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1 Introduction

The name of Giuseppe Vitali (1875-1932) is generally associated with noteworthy con-
tributions to analysis and integration theory, such as the discovery of quasi-continuity of
measurable functions (1905), the proof that a function is absolute continuous if and only
if it is an integral function (1904-1905), the first exhibition of a set that is not Lebesgue
measurable (1905) and the so-called Vitali’s covering theorem (1908), to cite only some of
them.1

Less well known and less studied are Vitali’s contributions to differential geometry
to which he turned in the last decade of his life, over the period 1923-1932. Probably,
the scientific impact of Vitali’s geometrical production cannot parallel the resonance of
his previous works in the realm of analysis. Nonetheless, the lack of attention towards
Vitali’s geometrical investigations on the part of historians appeared to a certain extent
unjustified. Indeed, his attempts at providing a generalization of Riemannian geometry
are worth considering for at least two reasons. An understanding of Vitali’s contributions
to differential geometry can favor a more adequate and complete comprehension of Vitali
scientific figure as a whole; it can also offer some new insight into the historical development
of infinitesimal geometry over the first half of 20th century.

As will be seen, Vitali mainly moved into two directions: by exploring alternative no-
tions of parallelism and by providing a higher order extension of Ricci’s absolute differential
calculus, which he called generalized absolute differential calculus. Contributions of Vitali
into both research directions will be analyzed in this paper. Section 2 provides a general
description of the context of Vitali’s geometrical work; section 3 discusses the introduction
of an absolute parallelism, the so-called Vitali-Weitzenboöck parallelism, characterized by
vanishing curvature and non-vanishing torsion along with its reception. The following
sections are devoted to a presentation of Vitali’s generalized differential calculus. Special
attention is paid to describing its origin within the context of Ernesto Pascal’s theory of
forms and to providing a diachronic analysis of the emergence of a fully general notion of
covariant derivative. In the concluding section, the reception of Vitali’s work is discussed
in light of Enea Bortolotti and Enrico Bompiani’s subsequent investigations.

2 Beyond Riemann geometry

Over the first quarter of the 20th century the field of differential geometry experienced a
process of deep and rapid evolution that resulted into an extraordinary variety of intercon-
nected research themes and different technical approaches. Undoubtedly, one of the most
important (and most widely studied) episodes in this transformation was the discovery

1On Vitali’s contributions to real analysis and integration theory, see e.g. [Pepe 1984] and
[Borgato 2012].
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of the notion of parallel transport in a Riemannian manifold by Tullio Levi-Civita and
Jan Schouten. The geometrical interpretation of Christoffel symbols that the notion of
parallel transport brought about, produced a proliferation of studies devoted to extend the
Riemannian framework by exploring the possibility of defining connections independent
of the notion of a metric. (This research direction will be referred to as research line A.)

Before the publication of [Levi–Civita 1917] where the concept of parallelism for Rie-
mannian manifolds was first introduced, investigations into other directions such as those
confronting with the projective differential properties and the study of higher order ele-
ments (osculating spaces) of manifolds played a prominent role in shaping the development
of the discipline, beyond the realm of the theory of connection. (This second set of research
lines will be collectively referred to as research line B.)

On a methodological level, the new geometrical horizons disclosed both by research
lines A and B often required the use of techniques more refined than those of Ricci’s
absolute differential calculus, which had been designed mainly to deal with Riemannian
manifolds.

A most interesting response to this challenge was offered by Élie Cartan who, starting
from 1910’s, elaborated a peculiar approach to both Riemannian and non-Riemannian
geometry based upon the notion of Pfaffian forms and a generalization of moving frames
techniques. Cartan’s position toward the calculus of Ricci was somehow skeptical as he
went so far as to affirm that the formalism of absolute differential calculus often obscured
the intuitive content of the geometrical theories to which the calculus was applied.2

A less radical view was expressed by René Lagrange, who got his doctorate in 1923
under Cartan’s supervision. He devoted his dissertation [Lagrange 1926] to providing
generalization of the calculus of Christoffel, as he called it, that could be regarded as
an attempt at harmonizing it with the emerging theory of moving frames. The central
idea consisted in the observation that the formal rules of Ricci’s calculus maintain their
validity when the differentials of a given coordinate system, dxi, i = 1, . . . , n, are replaced
by general Pfaffian forms, ωi, i = 1 . . . , n, which are not exact differentials.

At that same time, the evolution of differential geometry experienced a period of inten-
se transformation in Italy too. The variety of research topics was widely expanded in such
a way as to cover, for example, the theory of hypersurfaces in Euclidean n-dimensional
spaces, projective differential geometry3 and the study of higher order Riemannian geome-
tries. In particular, the emergence of a projective approach into the realm of infinitesimal
geometry played a crucial role in fostering the elaboration of new methods and techni-
ques, aptly designed to deal with higher order properties of manifolds. In this respect,
one should at least cite the works by Luigi Bianchi, Umberto Sbrana, Eugenio Elia Levi,
Guido Fubini and Enrico Bompiani. Bianchi and Umberto Sbrana, a student of Bianchi
at Pisa University, completely solved to problem of determining those hypersurfaces in
Rn, with n ≥ 4 that admit non-trivial deformations; see [Bianchi 1905], [Sbrana 1909].
In his dissertation degree [E. E. Levi 1908], written under the supervision of Bianchi, Le-
vi tackled the study of higher order properties of surfaces immersed in n dimensional
Euclidean spaces. Fubini focused mainly on projective properties of manifolds, i.e. tho-
se properties that are left invariant by the action of the projective group. One can see
[Fubini and Čech 1926-1927]. Bompiani, who also contributed to projective differential
geometry, developed a most peculiar approach to metric geometry, dubbed by him “geo-

2In this respect, see [Cogliati 2018].
3According to Chern, the main problem of projective differential geometry is “[...] is to find a complete

system of local invariants of a submanifold under the projective group and interpret them geometrically
through osculation by simpler geometrical figures. The main difficulty lies in that the projective group is
relatively large and invariants can only be reached through high order of osculation.” [Chern 1992, p. 62].
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metrie riemanniane di specie superiore”, which is particularly relevant for the reception
process of Vitali’s generalized calculus, see [Bompiani 1935] and section 7. For a general
overview on Bompiani’s scientific biography, see [Ciliberto and Sallent 2012].

In this very general context, in which various attempts were made to extend the theore-
tical framework of Riemannian geometry into different directions, Vitali started to cultiva-
te the proposal to provide an extension of both Riemannian geometry and Ricci’s calculus.
His hope was to elaborate a general algorithmic method suitable for dealing with mani-
folds of arbitrary (finite) dimension that were regarded as immersed in the Hilbert space
of square-integrable functions of real variable.

At the same time, as will be seen, the viability of Vitali’s project was encouraged by
research of a purely analytical tenor undertaken by Ernesto Pascal who had succeeded in
providing a generalization of covariant tensors to differential forms of arbitrary order and
degree.

3 Vitali(-Weitzenböck) parallelism

In early 1920’s the scientific interests of Vitali, which had previously concentrated on
analysis and integration theory, experienced a distinct turn which oriented his research
activity mainly to differential geometry. Vitali contributed both to research line A and B
and he also tried to establish a connection between the two. We first turn to discussing two
closely related memoirs, [Vitali 1923a] and [Vitali 1925], that can be ascribed to research
line A. The next sections will be devoted to analyzing Vitali’s extensive contributions to
research line B.

The subject of [Vitali 1923a] consisted in the introduction a new type of covariant
derivative that analytically describes a parallelism with vanishing curvature and non-
vanishing torsion was introduced.4 The underlying idea was simple. Vitali endowed a
given n−dimensional manifold Vn with a set of independent 1-forms ωk =

∑n
i=1Xi

k
dxi, k =

1, . . . , n, and introduced the coefficients Γkij by putting:

Γkij =
n∑
r=1

X
r

k∂xjXi
r
, i, j, k = 1, . . . , n. (1)

where X
i

k denote the coefficients of the inverse matrix of A = [Ais := Xs
i

] so that∑n
i=1Xk

i
X
i

j = δjk. In order to prove that these n3 functions actually defines a connec-

tion,5 one should check that Γkij are transformed in an appropriate way under arbitrary

coordinate transformations.6 Vitali chose a more indirect strategy by first showing that
the derivation of a covariant 1-form ω0 = Xs

0
dxs associated to (1) is actually covariant.

Indeed, by analogy with the classical definition of covariant derivative of Christoffel
and Ricci, Vitali set:

DtXs
0

:= ∂xtXs
0
−

n∑
k=1

ΓkstXk
0
, (2)

4The ordinary notion of parallelism in Euclidean space is a kind of Vitali’s parallelism with vanishing
curvature and torsion.

5Our use of the term “connection” is improper. Vitali did not employ the word “connection” to
designate the mapping between tangent spaces, defined by the set of coefficients Γkij , i, j, k = 1, . . . , n.
When he wanted to attribute a geometrical meaning to the symbols Γkij , he spoke of the parallelism
corresponding to them.

6This is the point of view adopted for example in [Eisenhart 1927, §2].
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and showed that the system DtXs
0

is a covariant system of the second order.

