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Abstract We show how the use of standard perturbative
RG in dimensional regularization allows for a renormal-
ization group-based computation of both the spectrum and
a family of coefficients of the operator product expansion
(OPE) for a given universality class. The task is greatly sim-
plified by a straightforward generalization of perturbation
theory to a functional perturbative RG approach. We illus-
trate our procedure in the ε-expansion by obtaining the next-
to-leading corrections for the spectrum and the leading cor-
rections for the OPE coefficients of Ising and Lee-Yang
universality classes and then give several results for the whole
family of renormalizable multi-critical models φ2n . When-
ever comparison is possible our RG results explicitly match
the ones recently derived in CFT frameworks.

1 Introduction

The standard perturbative renormalization group (RG) and
the ε-expansion have been, since the pioneering work of Wil-
son and Kogut [1], the main analytical tools for the analysis
of critical phenomena and, more generally, for the study of
universality classes with methods of quantum field theory
(QFT). Under the pragmatic assumption that scale invari-
ance implies conformal invariance at criticality, which is
confirmed by almost all interesting examples, one could also
argue that conformal field theory (CFT) methods serve as an
additional theoretical tool to describe critical models.

The RG flow of deformations of a scale invariant crit-
ical theory in a given operator basis is generally encoded
in a set of beta functions of the corresponding couplings.
As demonstrated by Cardy [2], the beta functions can be
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extracted adopting a microscopic short distance cutoff as a
regulator and in particular, expanding in the scaling oper-
ators, the linear part of the beta functions is controlled by
the scaling dimensions of the associated operators, while the
quadratic part is fixed by the OPE coefficients of the operators
involved in the expansion. Whenever the underlying critical
model is a CFT, this approach is the foundation of conformal
perturbation theory and its development strengthens further
the conceptual relation between RG and conformal methods.

A CFT can be fully characterized by providing the so-
called CFT data, which includes the scaling dimensions �i

of a set of operators known as primaries, and the structure
constants Ci jk of their three point functions [3–5]. From the
point of view of CFT, the scaling dimensions determine some
of the most important properties of the scaling operators at
criticality, and in fact can be related to the critical exponents
θi of an underlying second-order phase transition, while the
structure constants provide further non-trivial information
on the form of the correlators of the theory. The CFT data
can be used, in principle, to reconstruct the full model at,
or close to, criticality. In dimension greater than two (see,
for example, [3–5]), however, since the symmetry group is
finite dimensional, the use of analytical CFT methods is often
not simple and in fact most of the recent success of CFT
applications comes from the numerical approach known as
Conformal Bootstrap [6,7].

Up to now, RG methods have been almost always devoted
to the computation of the RG spectrum within a perturbative
analysis in the ε-expansion below the upper critical dimen-
sion of a given universality class. The determination of the
RG spectrum practically overlaps with the computation of
the critical exponents and thus of the scaling dimensions �i

of the underlying CFT. It is thus natural to wonder to which
extent the RG can help the determination of the remaining
CFT data: the structure constants Ci jk , which have received
far less attention in the RG literature.
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The question which arises spontaneously is whether the
approach of Cardy [2] can be reversed and used to derive
some of the OPE coefficients once the RG flow of a model
is known. In such a framework, since the beta functions
are generally computed in a specific RG scheme, one could
expect that these RG-based OPE coefficients might show
some degree of scheme dependence.

The main purpose of this paper is to present an RG-
based approach, in a dimensionally regularized MS scheme,
to the computation of the OPE coefficients C̃k

i j related to
the quadratic part of the Taylor expansion of the RG flow
around a critical point. We shall also pay attention to the
transformation induced by general scheme changes among
mass independent schemes, and infer some structure con-
stants Ci jk when scale invariance implies conformal invari-
ance, strengthening in this way the link between RG and CFT.

We also show how the upgrade from standard perturbative
RG to functional perturbative RG allows for a more straight-
forward access to these quantities. After illustrating how to
do this for two representative cases, the Ising and (for the
first time) the Lee-Yang universality classes, respectively
realized as unitary and non-unitary theories, we also proceed
to the construction of the beta functions for all the unitary
(even) models relying heavily on the approach developed by
O’Dwyer and Osborn [8]. In general the use of the functional
approach simplifies the computation of beta functions, from
which, in the vicinity of a fixed point, one can try to extract
some of the (universal) CFT data �i and Ck

i j , from linear
and quadratic perturbations around the critical point, respec-
tively. This paper is concerned with fleshing out the main
features of the functional approach and applying them to the
rich variety of critical theories which can be described with
a single scalar field φ. The functional approach appears to
be very powerful because the beta functionals are of a strik-
ingly simple form, and yet at the same time they describe
the scaling behavior of classes of infinitely many composite
operators.

In an effort to better understand the possible RG-scheme
dependence of the OPE coefficients C̃k

i j we carefully review
their transformation properties.1 In our approach we can
compute only the subset of OPE coefficients which are
“massless” at the upper critical dimension (the others being
projected away by the dimensionally regularized scheme)
and therefore less sensitive to ε-corrections induced by a
change in the RG scheme. We show that our next-to-leading-
order (NLO) computation gives these OPE coefficients at
order O(ε) and reproduces the structure constants previ-
ously obtained in a CFT framework [10–12]. This fact, even
if plausible, is in general not obvious because of the pos-
sible scheme dependence, and we find it to be supported

1 In the context of conformal perturbation theory this fact has already
been discussed in [9].

by the functional approach, which indeed constrains to some
extent the possible choices of coupling redefinitions that oth-
erwise would be completely arbitrary. All other “massive”
C̃k

i j strongly depend on the computational scheme and van-
ish in dimensional regularization. We observe that some OPE
coefficients, including “massive” ones which would thus
require a separate investigation, can be or have already been
obtained for several universality classes in the ε-expansion
in a CFT framework, with either the CFT/Schwinger–Dyson
Bootstrap [10,13–17], the perturbative conformal block tech-
niques [11,12] or Mellin space methods [18,19]. Also large
spin expansion techniques could be useful [20,21].

The first step in the functional perturbative RG approach
is the computation of the beta functional βV of the effective
potentialV (φ), which generates the beta functions of the cou-
plings of all the local operators φk . This can often be used to
verify our results by checking them against the renormaliza-
tion of the relevant operators. Next comes the inclusion of the
beta functional βZ of a field-dependent wavefunction Z(φ),
which generates the flow of the couplings corresponding to
operators of the form φk(∂φ)2 and, through its boundary con-
ditions, allows also for the determination of the anomalous
dimension η. Higher-derivative operators can be added on top
of the aforementioned ones following a construction based
on the derivative expansion, which treats operator mixing in
a systematic way, a topic that will be discussed here later on.

The content of the paper is as follows: In Sect. 2 we show
in general how to use the RG to compute both the spectrum of
scaling dimensions and the coefficients of the OPE. We dis-
cuss in general the possible scheme dependence by studying
their behavior under arbitrary changes of parametrization of
the space of all couplings, and we illustrate our methods by
considering the RG flow of the Ising [22–25] universality
class as an example.2 In Sect. 3 we promote the standard per-
turbative RG to functional perturbative RG and illustrate the
procedure by applying it to the Ising and Lee-Yang [26–
33] universality classes. Using the beta functionals for the
effective potentials in these two examples, we give general
formulas for both the spectrum and the structure constants
of the underlying CFTs, and use them to highlight the main
novelties of the approach. In Sect. 4 we describe how to sys-
tematically improve the functional approach, to include arbi-
trary higher-derivative operators, and how to generally deal
with operator mixing. In Sect. 5 we present an application of
this framework to the study of the general multi-critical φ2n

universality class [8,34]. Finally, in Sect. 6 we draw some

2 We will pursue the convention of [10] and denote universality classes
with the typewriter font. This is meant to avoid any confusion
between the universality classes and the models realizing them at criti-
cality. For example, the Ising universality class and the Ising spin ±1
on a lattice are generally distinguished, with the latter behaving accord-
ing to the former only at the critical temperature and at zero magnetic
field.
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conclusions and discuss the most important prospects of this
approach.

In Appendix A we review the perturbative computa-
tions which are necessary to obtain the beta functionals
used in Sect. 5. In Appendix B we show how to use the
functional approach to prove some simple scaling relations
between critical exponents generally known as shadow rela-
tions. In Appendix C we spell out some intriguing relation
between the perturbative and non-perturbative functional RG
approaches [35–38].

2 Spectrum and OPE coefficients from RG analysis

The primary goal of the RG analysis is the study of universal-
ity classes and the determination of their quantitative prop-
erties, i.e. the CFT data (when the two are related). This data
is the union of the spectrum (the set of scaling dimensions
�i of composite operators) and the set of structure constants
(in a CFT these are in one-to-one correspondence with the
OPE coefficients Ck

i j of primary operators).
The aim of this section is to introduce a computational

scheme which shows how CFT data is (partially) encoded
in the beta functions describing the RG flow in proximity of
a fixed point. We start by describing the picture recalling a
picture inspired by Cardy [2], which was originally defined
in a short distance regularized scheme, and considering a
generic basis of operators in which possible mixing effects
are present. Then we present, in a dimensionally regular-
ized scheme, a simple discussion of the Ising universality
class to provide an example of an RG determination of OPE
coefficients in the ε-expansion, which will also motivate the
subsequent discussion of the transformation properties of the
C̃k

i j . This discussion will make it clear which subset of OPE
coefficients can actually appear in the beta functions, finally
explaining which part of the CFT data is directly accessible
by our RG methods.

