1 Asymmetry of mating behaviour affects copulation success in two stored

### 2 product beetles

- 3
- 4 Giovanni Benelli <sup>1,2</sup> \*, Donato Romano <sup>2</sup>, Cesare Stefanini <sup>2,5</sup>, Nickolas G.
- 5 Kavallieratos<sup>3</sup>, Christos G. Athanassiou<sup>4</sup>, Angelo Canale<sup>1</sup>
- 6
- <sup>7</sup> <sup>1</sup> Insect Behavior Group, Department of Agriculture, Food and Environment,
- 8 University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
- 9 <sup>2</sup> The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo
- 10 Piaggio 34, Pontedera, 56025 Pisa, Italy
- <sup>3</sup> Laboratory of Agricultural Zoology and Entomology, Department of Crop Science,
- 12 Agricultural University of Athens, 75 Iera Odos str., 11855, Athens, Attica, Greece<sup>4</sup>
- 13 University of Thessaly, Department of Agriculture, Plant Production and Rural
- 14 Environment, Laboratory of Entomology and Agricultural Zoology, Phytokou str.,
- 15 38443, N. Ionia, Magnesia, Greece
- <sup>5</sup> Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu
- 17 Dhabi, UAE
- 18
- 19 \* Correspondence: G. Benelli. Tel.: +39-0502216141. Fax: +39-0502216087. E-mail
- 20 address: g.benelli@sssup.it; benelli.giovanni@gmail.com
- 21
- 22

## 23 Key message

24 25 There is no information on lateralization (i.e., left-right asymmetries in the • 26 brain and behaviour) in Coleoptera. 27 • We investigated lateralization of mating traits in two pests of stored products, Sitophilus oryzae and Tribolium confusum. 28 • Male beetles exhibited population-level left-biased copulation approaches of 29 30 potential mates. 31 Males performing left-biased copulation attempts achieved higher mating ٠ success over right-biased males. 32 The quantification of mating displays could allow comparisons with other 33 ٠ strains, allowing the evaluation of the impact of rearing on mating traits. 34 35 Author Contribution Statement: GB conceived and designed research. DR 36 37 conducted experiments. All authors contributed new reagents and/or analytical tools. 38 GB, DR, CS, NKG, CGA and AC analysed data. GB, NGK, CGA and AC wrote the manuscript. All authors read and approved the manuscript. 39 40

# 42 Abstract

| 44 | Lateralization (i.e., left-right asymmetries in the brain and behaviour) has             |
|----|------------------------------------------------------------------------------------------|
| 45 | been documented in all vertebrate classes, while evidences for invertebrates are         |
| 46 | limited. To the best of our knowledge, there is no information about behavioural         |
| 47 | asymmetries in the Order Coleoptera. In this research, we investigated lateralization    |
| 48 | of mating traits in two major pests of stored products, the rice weevil, Sitophilus      |
| 49 | oryzae (Coleoptera: Curculionidae) and the confused flour beetle, Tribolium              |
| 50 | confusum (Coleoptera: Tenebrionidae). Both T. confusum and S. oryzae males               |
| 51 | showed population-level left-biased copulation approaches of potential mates.            |
| 52 | Interestingly, T. confusum and S. oryzae males performing left-biased copulation         |
| 53 | attempts achieved higher mating success over right-biased males. Furthermore, $S$ .      |
| 54 | oryzae males periodically exhibited s typical head wagging behaviour, which              |
| 55 | consists of waving the rostrum laterally across the female thorax and then resting the   |
| 56 | rostrum on the mid thorax. This behaviour was right-biased, even in the majority of      |
| 57 | males, which previously showed left-biased copulation attempts. The quantification       |
| 58 | of mating displays could allow comparisons with other strains, in order to evaluate      |
| 59 | the impact of a given host or of the rearing methods on the mating traits of S. oryzae   |
| 60 | and T. confusum. Overall, this is the first report of lateralization of mating traits in |
| 61 | Coleoptera. Furthermore, this research adds basic knowledge to the reproductive          |
| 62 | behaviour of S. oryzae and T. confusum.                                                  |
|    |                                                                                          |

**Keywords:** behavioural asymmetries; courtship; foodstuff beetles; mass rearing;

- 65 Sitophilus oryzae; Tribolium confusum

### 67 **1. Introduction**

68

69 Lateralization (i.e., left-right asymmetries in the brain and behaviour) has been documented in all vertebrate classes (Bisazza et al. 1998a; Vallortigara 2000; 70 71 Vallortigara et al. 1999, 2011; Rogers and Andrew 2002; Vallortigara and Rogers 72 2005; MacNeilage et al. 2009; Rogers et al. 2013a). Left-right asymmetries in the 73 brain and behaviour may enhance brain efficiency in cognitive tasks involving 74 concurrently but differently both hemispheres (Rogers et al. 2004). 75 Limited research efforts have been conducted to shed light about this 76 fascinating issue in invertebrate species (Frasnelli et al. 2012a). In insects, there are 77 evidences for lateralization in movement in foraging columns by ants (Vallortigara & 78 Rogers 2005), antennal contacts in ants (Frasnelli et al. 2012b), lateralization of visual 79 learning in honeybees (Letzkus et al. 2008) and leftward turning bias during nest site 80 exploration in ants (Hunt et al. 2014). Recent research efforts on behavioural asymmetries of aggressive traits have been conducted in mosquitoes (Benelli et al., 81 82 2015a), tephritid flies (Benelli et al. 2015b; Benelli et al. 2015c), blowflies (Romano et al., 2015), and honeybees (Rogers et al. 2013b). However, studies on lateralization 83 of courtship and mating behaviour are scarce. Concerning behavioural asymmetry of 84 courtship and mating displays in invertebrates, it has been recently reported that in 85 the parasitic wasp Leptomastidea abnormis (Girault) (Hymenoptera: Encyrtidae), the 86 87 males showed a right biased display of antennal tapping during courtship behaviour, (Romano et al. 2016). As regards to tephritid flies, Bactrocera oleae (Rossi) males 88 89 show a lateral bias during courtship and mating behaviour, courting females more 90 frequently from the left than the right, front, or backside (Benelli et al. 2015c).