We can legitimately ask how Vitali came up with definition (2). Indeed, whereas the
verification of the covariant character of (2) is a matter of trivial computation, to obtain an
explicit expression containing the derivatives of Xs

0
with the requested covariance property

is far less obvious. A plausible reconstruction (partially suggested by Vitali himself7)
leading to (2) goes as follows. Consider first the transformation laws for the covariant
tensors ωi, i = 1, . . . , n and ω0:

X̄s
i

(y) =
n∑

m=1

∂ysx
mXm

i
(x), X̄s

0
(y) =

n∑
m=1

∂ysx
mXm

0
(x). (3)

Upon derivation of both sides of these equations with respect to
∂

∂yt
, one obtains:

∂ytX̄s
i

(y) =
∑n

m=1 ∂
2
ytysx

mXm
i

(x) +
∑n

k,m=1 ∂ysx
m∂ytx

k∂xkXm
i

∂ytX̄s
0

(y) =
∑n

m=1 ∂
2
ytysx

mXm
0

(x) +
∑n

k,m=1 ∂ysx
m∂ytx

k∂xkXm
0

(4)

i = 1, . . . , n. The first equation of (4) can be solved with respect to the second order
derivatives ∂yt to get:

∂2
ytysx

m =
n∑
i=1

X
i

m∂ytX̄s
i
−

n∑
k,r,i=1

X
i

m∂ysx
r∂ytx

k∂xkXr
i
. (5)

By replacing this expression for ∂2
ytysx

m in the second equation of (4) and observing

that
∑n

m=1 X̄i
m
X̄m
0

=
∑n

m=1Xi
mXm

0
, i = 1, . . . , n, one can finally obtains the requested

relation: ∑
k,m

(
∂xkXm

0
−

n∑
l=1

ΓlmkXl
0

)
∂yqx

k∂yrx
m = DqX̄r

0
, (6)

where the right-hand side denotes the quantity:

DqX̄r
0

= ∂yqX̄r
0
−

n∑
l=1

Γ̄lrqX̄l
0

= ∂yqX̄r
0
−

n∑
l=1

n∑
u=1

Å
X̄ l

u
∂yqX̄r

u

ã
X̄l
0

More generally, the coefficients Γkij could be employed to construct covariant and contra-
variant systems of higher order by considering the following definition which represents
a natural extension of the classical notion of covariant derivative for tensors of arbitrary
order:

DtX
s1,...,sk
r1,...,rh = ∂xtX

s1...sk
r1...rh

−
∑h

i=1

∑n
l=1 ΓlritX

s1...sk
r1...ri−1,l,ri+1...rh

+

+
∑h

i=1

∑n
l=1 ΓlsitX

s1...si−1,l,si+1...sk
r1...rh

(7)

Vitali’s treatment focused mainly on algorithmic procedures and invariant properties. No-
netheless, he also considered geometric consequences of the choice for Γkij , i, j, k = 1, . . . , n.

The most significant ones are the following: i) since the curvature tensor associated to Γkij
is identically equal to zero, the connection defines a type of parallelism that is indepen-
dent of the selected path; ii) the covariant differentiation preserves the metric associated

7See also [Weitzenböck 1923, pp. 317-320].
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to the 1-forms ωi, i = 1, . . . , n in the following sense: if one defines aik =
∑n

r=1Xi
r
Xk
r

, then

Dtaik = 0, i, k, t = 1, . . . , n.
Almost at the same time, the idea of constructing a covariant derivation based upon

the assignment of n independent 1-forms was set forth by Weitzenböck in his monograph
devoted to the theory of invariants, [Weitzenböck 1923]. However, it should be observe
that Weiztenböck’s exposition was limited to an analytical treatment. Contrary to Vitali,
Weitzenböck made no attempt at providing a geometrical interpretation of his covariant
derivation in terms of parallelism of vectors (at least on that occasion).

A notable reaction to Vitali’s memoir came from Ricci Curbastro to whom Vitali
sent a copy of his work in early 1924. Ricci’s remarks are interesting in many respects. It
seems that Ricci was not particularly impressed by the geometrical consequences of Vitali’s
definition. He failed to appreciate the novelty produced by the new parallelism introduced
by Vitali probably because he was not particularly interested in exploring non-Riemannian
geometries. As a consequence of this, he preferred to focus on the algorithmic aspects of
Vitali’s covariant differentiation by proposing an alternative, more natural, approach. As
shown by a letter8 to Vitali dating back to February 1924, Ricci thought that Vitali’s
treatment could be highly simplified upon consideration of absolute invariants. The main
idea can be easily described as follows: given any tensor As1...skr1...rh

and a system of covariant

tensors Xk
r

with the associated contravariant tensors X
r

k, we can construct nk+h absolute

invariants:

Ji1...ikik+1...ik+h =
∑
j,s

As1s2...skj1j2...jh
Xs1
i1

Xs2
i2

. . . Xsk
ik

Xj1

ik+1

Xj2

ik+2

. . . Xjh

ik+h

and consider the system of coefficients As1...skr1...rh,t
produced by (ordinary) differentiation of

these invariants:

As1...skr1...rh,t
:=
∑ ∂Ji1...ikik+1...ik+h

∂xt
Xs1

i1
Xs2

i2
. . . Xsk

ik
Xj1
ik+1

Xj2
ik+2

. . . Xjh
ik+h

. (8)

By construction, it is clear that As1...skr1...rh,t
are coefficients of a tensor with h + 1 covariant

indices and k contravariant indices. Ricci’s crucial observation consisted in identifying
them with the coefficients of Vitali’s covariant derivative, thus providing a much simpler
proof of the covariant character of (7). Incidentally, it is interesting to observe that similar
observations were communicated to Vitali also by Tullio Levi-Civita, as is testified by a
letter that he addressed to Vitali in February 1924.9

Some months later, Vitali decided to return to the subject in another brief me-
moir [Vitali 1925] in which he thoroughly developed the point of view that Ricci had
communicated to him, along the lines described above.

Despite its innovative content, the publication of [Vitali 1923a] went almost unnoticed
in the short term. It took some time before its importance could finally be appreciated.
In 1927 Enea Bortolotti exploited Vitali’s parallelism to provide a systematic analysis
of special types of absolute parallelisms recently introduced by Cartan and Schouten.10

Furthermore, he could prove that Vitali’s parallelism can be characterized as the most
general parallelism associated to a zero-curvature connection which preserves both angles
and lengths of vectors.

8[Vitali 1984, p. 486].
9[Vitali 1984, p.487].

10[Cogliati and Mastrolia 2018].
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Quite unexpectedly, the type of absolute parallelism studied by Vitali found a physical
application in the attempt at developing a unified theory of gravitational and electro-
magnetic interactions which was pursued by Albert Einstein over the period 1928-1931.
According to this approach, which Einstein dubbed Fernparallelism (distant parallelism),
the physical fields of the theory are identified with the components of 4 linearly indepen-
dent contravariant first order tensors, corresponding to Vitali’s 1-forms ωi =

∑
kXi k

dxk

(i = 1, . . . , n = 4).11

The publication of Einstein’s papers on Fernparallelism and the consequent resonance
of the mathematical notions employed by him triggered a lively priority debate. On his
part, Vitali tried to propagate his research on the subject and to obtain recognition for the
discovery of the notion that he had introduced in [Vitali 1923a]. Indeed, following Levi-
Civita’s advice, he decided to write to Einstein to inform him of his works on absolute
parallelism.12

Undoubtedly, beyond individual claims, the discovery of the connection associated
to (7) can be considered as a collective achievement to which various mathematicians -
Weitzenböck, Cartan and Vitali himself - contributed in different ways, by proposing com-
plementary perspectives. An accurate and reliable reconstruction of the historical process
leading to the introduction of the notion of absolute parallelism was offered by Cartan in
[Cartan 1930], a paper written for Mathematische Annalen at Einstein’s encouragement.
In addition to providing a detailed list of his own works, Cartan recognized the relevance of
Vitali’s insight by emphasizing the difference between Weiztenböck’s analytical treatment
and Vitali’s geometrical interpretation.

11On Einstein’s Fernparallelism approach, [Sauer 2006].
12Vitali’s letter (11 Febbraio 1929) is preserved at Einstein Archives, Jerusalem.

Illustrissimo Signor Professore.
Il mio carissimo amico Prof. Tullio Levi-Civita mi informa di aver ricevuto da Lei copie
delle note (a cui hanno fatto cenno recentemente anche i giornali politici), e mi comunica
come Ella faccia ricorso ad una specie di parallelismo assoluto, che fu già considerato in una
mia nota “Una derivazione Covariante formata con l’ausilio di n sistemi covarianti del 1o”.
Ella forse non ha avuto occasione di conoscere tale nota che è pubblicata in una rivista poco
diffusa, e mi permetto di inviargliela, insieme con altra che con essa ha qualche attinenza.
Esiste pure sull’argomento un lavoro di R. Weitzenbock [sic!] del 1923, e più recentemente
un lavoro, di Enea Bortolotti, il quale, pregato da me, Le invierà fra giorni un estratto.
Le sarei molto grato se Ella volesse inviarmi una copia delle Sue ultime note.
Gradisca, Illustre Professore, con l’espressione della mia considerazione, i miei più devoti
ossequi.