2.1 General analysis

We begin our analysis by considering a general (renormal-
ized) action in d dimensions,

S =
∑

i

μd−�i gi
∫

dd x 	i (x), (2.1)

describing an arbitrary point in theory space. The choice of
a basis set of operators 	i allows the introduction of coor-
dinates, i.e. the corresponding (dimensionless) couplings gi .
The scaling dimensions �i of the (composite) operators, as
we will see in a moment, take precise values only in the vicin-
ity of a fixed point of the RG flow. All information regarding
the flow can be extracted from the set of (dimensionless) beta
functions

β i = μ
dgi

dμ
,

which are in principle fully computable once a given scheme
is precisely defined. A fixed point of the RG flow is the point
gi∗ in the space of couplings for which the theory is scale
invariant

β i (g∗) = 0. (2.2)

In the neighborhood of a fixed point it is convenient to
characterize the flow by Taylor expanding the beta func-
tions. If δgi parametrizes the deviation from the fixed point
(gi = gi∗ + δgi ), we have

βk(g∗ + δg) =
∑

i

Mk
i δg

i +
∑

i, j

Nk
i j δg

i δg j + O(δg3),

(2.3)

where at the linear level we defined the stability matrix

Mi
j ≡ ∂β i

∂g j

∣∣∣∣∗
(2.4)

and at the quadratic level we defined the tensor

Ni
jk ≡ 1

2

∂2β i

∂g j∂gk

∣∣∣∣∗
, (2.5)

which is symmetric in the last two (lower) indices.
Each scale invariant point of the RG flow is in one to

one correspondence with a universality class and, under mild
conditions that we assume, a related CFT. The spectrum of
the theory at criticality is given by the eigendeformations of
Mi

j with the corresponding eigenvalues being (the negative
of) the critical exponents θa . We will only be concerned with
cases in which either the matrix Mi

j is already diagonal, or
its left and right spectra coincide (meaning that the spectrum
is unique and unambiguous). It is convenient to introduce
the rotated basis λa = ∑

i Sa
i δgi which diagonalizes Mi

j

(through the linear transformation Sa
i ≡ ∂λa/∂δgi

∣∣∗)

∑

i, j

Sa
i M

i
j (S−1) j b = −θaδ

a
b. (2.6)

Critical exponents allow for a precise definition of the scaling
dimensions of the operators through the relation θi = d−�i .
Let us introduce the “canonical” dimensions Di of the cou-
plings, and parametrize the deviations of the critical expo-
nents from the canonical scaling through the anomalous
dimensions γ̃i as

θi = d − Di − γ̃i . (2.7)
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Here and in the following we adopt a tilde to distinguish RG
quantities from CFT ones. The notion of canonical dimen-
sion is in principle arbitrary, but in real-world applications
it is generally borrowed from the scaling of the Gaussian
critical theory.

This expression is, strictly speaking, valid only for primary
operators; for descendants there is a subtlety that we will dis-
cuss later. The matrix (S−1)i a also returns the basis of scaling
operators of the theory at criticality, Oa = ∑

i (S−1)i a 	i ,
so that we can rewrite the action as a fixed-point action (i.e.
CFT action) plus deformations

S = S∗ +
∑

a

μθaλa
∫

dd x Oa(x) + O(λ2). (2.8)

Deformations are relevant, marginal or irrelevant depending
on the value of the related critical exponent (respectively pos-
itive, zero or negative). In the diagonal basis also the tensor
Ni

jk have a direct physical meaning, since after the diago-
nalizing transformation it becomes a quantity related to the
(symmetrized) OPE coefficients3

C̃a
bc =

∑

i, j,k

Sa
i N

i
jk (S−1) j b (S−1)kc. (2.9)

It will become clear in the practical examples that will follow
this subsection that at d = dc the C̃a

bc are the OPE coeffi-
cients of the underlying Gaussian CFT and that all O(ε)

corrections agree with CFT results for all available compar-
isons, despite the general inhomogeneous transformations of
these coefficients under general scheme changes as discussed
in Sect. 2.3. For these reasons we make the educated guess
that the quantities in (2.9) are the MS OPE coefficients since
they have been computed using MS methods. The relation
among the standard perturbative MS OPE coefficients and
quadratic coefficients in the beta functions is an interesting
subject, which is nevertheless beyond the scope of this work
and is left for future investigations.

The beta functions can now be written as

βa = −(d − �a)λ
a +

∑

b,c

C̃a
bc λbλc + O(λ3). (2.10)

This formula is the familiar expression for beta functions in
CFT perturbation theory (see, for example, [2]) and provides
a link between RG and CFT. Generalizations of this result
beyond the leading order are considerably less simple than
what we presented here [9].

3 Note that the overall normalization of the OPE coefficients is not fixed:
a rescaling of the couplings λa → αaλ

a implies C̃a
bc → αbαc

αa
C̃a

bc.

In CFT one uses the OPE4

〈Oa(x)Ob(y) · · · 〉
=

∑

c

1

|x − y|�a+�b−�c
Cc

ab 〈Oc(x) · · · 〉 (2.11)

to renormalize a perturbative expansion of the form (2.8) in
which the CFT is described by the action S∗ and deformations
are parametrized by the couplings λa .5 In the RG framework,
conversely, the knowledge of the beta functions could permit
(in principle) the extraction of the conformal data directly
from (2.10). The rest of this paper is essentially devoted to a
detailed exploration of this link, first within a simple example
in the next subsection and then, after a short discussion of
the scheme dependences of the OPE coefficients, within a
functional generalization of standard perturbation theory ε-
expansion.

2.2 Example: Ising universality class

It is useful at this point to consider an explicit example to
introduce our approach, the Ising universality class in d =
4 − ε [22–25]. Perturbation theory forces us to restrict to
deformations around the Gaussian fixed point, the simplest
of which are power like non-derivative operators 	i = φi

parametrized by the dimensionless couplings gi , as will be
shown in the next section.

One can obtain the (two-loop) NLO beta functions for
relevant and marginal deformations6

β1 = −
(

3 − ε

2

)
g1 + 12 g2g3 − 108 g3

3

−288 g2g3g4 + 48 g1g
2
4

β2 = −2 g2 + 24 g4g2 + 18 g2
3 − 1080 g2

3g4 − 480 g2g
2
4

β3 = −
(

1 + ε

2

)
g3 + 72 g4g3 − 3312 g3g

2
4

β4 = −εg4 + 72 g2
4 − 3264 g3

4 (2.12)

and the anomalous dimension η = 96g2
4. Note that the coef-

ficients of the one-loop leading-order (LO) quadratic terms
in the couplings are directly related to the Gaussian OPE
coefficients, which by construction coincide with the mean
field OPE coefficients of the Ising universality class (see
also [39]).

The fixed point is characterized by g∗
4 = ε

72 + 17ε2

1944 +O(ε3)

and g∗
1 = g∗

2 = g∗
3 = 0. Around this fixed point one therefore

4 These OPE coefficients are related to those entering the beta functions
by a factor Sd/2 (see [2]).
5 The careful reader must have noticed that our determination of the
Ca

bc is symmetrized in the lower two indices, but it is more than enough
to reconstruct the fully symmetric structure constants Cabc.
6 Here and in other sections with explicit examples we lower the vector
indices of the beta functions and the couplings to avoid any confusion
with power exponents.
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expands in powers of deformations (with λi = gi for i =
1, 2, 3 and λ4 = g4 − g∗

4), and the beta functions become

β1 = −
(

3 − ε

2
− ε2

108

)
λ1 + 12

(
1 − ε

3

)
λ2λ3

+4

3
ε λ1λ4 + · · · ,

β2 = −
(

2 − ε

3
− 19ε2

162

)
λ2 + 24

(
1 − 5

9
ε

)
λ2λ4

+18

(
1 − 5

6
ε

)
λ2

3 + · · · ,

β3 = −
(

1 − ε

2
+ ε2

108

)
λ3 + 72

(
1 − 23

18
ε

)
λ3λ4 + · · · ,

β4 = −
(

−ε + 17ε2

27

)
λ4 + 72

(
1 − 17

9
ε

)
λ2

4 + · · · .

(2.13)

One should keep in mind that the NLO coefficients of
quadratic terms involving λ4 can be affected by diagonaliza-
tion. From the above relations one can immediately read off
the critical exponents θ1, θ2, θ3, θ4 as minus the coefficients
of the linear terms. Note that the scaling relation θ1 +θ3 = d
discussed in Appendix B is indeed satisfied. We will see that
these couplings will not be subject to any further mixing and
thus these are the complete ε-series to the exhibited order for
the critical exponents and the OPE coefficients. We have lim-
ited the ε-series for the OPE coefficients to linear order since
the O(ε2) terms are incomplete, receiving contributions from
next-to-next-to-leading-order (NNLO) beta functions.

From the eigenvalues we can extract the coupling (RG)
anomalous dimensions γ̃i through the relations

θi = d − i

(
d − 2

2

)
− γ̃i (2.14)

and η = 2γ̃1. The scaling dimensions of the composite oper-
ators are instead

�i = i

(
d − 2

2

)
+ γi (2.15)

and define the (CFT) anomalous dimensions γi . The differ-
ence between the γ̃i and γi appears only when the related
operators are descendant, in this case when i = 3 for which
γ3 = γ̃3 + η. We postpone the discussion of this fact to
Appendix B. The explicit expressions for the first anomalous
dimensions are well known:

γ̃1 = ε2

108
γ̃2 = ε

3
+ 19ε2

162
γ̃3 = ε − ε2

108

γ̃4 = 2ε − 17ε2

27
.

From (2.13) it is equivalently easy to read off the OPE coef-
ficients (which on the non-diagonal entries are half the value
of the coefficients in the beta functions)

C̃1
23 = 6 − 2ε C̃1

14 = 2

3
ε C̃2

33 = 18 − 15ε (2.16)

We note that the OPE coefficient C̃1
14 is in perfect agree-

ment with that found in [10] using CFT methods, while we
did not find any result in the literature for the other two coef-
ficients to compare to. An explanation of why this agreement
is expected will be given in Sect. 3.1. It is also important to
stress that we ensured the agreement by choosing the same
normalization of [10], that is, by fixing the coefficients of the
two point functions.