91 Furthermore, behavioural asymmetries in mating were reported for the earwig 92 Labidura riparia Pallas (Dermaptera: Labiduridae), in which the males having two penises, hold their intromittent organs in the "right-ready" state when not mating, as 93 well as when mating (Kamimura 2006). 94 95 Besides insects, further evidences of lateralization of courtship and mating behaviour in invertebrates were reported also in some molluscs. For instance, in the 96 97 simultaneous reciprocal hermaphrodite Cornu aspersum (Müller) (Pulmonata: 98 Helicidae), it has been showed that the electrical stimulation of the right mesocerebrum evoked genital eversion, suggesting that neurons of the right 99 100 mesocerebrum play a key role in controlling the mating behaviour of this mollusc 101 (Koene et al. 2000). In addition, Davison et al. (2009) observed lateralization of pre-102 copulation behaviour in the pond snail Lymnaea stagnalis (L.) (Pulmonata: 103 Lymnaeidae), where the asymmetry of male circling behaviour preceding mating 104 corresponds to the sinistral or dextral shell coil, or chirality, of the snail, and is apparently controlled by a maternal locus. To the best of our knowledge, there is no 105 106 information about behavioural asymmetries in the Order of Coleoptera. 107 The confused flour beetle, Tribolium confusum Jacquelin du Val (Coleoptera: 108 Tenebrionidae) is a long-live species that can seriously and rapidly infest stored-109 products (Pedersen 1992; Verheggen et al. 2007; Mason and McDonough 2012). It is regarded as a secondary colonizer since it cannot easily develop in sound grain 110 111 kernels (Storey 1987; Trematerra et al. 2000). T. confusum is considered as one of the most tolerant stored-products species to several contact insecticides that are used 112 as grain protectants (Kavallieratos et al. 2011, 2013; Athanassiou and Kavallieratos 113 114 2014; Kavallieratos et al. 2015).

| 115                                                                | The rice weevil, <i>Sitophilus oryzae</i> (L.) (Coleoptera: Curculionidae) is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 116                                                                | extremely destructive beetle that infects different types of stored products worldwide,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 117                                                                | (Aitken 1975; Hill 2002; Mason and McDonough 2012). As a primary pest, it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 118                                                                | capable of infesting unbroken grain kernels in the adult stage whereas its larvae are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 119                                                                | fed and complete their development inside kernels (Trematerra et al. 2000; Mason                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 120                                                                | and McDonough 2012). Given that the immature development of this species is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 121                                                                | completed within kernels, larvae are not vulnerable to contact insecticides that are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 122                                                                | applied on the external kernel part (Arthur and Throne 2003). Its adults are long-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 123                                                                | lived, the females lay eggs throughout their lifespan (Hill 2002) and it has developed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 124                                                                | resistance to several insecticides (Haliscak and Beeman 1983; Benhalima et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 125                                                                | 2014), indicates that the presence of S. oryzae requires particular attention in storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 126                                                                | facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 127                                                                | Both T. confusum and S. oryzae have been found to coexist and co-infest the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 128                                                                | product in many storage facilities, exhibiting an ecological succession in their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 128<br>129                                                         | product in many storage facilities, exhibiting an ecological succession in their infestation patterns (Buchelos and Athanassiou 1993; Athanassiou et al. 2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 128<br>129<br>130                                                  | <ul><li>product in many storage facilities, exhibiting an ecological succession in their</li><li>infestation patterns (Buchelos and Athanassiou 1993; Athanassiou et al. 2006).</li><li>Infestation or contamination of these commodities by the primary colonizer <i>S. oryzae</i></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 128<br>129<br>130<br>131                                           | <ul> <li>product in many storage facilities, exhibiting an ecological succession in their</li> <li>infestation patterns (Buchelos and Athanassiou 1993; Athanassiou et al. 2006).</li> <li>Infestation or contamination of these commodities by the primary colonizer <i>S. oryzae</i></li> <li>may easily make them vulnerable to infestation by the secondary colonizer <i>T</i>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 128<br>129<br>130<br>131<br>132                                    | <ul> <li>product in many storage facilities, exhibiting an ecological succession in their</li> <li>infestation patterns (Buchelos and Athanassiou 1993; Athanassiou et al. 2006).</li> <li>Infestation or contamination of these commodities by the primary colonizer <i>S. oryzae</i></li> <li>may easily make them vulnerable to infestation by the secondary colonizer <i>T</i>.</li> <li><i>confusum</i> that will increase the infestation further (Trematerra et al. 2000). Thus, the</li> </ul>                                                                                                                                                                                                                                                                                                               |
| 128<br>129<br>130<br>131<br>132<br>133                             | <ul> <li>product in many storage facilities, exhibiting an ecological succession in their</li> <li>infestation patterns (Buchelos and Athanassiou 1993; Athanassiou et al. 2006).</li> <li>Infestation or contamination of these commodities by the primary colonizer <i>S. oryzae</i></li> <li>may easily make them vulnerable to infestation by the secondary colonizer <i>T</i>.</li> <li><i>confusum</i> that will increase the infestation further (Trematerra et al. 2000). Thus, the</li> <li>presence of <i>T. confusum</i> in high densities in grain kernels can be used as a reliable</li> </ul>                                                                                                                                                                                                          |
| 128<br>129<br>130<br>131<br>132<br>133<br>134                      | <ul> <li>product in many storage facilities, exhibiting an ecological succession in their</li> <li>infestation patterns (Buchelos and Athanassiou 1993; Athanassiou et al. 2006).</li> <li>Infestation or contamination of these commodities by the primary colonizer <i>S. oryzae</i></li> <li>may easily make them vulnerable to infestation by the secondary colonizer <i>T</i>.</li> <li><i>confusum</i> that will increase the infestation further (Trematerra et al. 2000). Thus, the</li> <li>presence of <i>T. confusum</i> in high densities in grain kernels can be used as a reliable</li> <li>indicator of potentially serious qualitative degradation of stored grains.</li> </ul>                                                                                                                      |
| 128<br>129<br>130<br>131<br>132<br>133<br>134<br>135               | product in many storage facilities, exhibiting an ecological succession in theirinfestation patterns (Buchelos and Athanassiou 1993; Athanassiou et al. 2006).Infestation or contamination of these commodities by the primary colonizer S. oryzaemay easily make them vulnerable to infestation by the secondary colonizer T.confusum that will increase the infestation further (Trematerra et al. 2000). Thus, thepresence of T. confusum in high densities in grain kernels can be used as a reliableindicator of potentially serious qualitative degradation of stored grains.In both T. confusum and S. oryzae, the males produce an aggregation                                                                                                                                                               |
| 128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136        | product in many storage facilities, exhibiting an ecological succession in their infestation patterns (Buchelos and Athanassiou 1993; Athanassiou et al. 2006). Infestation or contamination of these commodities by the primary colonizer <i>S. oryzae</i> may easily make them vulnerable to infestation by the secondary colonizer <i>T</i> . <i>confusum</i> that will increase the infestation further (Trematerra et al. 2000). Thus, the presence of <i>T. confusum</i> in high densities in grain kernels can be used as a reliable indicator of potentially serious qualitative degradation of stored grains. In both <i>T. confusum</i> and <i>S. oryzae</i> , the males produce an aggregation pheromone, and females are highly promiscuous, engaging prolonged mating                                   |
| 128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137 | product in many storage facilities, exhibiting an ecological succession in their infestation patterns (Buchelos and Athanassiou 1993; Athanassiou et al. 2006). Infestation or contamination of these commodities by the primary colonizer S. oryzae may easily make them vulnerable to infestation by the secondary colonizer T. confusum that will increase the infestation further (Trematerra et al. 2000). Thus, the presence of T. confusum in high densities in grain kernels can be used as a reliable indicator of potentially serious qualitative degradation of stored grains. In both T. confusum and S. oryzae, the males produce an aggregation pheromone, and females are highly promiscuous, engaging prolonged mating interactions with multiple males (Fedina and Lewis 2008; Flay and Wang 2010). |