Illustrious Mr. Professor. My dear friend Prof. Tullio Levi-Civita informs me that
he has received copies of some papers from you (to which political newspapers have also
recently referred), and tells me that you have recourse to a kind of absolute parallelism
that was already considered in the note of mine “Una derivazione Covariante formata con
l’ausilio di n sistemi covarianti del 1o”.
Perhaps you did not have the opportunity to know this paper, which is published in a
little-known journal. I take the liberty of sending it to you, together with others that have
some connection with it. There is also a work on the subject by R. Weitzenbock [sic!] dating
back to 1923, and more recently a work by Enea Bortolotti, who, at my request, will send
you an extract in a few days.
I would be very grateful if you would like to send me a copy of your most recent articles.
I send, most distinguished Professor, my most devoted respects with the expression of my
consideration.
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4 Pascal’s higher order differential forms

Almost at the same time when exploring alternative definitions of parallelism and covariant
differentiation, Vitali began to cultivate the ambitious project of constructing an extension
of absolute differential calculus capable of embracing tensors of a new type, characterized
by a peculiar multi-index structure.

On some occasions,13 Vitali recognized the role played by previous investigations in
influencing his research in this field. He praised with special emphasis the achievements
of Ernesto Pascal for his contributions as a continuator of the path disclosed by Ricci’s
calculus and his research on general differential forms. Thus, in order to put the emergence
of Vitali’s calculus in an appropriate historical perspective, it is first necessary to analyze
in some details some aspects of Pascal’s theory of differential forms.

Since early 1890’s, Pascal had pursued investigations that led him to develop a ge-
neralization of the theory of differential forms. He set out to study invariant quantities
associated to higher order differential expressions for the purpose of creating a theory that
could be regarded as an extension both of the classical integration theory of Pfaffian forms
(X =

∑
kXkdxk) and of the theory of quadratic differential forms (X̃ =

∑
ij Xijdx

idxj).
In [Pascal 1907], Pascal introduced the notion of “higher order differential form”. This

is a complicated expression of the following type:

X(r1,...,rk) =

r1∑
m=1

. . .

rk∑
p=1

∑
j...i

Xj1...jm;...;i1...;ipδ
(r1)
j1...jm

. . . δ
(rk)
i1...ip

. (9)

Here, the symbols δ
(rj)
j1...jl

denote appropriate combinations of the differentials of the varia-

bles x1, . . . , xn defined by:

δ
(rj)
j1...jm

=
1

m!

∑
(j1...jm)

∑
i1...im

[i1 . . . im]di1xj1 . . . d
imxjm ,

m∑
s=1

is = rj ,

where [i1, . . . , im] are numerical coefficients to be determined. Furthermore, the summa-
tion symbols

∑
(j1...jm) is extended to all permutations of (j1 . . . jm) and the summation∑

i1...im
covers all integer partitions of rj . The differential form X(r1,...,rk) was said by

Pascal to be a general differential form of r =
∑k

i=1 ri order and k degree.
The simplest example of a differential expression of this new type was investigated in

[Pascal 1902]. Here Pascal considered the following form of second order (i.e. containing
second order differentials) and first degree:

X(2) =

n∑
k=1

Xkd
2xk +

n∑
i=1

n∑
j=1

Xijdx
idxj . (10)

Here Xk, Xij are functions of the variables (x1, . . . , xn) that are symmetric in the indices
i, j: Xij = Xji, i, j = 1, . . . , n. It should be observed that if Xk are taken to be zero
then X(2) is a quadratic differential form of the classical type that can be geometrically
interpreted as a metric of a Riemannian n-dimensional manifold. En route to the search
for invariants and differential parameters associated to (10), Pascal introduced a rich set
of new quantities, including a sort of generalization of the Christoffel symbols. One should

13See [Vitali 1923b] and the next section.
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mention the following functions:

(ij) :=
∂Xi

∂xj
− ∂Xj

∂xi

((ij)) :=
∂Xi

∂xj
−Xij

{ij} :=
∂Xi

∂xj
− ∂Xj

∂xi
− 2Xij ,

(11)

by means of which two covariant differential forms could be defined:

A =
∑n

i,j=1((ij))dxidxj , B =
∑n

i,j=1 {ij} dxidxj . (12)

It is to be noticed that the coefficients Xk, Xij are characterized by a specific transfor-
mation law, which is different from that of covariant tensors. Indeed, by observing that,
under a change of coordinates x 7→ y(x) (a diffeomorphism), one has:

d(dyk) =

n∑
s,r=1

∂2yk

∂xs∂xr
dxsdxr +

∂yk

∂xr
d2xr,

it can be easily verified that if Yk, Yij denote the coefficients of X(2) with respect to the
coordinates (y1, . . . , yn), then the following relations hold true:

Xik =
∑n

l=1 Yl
∂2yl

∂xi∂xk
+
∑n

q,t=1 Yqt
∂yq

∂xi
∂yt

∂xk
, i, k = 1, . . . , n;

Xk =
∑n

l=1 Yl
∂yl

∂xk
k = 1, . . . , n.

(13)

Interestingly enough, Pascal also introduced the symbols

{ijk} :=
∂2Xk

∂xi∂xj
+
∂Xij

∂xk
− ∂Xik

∂xj
−
∂Xjk

∂xi
, i, j, k = 1 . . . , n;

which are easily proven to be equal to

{ijk} =
1

2

∂

∂xi
{kj}+

1

2

∂

∂xj
{ki} − 1

2

∂

∂xk
{ij} i, j, k = 1 . . . , n. (14)

He regarded them as a generalization of the Christoffel symbols; indeed, their expression
given by (14) coincides with the classical formula for Christoffel symbols of the first kind,
computed with respect to the form B. According to Pascal, this formal analogy could be
exploited in order to extend the classical theory of differential parameters to forms such
as X(2).

The study of differential forms of arbitrary order r and arbitrary degree k was carried
on in a series of subsequent papers. In [Pascal 1910], a long memoir amounting to almost
one hundred pages, a systematic and comprehensive treatment of this new theory was
offered for the first time.

Two years before, the subject was the topic of a conference that Pascal delivered on
the occasion of the ICM held in Rome in 1908. The introduction to his speech provides a
clear insight into both his aims and his underlying motivations.
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The aim of this contribution is to draw the attention of mathematicians to a
new theory of differential forms of arbitrary order and degree. I developed this
theory in recent years as an extension of the ancient theory of Pfaffian forms
and differential quadratic forms.

All the most important results in the realm of these two theories, whose con-
tributors are among the greatest analysts of the 19th century Pfaff, Jacobi,
Grassmann, Riemann, Clebsch, Lie, Lipschitz, Frobenius, Christoffel, Beltra-
mi, etc., are but the simplest and most obvious among other results, so far
unnoticed, much more general and of a wider nature; the general theory about
which I am about to speak, although at first glance it might appear difficult
due to the complicated formulas that it produces. Nonetheless, with appro-
priate devices, it can be rendered more manageable and thus acquire symmetry
and elegance, virtues for which I dare to ask for hospitality for this brand new
theory among the disciplines of modern analysis.14

Indeed, Pascal succeeded in developing a general theory that, in addition to providing
a formidable extension of classical theories, could offer a theoretical framework in which
previously unrelated notions, such as the bilinear covariant of a Pfaffian form and the
Christoffel symbols of a quadratic differential form, could be subsumed under a common
concept.

To this aim, the study of the transformation property of the coefficients and the
discovery of a covariant algorithm for derivation turned out to be essential.

In order to tackle the first problem, Pascal introduced the symbols (symmetric both
with respect to the indices j and h): Ç

j1 . . . jm
h1 . . . hr

å
xy

, (15)

which he defined as follows.
Consider a (sufficiently regular) function F of the variables (x1, . . . , xn) and suppose

that the xi’s may be regarded as functions of other variables (y1, . . . , yn). The symbols
(15) are implicitly defined (in addition to the request of symmetry with respect to the
indices j and h) by:

∂rF

∂yh1 . . . ∂yhr
=

r∑
m=1

n∑
j1...jm=1

∂mF

∂xj1 . . . ∂xjm

Ç
j1 . . . jm
h1 . . . hr

å
xy

.