2.3 Transformation properties

In general different regularization and renormalization pro-
cedures may result into non-trivial relations among the renor-
malized couplings. These relations go under the name of
scheme transformations, and they are exemplified through
maps among the couplings of the two schemes that can be
highly non-linear [40]. Whenever the scheme transforma-
tions are computed between two mass independent schemes
(such as, for example, MS and lattice’s7) these relations might
have a simpler form, but we will find that it is very useful to
consider them in their most general form. Let

ḡi = ḡi (g) (2.17)

be the general invertible, possibly non-linear, transformation
between the set of couplings gi and ḡi . Under such a change
of “coordinates” the beta functions transform as vectors8

β̄ i (ḡ) = ∂ ḡi

∂g j
β j (g). (2.18)

Now we turn our attention to the fixed-point quantities, there-
fore in the following it is understood that the transformations
will be evaluated at a fixed point. The stability matrix trans-
forms as

M̄i
j = ∂ ḡi

∂gl
Ml

k
∂gk

∂ ḡ j
. (2.19)

Since the derivatives are evaluated at the fixed point, the sta-
bility matrices of the two set of couplings are related by a
similarity transformation. Therefore it is trivial to prove that

7 But in practice all lattice implementations can be considered massive
schemes.
8 The summation convention is understood in this subsection.

123



30 Page 6 of 22 Eur. Phys. J. C (2018) 78 :30

the spectrum is invariant, meaning that it does not depend on
the parametrization

θ̄a = θa, (2.20)

as one would naively expect for a physical quantity.
Things become less trivial when considering the matrix

encoding the second order of the Taylor expansion at the
fixed point. A direct computation shows

N̄ i
jk = ∂ ḡi

∂gc

{
Nc

ab + 1

2
Mc

d
∂2gd

∂ ḡl∂ ḡm
∂ ḡl

∂ga
∂ ḡm

∂gb

−1

2
Md

a
∂2gc

∂ ḡl∂ ḡm
∂ ḡl

∂gb
∂ ḡm

∂gd

−1

2
Md

b
∂2gc

∂ ḡl∂ ḡm
∂ ḡl

∂ga
∂ ḡm

∂gd

}
∂ga

∂ ḡk
∂gb

∂ ḡ j
. (2.21)

To simplify this expression it is convenient to assume that
the couplings gk have already been chosen to diagonalize the
stability matrix with a linear transformation, so that on the
right-hand side there will be the structure constants

N̄ i
jk = ∂ ḡi

∂gc

{
C̃c

ab + 1

2
(θc − θa − θb)

∂2gc

∂ ḡl∂ ḡm
∂ ḡl

∂ga
∂ ḡm

∂gb

}

×∂ga

∂ ḡk
∂gb

∂ ḡ j
. (2.22)

Now it is necessary to move to the basis of couplings ḡi in
which M̄i

j is diagonal, so that the structure constants appear
on both sides. We finally find

¯̃Cc
ab = C̃c

ab + 1

2
(θc − θa − θb)

∂2gc

∂ ḡl∂ ḡm
∂ ḡl

∂ga
∂ ḡm

∂gb
,

(2.23)

which implies that the set of matrices C̃c
ab has a transforma-

tion law that is not homogeneous and therefore is reminiscent
of the one of a connection in the space of couplings [41,42].

In the context of conformal perturbation theory one can
find a similar result in [9], in which the analysis includes cubic
terms but is limited to a diagonal stability matrix because con-
formal perturbation theory adopts by construction the basis
of scaling operators.

At this point few comments on the transformations of C̃c
ab

are in order:

• It is evident from (2.23) that C̃c
ab can be independent of

parametrization for a very special sum condition among
the scaling dimensions of the couplings or when the Hes-
sian at the fixed point is zero. The latter case could be
realized for a specific family of scheme transformations,
while the former condition can be realized exactly only
in d = dc, which corresponds to ε = 0, that is,

(θc − θa − θb)ε=0 = 0. (2.24)

• We will observe in all practical examples that the coeffi-
cients C̃c

ab for which the condition in Eq. (2.24) holds
are the ones that are accessible via dimensional regu-
larization. We dub them “massless”, as opposed to the
“massive” ones that do not satisfy the above condition
and are zero in dimensional regularization. Moreover,
these “massless” OPE coefficients at the critical dimen-
sion are insensitive to changes of RG scheme and can be
computed unambiguously with RG methods.

• In perturbation theory ε-expansion one can obtain ε-
series only for the “massless” OPE coefficients. In partic-
ular in d = dc −ε one generally has θc −θa −θb = O(ε)

and thus only the O(ε) terms can be scheme indepen-
dent if the Hessian is at least O(ε). This allows for cru-
cial comparisons and cross-checks with other theoretical
approaches like CFT (as for the C̃1

14 of our previous
example). In fact we will see that all the MS leading cor-
rections for the multi-critical models we can compare
with CFT are in perfect agreement. While this agree-
ment can be explained at the level of beta functions, by
explicitly constructing the most general map between to
orthogonal massless scheme that also preserves the ε-
expansion, the explanation is more transparent when dis-
cussed in functional terms in the next section.

Finally, one should remark that once the beta functions
are extracted in some scheme, one might also envisage geo-
metrical methods to extract quantities which depend on the
universal scheme independent OPE coefficients to overcome
the above limitations. A step in this direction has been made
for functional-type flows in Ref. [43] in the context of the
Polchinski RG equation. In this work, the authors define nor-
mal coordinates in the space of couplings which have both
geometrical meaning and definite scaling transformations. In
relation with the transformation (2.23), one can follow [43]
and argue that all “massive” coefficients can be eliminated by
an opportune transformation of the couplings and hence there
exists a scheme, or rather a family of schemes, whose only
coefficients are the scheme independent ones. This family
can be appropriately named “family of minimal subtraction
schemes” having the MS scheme as its most famous repre-
sentative. We hope to address further these topics in future
investigations.

3 Functional perturbative RG: a first look

The previous example on the Ising universality class,
which was dealing with the study of the Ok = φk defor-
mations of the Gaussian fixed point, can be analyzed more
conveniently if we work directly with the generating function
of such operators which is the local potential V (φ). We thus
consider the action
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S =
∫

dd x

{
1

2
(∂φ)2 + V (φ)

}
, (3.1)

and we study the perturbative RG flow it generates. In partic-
ular, it turns out to be a smart move to perform background
field computations of loop diagrams in which the field φ is set
to a constant and leave the form of the potential completely
general so that we can extract the beta functional βV for the
whole potential just by looking at the vacuum renormaliza-
tion. This way of thinking has at least a two fold advantage:
it simplifies computations (since we just need to compute the
vacuum renormalization) and gives direct access to the full
system of beta functions for the couplings of the operators
Ok = φk (since βV serves as a generating function for the
beta functions). From the knowledge of the beta functions
we can then follow the steps outlined in the previous section
and compute both the spectrum and the OPE coefficients in
the MS scheme.

The action (3.1) not only renormalizes the potential, but
also induces the flow βZ of a field-dependent wavefunction
functional that we will denote Z(φ). The flow generates
the beta functions of the couplings of the operators of the
form φk(∂φ)2 and, moreover, fixes the anomalous dimen-
sion η. More generally, all higher-derivative operators have
an approximate flow induced solely by the potential, i.e.
have a beta functional whose r.h.s. contains only V (φ) and
its derivatives. We will call local potential approximation
(LPA) the truncation for which all the RG flow is gener-
ated by the potential alone. Clearly, the full RG flow will
involve the presence of other functionals, such as Z(φ) and
higher, on the r.h.s. of the beta functionals. According to that
the computational scheme can be systematically improved
in a derivative expansion approach, as will be discussed in
Sect. 4.

In this section we will study, as a tutorial example, the
Ising and Lee-Yang universality classes within the LPA,
while a first example of functional flow beyond this approx-
imation will be presented in Sect. 5, in which we show that
terms containing Z(φ) on the r.h.s. of the beta functional βZ

become important to describe mixing effects when marginal
or irrelevant operators are investigated in the Ising and
multi-critical universality classes.

For any given theory and within a functional perturbative
approach in a dimensionally regularized scheme, e.g. MS,
such beta functionals can be written as polynomials for which
each monomial is a product of derivatives of various orders
of the generating functions V , Z , . . ., and in particular each
non-trivial loop order in perturbation theory gives rise to a
subset of monomials in the beta functionals [8]. Let us just
stress that for a given theory the monomials which can appear
in the beta functional are very constrained and only their
coefficients demand a real loop computation, which in turn
can be done in very specific and simple ways.

Another point to highlight is that, depending on the spe-
cific theory, contributions denoted LO (or NLO or higher)
appear at different number of loops, generally bigger than one
(Ising and Lee-Yang are special in this respect since the
LO terms are obtained at one loop and NLO at two loops for
both theories). We shall see this explicitly in Sect. 5 in which
we study the whole family of multi-critical φ2n universality
classes: indeed the number of loops required to obtain the LO
contribution depends on the critical dimension dc of the the-
ory (which determines the superficial degree of divergence
of a diagrams generated by the perturbative expansion). One
sees that, since each member of this family of models has
dc = 2n

n−1 (for n > 1), the leading-order contribution appears
at (n − 1) loops and the NLO at 2(n − 1) loops. Let us also
mention the fact that the LO and NLO contributions are uni-
versal, i.e. independent of the specific RG scheme (as can
easily be seen by projecting the beta functionals on the beta
function of the respective critical coupling which we already
know has LO and NLO universal coefficients [40]).

It is also convenient to make the standard shift to dimen-
sionless variables (in units of the scale μ) directly at the
functional level. Once the beta functional of the dimension-
ful potential is found, the scaling properties are investigated
by defining the dimensionless potential

v(ϕ) = μ−dV (ϕμd/2−1Z−1/2
0 ) (3.2)

where Z0 is the field strength renormalization, which
enters in the definition of the dimensionless field ϕ =
μ1−d/2Z1/2

0 φ. Its beta functional is then

βv = −dv(ϕ) + 1

2
(d − 2 + η)ϕ v(1)(ϕ) + μ−dβV , (3.3)

for which we introduced an anomalous dimension η =
−μ∂μ log Z0, which will be discussed in detail soon.

The potential is a local function of the dimensionless field
ϕ and can be parametrized in terms of the dimensionless
couplings gk as

v(ϕ) =
∑

k≥0

gkϕ
k . (3.4)

The beta functional is then used to obtain the couplings’ beta
functions through the straightforward definition

βv =
∑

k≥0

βkϕ
k . (3.5)

One then inserts (3.4) and (3.5) on the r.h.s. and l.h.s. of (3.3),
respectively, and equates powers of the field on both sides to
obtain the general beta function system.