| 139 | that population-level behavioural asymmetries may occur in these two beetle species    |
|-----|----------------------------------------------------------------------------------------|
| 140 | since they have frequent and prolonged mating approaches, which include repeated       |
| 141 | male-male competition for females, mate choice by females and male-female sexual       |
| 142 | interactions (Ghirlanda and Vallortigara 2004; Frasnelli et al. 2012a; Benelli et al.  |
| 143 | 2015a). At the same time, there are interspecific interactions between these species,  |
| 144 | regarding the behavioural responses of each species to the aggregation pheromone of    |
| 145 | the other species (Athanassiou et al., 2006). In this research, we carried out an      |
| 146 | experiment to test the presence of population-level behavioural asymmetries for        |
| 147 | different mating traits, which is correlated with higher male mating success. For both |
| 148 | T. confusum and S. oryzae, an ethogram depicted the lateralized courtship and mating   |
| 149 | behaviour phases quantifying their mating success in relation to the biases in         |
| 150 | orientation approaches.                                                                |
| 151 |                                                                                        |
| 152 | 2. Materials and methods                                                               |
| 153 |                                                                                        |
| 154 | 2.1. Ethics statement                                                                  |
| 155 |                                                                                        |
| 156 | This research adheres to the guidelines for the treatment of animals in                |
| 157 | behavioural research and teaching (ASAB/ABS 2014). All treatments of                   |
| 158 | experimental animals complied with the laws of the country (Italy) in which they       |
| 159 | were performed (D.M. 116192), as well as European Union regulations (European          |
| 160 | Commission, 2007). No permits were required by the Italian government for              |
| 161 | experiments involving stored product beetles. All experiments were based on            |
| 162 | behavioural observation. Beetles were treated as gently as possible given the          |

constraints of the experimental design. None were injured or killed during 163 the experiments. The health of every insect was constantly assessed by checking 164 165 that it fed and behaved normally. 166 2.2. Beetle rearing 167 168 169 T. confusum was reared on wheat flour including 5% brewer's yeast (by weight) 170 at 27 °C and 60% RH in continuous darkness. The cultures, initially collected from Greek storage facilities, have been kept for more than 10 years, initially at Benaki 171 172 Phytopaythological Institute and later at the Agricultural University of Athens. 173 *Tribolium confusum* pupae of the same age were separately placed in 30 ml plastic cups, 174 sexed according to Park (1934) and kept at the same conditions until adult emergence. 175 The emerged T. confusum individuals were kept separately in the same cups under the 176 same conditions and fed with wheat flour kernels till the beginning of the experiments. The closure of the cups had a hole covered with gauze for adequate aeration. 177 178 A wild strain of S. oryzae, originally collected in 2015 from a horizontal-type 179 (flat) storeroom in Attica (Greece) filled with hard wheat, Triticum durum Desf., was 180 reared on whole hard wheat kernels at 27 °C and 60% relative humidity (RH) and in 181 continuous darkness at the Agricultural University of Athens. Given that S. oryzae is an internal feeder, adults of mixed sex and age were left to infest whole-wheat kernels for a 182 183 period of 2 weeks before the beginning of the experiment. Considering the life cycle of S. oryzae (Hill 2002), the 2-weeks period of insect infestation was adequate to obtain 184 kernels with larvae. After the 2-weeks period, the insects were removed from the culture 185 186 and kernels kept separately in 30 ml plastic cups. After emergence, males and females

were sexed according to the shape of the rostrum (Halstead 1963), kept separately in the
same cups, under the same conditions, and fed with wheat kernels till the beginning of
the experiments. The closure of the cups had a hole covered with gauze for adequate
aeration.