It is clear then that (15) are sums of products of the partial derivatives of x = (x1(y), . . . , xn(y))

until the order r-th.15 As a consequence of the structure of the differentials δ
(rj)
j1...jm

, the

14Lo scopo di questa mia Comunicazione è di richiamare l’attenzione dei matematici sulla nuova teoria
delle forme differenziali di ordine e grado qualunque, che io sono andato formando in questi ultimi anni,
come estensione dell’antica teoria delle forme Pfaffiane e di quella delle forme differenziali quadratiche.
Tutti i più brillanti risultati nel campo di queste due particolari teorie al cui sviluppo sono legati i nomi dei
maggiori analisti del secolo scorso, Pfaff, Jacobi, Grassmann, Riemann, Clebsch, Lie, Lipschitz, Frobenius,
Christoffel, Beltrami, etc., non sono che i casi più semplici e più ovvii di risultati, rimasti finora inosservati,
assai più generali, e di una natura molto più ampia; e la teoria generale di cui vi parlo, per quanto a prima
vista possa apparire irta di difficoltà, per la complicazione delle formule cui sembra dar luogo, pure, con
opportuni artifizii e congegni, è capace di perdere ogni eccessiva complicazione, e di acquistare quella
simmetria e quella eleganza, che sono le doti in omaggio alle quali io mi permetto di domandare ospitalità
anche per questa nuova teoria fra i capitoli dell’Analisi moderna. [Pascal 1909, p. 138]

15As a way of example, it is easily seen that
(
j1j2
h1h2

)
xy

is equal to:

1

2!

Å
∂xj1

∂yh1

∂xj2

∂yh2
+
∂xj2

∂yh1
∂xj1

∂yh2

ã
.
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coefficients of X(r1,...,rk) transform as follows under an arbitrary change of coordinates:

Yh1...hµ;...;l1...lπ =

µ∑
m=1

. . .

π∑
p=1

∑
j...i

Xj1...jm;...;i1...ip

Ç
j1 . . . jm
h1 . . . hµ

å
xy

. . .

Ç
i1 . . . ip
l1 . . . lπ

å
xy

(16)

Clearly guided by an analogy with Ricci’s calculus, Pascal called a system of functions with
k sets of indices Xj1...jm;...;i1...ip characterized by the transformation law (16) a covariant
system with k sets of indices. Clearly, the usual notion of covariant system (covariant
tensor of k-th order) can be obtained by choosing r1 = . . . = rk = 1, thus assuring
that the theory of generalized differential forms comprises the classical notion of covariant
tensors too.

The above mentioned project consisting in developing a unitary approach to differential
forms of different kinds was regarded by Pascal as a priority for his research and, at
the same time, as one of the main achievement of his theoretical construction. This
ambitious plan could be made viable thanks to a technical algorithm, called the operation
of “deducing”, which Pascal introduced in 1906. It was a sort of covariant differentiation
that allowed to produce covariant systems with k+ 1 sets of indices starting from a given
one with k sets of indices.

Let Xj1...jm;...;i1,...ip be a covariant system with k set of indices; consider another set of
q indices g1 . . . gq and the corresponding partial derivative:

DXj1...jm;...;i1,...ip =
∂qXj1...jm;...;i1,...ip

∂xg1 . . . ∂xgq
. (17)

By following [Pascal 1910, p. 26], we introduce a simplified notation to denote the
righthand side of (17) by defining:

j1 . . . jm; . . . ; i1, . . . ip
g1 . . . gq

:=
∂qXj1...jm;...;i1,...ip

∂xg1 . . . ∂xgq
(18)

Now, let us construct all the partial derivatives of the (q−1)-th order that are obtained from
(17) by “moving” each index of (g1 . . . gq) to each group of indices (j1 . . . jm); . . . ; (i1, . . . ip),
i.e.:

j1 . . . jmg1; . . . ; i1, . . . ip
g2 . . . gq

, . . . ,
j1 . . . jm; . . . ; i1, . . . ipgq

g1 . . . gq−1
(19)

We denote by ΩD the operation consisting in summing all the derivatives obtained in
this way from D. The operator Ω can be extended by linearity to sums of derivatives
DX + D′X + . . .. With these preliminaries, Pascal introduced the so called fundamental
symbols:

((j1 . . . jm; . . . ; i1, . . . ip; g1 . . . gq)) =

q∑
k=1

(−1)k

k!
Ω(k)DXj1...jm;...;i1,...ip ;

he also called the quantities ((j1 . . . jm; . . . ; i1, . . . ip; g1 . . . gq)) the q-th covariant deduced
(function) of the coefficients Xj1...jm;...;i1,...ip . The attribute “covariant” was aptly chosen
since these symbols transform according to the transformation rule that is characteristic
of a covariant system with k + 1 sets of indices.

Despite their complexity, the introduction of the fundamental symbols for the gene-
ral case of coefficients such as Xj1...jm;...;i1,...ip must have appeared quite natural. Pascal
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clearly followed a reasoning by analogy. Indeed, similar expressions had already presen-
ted themselves in previous works where Pascal’s attention had focused on the study of
differential expressions of first degree and second order.

The role of the fundamental symbols consisted mainly in producing additional functions
by means of which a thorough study of the invariant properties of forms X(r) of first degree
could be attained. Their definitions as provided in [Pascal 1910, §10] read as follows:

(j1 . . . jm; i1 . . . ip)X = ((j1 . . . jm; i1 . . . ip))− (−1)m+p((i1 . . . ip; j1 . . . jm))

{j1 . . . jm; i1 . . . ip}X = ((j1 . . . jm; i1 . . . ip)) + (−1)m+p((i1 . . . ip; j1 . . . jm))

These quantities, dubbed principal symbols of the first and second kind respectively, can
be seen as a direct generalization of the functions already introduced for cases r = 1, 2.
Indeed, this can easily be checked by performing the relevant computations with respect
to forms X(1),X(2).

To this end, one has first to compute the symbols ((i; j1)), ((i; j1j2)) and then deduce
the corresponding principal ones. One easily obtained for example:

((i; j1)) =
∂Xi

∂xj1
−Xij1 , ((i; j1j2)) =

∂2Xi

∂xj1∂xj2
− ∂Xij1

∂xj2
− ∂2Xij2

∂xj1
, (20)

and consequently:

(j; i) =
∂Xj

∂xi
− ∂Xi

∂xj
, (21)

(j1j2; i) =
∂2Xi

∂xj1∂xj2
− ∂Xj1i

∂xj2
− ∂Xj2i

∂xj1
+
∂Xj1j2

∂xi
; (22)

thus showing that the bilinear covariant of a differential form X(1) and the Christoffel
symbols of a quadratic differential form X(2), with Xk = 0, k = 1, . . . , n, can both be
considered as principal symbols of the first kind.

A thorough examination of Pascal contributions to the theory of general differential
forms would go well beyond the scope of this paper. Nonetheless, in order to gain a general
idea of the motivations at the basis of his research, it is useful to mention some of his most
noteworthy results: 1) he provided an extension of the theory of Pfaff’s reduction problem,
by finding conditions for a given differential form of order r (and degree 1), in the variables
x1, . . . , xn, X(r), to be written as Φ ·X̃, where Φ is a function of n variables and X̃ depends
on n− 1 variables, only; 2) he generalized the notion of completely integrable system to a
system of differential forms of arbitrary order and first degree.

These results notwithstanding, the reception of Pascal’s works in the short run was
scarce. His theory of general differential forms did not attract much interest or even achieve
a widespread appreciation. No doubt, the algorithmic complications imposed by the high
degree of generality of his treatment were judged as excessive and inadequately balanced
by the advancements that they produced. This point of view was publicly expressed, for
example, on the occasion of the two competitions for the Royal Prize for Mathematics in
1901 and 1907. In both circumstances, Pascal did not obtain the recognition of the prize.
The motivation at the basis of the negative outcome may be summarized as followed:
Pascal’s theory had still to prove its fecundity by displaying some noteworthy application
in the realm of integration theory of PDE’s, namely second order ones.

The following passage taken from the report of the Commission responsible for the
attribution of the 1907 prize provides a clear representation of the attitude of the Ita-
lian mathematical milieu (or at least of a part thereof) towards Pascal’s theoretical
constructions.
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Pascal’s theory of higher order differential forms is very remarkable, especially
from the formal point of view, for the great generality of the results and for
their relative and unexpected simplicity. The constant industriousness and the
singular algorithmic ability displayed by the author in the discovery of the
simple laws for invariant formations are truly admirable. By means of them,
the author solved the fundamental problems posed by this new theory. Of
course, if the new theories of differential forms constructed by Pascal show their
effectiveness in dealing with problems concerning partial differential equations
of order higher than the first, [. . . ] then the value of his research will be greatly
elevated.16

Quite surprisingly, in spite of his original motivations, the techniques introduced by
Pascal could first displayed and proved their fecundity in geometrical investigations rather
than in purely analytical studies on the integration theory of second order PDE’s. As will
be seen, it was Vitali’s merit to recognize the usefulness of Pascal’s theory in dealing with
the new problems emerging in recent developments of differential geometry.

5 Vitali’s calculus: origins and first definitions

The introduction to [Vitali 1923b], the first paper that Vitali devoted to the edification of
his calculus, contains noteworthy comments concerning the original motivation of work.
On this occasion, he was very explicit in acknowledging the influence of Pascal’s inve-
stigations on his own research, by praising the latter especially for his discovery of the
operation of “deducing” and the proof of its covariant character.