The dimensionless wavefunction is similarly defined as

z(ϕ) = Z−1
0 Z(ϕμd/2−1Z−1/2

0 )
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and its dimensionless flow is

βz = ηz(ϕ) + 1

2
(d − 2 + η)ϕ z(1)(ϕ) + Z−1

0 βZ . (3.6)

This new beta functional has two main purposes. On the one
hand by enforcing the condition z(0) = 1 we can use it to
determine η as

η = −μ∂μ log Z0 = −Z−1
0 βZ (0). (3.7)

On the other hand, later in Sect. 5 we will use (3.6) to gen-
erate the beta functions of the dimensionless couplings of
the operators of the form ϕk(∂ϕ)2. A detailed discussion of
the invariance of the systems of beta functionals in the LPA
under reparametrizations of z(0), and of its importance in the
determination of η can be found in [44].

3.1 Ising universality class in LPA

The Ising universality class has upper critical dimension
dc = 4, and the LPA beta functionals for the dimensionful
potential at NLO, and wavefunction at LO, are

βV = 1

2

(V (2))2

(4π)2 − 1

2

V (2)(V (3))2

(4π)4 , βZ = −1

6

(V (4))2

(4π)4 .

(3.8)

The functional form of these beta functionals can be argued
on dimensional grounds. Only the explicit determination of
the three universal coefficients demand a loop computation,
but for a well-studied universality class such as Ising these
coefficients can be obtained by matching with known beta
functions of the φ4 critical coupling.

In turn, this simple observation shows that these coeffi-
cients are scheme independent by the standard text book argu-
ment that LO and NLO beta functions and anomalous dimen-
sion coefficients are so. Thus all the results of the present sec-
tion, and in particular the form of the beta functions around
the fixed point are a functions of these universal numbers. In
particular this implies that the order ε and ε2 contributions to
the spectrum (which is universal) are scheme independent,
and that the order ε corrections to the OPE coefficients are
also scheme independent even if the C̃i

jk themselves are not
universal. As promised this is a simple way to understand
why the Hessian for the “dimless” OPEs is of order at least
O(ε) [45].

After a simple rescaling v → (4π)2 v, the beta functionals
for the dimensionless potential are the following:

βv = −4v + ϕv(1) + ε

(
v − 1

2
ϕv(1)

)

+1

2
ηϕv(1) + 1

2
(v(2))2 − 1

2
v(2)(v(3))2

βz = ηz + ϕz(1) − ε

2
ϕz(1) + 1

2
ηϕz(1) − 1

6
(v(4))2. (3.9)

Expanding the potential as in Eq. (3.4) discussed before
allows for the generation of the coupling’s beta functions

βk = −
(

4 − k −
(

1 − k

2

)
ε

)
gk + 48k gk g

2
4

+1

2

k+2∑

i=2

i(i − 1)(i − k − 4)(i − k − 3) gi g4−i+k

+1

6

k+7∑

i=2

k+7−i∑

j=2

i(i − 1) j ( j − 1)(i + j − k − 8)

×(i + j − k − 7)(i2 + i j + j2 − (i + j)(k + 8)

+4(k + 5))gi g j g8−i− j+k . (3.10)

The four-coupling system (2.12) studied in the previous sec-
tion is straightforwardly obtained by truncating (3.10) to
k = 1, 2, 3, 4. Using (3.7) we can immediately obtain the
anomalous dimension

η = 1

6
(v(4)(0))2 = 96g2

4 . (3.11)

In dimensional regularization the fixed point is very simple

g∗
k = g δk,4, g = ε

72
+ 17ε2

1944
(3.12)

and highlights the prominent role of the critical coupling g4.
By expanding around the fixed point it is straightforward to
obtain the following general form for the spectrum (in terms
of the critical coupling):

θi = 4 − i −
(

1 − i

2

)
ε − 1

2
i(i − 1)g

+ 1

12
i(6i2 − 12i + 5)g2 − 2

3
g2δi,4. (3.13)

Using (2.14) we immediately deduce the anomalous dimen-
sions of the composite operators φi (in terms of ε)

γ̃i = 1

6
i(i − 1)ε − 1

324
i(18i2 − 70i + 49)ε2 + 2

27
ε2δi,4.

(3.14)

For i = 1, 2, 3, 4 this expression reproduces those of the
example in the previous section. The reader will notice the
appearance of a contribution in (3.13) and in (3.14) propor-
tional to the Kronecker delta δi,4 because the anomalous
dimension in (3.9) is a function of the critical coupling as
given in (3.11) [22–25]. The expressions for the spectrum
are complete to order O(ε2) for all relevant couplings and,
as we will show in Sect. 5, also for the marginal ones. For
irrelevant couplings, due to mixing effects, only the O(ε)

terms are complete and correctly agree with the CFT results
[10].
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From the analysis of the quadratic part of the beta function
we find the following form for the universal OPE coefficients
in the MS scheme:

C̃k
i j = 1

2
i(i − 1) j ( j − 1)

(
1 − 1

6
(i j − 4)ε

− 17

162
(i j − 4)ε2

)
δ4,i+ j−k

+8

3
ε (1 + 17ε) δ4,iδ4, jδ4,k

+2

3
ε

(
1 + 17

27
ε

)
(iδi,kδ4, j + jδ j,kδ4,i ). (3.15)

This general expression gives us back the results of our pre-
vious example (2.16) and thus matches, when overlapping,
with CFT computations [10], but its general range of validity
will become clearer in Sect. 5 after we analyze the effects of
mixing. We note that a NNLO computation, beside bring-
ing about some mixing effects, will provide further contribu-
tions at order O(ε2) so that one should consider at this level
of accuracy the expressions (3.15) just up to order O(ε) as
in Eq. (2.16). In fact, recalling our discussion in Sect. 2.3
on the possible differences among coefficients computed in
other schemes, agreement at order O(ε2) with an NNLO
computation can be observed only if the MS scheme and the
“CFT” scheme are related by a Hessian of order O(ε2).

3.2 Lee-Yang universality class in LPA

The Lee-Yang universality class has upper critical dimen-
sion dc = 6 and the LPA beta functionals at NLO for the
dimensionful potential and wavefunction are

βV = −1

6

(V (2))3

(4π)3 − 23

144

(V (2))3(V (3))2

(4π)6

βZ = −1

6

(V (3))2

(4π)3 − 13

216

(V (3))4

(4π)6 . (3.16)

The explicit derivation of these beta functionals is quite
straightforward. After the convenient rescaling of the poten-
tial v → 2(4π)3/2 v the beta functionals for dimensionless
quantities are

βv = −6v + 2ϕv(1) + ε

(
v − 1

2
ϕv(1)

)

+1

2
ηϕv(1) − 2

3
(v(2))3 − 23

9
(v(2))3(v(3))2

βz = ηz + 2ϕz(1) − ε

2
ϕz(1) + 1

2
ηϕz(1)

−2

3
(v(3))2 − 26

27
(v(3))4. (3.17)

Expanding the potential as Eq. (3.4) leads to the general
expression for the beta functions

βk = −
(

6 − 2k −
(

1 − k

2

)
ε − 3kg2

3

(
1 + 13g2

3

))
gk

− 2

3

k+4∑

i=2

k+4−i∑

j=2

i(i − 1) j ( j − 1)

× (i + j − k − 6)(i + j − k − 5)gi g j g6−i− j+k

+ 23

90

k+10∑

i=2

k+10−i∑

j=2

k+10−i− j∑

t=2

×
k+10−i− j−t∑

u=2

i(i − 1) j ( j − 1)t (t − 1)u(u − 1)

× (I − k − 12)(I − k − 11)(56 + 8k − (k + 12)I

+ i j + i t + iu + j t + ju + tu + J )

× gi g j gt gu gk−I+12 (3.18)

where I = i + j + t + u and J = i2 + j2 + t2 + u2. From
(3.17) we also immediately obtain the anomalous dimension

η = 24g2
3 + 1248g4

3 . (3.19)

As expected, because of the non-unitarity of the model, the
fixed point is complex

g∗
k = g δk,3

g = 1

6
√

6
(−ε)1/2 − 125

1944
√

6
(−ε)3/2 + O

(
(−ε)5/2

)
,

(3.20)

showing that the ε-expansion for theLee-Yang universality
class is in fact an expansion in powers of

√−ε; equivalently
one can write g2 = − 1

54ε − 125
8748ε2 + O(ε3).

After expanding the beta functions around the fixed point
we determine the spectrum in terms of the critical coupling

θi = 6 − 2i −
(

1 − i

2

)
ε −

(
1 − 2g2

9

)
7g2

12
i

+
(

1 − 23

24
g2

)
g2

2
i2 + 23

72
g4i3 −

(
g2

2
+ 13

36
g4

)
δi,3,

(3.21)

from which using (2.14) we can extract the anomalous dimen-
sions, as a function of ε and taking in account (3.20)

γ̃i = 1

18
i(6i − 7)ε − 1

2916
i(414i2 − 1371i + 1043)ε2

−
(

ε

3
+ 47

486
ε2

)
δi,3. (3.22)

For reference we write the first anomalous dimensions
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γ̃1 = − ε

18
− 43

1458
ε2, γ̃2 = 5

9
ε + 43

1458
ε2,

γ̃3 = 3

2
ε − 125

162
ε2.

It is easy to check that the scaling relation θ1 + θ2 = d,
discussed in Appendix B, is indeed satisfied.