191

192 2.3. Behavioural asymmetries during mating interactions

193

Experiments were conducted from December 2015 to January 2016 using virgin mature males and females of *T. confusum* and *S. oryzae*. *T. confusum* can start lay fertile eggs 114-20 h after eclosion while it can be fertilized 17-20 h after eclosion (Dawson 1964). *Sitophilus oryzae* needs 4 days to reach sexual maturity (Holloway and Smith 1987).

All observations were carried out in a Petri dish arena (diameter 50 mm; height: 10 mm) from 11.00 to 19.00 h, at 27°C and 60% RH. After recognizing the sex of the beetles the individuals prepared for testing were exposed for three hours to natural light conditions in Petri dishes (diameter 50 mm) and tested under natural photoperiod. The experimental arena was surrounded by a white wall of filter paper (Whatman n.1, height 30 cm) in order to avoid that visual cues from the observer impacted the behaviour of tested beetles (Romano et al. 2016).

Both for *T. confusum* and *S. oryzae*, the mating behaviour sequence was studied transferring a virgin male and a virgin female into the testing arena and visually tracking them by an observer for 60 min, or until the end of the sexual interaction, if any. For each mating pair, the direction preference of males

210 performing their first copulation attempt towards females was observed (*sensu* 

| 211 | Benelli et al. 2015c). In addition, we noted the duration of the following phases: ( <i>i</i> ) |
|-----|-------------------------------------------------------------------------------------------------|
| 212 | mate recognition (i.e., time spent by the male chasing and approaching the female),             |
| 213 | (ii) precopula (i.e., time spent by the male performing mounting attempts on the                |
| 214 | female, until genital contact) and (iii) copula (i.e., from the male's insertion of the         |
| 215 | aedeagus into the female genital chamber until genital disengagement), as well as (iv)          |
| 216 | the duration of the whole courtship and mating sequence. We also observed extended              |
| 217 | copulation occurring when the male was accepted by the female and the aedeagus                  |
| 218 | penetration follows for at least 60 s, to be sure that aedeagus effectively remains in          |
| 219 | the female without rejection enhancing male mating success (Benelli et al. 2014).               |
| 220 | The S. oryzae male approaching a female periodically exhibits characteristic head               |
| 221 | wagging behaviour, which consists of waving the rostrum laterally across the female             |
| 222 | thorax and then resting the rostrum on the mid thorax (Holloway and Smith 1987).                |
| 223 | Therefore, in our experiments we also observed which side of the female's body was              |
| 224 | preferred by the male for rostral rubbing.                                                      |
| 225 | Overall, 129 mating pairs of T. confusum and 135 mating pairs of S. oryzae were                 |
| 226 | observed. For both beetle species, males and females that did not engage in any                 |
| 227 | courtship approach or stayed motionless for more than 60 min were discarded. For                |
| 228 | laterality observations, only females that were free in the middle of the arena when            |
| 229 | they were approached by males were evaluated (Romano et al. 2016), because                      |
| 230 | females located close to the sides of the arena would affect male directional                   |
| 231 | approaches. Since the presence of food is not necessary for mating in T. confusum               |
| 232 | and S. oryzae as it has been shown by previous studies (Wojcik 1969; Boles 1974),               |
| 233 | no kernels or other food sources were provided in the arena in order to avoid any               |

| 234 | constrain affecting the orientation approach of males. One hundred fifteen mating                    |
|-----|------------------------------------------------------------------------------------------------------|
| 235 | pairs of <i>T. confusum</i> and <i>S. oryzae</i> were considered for behavioural analysis.           |
| 236 |                                                                                                      |
| 237 | 2.4. Data analysis                                                                                   |
| 238 |                                                                                                      |
| 239 | For each tested species, laterality differences between the numbers of beetles                       |
| 240 | using left- or right-biased copulation attempt, as well as left- or right-biased head                |
| 241 | wagging, during the courtship and mating behaviour were analysed by JMP 7 (SAS                       |
| 242 | 1999) using a weighted generalized linear model with binomial distribution: $y = X\beta$             |
| 243 | + $\epsilon$ where y is the vector of the observations (i.e., successful or not successful           |
| 244 | mating), X is the incidence matrix, $\beta$ is the vector of fixed effect (i.e., direction of the    |
| 245 | copulation attempt or head wagging) and $\boldsymbol{\epsilon}$ is the vector of the random residual |
| 246 | effect. A probability level of $P < 0.05$ was used for the significance of differences               |
| 247 | between values.                                                                                      |
| 248 | Data concerning the duration of mate recognition, precopula and copula, as                           |
| 249 | well as the duration of the whole mating sequence were analysed using a general                      |
| 250 | linear model with one factor (i.e., direction of the copulation attempt or head                      |
| 251 | wagging) (JMP 7, SAS 1999). A probability level of $P < 0.05$ was used for the                       |
| 252 | significance of differences between values. Data normality was checked using                         |
| 253 | Shapiro–Wilk test (P < 0.05). The variance between values was analysed with                          |
| 254 | Fisher's F-test ( $P < 0.05$ ).                                                                      |
| 255 |                                                                                                      |

Results

oryzae males showed left-biased copulation in their orientation to potential mates 259

The results of the present study clearly indicate that both *T. confusum* and *S*.