In this memoir I set out to expose in a very simple way the foundations of
a generalized absolute calculus according to ideas that can be found in some
important contributions by the most illustrious professor Pascal. In these
works, whose results were collected in a valuable memoir,17 notions such those
of “deducing” and of principal symbols were discovered that are so fundamental
for this theory that one can consider Pascal as of the best continuator of
Gregorio Ricci-Curbastro.18

Despite Pascal’s efforts, his calculus of differential forms had attracted little attention
in the years to follow. Unsurprisingly, the reception process of his work was bound to the
fortune of Ricci’s calculus itself. It was only after the emergence of a favorable attitude
towards the latter, mainly due to the discovery of General Relativity (1915-1916), that

16Questa teoria delle forme differenziali d’ordine superiore, costruita dal Pascal, è molto notevole, spe-
cialmente dal punto di vista formale, per la grande generalità dei risultati e per la relativa ed inattesa
semplicità loro. È veramente ammirevole la costante operosità e la singolare abilità algoritmica spiegata
dall’A. nella scoperta delle semplici leggi per le formazioni di carattere invariantivo, col sussidio delle quali
vengono a risolversi i problemi fondamentali della nuova teoria. Certo, se le nuove teorie sulle forme dif-
ferenziali costruite dal Pascal manifesteranno la loro efficacia nella trattazione dei problemi concernenti le
equazioni a derivate parziali d’ordine superiore al 1◦ [. . . ] grandemente elevato ne verrà il valore di queste
sue ricerche. [Relazione 1907, p. 421].

17Here Vitali referred to [Pascal 1910].
18Nella presente Memoria io mi propongo di esporre in modo molto semplice i fondamenti di un calcolo

assoluto generalizzato quale è suggerito da vari e importanti lavori del Ch.mo Prof. Ernesto Pascal.
In questi lavori, i cui risultati furono raccolti dall’Autore in una bella Memoria, sono stati trovati degli
elementi, come le dedotte e i simboli principali che sono fondamentali per questa teoria, e tanto importanti,
a mio avviso, che si può considerare il Pascal come il migliore continuatore dell’opera di Gregorio Ricci-
Curbastro. [Vitali 1923b, p. 157].
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attempts at generalization, as those brought about by Pascal, could be regarded as viable
and even longed for. From this perspective, the birth of Vitali’s absolute calculus can be
seen as a by product of the ongoing process of re-evaluation of Ricci’s calculus techniques
following the publications of Einstein’s papers.

On a technical level, Vitali introduced two main innovations with respect to both
Ricci’s and Pascal’s theories. They are the use of a functional representation for manifolds,
which are regarded as immersed in a Hilbert space, and the recourse to a multi-index
notation that greatly simplified the execution of intricate calculations.

Possibly out of his deep interest in functional analysis, to which he had widely con-
tributed, Vitali chose a Hilbert space as the natural setting for the geometrical objec-
ts he set out to study, by supposing that an n dimensional manifold could be descri-
bed, in a sense to be explained in what follows, by giving a representative function
F (t;u1, . . . , un) ∈ L2(R). The idea was to provide an extension of the notion of a pa-
rametrized vector F (u1, . . . , un) ∈ RN in terms of F (t;u1, . . . , un) ∈ L2(R). Since L2(R)
can be regarded as an infinite dimensional generalization of RN , Vitali considered it to
be the natural ambient space for the study of manifolds. In particular, he thought that
this highly general setting could be particularly suitable for research on projective diffe-
rential properties. As for the second innovation that Vitali introduced, a highly effective
multi-index notation (Bortolotti spoke of “ingenious technique”) allowed him to define
a generalization both of tensors and covariant derivatives that was particularly useful in
order to emphasize similarities with respect to Ricci’s calculus. Starting from 1923, Vitali
produced various presentations of his calculus in a series of publications that culminated
in the monograph Geometria nello spazio hilbertiano where he provided a first systematic
treatment of the subject.

A first version of the multi-index notation was introduced in [Vitali 1923b] and later
refined in his Geometria. We will mainly follow the presentation provided in the latter.
By analogy with Ricci’s classical treatment, Vitali defined his generalized tensors (Vitali
referred to them as “Pascal systems” or as “absolute systems”) as a set of functions of the
coordinates of a given manifold with covariant and contravariant indices that transform
according to prescribed laws. From a synthetic point of view one can regard these genera-
lized tensors as multilinear maps defined on osculating spaces (and their dual counterpart)
of a given manifold; precisely as ordinary tensors can be regarded as multilinear maps on
tangent spaces and their dual counterpart.

First examples of this general notion had been introduced a few years before Vitali’s
investigation in a number of works by Eugenio Elia Levi and by Pascal himself. Indeed, the
coefficients of a differential form of k degree and r order are the coefficients of a generalized
tensor (to be defined later) in Vitali’s sense. In order to write down the transformation
laws of these general objects, the introduction of a multi-index notation turned out to be
essential.

Let us see some definitions proposed in [Vitali 1929], by limiting ourselves to the
most relevant ones to our scope. First, Vitali considered scalar functions, which he cal-
led invariant, on a manifold Vn. They are regular functions on Vn, I : Vn → R who-
se representations in different coordinates systems u1, . . . , un, v1, . . . , vn, are denoted by
I[u] = I(u) = I(u(v)) = I[v]. He then introduced what he called the set (campo) Ω defined
as follows. Let n be a fixed positive integer and and let Ω be the set of combinations of
elements {1, 2, . . . , n} with repetitions taken k at a time, regardless of their order, with
k = 1, 2, 3, . . .. An index is a variable taking value on Ω, which is denoted by a single
letter of the Greek alphabet α, β, . . .. A given value α of an index is said to be a state of
the index. Moreover, the number of digits of a given state, denoted with ρα, is called the
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rank of the state. Finally, Vitali defined an index α to be of class ν if it takes on all the
states for which 1 ≤ ρα ≤ ν. By way of example, an index α of class 2 is a variable index
that can take on all values in the set I2 := {1, 2, . . . , n, 11, 12, . . . , 1n, 21, . . . , nn} ⊂ Ω.

In light of these definitions, Vitali introduced his own version of Pascal’s symbols

(15),
∂uβ

∂vα
, α, β ∈ Ω, implicitly defined by the following equations that express the de-

rivatives Iα[v] :=
∂rI

∂vi1 . . . ∂vir
, α = (i1, . . . , ir) with respect to Iβ[u] =

∂sI

∂uj1 . . . ∂ujs
,

β = (j1, . . . , js) ∈ Ω:

Iα[v] =
∑
β∈Ω

∂uβ

∂vα
Iβ[u],

where by definition
∂vα

∂uβ
=
∂vi

∂uj
, if α = i, β = j and

∂uβ

∂vi
≡ 0, when ρβ > 1. In general,

as was proven in [Vitali 1929, pp. 156-158], these expressions are polynomials in the
derivatives of the functions uk = uk(v1, . . . , vn).

Finally, on the basis of this results, Vitali was able to propose his own generalization of
Pascal’s systems. He defined19 an absolute system to be a set of functions of (u1, . . . , un),

Hβ1,...,βs
α1,...,αr that, under an arbitrary (invertible and sufficiently regular) change of coordinates

(u1, . . . , un) 7→ (v1(u), . . . , vn(u)) transform as:

H̃β1,...,βs
α1,...,αr(v) =

∑
α′,β′

H
β′1,...,β

′
s

α′1,...,α
′
r
(u)

r∏
h=1

∂uα
′
h

∂vαh

r∏
k=1

∂vβh

∂uβ
′
k

, (23)

where the summation is extended to all states of indices in the classes of α′h, β
′
k which

coincides with the classes of αh and βk, respectively. It is clear that an absolute system
is characterized by transformations laws formally identical to those that occur in classical
Ricci’s calculus. Nonetheless, it should be borne in mind that the symbols α and β actually

represent groups of indices and the expressions
∂uα

∂vβ
and

∂vα

∂uβ
are polynomials that contain

derivatives until orders depending on the classes of the indices α, β.
Vitali could exhibit many examples of absolute systems by considering the notion of

a manifold immersed in the Hilbert space L2(R) and the related notion of parametrized
point-function, F (u1, . . . , un; t) ∈ L2(R). An absolute system that extends the concept of
Riemannian metric could be introduced by means of the scalar product on L2(R), just
as in case of a manifold immersed in a (finite-dimensional) Euclidean space RN , whose
fundamental tensor is induced by the ordinary scalar product. Vitali defined the absolute
system aα;β (his own generalization of a Riemannian metric) as follows:

aα;β(u1, . . . , un) =

∫
R
Fα(u; t)Fβ(u; t)dt,

where α, β are indices of a given class, say ν.
Operations generalizing the classical notions of summation, subtraction, and product

were introduced by Vitali without any serious difficulty, by analogy with corresponding
definitions of Ricci’s calculus. As will be seen, the task of providing an adequate definition
of covariant derivative for generalized tensors turned out to be much more problematic.

19See [Vitali 1929, pp. 166]. See also [Vitali 1927-1928, p. 418], for an earlier occurrence of this notion.
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6 The search for covariant differentiation

The discovery of the notion of covariant differentiation represented a landmark in the
historical development of both Riemannian geometry and tensor calculus. Unsurprisingly,
the challenge consisting in finding a generalization of this notion played a major role in
the process of edification of Vitali’s new calculus too. However, it took some time before
this problem could find a satisfactory and general solution, which indeed Vitali achieved
only in 1930, after many unsuccessful attempts.