For the universal MS OPE coefficients we obtain

C̃k
i j = −12i(i − 1) j ( j − 1)g{1 + 46(i + j

+ i j − 5)g2}δi+ j,k+3

+ 36g(1 + 312g2)δi,3δ j,3δk,3

+ 12g(1 + 104g2)(iδ j,3δi,k + jδi,3δ j,k), (3.23)

which at this order we display as a function of the coupling
g of (3.20) for notational simplicity. Using the explicit for
of the fixed point (3.20) as a function of ε, and considering
only the leading order in

√−ε we find

C̃k
i j =

√
2

3

√−ε i(i − 1) j ( j − 1)δi+ j,k+3

+√−6ε δi,3δ j,3δk,3 +
√

2

3

√−ε
(
iδ j,3δi,k

+ jδi,3δ j,k
)
. (3.24)

The first two universal OPE coefficients are

C̃1
2 2 = −4

√
2

3

√−ε, C̃1
1 3 =

√
2

3

√−ε (3.25)

and agree with CFT computations [10]. The discussion of
the universality of the Ising OPE coefficients has an ana-
log here: In the case of the Lee-Yang universality class we
have (θc − θa − θb) = O(

√
ε), therefore the eventual Hes-

sian relating the MS and CFT schemes might contribute by
changing the universal OPE coefficients at O(ε) or higher.

4 Functional perturbative RG and the derivative
expansion

In the rest of the paper we would like to show how it is pos-
sible to generalize the results presented so far to arbitrary
order in the ε-expansion to include mixing effects and also
to extend the analysis to a wider set of universality classes.
In order to enter into this subject and also pave the way for
future computations including the most general operators, we
will first describe the general setup of the derivative expan-
sion where one can systematically include higher-derivative
operators. In what follows, our aim would be to outline a sys-
tematic approach to such a derivative expansion in the func-
tional perturbative RG. The derivative expansion, although
being formally a truncation of the most general action (3.1),
allows, when combined with the perturbative ε-expansion, a
systematic and complete determination of the ε-series of the
spectrum and the MS OPE coefficients.

At each order in the number of derivatives there is an infi-
nite number of operators with higher and higher powers of
the field. Just like the potential function V (φ), which encom-
passes an infinite set of couplings, the couplings of these
derivative operators can be collected into functions so that
at each derivative order there is a finite basis of “functional”
operators which spans all the operators with the given number
of derivatives. To make it more explicit, one can denote the
basis of functional operators with k derivatives by Ŵ (k)

a (φ),
where a runs from 1 to Nk , the number of elements in such a
basis. With this notation the action (2.1) can be re-expressed
as

S =
∑

k≥0

Nk∑

a=1

∫
dd x Ŵ (k)

a (φ), (4.1)

where the index k runs over the number of derivatives and a
spans the possible degeneracy.

The first few instances of such operators can be listed as
follows:

Ŵ (0)
1 (φ) = W (0)

1 (φ), Ŵ (2)
1 (φ) = W (2)

1 (φ) 1
2 (∂φ)2

Ŵ (4)
1 (φ) = W (4)

1 (φ)(�φ)2, Ŵ (4)
2 (φ) = W (4)

2 (φ)�φ(∂φ)2,

Ŵ (4)
3 (φ) = W (4)

3 (φ)(∂φ)4.

Thus N0 = 1, N2 = 1 and N4 = 3. Obviously, V = W (0)
1 ,

Z = W (2)
1 and we will adopt the notation Wa ≡ W (4)

a .
One can continue in this way and choose a basis for higher-
derivative operators. At the next order, i.e. six derivatives,
there are N6 = 8 independent functional operators which
form a basis. This will increase to N8 = 23 for the case of
eight derivatives, and so on. For each of the operators in (4.1),
after shifting to the relative dimensionless functionals w

(k)
a ,

one can define a (dimensionless) beta functional β
(k)
a which

captures the flow of the infinite number of couplings in w
(k)
a .

At this stage, let us be more specific and concentrate on
theories of the form (4.1) close to the upper critical dimen-
sions of multi-critical φ2n models [10]

d = 2n

n − 1
− ε. (4.2)

Then dimensional regularization has the virtue that the fixed-
point action solving β

(k)
a = 0 is extremely simple, since all

fixed-point functionals are zero apart from the potential V ,
which in turn is proportional to the critical coupling, and the
Z , which is constant and can be set to one. The fixed-point
action is then

S∗ =
∫

dd x
{

1
2 (∂φ)2 + g φ2n

}
. (4.3)

These choices define the multi-critical universality classes
which will be discussed in detail in the next section.
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The action (4.1) can then be seen as a deformation around
the fixed point (4.3) away from criticality. One can formally
define the stability matrix and the set of OPE coefficients in
a functional form by expanding the beta functionals around
the fixed point as9

β(k)
a (w∗ + δw) =

∑

i

δβ
(k)
a

δw
(i)
b

∣∣∣∣∣
∗
δw

(i)
b

+1

2

∑

i j

δ2β
(k)
a

δw
(i)
b δw

( j)
c

∣∣∣∣∣∣∗
δw

(i)
b δw

( j)
c + · · · (4.5)

In the above expression of the beta for the functions wk
a ,

which depend non-linearly also on the derivative of them, one
has formally functional derivatives and integral are under-
stood when repeated indices a, b, . . . are present. Although
one can study the RG flow and compute all universal quan-
tities directly at the functional level by exploring the conse-
quences of (4.5), in the next section we will reconnect with
the discussion in terms of couplings as outlined in Sect. 2, and
use the beta functionals β

(k)
a as a convenient way to generate

the coupling beta functions.
The couplings in (4.1) can be defined by expanding the

functions such as V (φ), Z(φ), Wa(φ) and those of the
higher-derivative operators, in powers of the field, starting
with φ0 = 1. Using dimensional analysis and recalling that
close to the upper critical dimension the spectrum of the
theory is almost Gaussian, we can infer that the couplings
in V (φ) corresponding to the 2n lowest dimensional oper-
ators 1, φ, . . . , φ2n−1 do not mix with any other coupling.
Staring from φ2n and all the way up to φ4n−3 they mix
with the O(∂2) couplings of (∂φ)2, . . . , φ2n−3(∂φ)2. From
φ4n−2, φ2n−2(∂φ)2 the O(∂4) couplings of Wa(φ) will also
be involved. This can be summarized in the following table:

V : 1 φ · · · φ2n−1 φ2n · · · φ4n−3 φ4n−2 φ4n−1 φ4n · · ·
Z : (∂φ)2 · · · φ2n−3(∂φ)2 φ2n−2(∂φ)2 φ2n−1(∂φ)2 φ2n(∂φ)2 · · ·

W1 : (�φ)2 φ(�φ)2 φ2(�φ)2 · · ·
W2 : �φ(∂φ)2 φ�φ(∂φ)2 · · ·
W3 : (∂φ)4 · · ·

(4.6)

9 More generally, for an arbitrary Lagrangian L, the RG flow can be
formally described by a beta functional β[L], and a fixed point L∗ of
the theory would be defined by the condition β[L∗] = 0. The fixed-
point Lagrangian L∗ is normally expected to describe a CFT, when-
ever scale invariance implies conformal invariance. Several non-trivial
informations on the critical theory can then be extracted by probing
arbitrary off-critical deformations from the fixed point parametrized by
L = L∗ + δL

β[L∗ + δL] = δβ

δL

∣∣∣∣
L∗

δL + 1

2

δ2β

δLδL

∣∣∣∣
L∗

δLδL + · · · (4.4)

where each row collects the operators included in the function
shown on the left-hand side and only couplings of operators
in the same column mix together. If we arrange the cou-
plings of (4.1) in increasing order of their canonical opera-
tor dimension, and furthermore, we sort them for increasing
order of derivatives of their corresponding operators, the sta-
bility matrix takes the block-diagonal form

⎛

⎜⎜⎜⎝

M (0)

M (2)

M (4)

. . .

⎞

⎟⎟⎟⎠ (4.7)

where in general M (2k) is itself a block-diagonal matrix.
Each diagonal block contained in M (2k) describes the mixing
between couplings of operators up to 2k derivatives, all of
which belong to the same column in (4.6). In particular M (0)

is a diagonal matrix with entries giving the scaling dimen-
sions of the first 2n couplings in the potential. The matrix
M (2) is block diagonal, with each block being a two by two
matrix which gives the mixing between a coupling in V (φ)

and a coupling in Z(φ). M (4) is also a block-diagonal matrix
of which, with our choice of basis for the four-derivative oper-
ators, the first block is a three by three matrix, the second is
four by four and the rest are five by five matrices.

Using dimensional analysis one can restrict the stability
matrix even further if one is satisfied with the order ε approx-
imation. As we will show explicitly in the following section,
at this order each diagonal block in the matrices M (2k) in (4.7)
is itself block lower-triangular, where each block describes
the mixing of operators with the same number of derivatives.
This ensures that the entries on the diagonal for the couplings
of the potential and the second-derivative operators will give

the scaling dimensions and are unaffected by the mixing at
this order.

5 General φ2n universality class

After the analysis of the Ising universality class in
Sects. 2.2 and 3.1 and the introductory discussion of the
previous sections, we are now in a position to extend these
results to general models with even interaction φ2n at the
critical point. In fact one can treat the whole set of universal-
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ity classes φ2n in a unified framework. A brief review of the
method which closely follows [8] is outlined in Appendix A.
Here we pick the main results that will be needed for our
analysis.

Throughout this work we will not go beyond second order
in the derivative expansion, and in fact mostly concentrate on
the local potential approximation. Let us therefore consider
a theory of the form

S =
∫

dd x
{

1
2 Z(φ)(∂φ)2 + V (φ)

}
, (5.1)

in a space-time dimension which is close, as in Eq. (4.2),
to the upper critical dimension at which the coupling of the
interaction φ2n becomes dimensionless.

The propagator of this theory satisfies the differential
equation −�Gx = δdx , where δdx is the d-dimensional Dirac
delta function. The solution is given by

Gx = 1

4π

�(δ)

πδ

1

|x |2δ
, (5.2)

which is more conveniently written in terms of the field
dimension δ = d

2 − 1 = 1
n−1 − ε

2 . The coefficient in the
propagator evaluated at criticality appears many times in the
calculations. For convenience we therefore call it c from now
on,

c ≡ 1

4π

�(δn)

πδn
δn = 1

n − 1
. (5.3)

Let us neglect for the moment the effect of derivative inter-
actions encoded in Z(φ) and concentrate on the V (φ) con-
tributions to the beta functions of V (φ) and Z(φ). Before
giving the explicit expressions for the beta functions let us
mention that in this O(∂0) truncation one can extract the
scaling dimensions and MS OPE coefficients for the relevant
components as they will be in any case unaffected by the
mixing with the derivative operators. Moreover, as we will
argue later, remaining within the same truncation it is possi-
ble to go beyond the relevant components if one is content
with the order ε estimates.