260 (Figs. 1 and 2). However, these behavioural trends are highly moderated by several

261 factors, which have a dissimilar effect for the two species tested.

262 In *T. confusum*, the mean duration of mate recognition ( $F_{2,112}$ =0.197;

P=0.821), precopula (F<sub>2,112</sub>=0.299; P=0.742), and copula (F<sub>2,112</sub>=0.882; P=0.417) did 263 264 not differ between males approaching females from the left, right or backside, while 265 significant differences were detected for the duration of whole mating sequence of males approaching females from the left, right or backside ( $F_{2,112}$ =15.336; P<0.001) 266 (Fig. 3).

267

258

268 In S. oryzae, no differences were found in the mean duration of mate 269 recognition (*F*<sub>3,111</sub>=0.983; *P*=0.403) and precopula (*F*<sub>3,111</sub>=1.668; *P*=0.178) of males 270 approaching females from the left, right or backside, while significant differences 271 were detected for the duration of copula ( $F_{3,111}$ =8.783; P<0.001) and whole mating sequence of males approaching females from the left, right, frontal backside 272 273 (*F*<sub>3,111</sub>=6.290; *P*<0.001) (**Fig. 4**).

274 Interestingly, both in T. confusum and S. oryzae, males performing left-biased 275 copulation attempts included many that were in copula longer than 60 s, over rightbiased males ( $\chi^2_1$ =34.272; *P*<0.001;  $\chi^2_1$ =10.972; *P*<0.001, respectively) (**Figs. 5** and 276 6). In addition, S. oryzae males periodically exhibited a typical head wagging 277 278 behaviour, which consists of waving the rostrum laterally across the female thorax and then resting the rostrum on the mid thorax (Holloway and Smith 1987). This 279 behaviour was right-biased (Fig. 7), even in the majority of males which previously 280 showed leaf-biased copulation attempts ( $\chi^2_2$ =13.361; *P*<0.001) (**Fig. 8**). 281

Furthermore, the mean duration of mate recognition ( $F_{2,112}$ =0.339; P=0.713),

283 precopula ( $F_{2,112}$ =0.726; P=0.486), copula ( $F_{2,112}$ =1.890; P=0.153), and whole

mating sequence ( $F_{2,112}$ =2.725; P=0.079) did not differ between males performing

left side, right side or no head wagging (Fig. 9).

286

#### 287 Discussion

288

289 To our knowledge, this is the first study that investigated the presence of 290 behavioural asymmetries for insects of the Order of Coleoptera. Based on our 291 findings, stored product beetles, at least in the case of the species tested here, exhibit 292 lateralized mating patterns. It is generally considered that social species are more 293 likely to evolve lateralization at the population-level, while solitary species show 294 more frequently lateralization at an individual level (Ghirlanda and Vallortigara 295 2004; Vallortigara and Rogers 2005; Ghirlanda et al. 2009; Frasnelli, 2013; Rogers et al. 2013a). Behavioural asymmetries in a population could be due to the need of 296 297 individual asymmetrical organisms to coordinate their behaviour with that of other 298 asymmetrical organisms (Ghirlanda and Vallortigara 2004). However, population-299 level lateralization has been observed in a number of solitary species of invertebrates 300 (e.g., parasitic wasps; tephritids, drosophilids, water bugs, spiders, crabs, snails, 301 cuttlefish and squids) and it has been hypothesized that interactions such as mating, 302 fighting and/or escape responses are involved in the behavioural asymmetries found 303 in these species (Frasnelli et al. 2012a; Romano et al. 2016). Concerning behavioural asymmetry of courtship and mating displays in invertebrates, few recent examples 304 305 focused on several invertebrate species, including gastropods (Davinson et al. 2009;

Koene et al. 2000), earwigs (Kamimura 2006), olive fruit flies (Benelli et al. 2015c)
and parasitic wasps (Romano et al. 2016).

308 To our perception the scenario hypothesised by Frasnelli et al. (2012a) about the role of interactions such as mating, fighting and/or escape responses, and the way 309 310 that these key characteristics are involved in the consolidation of behavioural asymmetries in arthropods may apply also to S. oryzae and T. confusum. Indeed, the 311 312 laterality biases observed when males performed copulation attempts and head 313 wagging behaviour may be connected to the prolonged interactions occurring during courtship and mating (Benelli et al. 2015a; Romano et al. 2016). Notably, courtship 314 315 and mating are social behaviours and, even if S. oryzae and T. confusum are 316 considered non-social, mating approaches are frequent and prolonged in these two 317 species (lasting more than an hour in S. oryzae). Furthermore, the lateralized head 318 wagging behaviour displayed by S. oryzae may be linked to the higher production of 319 olfactory and tactile cues, as well as to the higher presence of sensory structures on the right side of the female head, as recently highlighted for honeybees (Anfora et al. 320 321 2010; Frasnelli et al. 2012a). Nevertheless, it is generally established that, for stored 322 product beetles, adaptability patterns of virgin adults is directly related with parental 323 and progeny fitness (Giga and Smith 1995; Trematerra et al. 2013). Hence, in this 324 context, mating behaviour in stored product beetles is linked with progeny production and, as a result, infestation patterns. 325 326 Overall, to the best of our knowledge, this is the first report of lateralization of mating traits for the Coleoptera Order. Furthermore, this research adds basic 327

knowledge to the courtship and mating behaviour of *S. oryzae* and *T. confusum*, and,