A first step into these investigations was taken in 1927 in a memoir presented by Fubini
to the Accademia dei Lincei. Here Vitali succeeded in defining a covariant differentiation
for Pascal systems with class index 2 and differentiation index of class 1.

The heuristic process that Vitali might have pursued in the course of his search after
a completely general differentiation algorithm was succinctly described by Angelo Tonolo,
one of his students at Padua University, on the occasion of the obituary notice that he
wrote soon after Vitali’s death in February 1932.

By studying the normal directions that lie in the second osculating space at a
point of a manifold immersed in a Hilbert space, he obtained Ricci’s covariant
derivative. For this reason, he thought that the study of the normal directions
to the n-th osculating space at a point of the manifold, would lead him to find
the expression of the generalized derivative. And so it happened. Indeed, the
aforementioned research, guided by a suitable choice of notations, led him to
write an operation which is precisely the derivative that he was looking for.20

The remarks here proposed appear convincing. We can gain a better appreciation of
Tonolo’s reconstruction by a close examination of [Vitali 1927-1928]. Let us see in some
detail the main idea at the basis of Vitali’s discovery. For the sake of simplicity, when
it is possible, we avoid the use of the functional representation by limiting ourselves to
considering manifolds immersed in RN .

The starting point consisted of a new geometrical characterization of the classical
notion of covariant differentiation in terms of the normal directions to the tangent space
at a given point of an immersed manifold.

To this end, Vitali made recourse to the notion of q-th order osculating space, already
introduced and employed by Del Pezzo in 1886.21 Let the map (u1, . . . , un) 7→ F =
(z1(u), . . . , zN (u)) ∈ RN provide an analytical representation of a given immersed manifold
Vn ⊂ RN . The partial derivatives of F , at a given point P = (z̄1, . . . , z̄N ) with respect
to the variables u1, . . . , un until a given order q, define a linear space, called q-th order
osculating space (or, alternatively, q-th fundamental space), which Vitali denoted with σq.
It is clear that σ1 coincides with the tangent space of Vn at the point P .22

In order to determine all the directions X that belong to σ2 and are normal to σ1, we
can write X as a linear combination of first and second order derivatives of the functions

20Studiando le normali che giacciono nel secondo spazio osculatore in un punto di una varietà immersa
nello spazio hilbertiano, Egli s’imbattè proprio con la derivata covariante del Calcolo di Ricci. Allora Egli
pensò che lo studio delle normali all’n-esimo spazio osculatore in un punto della varietà in discorso, Lo
avrebbe condotto a trovare l’espressione della derivata generalizzata. E cos̀ı avvenne, perché la ricerca
anzidetta, guidata con opportuna scelta di notazioni, Lo portò a scrivere un’operazione che è proprio la
derivata che Egli cercava. [Tonolo 1932, p. 75].

21See [Del Pezzo 1886].
22In [Vitali 1929], the denomination “spazio fondamentale di ordine q” was employed to refer to σq. In

this respect, one can see a letter of Enrico Bompiani to Vitali (May 1929). [Vitali 1984, p. 503].
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F , i.e.:

X =

n∑
i=1

λiF
(1)
i +

n∑
i,j=1

λijF
(2)
ij , (24)

where F
(1)
i , F

(2)
ij ∈ RN are defined by: F

(1)
i :=

∂F

∂ui

∣∣∣∣
P

, F
(2)
ij :=

∂2F

∂ui∂uj

∣∣∣∣
P

, i, j = 1, . . . , n.

Upon scalar multiplication of both sides of (24) by F
(1)
k , in virtue of the orthogonality

condition, one easily obtains:

F
(1)
k ·X =

n∑
i=1

λiF
(1)
k · F (1)

i +
n∑

i,j=1

λijF
(1)
k · F (2)

ij = 0, k = 1 . . . , n. (25)

Since F
(1)
k ·F

(1)
i can be regarded as the coefficients of the Riemannian metric

∑n
k,i=1 akidu

kdui

induced on Vn by the Euclidean scalar product in RN, F
(1)
k · F (2)

ij are equal to Γij,k.
23

Consequently, equations (25) can be rewritten as follows:

n∑
i=1

λiaki +

n∑
i,j=1

λijΓij,k = 0, (26)

or equivalently as:

λj = −
∑
ik

Γjikλ
ik. (27)

This implies that the directions of σ2 that are perpendicular to σ1 are linear combinations

of the covariant derivatives of the scalar components of F
(1)
k .

A similar procedure can be applied to determine the directions of σ3 that are orthogonal
to σ2. By doing this, Vitali found that such directions are linear combinations of the
following expressions:

Fijk := F
(3)
jhk −

∑
α∈I2

ï
jhk
α

ò
F (1,2)
α (28)

where

F (1,2)
α =


F

(1)
k =

∂F

∂uk
, α = k,

F
(2)
ij =

∂2F

∂ui∂uj
, α = ij

,

ï
jhk
β

ò
2

=
∑
α∈I2

Aα;β

Å
jhk
α

ã
with

Aα;β = Aβ;α =



F
(2)
pq · F (2)

rs , if α = pq, β = rs

F
(2)
pq · F (1)

r , if α = pq, β = r

F
(1)
p · F (1)

r , if α = p, β = r

,

Å
jhk
α

ã
=


F

(3)
jhk · F

(2)
mn, if α = mn

F
(3)
jhk · F

(1)
m , if α = m

23Indeed, Γij,k =
1

2

ï
∂

∂ui

Ä
F

(1)
j · F (1)

k

ä
+

∂

∂uj

Ä
F

(1)
i · F (1)

k

ä
− ∂

∂uk

Ä
F

(1)
i · F (1)

j

äò
= F

(1)
k · F (2)

ij .
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The coefficients Aα;β denote the coefficient of the inverse matrix of A = [Aα;β].
The quantities Fijk could be regarded as an extension of Ricci’s covariant derivation

since it could be shown through a direct computation that they transform as a third
order covariant tensor (in the classical sense). This result suggested to Vitali a promising
strategy to tackle the problem of constructing a general differentiation algorithm suitable
for generalized tensor with second class indices. Indeed, it was precisely by following this
route that Vitali succeeded in proving the following:

Theorem 6.1 (Vitali, 1927) Let z = F (u1, . . . , un) be an immersed manifold and let
Hα be a generalized tensor with second class index, then the system:

Mα;k :=


Mj,k :=

∂Hj

∂uk
−Hjk, α = j;

Mjh;k =
∂Hjh

∂uk
−
∑

β

ï
jhk
β

ò
2

·Hβ, α = jh;

(29)

is a generalized tensor with two indices α and k of second and first class respectively.

Interestingly, Vitali made use of this result also to prove the covariant character of the
coefficients Fijk. By doing this, he was inverting, as it were, the order of the heuristics:
the new calculus could also be employed to solve problems concerning Ricci’s classical
notions. We will briefly examine the relevant computations. To his end, let us consider
the generalized tensor Hα defined by posing:

Hα := F ∗α =


F
∗(1)
k =

∂F ∗

∂uk
, α = k,

F
∗(2)
ij =

∂2F ∗

∂ui∂uj
, α = ij,

where F ∗ denotes any given scalar component of the vector F ∈ RN . As a consequence of
theorem (6.1) the quantities Mα;k transform according to:

Mα;k(u) =
∑
β∈I2

n∑
r=1

M̃β;r(v(u))
∂vβ

∂uα
∂vr

∂uk
, α ∈ I2, k = 1, . . . , n. (30)

Furthermore, it is easily seen that, as a consequence of the first of (29), Mj;k is identically
vanishing. Incidentally it should be observed that the Mj;k coincide with the coefficients
of the first “dedotta” of Pascal’s theory. Thus equations (30) can be rewritten as follows:

Mα;k(u) =
∑
β∈I′2

n∑
r=1

M̃β;r(v(u))
∂vβ

∂uα
∂vr

∂uk
, α ∈ I2, k = 1, . . . , n. (31)

By observing that, as a consequence of the definition of
∂vst

∂uij
, the following relations hold

true:

∂vst

∂uij
=


∂vs

∂ui
∂vt

∂uj
+
∂vt
∂ui

∂vs

∂uj
, s 6= t

∂vs

∂ui
∂vt

∂uj
, s = t;

17



one easily deduces that Fijk transform as:

Fijk =
∑
r,s,t

F̃rst
∂vr

∂ui
∂vs

∂uj
∂vt

∂uk
;

this indeed proves that Fijk, i, j, k = 1, . . . , n, are the coefficients of a covariant tensor of
the third order.

The covariant differentiation defined according to (29) was further extended first to
generalized tensors of an arbitrary number of indices of first and second class only, and
then to generalized tensors of any number of indices of arbitrary class.

A further step towards the discovery of a general notion of covariant differentiation
was the extension to the case in which the derivation index is arbitrary too. In Vitali’s
words:

It seemed strange that the covariant derivative could not be defined with a
derivation index of rank > 1; but only recently have my attempts in this
direction been successful. [. . . ]

Trying to simplify this proof I have come to a surprising result. The covariant
derivative of an absolute system can be written in a concise form [. . . ] which
highlights its absolute character.