Neglecting derivative interactions, the beta functional of
the dimensionless potential, in the form of Eq. (3.3), at the
NLO (cubic order) in the dimensionless potential is

βv = − d v(ϕ) + d − 2 + η

2
ϕ v′(ϕ) + n − 1

n!
cn−1

4
v(n)(ϕ)2

− n − 1

48
c2n−2 �(δn)

∑

r+s+t=2n
r,s,t 
=n

K n
rst

r !s!t !

× v(r+s)(ϕ) v(s+t)(ϕ) v(t+r)(ϕ)

− (n − 1)2

16 n! c2n−2
∑

s+t=n

n − 1 + Ln
st

s!t !

×v(n)(ϕ) v(n+s)(ϕ) v(n+t)(ϕ), (5.4)

where the integers r, s, t are implicitly taken to be positive,
and the quantities Kn

rst and Ln
st are defined as follows:

Kn
rst =

�
(
n−r
n−1

)
�

(
n−s
n−1

)
�

(
n−t
n−1

)

�
(

r
n−1

)
�

(
s

n−1

)
�

(
t

n−1

) ,

Ln
st = ψ(δn) − ψ(sδn) − ψ(tδn) + ψ(1), (5.5)

where ψ(x) = �′(x)/�(x) is the digamma function. The
last term in the first line of (5.4) is the LO (n−1)-loop term,
while the NLO second and third lines appear at 2(n−1) loops.
The origin of such terms and the corresponding diagrams
will be briefly discussed in Appendix A. Notice also that,
differently from Sects. 2 and 3, we did not yet include any
further rescaling when moving from the dimensionful V (φ)

to the dimensionless v(ϕ) potential: since the rescaling does
not affect the spectrum, we postpone the discussion of the
“appropriate” rescaling to Sect. 5.3 in which some MS OPE
coefficients are computed.

Neglecting derivative interactions (in agreement with our
definition of LPA), the induced flow of the function z(ϕ) at
quadratic order is given by

βz = η z(ϕ)+d − 2 + η

2
ϕ z′(ϕ)− (n − 1)2

(2n)!
c2n−2

4
v(2n)(ϕ)2.

(5.6)

The last term in this equation comes from a diagram with
2(n − 1) loops, which gives a counter-term consisting of the
second contribution in Eq. (A.2), as explained in Appendix A.

From (5.4), noticing the fact that only the dimensionless
coupling can take a non-zero value at the fixed point, one can
set v(ϕ) = g ϕ2n together with the condition βv = 0 to find
the critical coupling g at quadratic order in ε. This is given
by

(2n)!2
4 n!3 cn−1g = ε − n

n−1
η

+ n!4
(2n)!

[
1

3
�(δn) n!2

∑

r+s+t=2n
r,s,t 
=n

K n
rst

(r !s!t !)2

+(n−1)
∑

s+t=n

n−1 + Ln
st

s!2t !2
]
ε2. (5.7)

Notice that here we have used an expansion of v(ϕ) with-
out factorials. Including the factorials, the (2n)! on the left-
hand side would have appeared with power one, in agreement
with [8,10]. This, of course, does not affect the final physical
results when written in terms of ε.

The anomalous dimension can be read off from (5.6)
imposing the condition βz |ϕ=0 = 0 and using z(0) = 1.
This gives, after using (5.7),
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η = 4(n − 1)2n!6
(2n)!3 ε2, (5.8)

in agreement with [8,34] and recent CFT based computa-
tions [10–12]. Having at our disposal the functional form of
βv at cubic order, we can follow the prescription of Sect. 2
to find the scaling dimensions of the relevant couplings at
O(ε2) and the MS OPE coefficients for the relevant opera-
tors at O(ε).

However, before doing so let us devote the next subsection
to considering the leading-order mixing effects due to the
presence of z(ϕ)-interactions. This, for instance, will allow us
to compute the leading-order anomalous scaling dimensions
of the z(ϕ) couplings, and justify the validity of the leading-
order anomalous dimensions of the v(ϕ) couplings.

5.1 Mixing

One can take into account the mixing effects due to the pres-
ence of derivative operators. We have given a general sketch
of the mixing pattern in Sect. 4. Here we concentrate on
explicit results for two-derivative interactions collected in
the function z(ϕ). At quadratic level the presence of z(ϕ)

does not affect the beta function of the potential (5.4), but
(5.6) instead gets a contribution at this level

�βz = n − 1

n!
cn−1

2

[
z(n)(ϕ) v(n)(ϕ)

+z(n−1)(ϕ) v(n+1)(ϕ)
]
. (5.9)

These new terms arise from the derivative interactions and
appear at (n − 1) loops [8] as discussed in Appendix A.
This gives rise to a mixing, at order ε, between the operators
φk+2n and φk(∂φ)2 for k = 0, . . . , 2n − 3, described by the
kth block of the matrix M (2), while the couplings of φk with
k = 0, . . . , 2n − 1, and therefore the elements of M (0), are
unaffected.

In general the terms in a beta function which contribute
to the stability matrix at order ε must be quadratic in the
couplings, and furthermore one of the couplings must be the
dimensionless coupling g, which is the only one that takes a
non-zero value at the fixed point. In the beta functional this
manifests as the product of the potential v(ϕ) and a function
corresponding to a higher-derivative operator, or more pre-
cisely, the product of a derivative of these functions. These
terms come from diagrams of the form displayed in Fig. 2 of
Appendix A, or its generalizations where instead of z(ϕ) one
can have functions encoding higher-derivative interactions.

A simple argument based on dimensional analysis shows
that generally in the beta function of a 2k-derivative coupling,
the quadratic term which includes the coupling g can involve
also a derivative coupling lower or equal to k. To show this,
one should notice that in dimensional regularization the dia-

grams contributing to the beta functions must be dimension-
less, i.e. have vanishing superficial degree of divergence. For
a melon diagram of the form in Fig. 2 with r propagators that
includes the potential v(ϕ) at one vertex and a 2l-derivative
coupling on the other vertex this condition is

(r − 1)
2n

n − 1
− 2r + 2(k − l) = 0. (5.10)

The first term comes from the r − 1 loop integrations, while
the r propagators give a contribution −2r in the second term.
To justify the remaining terms one should notice that there
are altogether 2l derivatives at one of the vertices, some of
which might act on the propagators and some might not, but
finally we would like to extract the ∂2k contribution from this
diagram. This leads to the contribution 2(k − l). This simple
relation can be re-arranged and put in a more useful form,

l − k = n − r

n − 1
< 1, (5.11)

where one can use the fact that r ≥ 2 on the right-hand
side to put an upper bound on l − k. Since k, l are integers,
the inequality (5.11) says that l ≤ k, which is the statement
claimed above. This is a more general case of what we have
already seen: that the beta functions of the potential cou-
plings do not contain the product of v and z couplings but
only v-coupling squared. This is telling us that at order ε

each diagonal block in the stability matrix that describes the
mixing of a column in (4.6) is itself block lower-triangular
(where here a block describes the mixing of operators with
the same number of derivatives), as will be shown explicitly
in the simplest case in the next section. This ensures that at
order ε the eigenvalues of the potential and the two-derivative
couplings are never affected by the mixing. In particular from
(5.4) one can find the spectrum of the couplings in the poten-
tial, not only for the relevant ones but also for the marginal
and all the irrelevant couplings. Similarly, the beta function
(5.6) with the correction (5.9) gives the spectrum of all the
z-couplings, at order ε. These are made more explicit in the
following subsection.

5.2 Spectrum

In order to proceed with explicit results let us stick to the
following convention throughout this section for the expan-
sions of the functions v(ϕ), z(ϕ) and of the corresponding
beta functionals in powers of the field

v(ϕ) =
∑

k=0

gkϕ
k, βv(ϕ) =

∑

k=0

βk
vϕk

z(ϕ) =
∑

k=0

hkϕ
k, βz(ϕ) =

∑

k=0

βk
z ϕ

k . (5.12)
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The choice of normalization for the couplings is of course
physically irrelevant. An explicit computation using the beta
function (5.4) and the expansions (5.12) shows that the matrix
∂β i

v/∂g j evaluated at the fixed point, which is for dimensional
reasons diagonal, has the elements −θi = −d+i(d−2)/2+
γ̃i on its diagonal, with the following anomalous parts10

γ̃i = i
η

2
+ (n − 1)i !

(i − n)!
2 n!
(2n)!

[
ε − n

n − 1
η

]
+ 2n η δ2n

i

+ (n − 1)i !n!6
(2n)!2 �(δn)

∑

r+s+t=2n
r,s,t 
=n

K n
rst

(r !s!t !)2

×
[

2n!
3(i − n)! − r !

(i − 2n + r)!
]

ε2

+ (n − 1)2i !n!5
(2n)!2

∑

s+t=n

n − 1 + Ln
st

(s!t !)2

×
[

1

(i − n)! − 2s!
n!(i − 2n + s)!

]
ε2. (5.13)

For the relevant components, that is, for the range 0 ≤ i ≤
2n − 1, these are simply the anomalous dimensions with
accuracy O(ε2). The last term in the first line, which comes
from the term proportional to η in (5.4), does not contribute
in the relevant sector. However, if one wishes to find the
anomalous dimension of the marginal coupling, one has to
take this term into account. Within the same O(ε2) accuracy,
for the irrelevant couplings, which we do not consider here,
additional mixing transformations are required to diagonalize
the stability matrix.