329 eventually, in their success in commodity colonization patterns. The quantification of

| 330 | mating displays allows comparisons with other strains, in order to evaluate the     |
|-----|-------------------------------------------------------------------------------------|
| 331 | impact of a given host or of the rearing methods on the mating success of S. oryzae |
| 332 | and T. confusum.                                                                    |
| 333 |                                                                                     |
| 334 | Acknowledgements                                                                    |
| 335 |                                                                                     |
| 336 | We would like to thank G. Giunti for her assistance during manuscript               |
| 337 | preparation.                                                                        |
| 338 |                                                                                     |
| 339 | Funding                                                                             |
| 340 |                                                                                     |
| 341 | This research was partially supported by the H2020 Project "Submarine               |
| 342 | cultures perform long-term robotic exploration of unconventional environmental      |
| 343 | niches" (subCULTron) [640967FP7]. G. Benelli is funded by PROAPI (PRAF 2015)        |
| 344 | and University of Pisa, Department of Agriculture, Food and Environment (Grant ID:  |
| 345 | COFIN2015_22). Funders had no role in the study design, data collection and         |
| 346 | analysis, decision to publish, or preparation of the manuscript.                    |
| 347 |                                                                                     |
| 348 | Conflict of interest                                                                |
| 349 |                                                                                     |
| 350 | The Authors declare no competing interests.                                         |
| 351 |                                                                                     |
| 352 | References                                                                          |
| 353 |                                                                                     |

| 354 | Ades C, Ramires EN (2002) Asymmetry of leg use during prey handling in the spider |
|-----|-----------------------------------------------------------------------------------|
| 355 | Scytodes globula (Scytodidae). J Insect Behav 15:563-570                          |
| 356 | Aitken AD (1975) Insect Travelers, I: Coleoptera. Technical Bulletin 31. H. M. S. |
| 357 | O., London, United Kingdom                                                        |
| 358 | Anfora G, Frasnelli E, Maccagnani B, Rogers LJ, Vallortigara G (2010) Behavioural |
| 359 | and electrophysiological lateralization in a social (Apis mellifera) but not in a |
| 360 | non-social (Osmia cornuta) species of bee. Behav Brain Res 206:236-239            |
| 361 | Arthur FH, Throne JE (2003) Efficacy of diatomaceous earth to control internal    |
| 362 | infestations of rice weevil and maize weevil (Coleoptera: Curculionidae). J       |
| 363 | Econ Entomol 96:510–518                                                           |
| 364 | ASAB/ABS (2014) Guidelines for the treatment of animals in behavioural research   |
| 365 | and teaching. Anim Behav 99:1–9                                                   |
| 366 | Athanassiou CG, Kavallieratos NG, Trematerra P (2006) Responses of Sitophilus     |
| 367 | oryzae (Coleoptera: Curculionidae) and Tribolium confusum (Coleoptera:            |
| 368 | Tenebrionidae) to traps baited with pheromone and food volatiles. Eur J           |
| 369 | Entomol 103:371-378                                                               |
| 370 | Athanassiou CG, Kavallieratos NG (2014) Evaluation of spinetoram and spinosad for |
| 371 | control of Prostephanus truncatus, Rhyzopertha dominica, Sitophilus oryzae        |
| 372 | and Tribolium confusum on stored grains under laboratory tests. J Pest Sci        |
| 373 | 87:469-483                                                                        |
| 374 | Backwell PRY, Matsumasa M, Double M, Roberts A, Murai M, Keogh JS, Jennions       |
| 375 | MD (2007) What are the consequences of being left-clawed in a                     |
| 376 | predominantly right-clawed fiddler crab? Proc R Soc B 274:2723-2729               |

| 377 | Benelli G, Meregalli M, Canale A (2014) Field observations on the mating behavior |
|-----|-----------------------------------------------------------------------------------|
| 378 | of Aclees sp. cf. foveatus Voss (Coleoptera: Curculionidae), an exotic pest       |
| 379 | noxious to fig orchards. J Insect Behav 27(3):419-427                             |
| 380 | Benelli G, Romano D, Messing RH, Canale A (2015°) First report of behavioural     |
| 381 | lateralisation in mosquitoes: right-biased kicking behaviour against males in     |
| 382 | females of the Asian tiger mosquito, Aedes albopictus. Parasitol Res              |
| 383 | 114:1613–1617                                                                     |
| 384 | Benelli G, Donati E, Romano D, Stefanini C, Messing RH, Canale A (2015b)          |
| 385 | Lateralization of aggressive displays in a tephritid fly. Sci Nat Naturwiss       |
| 386 | 102:1, doi: 10.1007/s00114-014-1251-6                                             |
| 387 | Benelli G, Romano D, Messing RH, Canale A (2015c) Population-level lateralized    |
| 388 | aggressive and courtship displays make better fighters not lovers: evidence       |
| 389 | from a fly. Behav Proc 115:163-168                                                |
| 390 | Benhalima H, Chaudry MQ, Mills KA, Price NR (2004) Phosphine resistance in        |
| 391 | stored-product insects collected from various grain storage facilities in         |
| 392 | Morocco. J Stor Prod Res 40:241–249                                               |
| 393 | Bisazza A, Rogers LJ, Vallortigara G (1998) The origins of cerebral asymmetry: a  |
| 394 | review of evidence of behavioural and brain lateralization in fishes, reptiles    |
| 395 | and amphibians. Neurosci Biobehav Rev 22:411-426                                  |
| 396 | Boles HP (1974) The effect of sublethal dosages of Pyrethrins on the mating       |
| 397 | efficiency of the rice weevil, Sitophilus oryzae (L.)(Coleoptera:                 |
| 398 | Curculionidae). J Kansas Entomol Soc 47:444-451                                   |

