, while maintaining thermochemical (sub-kJ/mol) accu-

racy in comparison with the exact result. These enhancements have been made possible through

the development of a simple, yet methodical screening protocol as well as the use of expansion

points different from the HF solution. Enabled by an all-Python/NumPy implementation of the

new algorithm, we have presented all-electron results for H2O in polarized core-valence basis sets

ranging from double-ζ (10 e, 28 o) to quadruple-ζ (10 e, 144 o) quality.
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Figure 3: Comparison of the calculated number of tuples at each order (blue color) against the
theoretical value (green color) for H2O in each of the cc-pCVXZ basis sets.

However, we remark here that an MBE-based approach to the FCI electron correlation problem,

in its current incarnation, will introduce a bias towards single-determinant dominated systems such

as H2O. To alleviate this hindrance of the general procedure, one may take advantage of the fact

that the MBE allows for other choices of underlying references than the generic restricted HF

solution. For instance, the ability to use open-shell HF references is work in progress within the

existing computational framework. Alternatively, and this is also a current research field, one may

extend the concept of MBEs even further by devising so-called dual (combined) expansions, in

which MBEs are performed in both the occupied and the virtual MO space. In particular, one may

perform an MBE in the set of occupied MOs, and then for each single orbital and orbital pair,

triple, etc., generate a specific set of correlating virtual NOs. Such an approach will be capable

of eliminating the factorial scaling with the number of electrons, which still restrains the current
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algorithm, under the assumption that occupied MBEs generally converge rapidly.
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