From (5.13) one can readily see that for i = 1 all the
terms except the first vanish. Also, interestingly, for i =
2n − 1 which corresponds to the descendant operator φ2n−1

in the interacting theory because of the Schwinger–Dyson
equations, the O(ε2) terms in the second and third line of
Eq. (5.13) vanish so that these anomalous dimensions take
the simple form

γ̃1 = η

2
, γ̃2n−1 = (n − 1)ε − η

2
. (5.14)

The two anomalous dimensions then sum up to γ̃1 + γ̃2n−1 =
(n − 1)ε, which is equivalent to the scaling relation θ1 +
θ2n−1 = d and proved in general in Appendix B.

The correction (5.9) allows us to go beyond the local
potential approximation and compute at order ε the block
M (2) in (4.7) which is a block-diagonal matrix with two by
two blocks. The i th block which gives the mixing of the φi+2n

and φi (∂φ)2 couplings is given in the {φi+2n, φi (∂φ)2} basis
as

10 Note that in order to be able to make sense of the formula for the
anomalous dimensions γ̃i for general i , the terms involving factorials
of negative numbers in the denominators are interpreted to be zero by
analytic continuation.

i

n − 1
1

+
( − (i+2n)

2 + 2(n−1)n!
(2n)!

(i+2n)!
(i+n)! 0

− 2(n−1)2n!3
(2n)!2

(i+2n)!
i ! cn−1(1 − δi0) − i

2 + 2(n−1)n!
(2n)!

(i+1)!
(i−n+1)!

)
ε

+ O(ε2), (5.15)

where 1 is the two dimensional identity matrix. For each
i the two eigenoperators have the same canonical scaling at
the critical dimension. The eigenvalues of the stability matrix
include the scaling dimensions −θi+2n , given in Eq. (2.14),
and ( d2 − 1)i + ω̃i , which is the analog for z-couplings in the
notation of [8].

From these, one can then read off the anomalous parts γ̃i
and ω̃i of the v and z coupling scaling dimensions at order
ε, which are valid not only for 0 ≤ i ≤ 2n − 3 described by
the above matrix but for all i , according to the discussion in
the previous subsection. In summary, again interpreting the
factorials to be infinite for negative integer arguments, and
for i ≥ 0

γ̃i = 2(n − 1)n!
(2n)!

i !
(i − n)! ε

ω̃i = 2(n − 1)n!
(2n)!

(i + 1)!
(i − n + 1)! ε. (5.16)

This reproduces the result of [8]. The γ̃i in Eq. (5.16) also
match the anomalous dimensions found in [10–12] from CFT
constraints.

Beyond the leading order for the anomalous dimensions,
the stability matrix will not be lower-triangular anymore,
and in order to find the anomalous dimensions of higher
and higher powers of φ one has to take into account (up to
cubic-order contributions of) operators of higher and higher
dimensions. In the simplest case, 2n < i < 4n − 3, one
needs to include cubic corrections to βz , and furthermore,
take into account the z(ϕ) contribution to βv at cubic level.
The only term contributing to this last piece is proportional
to v(n)(φ)2 z(φ) and leads to O(ε2) corrections in the upper
right element in (5.15). These higher-order corrections are
not considered here and are left for future work.

Besides (5.16), an extra information which has been
obtained in [10] using conformal symmetry and the
Schwinger–Dyson equations is the leading-order value of γ2

for n > 2, which is of order ε2. For n > 2, putting i = 2 in
(5.13) gives

γ̃2 = η − 2(n − 1)n!6
(2n)!2 �(δn)

Kn
2n−2,1,1

(2n − 2)! ε2

= 8(n + 1)(n − 1)3n!6
(n − 2)(2n)!3 ε2, (5.17)

which is also in agreement with the result found in [10].
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5.3 OPE coefficients

The only non-zero C̃k
i j coefficients that are extracted from

the beta functions are those that are massless, or equivalently,
satisfy the universality condition i + j −k = 2n. Contrary to
the anomalous dimensions, the OPE coefficients do depend
on the normalization of the couplings. Throughout this sec-
tion we continue to use the normalization where couplings
appear without factorials in the v(ϕ), z(ϕ) expansions, as
defined in (5.12). On top of this, it turns out to be convenient
to make a global rescaling of the couplings by redefining the
potential according to11

v → 4

(n − 1)cn−1 v. (5.18)

This removes the parameter c from the beta functions (5.4)
and (5.6). In such a normalization, using the beta function
(5.4), the expansion of the potential and its beta functional
in powers of the field (5.12), and the fixed-point relation
(5.7), a lengthy but straightforward calculation based on the
definition (2.5) gives the MS OPE coefficients (k = i + j −
2n)

C̃k
i j = 1

n!
i !

(i − n)!
j !

( j − n)! − �(δn)
n!3

(2n)!
×

∑

r+s+t=2n
r,s,t 
=n

K n
rst

r !s!t !2
j !

( j − s − t)!
i !

(i + s − 2n)! ε

− (n − 1)n!2
(2n)!

∑

s+t=n

n − 1 + Ln
st

s!t !

×
[

1

n!
j !

( j − n − s)!
i !

(i − n − t)!
+ 1

s!
i !

(i − n)!
j !

( j − n − s)!
+ 1

s!
j !

( j − n)!
i !

(i − n − s)!
]

ε

+2(n − 1)n!3
(2n)! (i δ2n

j + j δ2n
i + 2n δ2n

i δ2n
j )ε. (5.19)

Notice that, strictly speaking, the above quantity is in fact the
matrix Nk

i j defined in (2.5), but because the mixing matrix
S i

a is diagonal (in the relevant and marginally irrelevant
part of the spectrum) it coincides with the OPE coefficients
C̃k

i j in our scheme. The last contribution in (5.19) comes
from the anomalous dimension term in (5.4). Similar to the
anomalous dimensions (5.13) one has to keep in mind that
terms with negative factorials in the denominators vanish.
Notice that the first term is nothing but the combinatorial

11 In Sects. 3.1 and 3.2 this rescaling was used for both the Ising and
the Lee-Yang universality classes with n = 1 and n = 3

2 respectively.

factor that comes from Wick contractions in the free theory.
The normalization we have adopted therefore coincides with
the CFT normalization where the coefficient of the two point
function 〈φ φ〉 is set to unity.

It is important to comment on the range of validity for the
i, j indices in the above formula. As in the case of anoma-
lous dimensions, Eq. (5.19) is, of course, valid for all relevant
components, that is, positive integer indices smaller than 2n.
Notice that in this case the last term does not contribute.
However, this is not all we can extract from this formula.
For instance, let us consider the case i < n. The above for-
mula will then be of order ε. At this level of approximation
Eq. (5.19) is valid for any j , and not only the relevant ones.
This is because mixing effects enter only at NLO. Therefore
for such cases one can use (5.4) without any concern about
the mixing. Notice that for these cases only the second term
on the first line and the last term in Eq. (5.19) contribute.
The particular case C̃1

1,2n gets contribution only from the
last term in (5.19) and takes the simple form

C̃1
1,2n = 2(n − 1)n!3

(2n)! ε. (5.20)

This reproduces the result found in [10] from CFT consider-
ations, and therefore the computation done in the MS scheme
reproduces an entire family of CFT OPE coefficients at least
at order O(ε).

Finally, let us consider Eq. (5.19) for k = 1. The indices
i, j must then satisfy i + j = 2n − 1, so we choose them as
i = n −m, j = n +m + 1, for m = 1, . . . , n − 1. The OPE
coefficients reduce to

C̃1
n−m,n+m+1 = (n − 1)2

m(m + 1)

(n + 1 + m)!(n − m)!
(n − 1 − m)!(n + m)!

n!3
(2n)!ε.

(5.21)

This MS result is also in agreement with [10], and with [11,
12] if one takes into account the different normalizations of
the operators φl .

5.4 Examples of CFT data for specific theories

Despite the above general treatment being comprehensive of
all the even multi-critical models, we believe it is interesting
to show some explicit results for specific theories. The case of
Ising had already been studied in Sects. 2.2 and 3.1. In this
subsection we collect the CFT data for the Tricritical
and Tetracritical universality classes.

The Tricritical universality class corresponds to
n = 3. The anomalous dimensions for the relevant and
marginal operators at O(ε2) can be obtained from the general
formula (5.13) and are given explicitly as
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γ̃1 = ε2

1000
γ̃3 = ε

5
+

(
2037

5000
+ 27π2

400

)
ε2

γ̃5 = 2ε − ε2

1000

γ̃2 = 4ε2

125
γ̃4 = 4ε

5
+

(
601

625
+ 27π2

200

)
ε2

γ̃6 = 4ε −
(

1689

250
+ 27π2

40

)
ε2. (5.22)

The scaling relation γ̃1 + γ̃5 = 2ε is satisfied. Notice that
restricting to order ε one can immediately extend these
results to all the couplings including the irrelevant ones, and
even further to the z(ϕ) couplings. These were reported in
Eq. (5.16). It is also easy to extract from the general equation
(5.19) the universal OPE coefficients in the MS scheme with
relevant components at O(ε). These are listed below

C̃1
25 = 6ε, C̃2

44 = 96 − 18

5
(32 + 3π2)ε,

C̃1
34 = 24 − 72

5
ε, C̃3

45 = 240 − 6(98 + 9π2)ε,

C̃2
35 = 60 − 90ε, C̃4

55 = 600 − 15(167 + 18π2)ε.

(5.23)

Furthermore Eq. (5.19) gives also the following leading-
order OPE coefficients with a marginal component:

C̃1
16 = 6

5
ε, C̃2

26 = 192

5
ε, (5.24)

and an infinite set of OPE coefficients with an irrelevant com-
ponent

C̃3
27 = 126 ε, C̃4

28 = 336 ε, C̃5
29 = 756 ε, · · · .

(5.25)

The OPE coefficients C̃1
25 and C̃1

16 exactly match the cor-
responding structure constants computed with CFT methods
in [10]. For the others there are no available CFT results to
compare with.