At first I saw the form to be assigned to the covariant derivative of a covariant
system Hα also for states of rank two of the derivation index, and on 5th April,
in my lecture of Higher Analysis I proved its absolute character, by taking as
a model the demonstration published in GH [i.e. [Vitali 1927-1928]], pp. 186-
187. The synthetic form of the covariant derivative not only has the advantage
of avoiding a long proof, but also allows to define the covariant derivative of an
absolute system with indexes and superscripts of integer classes for any state
of the derivation index chosen in the set Ω.24

The main idea at the basis of this generalization was the introduction of an operation,
which Vitali called “reciprocity”, that extended the procedure, ubiquitously employed in
Ricci’s calculus, consisting of raising and lowering the indices of a given tensor by means
of the coefficients of the metric. In order to follow closely the original treatment, it is
necessary to restore the functional representation employed by Vitali and thus to consider
an n−dimensional manifold as being immersed in the Hilbert space L2(R).

As a consequence of this functional setting, according to which the manifold Vn is repre-
sented by means of an n-dimensional parametrization of points of L2(R), F (t, u1, . . . , un),
the coefficients of the generalized metric aα;β = Fα · Fβ are to be seen as the result of the
scalar product in L2(R) of the (real) functions Fα(t) = Fα(t, u1, . . . , un)

aα;β(u1, . . . , un) := Fα · Fβ =

∫
R
Fα(t)Fβ(t)dt,

24Pareva strano che non si potesse definire il derivato covariante anche con indice di derivazione di rango
> 1; ma solo recentemente i tentativi da me fatti in questo senso hanno avuto successo. [. . . ]

Cercando di semplificare questa dimostrazione sono giunto ad un risultato sorprendente. Il derivato
covariante di un sistema assoluto può essere scritto in una forma sintetica [. . . ] che mette in evidenza il
suo carattere assoluto.

In un primo momento ho intravisto la forma da assegnarsi al derivato covariante di un sistema covariante
Hα anche per gli stati di rango 2 dell’indice di derivazione, ed il 5 aprile u. s. nella mia lezione di Analisi
Superiore ne ho dimostrato il carattere assoluto, prendendo come modello la dimostrazione che figura in
GH, a pp. 186-187. La forma sintetica del derivato covariante non ha solo il vantaggio di far risparmiare
una lunga dimostrazione, ma consente di definire il derivato covariante di un sistema assoluto con indici
ed apici di classi intere per qualunque stato dell’indice di derivazione scelto nel campo Ω. [Vitali 1930, p.
47]
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where the indices α, β belong to the same class, say ν. Under the hypothesis that the
determinant det (aα;β) 6= 0, one can consider – provided a stipulation on the order among
different states of the indices is made – the inverse matrix of A = [aα;β] whose coefficients
Vitali denoted with the symbols a

ν

α;β, which include an indication of the class of α, β.

Precisely by means of a
ν

α;β, Vitali introduced the notion of reciprocity. To this end he con-

sidered an absolute system Hβ1,...,βs
α1,...,αr and defined the reciprocal system with respect to the

index αh, h = 1, . . . , r (respectively βk) as the absolute system
∑

α′h∈Iν
a
ν

αh,α
′
hHβ1,...,βs

α1,...,α′h,...,αr

(
∑

β′k∈Iν
aβk;β′k

H
β1,...,β′k,...,βs
α1,...,αr ). When this procedure is applied to each one of the r + s

indices, the result that is obtained was called the reciprocal system with respect toHβ1,...,βs
α1,...,αr .

We can now analyze the definition of covariant differentiation as illustrated by Vitali
in [Vitali 1930, §2]. Let Hβ1,...,βs

α1,...,αr be an absolute system (αh and βk are indices of class νh
and µk respectively, h = 1, . . . , r; k = 1, . . . , s). Consider the following system associated
to H:

Uβ1,...,βsα1,...,αr =

r∏
h=1

Fαh(th)

s∏
k=1

F
νk

βk(τk), (32)

and the corresponding reciprocal system V α1,...,αr
β1,...,βs

. Although Vitali did not employed the
notion of tensor product of Hilbert spaces, it is evident that U and V can be regarded as
elements of

H := L2(R)⊗ . . .⊗ L2(R)︸ ︷︷ ︸
r+s times

.

Now, let γ be any index in Ω and let [H,F ] be defined as∑
αh∈Iνh ,βk∈Iµk

Hβ1,...,βs
α1,...,αrV

α1,...,αr
β1,...,βs

;

Vitali introduced the covariant derivative of Hβ1,...,βs
α1,...,αr with respect to the index γ, to be

denoted with Hβ1,...,βs
α1,...,αr,γ , as follows:25

Hβ1,...,βs
α1,...,αr,γ := (U,∆γ [H,F ])H. (33)

The absolute character of this object is essentially due to the fact that [H,F ] is an inva-
riant and U is an absolute system. Furthermore, it should be observed that this notion
is sufficiently general so that it comprehends the definitions of covariant differentiation
elaborated over the period 1927-1930.

As Vitali himself explained in the above quotation, he first discovered the form to
be attributed to the covariant differentiation in the case in which ργ = 2. However, he
provided no hint concerning the idea underlying the synthetic form expressed in (33). It
could be argued that, in this circumstance too, Vitali’s reasoning might have proceeded
by analogy starting from Ricci’s classical notion of covariant derivative, which indeed
admits a representation of type (33). In order to see this, it is sufficient to replace L2(R)
with RN and the inner product (·, ·)H with the ordinary Euclidean dot product in RN .
Indeed, let Vn be a Riemannian manifold immersed in RN : F : (u1, . . . , un) → F (u) =
(z1(u), . . . , zN (u)) ∈ RN ; let Hj , j = 1, . . . , n denote a covariant (ordinary) tensor of first
order and let γ = k, k ∈ {1, 2, . . . , n}, be a first class index. Then equation (33) can be

25Here ∆γ denotes the operator
∂ργ

∂ui1 . . . ∂uiργ
.
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rewritten as:

Hj,k =

N∑
t=1

∂

∂uk

Ñ
n∑

r,s=1

HrF
t
sa
rs

é
F tj , j, j = 1, . . . , n; (34)

where F ts =
∂zt

∂us
and aik =

∑N
r=t F

t
i F

t
k = Fi · Fk. It is easily proven that Hj,k coincides

with the classical covariant derivative of Hj , with respect to the metric aik. It is interesting
to observe that the structure of the definition (33) essentially coincides with formula (8),
which was suggested to Vitali by Ricci in 1924. Indeed, one first constructs the absolute
invariant [H,F ], applies the ordinary differentiation operator ∆γ and then restores the

appropriate index structure by multiplication with respect to U = Uβ1,...,βsα1,...,αr .
A noteworthy consequence of this further extension was investigated in one of Vitali’s

last work, [Vitali 1932], a collection of conferences held in Bologna and gathered by a
student of his at the local University. Here Vitali set out to reinterpret the covariant
derivation that he had introduced in [Vitali 1923a] in light of the theoretical framework
of his new calculus. In order to do that, he simply replaced the absolute systems Fα(t, u)
by means of a covariant system φα, α ∈ Iν , deduced from fixed orthogonal directions of a
given linear space.

However, as Bortolotti aptly remarked in [Bortolotti 1933, p. 220], such an attempt at
providing a unitary treatment of the absolute parallelism introduced in [Vitali 1923a] in the
context of his generalized absolute differential calculus was not completely successful, since
the representation of the covariant derivative corresponding to the Weitzenböck-Vitali
parallelism by means of (33) remained problematic to a certain extent.

The search for other geometrical applications had a better fortune. A detailed outline
of Vitali’s contributions to both projective and metric differential geometry would be
well beyond the scope of this paper. We refer the reader to [Bortolotti 1933, §4] which
contains useful information on Vitali’s mathematical production as a whole. We will limit
ourselves to discussing an example of geometrical application leading to an analytical
characterization of quasi-asymptotic lines, a special kind of curves drawn upon surfaces
that were recently intorduced in [Bompiani 1914] and could be regarded as a generalization
of the classical notion of asymptotic lines.

Let us first consider the case of asymptotic lines. We will follow the discussion that
Vitali offered in [Vitali 1927-1928]. To this end, let V2 be a 2-dimensional manifold
(surface) immersed either in RN or in L2(R). Let us suppose that the second order
osculating space σ2 is a 3-dimensional linear space. If V2 is represented by a parame-
trized function F (u1, u2; t) ∈ L2(R), this is the vector space generated by the elements

F
(1)
i , F

(2)
jk , i, j, k = 1, . . . , 2. Asymptotic curves on V2 can be defined as those curves

γ : s 7→ γ(s) = F (u1(s), u2(s); t) ∈ V2 whose σ2 (to be denoted by σ
(γ)
2 ), the linear

space generated by
dF

ds
,
d2F

ds2
, is contained (at each point of γ) in the tangent space σ1

(at corresponding points) to V2. To this end, it is both necessary and sufficient that∑
ik Fik

dui

ds

duk

ds
= 0, where Fik = DkF

(1)
i is the covariant derivative of F

(1)
i . Indeed, by
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computing the derivatives
dF

ds
,
d2F

ds2
, one easily obtains:

dF

ds
=
∑2

i=1 F
(1)
i

dui

ds
,

d2F

ds2
=
∑2

i,j=1 F
(2)
ij

dui

ds

duj

ds
+
∑2

k=1 F
(1)
k

d2uk

ds2
.