| 399 | Buchelos CTh, Athanassiou CG (1993) Dominance and frequency of Coleoptera              |
|-----|----------------------------------------------------------------------------------------|
| 400 | found on stored cereals and cereal products in central Greece. Entomol Hell            |
| 401 | 11:17-22                                                                               |
| 402 | Davinson A, Frend HT, Moray C, Wheatley H, Searle LJ, Eichhorn MP (2009)               |
| 403 | Mating behaviour in Lymnaea stagnalis pond snails is a maternally inherited,           |
| 404 | lateralized trait. Biol Lett 5:20-22                                                   |
| 405 | Dawson PS (1964) Age at sexual maturity in female flour beetles, Tribolium             |
| 406 | castaneum and T. confusum. Ann Entomol Soc Am 57(1):1-3                                |
| 407 | Fedina TY, Lewis SM (2008) An integrative view of sexual selection in Tribolium        |
| 408 | flour beetles. Biol Rev 83:151-171                                                     |
| 409 | Flay CD, He XZ, Wang Q (2010) Influence of multiple mating on female                   |
| 410 | reproductive fitness in the rice weevil, Sitophilus oryzae. New Z Plant Prot           |
| 411 | 63:201-207                                                                             |
| 412 | Frasnelli E (2013) Brain and behavioral lateralization in invertebrates. Front Psychol |
| 413 | 4:939                                                                                  |
| 414 | Frasnelli E, Iakovlev I, Reznikova Z (2012b) Asymmetry in antennal contacts during     |
| 415 | trophallaxis in ants. Behav Brain Res 232(1):7-12                                      |
| 416 | Frasnelli E, Vallortigara G, Rogers L (2012a) Left-right asymmetries of behaviour      |
| 417 | and nervous system in invertebrates. Neurosci Biobehav Rev 36:1273-1291                |
| 418 | Ghirlanda S, Vallortigara G (2004) The evolution of brain lateralization: A game       |
| 419 | theoretical analysis of population structure. Proc R Soc B Biol Sci 271:853-           |
| 420 | 857                                                                                    |

| 421 | Ghirlanda S, Frasnelli E, Vallortigara G (2009) Intraspecific competition and     |
|-----|-----------------------------------------------------------------------------------|
| 422 | coordination in the evolution of lateralization. Phil Trans R Soc London B        |
| 423 | 364:861-866                                                                       |
| 424 | Giga DP, Smith RH (1985) Oviposition markers in Callosobruchus maculatus (F.) and |
| 425 | C. rhodesianus (Pic.) (Coleoptera: Bruchidae): asymmetry of interspecific         |
| 426 | responses. Agric Ecosyst Environ 12:229-233                                       |
| 427 | Haliscak JP, Beeman RW (1983) Status of malathion resistance in five genera of    |
| 428 | beetles infesting farm-stored corn, wheat, and oats in the United States. J       |
| 429 | Econ Entomol 76, 717-722                                                          |
| 430 | Halstead DGH (1963) External sex differences in stored-products Coleoptera. Bull  |
| 431 | Entomol Res 54, 119-134                                                           |
| 432 | Hill DS (2002) Pests of stored foodstuffs and their control. Kluwer Academic      |
| 433 | Publishers, NY                                                                    |
| 434 | Holloway GJ, Smith RH (1987) Sexual selection of body weight in Sitophilus oryzae |
| 435 | (L.) (Coleoptera: Curculionidae). J Stor Prod Res 23:197-202                      |
| 436 | Hunt ER, O'Shea-Wheller T, Albery GF, Bridger TH, Gumn M, Franks NR (2014)        |
| 437 | Ants show a leftward turning bias when exploring unknown nest sites. Biol         |
| 438 | Lett 10(12):20140945                                                              |
| 439 | Kamimura Y (2006) Right-handed penises of the earwig Labidura riparia (Insecta,   |
| 440 | Dermaptera, Labiduridae): evolutionary relationships between structural and       |
| 441 | behavioral asymmetries. J Morphol 267:1381-1389                                   |
| 442 | Kavallieratos NG, Athanassiou CG, Hatzikonstantinou AN, Kavallieratou HN (2011)   |
| 443 | Abiotic and biotic factors affect efficacy of chlorfenapyr for control of stored- |
| 444 | product insect pests. J Food Protect 74:1288-1299                                 |

| 445 | Kavallieratos NG, Athanassiou CG, Boukouvala MC (2013) Insecticidal effect of        |
|-----|--------------------------------------------------------------------------------------|
| 446 | chlorantraniliprole against major stored product insect pests in different grain     |
| 447 | commodities under laboratory tests. Pest Manag. Sci 69:1141-1154.                    |
| 448 | Kavallieratos NG, Athanassiou CG, Korunic Z, Mikeli NH (2015) Evaluation of          |
| 449 | three novel diatomaceous earths against three stored-grain beetle species on         |
| 450 | wheat and maize. Crop Protect 75:132-138                                             |
| 451 | Koene JM, Jansen RF, Ter Maat A, Chase R (2000) A conserved location for the         |
| 452 | central nervous system control of mating behaviour in gastropod mollusks:            |
| 453 | evidence from a terrestrial snail. J Exp Biol 203:1071-1080                          |
| 454 | Letzkus P, Boeddeker N, Wood JT, Zhang SW, Srinivasan MV (2008) Lateralization       |
| 455 | of visual learning in the honeybee. Biol Lett $4(1)$ , 16-19                         |
| 456 | MacNeilage PF, Rogers LJ, Vallortigara G (2009) Origins of the left and right brain. |
| 457 | Sci Am 301:60–67                                                                     |
| 458 | Mason LJ, McDonough M (2012) Biology, behavior, and ecology of stored grain and      |
| 459 | legume insects. In: Hagstrum, D.W., Phillips, T.W., Cuperus, G. (Eds.),              |
| 460 | Stored Product Protection. Kansas State University, Manhattan, KS, pp. 7-20          |
| 461 | Park T (1934) Observations on the general biology of the flour beetle, Tribolium     |
| 462 | confusum. Quart Rev Biol 9:36-54                                                     |
| 463 | Pedersen JR (1992) Insects: identification, damage, and detection. In: Sauer, D.B.   |
| 464 | (Ed.), Storage of cereal grains and their products. American Association of          |
| 465 | Cereal Chemists, Inc., St. Paul, MN, pp. 435-489                                     |
| 466 | Rogers LJ, Andrew RJ (2002) Comparative Vertebrate Lateralization. Cambridge         |
| 467 | University Press, New York                                                           |

| 468 | Rogers LJ, Vallortigara G, Andrew RJ (2013a) Divided Brains: The Biology and        |
|-----|-------------------------------------------------------------------------------------|
| 469 | Behaviour of Brain Asymmetries. Cambridge University Press, Cambridge,              |
| 470 | UK                                                                                  |
| 471 | Rogers LJ, Rigosi E, Frasnelli E, Vallortigara G (2013b) A right antenna for social |
| 472 | behaviour in honeybees. Sci Rep 3:2045, http://dx.doi.org/10.1038/srep02045         |
| 473 | Rogers LJ, Zucca P, Vallortigara G (2004) Advantages of having a lateralized brain. |
| 474 | Proc R Soc Ser B 271(S6):S420-S422                                                  |
| 475 | Romano D, Canale A, Benelli G (2015) Do right-biased boxers do it better?           |
| 476 | Population-level asymmetry of aggressive displays enhances fighting success         |
| 477 | in blowflies. Behav Proc 113C:159-162                                               |
| 478 | Romano D, Donati E, Canale A, Messing RH, Benelli G, Stefanini C (2016) First       |
| 479 | evidence of lateralized courtship in a parasitic wasp. Laterality, doi:             |
| 480 | 10.1080/1357650X.2016.1150289                                                       |
| 481 | Storey CL (1987) Effect and control of insects affecting corn quality. In Watson,   |
| 482 | S.A., Ramstad, P.E. (Eds.), Corn: chemistry and technology. American                |
| 483 | Association of Cereal Chemists, Inc., St. Paul, MN, pp. 185-199                     |
| 484 | Trematerra P, Sciarretta A, Tamasi E (2000) Behavioural responses of Oryzaephilus   |
| 485 | surinamensis, Tribolium castaneum and Tribolium confusum to naturally               |
| 486 | and artificially damaged <i>durum</i> wheat kernels. Entomol Exp Appl 94:195-       |
| 487 | 200                                                                                 |
| 488 | Trematerra P, Lupi C, Athanassiou C (2013) Does natal habitat preference modulate   |
| 489 | cereal kernel preferences in the rice weevil? Arthropod-Plant Interact 7:287-       |
| 490 | 297                                                                                 |

| 491 | Vallortigara G (2000) Comparative neuropsychology of the dual brain: a stroll    |
|-----|----------------------------------------------------------------------------------|
| 492 | through animals' left and right perceptual worlds. Brain Lang. 73:189-219        |
| 493 | Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages |
| 494 | and disadvantages of cerebral lateralization. Behav Brain Sci 28:575-633         |
| 495 | Vallortigara G, Rogers LJ, Bisazza A (1999) Possible evolutionary origins        |
| 496 | ofcognitive brain lateralization. Brain Res Rev 30:164-175                       |
| 497 | Verheggen F, Ryne C, Olsson PO, Arnaud L, Lognay G, Högberg HE, Löfstedt C,      |
| 498 | (2007) Electrophysiological and behavioral activity of secondary metabolites     |
| 499 | in the confused flour beetle, Tribolium confusum. J Chem Ecol 33:525-539         |
| 500 | Wojcik DP (1969) Mating behavior of 8 stored-product beetles (Coleoptera:        |
| 501 | Dermestidae, Tenebrionidae, Cucujidae, and Curculionidae). Fa Entomol            |
| 502 | 171-197                                                                          |
| 503 |                                                                                  |

mounting on the right side are depicted using red arrows; males approaching from the female backside are showed by yellow arrows. individuals displaying different behavioural phases. Males mounting females on the left side are represented by green arrows, while the ones Figure 1. Flow chart of the courtship and mating behaviour of Tribolium confusum. The thickness of an arrow indicates the proportion of





displaying different behavioural phases. The flow chart shows males mounting females from the front (blue arrows), on the left side (green arrows), on the right side (red arrows) and from the backside (orange arrows). Blue, green, red and orange arrows are then presented as dark- or light-Figure 2. Flow chart of the courtship and mating behaviour of Sitophilus oryzae. The thickness of an arrow indicates the proportion of individuals





approach. T-bars represent standard errors, different letters above each column indicate significant differences (general linear model, normal distribution, P<0.05). Figure 4. Duration of different mating phases in Sitophilus oryzae males performing or not lateralised copulation attempts during the mating



success in T. confusum males occurs when the female accepted the male and the aedeagus penetration follows for at least 60 s. The asterisk indicates significant differences among side-biased behaviours (general linear model, binomial distribution, P<0.05). Figure 5. Mating success in Tribolium confusum males performing or not lateralised copulation attempts during the mating approach. Mating













during the mating approach. The asterisk indicates significant differences among side-biased behaviours (general linear model, binomial distribution, P<0.05). Figure 8. Occurrence of left- and right-biased head wagging movements in *Sitophilus oryzae* males displaying lateralised copulation attempts