Now, if we introduce the (ordinary) covariant derivative of Fi, Fik = F
(2)
ik −

∑n
j=1 ΓjikF

(1)
j ,

we get

d2F

ds2
=

2∑
i,j=1

Fij
dui

ds

duj

ds
+

2∑
k=1

F
(1)
k

Ç
d2uk

ds2
+ Γkil

dui

ds

dul

ds

å
;

one can conclude that asymptotic lines are indeed characterized by the condition

2∑
i,j=1

Fij
dui

ds

duj

ds
= 0,

which is a consequence of the fact that σ
(γ)
2 ⊂ σ1.

Vitali pursued a similar path in order to derive an analytical description of quasi-
asymptotic lines in the special case of a surface V2 such that dim(σ2) = 5,dim(σ3) = 6. A
curve on V2 is said to be quasi-asymptotic if its third order osculating plane σ3 is contained
in the corresponding tangent plane σ1 to V2. A reasoning similar to the one adopted in
the case of asymptotic lines, led Vitali to a characterization of these lines as those curves
s 7→ γ(s) = F (u1(s), u2(s), t) for which the following equation hold true:

2∑
ijk=1

Fijk
dui

ds

duj

ds

duk

ds
= 0, (35)

where Fijk, i, j, k = 1, . . . , n, denote the system defined by (28).

7 Further developments and concluding remarks

Despite the variety of geometrical applications investigated by Vitali and his disciples, the
power of the new calculus had still to be proved and tested in light of application. In this
respect, noteworthy advancements were achieved in [Bortolotti 1931].

In this extensive piece of work, Bortolotti succeeded in making important improve-
ments, especially by investigating geometrical aspects of Vitali’s theory. More precisely,
he provided an extension of Vitali’s techniques to the case, not addressed by Vitali, in
which the osculating spaces σq of an n-dimensional manifold do not exhibit the maximal
dimension, i.e. dim(σq) ≤

∑q
m=1

(n+m−1
m

)
.

Interestingly, Bortolotti cherished the hope of providing a proof of the fecundity of
Vitali’s calculus by testing its effectiveness in tackling problems in the realm of the so
called “geometrie riemanniane di specie superiore”, a sort of generalization of classical
Riemannian geometry that consisted in studying the group of isometries Φm : Vn →
Ṽn between two n−dimensional Riemannian manifolds (immersed in RN ) that preserve
the curvatures, until a given order, say (m − 1)−th, of every curve drawn upon Vn.
Isometries of this kind were said to be isometries of m−th type. This new branch of
research was initiated in [Bompiani 1914] in a successful attempt at providing a geometrical
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interpretation of the conditions assuring that a given hypersurface Vn−1 (with n ≥ 4)
immersed in the n−dimensional Euclidean space Rn admits non-trivial deformations.26

Bortolotti found out that Vitali’s calculus could be profitably applied to the study
of the analytical conditions that characterize the kind of isometries mentioned before.
Indeed, if aα;β denote the coefficient of the generalized fundamental tensor associated to
(u1, . . . , un) 7→ F (u) ∈ Vn ⊂ RN , α and β are indices such that ρα, ρβ ≤ m and ãγ;δ denote
the corresponding coefficients of the fundamental tensor of (ũ1, . . . , ũn) 7→ F̃ (ũ) ∈ Ṽn ⊂
RN , then the necessary and sufficient conditions for Φm(u1, . . . , un) = (ũ1(u), . . . , ũn(u))
to be an isometry of the requested type can be written as follows:

aα;β(u) =
∑

γ,δ∈Im

∂ũγ

∂uα
∂ũδ

∂uβ
ãγ;δ(ũ(u)).

It is clear that for m = 1 isometries of type m are ordinary isometries of the kind
investigated by Riemann, Christoffel and Ricci.

In spite of Bortolotti’s efforts, the range of applications of Vitali’s calculus remained
somehow limited. The new techniques introduced by Vitali and later refined by Bortolotti
were regarded at best as an interesting tool that could nonetheless also be dispensed of. In
this respect, the attitude of Bompiani is particularly significant for evaluating the impact
of Vitali’s research among his contemporaries. As the following quotation suggests, he
probably considered Vitali’s calculus as an unnecessary, though elegant, instrument for
carrying out his plan to study isometries of type m > 1.

Thanks to Bortolotti, it has been shown that the proper object of Vitali’s abso-
lute calculus is precisely the geometry of deformations of type ν of a Vm in the
normal case (this case has been extended by Bortolotti to other cases). At the
basis of the absolute calculus there is a fundamental tensor whose coefficients
are exactly the symbols introduced by Levi and widely used by me [. . . ]. [. . . ]
the transformation law of these symbols with respect to a transformation of
parameters varies according to the derivatives that appear there: these laws
can be formally written in a unique way by means of appropriate symbolic de-
rivatives [. . . ] but still these symbolic derivatives depend on actual derivatives
of the ancient parameters with respect to the new ones, which are of different
orders for different symbols. [. . . ] Now it is precisely this drawback that I
overcome with the introduction of the fundamental invariant forms (1919). To
put it in a more geometrical form, the difference between the two standpoints
can be expressed as follows: I shew (since 1919) that while a manifold Vm un-
dergoes a deformation of type ν the manifold W [locus] of its osculating planes
is deformed by ordinary applicability: Vitali’s calculus deals with ordinary ap-
plicability theory, i.e. Riemannian (ordinary) geometry of W . The covariant
derivation of Vitali coincides with that of Ricci for W .27

26For a first explicit definition of isometries of m-th tipe, m > 1, see [Bompiani 1916].
27E’ merito del Bortolotti di aver posto bene in luce che l’oggetto proprio del calcolo assoluto del Vitali è

precisamente la geometria delle deformazioni di specie ν di una Vm qualora questa presenti il caso normale
(e quel caso è stato esteso dal Bortolotti agli altri casi). A base di quel calcolo assoluto sta un “tensore
fondamentale” i cui elementi sono esattamente i simboli introdotti dal Levi e largamente usati da me [. . . ].

[. . . ] la legge di trasformazione di questi simboli per una trasformazione di parametri è differente a
seconda delle derivate che vi compariscono: queste varie leggi si possono formalmente scrivere in modo
unico con l’introduzione di opportune derivate simboliche [. . . ] ma rimane il fatto che queste derivate
simboliche dipendono da derivate effettive degli antichi parametri rispetto ai nuovi di ordini differenti per
simboli differenti. [. . . ]
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Bompiani did not fail to appreciate the importance of Vitali and Bortolotti’s achieve-
ments. Nonetheless, he thought that the complications imposed by the cumbersome algo-
rithmic apparatus of the theory could be bypassed by considerations of a more intuitive
character, consisting in replacing the Riemannian manifold Vm with a higher dimensional
object to which Ricci’s ordinary differential calculus could be applied.

In some sense, it may be said, Bompiani’s remarks reflected a general methodological
conviction asserting preference for geometrical intuition over abstract algorithmic proce-
dures: a point of view, tenaciously vindicated, for example, by Bianchi in the judgements
he had expressed towards Ricci’s calculus some decades before, that had been prevalent
within the Italian mathematical community.28

Similar convictions had guided the work of the commission (consisting of Castelnuovo,
Pascal, Severi and Fubini) charged with the assignment of the Royal Prize for Mathematics
(1931). While praising the whole of Vitali’s mathematical production, the commission had
to acknowledge that Vitali’s most recent investigations aimed at providing a generalization
of Ricci’s calculus were not sufficient to win him the attribution of the prize. Indeed, in
the report written by Fubini, we read:

[The commission] had to recognize that the introduction by Vitali of absolute
systems and their derivatives, while undoubtedly constituting a valuable work,
does not justify its great formal complication in view of the results that have
been obtained.29

This judgement can be seen as a further indication of the scarce impact produced by
Vitali’s calculus within already existing geometrical theories. After all, in contrast to the
reception process of Ricci’s calculus, Vitali could not count on external supports such as
the one carried about by the discovery of General Relativity. This circumstance, together
with Vitali untimely death in February 1932, which prevented any further advancements
of the theory, inevitably relegated the calculus to a condition of marginality.

Still, the historical significance and the mathematical value of Vitali’s contributions
to geometry should not be questioned. Indeed, not only do they represent an important
episode in the development of metric and projective differential geometry over the period
1920-35, but they also allow us to gain a more complete picture of the scientific figure
of Vitali himself. Indeed, as our analysis has suggested, they are a testimony to Vitali’s
extraordinary algorithmic skills and outstanding mathematical creativity.
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