For the Tetracritical universality class, which cor-
responds to n = 4, there are seven relevant couplings whose
anomalous dimensions are

γ̃1 = 9ε2

171500

γ̃4 = 3ε

35
+ 3(477948 + 78400 �[ 1

3 ]3 + 99225 log 3 − 33075
√

3π)ε2

3001250

γ̃2 = 27ε2

171500
,

γ̃5 = 3ε

7
+ 9(232287 + 39200 �[ 1

3 ]3 + 66150 log 3 − 22050
√

3π)ε2

1200500
,

γ̃3 = 7587ε2

171500
,

γ̃6 = 9ε

7
+ 3(646533 + 98000 �[ 1

3 ]3 + 198450 log 3 − 66150
√

3π)ε2

600250
,

γ̃7 = 3ε − 9ε2

171500
, (5.26)

while the anomalous dimension of the marginal coupling is
given as

γ̃8 = 6ε − 3(342516 + 39200 �[ 1
3 ]3 + 99225 log 3 − 33075

√
3π)ε2

42875
.

(5.27)

As expected, the spectrum satisfies the scaling relation γ̃1 +
γ̃7 = 3ε. Using Eq. (5.19) we also list here, at order ε, all
the OPE coefficients with relevant components

C̃1
27 = 36

5
ε, C̃2

37 = 1566

5
ε,

C̃1
36 = 972

35
ε,

C̃2
46 = 360 − 324

35
(5

√
3π − 58 − 15 log 3)ε,

C̃1
45 = 120 − 432

7
ε,

C̃2
55 = 600 − 240

7
(18 + �[ 1

3 ]3)ε, (5.28)

C̃3
47 = 840 − 324

5

(
5
√

3π − 38 − 15 log 3
)

ε,

C̃3
56 = 1800 − 4

7

(
320

√
3π�[ 1

3 ]2�[ 2
3 ]−1

+81(84 + 15 log 3 − 5
√

3π)
)

ε,

C̃4
57 = 4200 − 12

(
1506 + 100 �[ 1

3 ]3

+405 log 3 − 135
√

3π
)

ε,

C̃4
66 = 5400 − 2

7

(
4800

√
3π�[ 1

3 ]2�[ 2
3 ]−1

+81(822 + 195 log 3 − 65
√

3π)
)

ε,

C̃5
67 = 12600 − 54

5

(
7292 + 800 �[ 1

3 ]3

+2025 log 3 − 675
√

3π
)

ε,

C̃6
77 = 29400 − 126

5

(
11519 + 1400 �[ 1

3 ]3

+3375 log 3 − 1125
√

3π
)

ε, (5.29)

as well as some with a marginal component

C̃1
18 = 72

35
ε, C̃2

28 = 432

7
ε, C̃3

38 = 60696

35
ε, (5.30)

the first of which can also be found from (5.20). We finally
report here the first few of the infinite set of leading-order
OPE coefficients with an irrelevant component
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C̃3
2,9 = 1296

5
ε, C̃4

2,10 = 864 , ε

C̃5
2,11 = 2376 ε, · · · ,

C̃4
3,9 = 33048

5
ε, C̃5

3,10 = 20088 ε ,

C̃6
3,11 = 260172

5
ε, · · · . (5.31)

For this universality class the OPE coefficients C̃1
27, C̃1

36

and C̃1
18 correctly match the corresponding structure con-

stants computed in [10]. The considerations made for the
Tricritical case on the full comparison to CFT are
equally valid for the Tetracritical universality class.

6 Conclusions

In this paper we have shown how to extend renormalization
group (RG) techniques to the computation of some OPE coef-
ficients at a scale invariant critical points of scalar quantum
field theories. The approach of this work employs dimen-
sional regularization in the MS scheme at the functional level
and gives access to a specific set of “massless” OPE coeffi-
cients, which are related to terms in the beta functions that
are universal at the upper critical dimensions of the mod-
els under investigation. For general multi-critical models we
have extracted these quantities, and we have shown that at
order O(ε) they agree with the corresponding OPE coeffi-
cients computed directly with CFT methods, when available
on both sides.

Let us briefly summarize our procedure. In the vicinity
of a fixed point the RG flow can be expanded in powers of
the couplings. The information on the universal quantities is
encoded in the coefficients of this expansion, in which the lin-
ear and the quadratic parts play a special role. The linear terms
give rise to the so-called critical exponents which are related
to the scaling properties of the operators of the theory and
have been the focus of most RG studies so far. The quadratic
terms instead give information on some OPE coefficients,
which can thus be extracted from the general knowledge of
the beta functions. Whenever scale invariance implies con-
formal invariance, the OPE coefficients are directly related
to the structure constants of the underlying CFT and thus our
analysis strengthens the link between RG and CFT by show-
ing explicitly how, and which part of, the CFT data can be
determined to some extent directly within an RG approach.

The scheme dependence of the results can be analyzed in
terms of the coupling redefinition connecting two different
schemes. It follows that the spectrum is invariant and in this
sense universal, while the coefficients of the quadratic terms
generally transform inhomogeneously under coupling redef-
initions. In a dimensionally regularized MS scheme one has
access only to the “massless” quadratic coefficients which are

universal at d = dc, but potentially differ in other schemes at
higher orders in the ε-expansion. A first observation is that
our computational scheme gives the correct values at order
O(ε).

After a first pedagogical application of the approach to the
investigation of the Ising universality class, we have intro-
duced a very convenient functional generalization of the stan-
dard perturbative RG, in which all the beta functions for the
couplings are obtained from few simple generating functions:
the beta functionals. This functional perturbative framework
is a very useful tool that naturally organizes the beta func-
tions in simple generating functionals with few independent
c-number coefficients, which, we stress, at leading and next-
to-leading order are RG-scheme independent. As a result all
the quantities we have computed (anomalous dimensions at
order O(ε2) and OPE coefficients at order O(ε)) depend
essentially only on these universal coefficients.

The simplest of these generating functionals is βV , which
encodes the RG flow of the whole potential V (φ) and thus
of all couplings of operators of the form φk . Contributions of
operators involving more derivatives can be included system-
atically. The first such contribution comes from βZ , which
generates all beta functions of the O(∂2) operators φk(∂φ)2

included in the field-dependent wavefunction Z(φ). A goal
of our work has been to emphasize some of the advantages
of this shift towards a functional approach to standard per-
turbation theory in the ε-expansion, because it grants an easy
and systematic determination of important universal quanti-
ties like both the scaling dimensions and expressions for the
massless MS OPE coefficients.

As a first application of the functional perturbative RG we
have reconsidered the Ising and the Lee-Yang universal-
ity classes, as representative of the multi-critical unitary and
non-unitary families, at the level of the local potential approx-
imation (LPA), i.e. without taking into account derivative
interactions, and we have showed how the results extracted
from the RG coincide with those recently obtained with CFT
techniques. This we take as evidence that the MS scheme is
effective in the computations of the leading ε-corrections to
some of the OPE coefficients.

We have also outlined a systematic approach to the inclu-
sion of higher-derivative interactions in functional perturba-
tive RG, and discussed the general mixing patterns among
operators at different orders in the derivative expansion using
the general φ2n models as examples. The efficiency of the
functional RG techniques is most clearly seen in this con-
text, since we are able to collect infinite towers of critical
exponents and OPE coefficients at order O(ε) in compact
formulas. This in particular has allowed a straightforward
check of our MS estimates with the results obtained recently
with CFT techniques [10–12]. We stress that for the general
φ2n our approach is a multi-loop analysis which, for almost
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all models, is characterized by an ε-expansion below a frac-
tional critical dimension [46].

The computation of the anomalous dimensions for the
multi-critical models in a functional framework was previ-
ously carried out by O’Dwyer and Osborn [8] and here we
have limited ourself essentially to the same order of the per-
turbative expansion. The analysis is first done without taking
into account derivative interactions, and afterwards including
the leading order of the mixing with O(∂2) derivative interac-
tions. Using dimensional analysis we have imposed further
constraints on the stability matrix by determining possible
terms that can appear at the quadratic level in any beta func-
tion. In particular we have shown that at order ε the stabil-
ity matrix is lower-triangular. This allows, in agreement with
the CFT analysis, the determination of the anomalous dimen-
sions for all operators contained in the potential V (φ) and the
wavefunction Z(φ) up to order ε, and therefore is not limited
to the relevant operators. We have also given the O(ε2) results
for the scaling dimensions up to the marginally irrelevant
operator φ2n , and provided the O(ε) values for a family of
infinite “massless” OPE coefficients for all the multi-critical
universality classes considered, which are found to match
the corresponding values from CFT analysis, when avail-
able. Clearly more investigations on universality and scheme
dependence of the results presented here are required. Here
we just observe that the functional framework in the con-
text of perturbation theory ε-expansion strongly constrains
the possible redefinitions of the couplings giving support for
the success of our approach. We shall discuss in detail these
issues in a forthcoming paper [45]. On the other hand this
fact can be seen as another argument in favor of adopting a
functional approach to RG analysis. To the best of our knowl-
edge, very few results have been obtained even at order O(ε)

in CFT computations. It would be especially interesting to
have CFT results at order O(ε2) whose comparison with the
RG NNLO estimates would show possible artifacts induced
by MS scheme.

Summarizing, the main results of our paper are highlighted
as follows: Inspired by the analysis presented by Cardy [2]
which relies on an ultraviolet cutoff, we have proposed to
extract the OPE coefficients of a CFT from the coefficients
of the quadratic terms in the coupling expansion of the beta
functions around the fixed point using dimensional regular-
ization and MS scheme at functional level. We have discussed
the scheme dependence of OPE coefficients obtained in this
way and identified those that are less sensitive to changes
of scheme, which turn out to be the ones that are dimen-
sionless at the upper critical dimension. The order ε OPE
coefficients that we have found are compared with the lit-
erature on CFT approaches and when available with both
methods it is shown that the results always agree. This anal-
ysis is done for all multi-critical even models, for which the
beta functions were obtained in [8], as well as the Lee-Yang

model as a representative of the odd multi-critical models for
which we have reported the functional betas at NLO (3.16).
We have demonstrated the power of the functional approach
by obtaining compact formulas (3.23), (5.19) encompassing
an infinite number of OPE coefficients. Similar formulas are
obtained for the order ε2 critical exponents of the relevant
operators (3.22), (5.13)12 which, for instance, allow us to
verify the shadow relations (5.14) for all such models in one
shot. Finally, we have argued that dimensional analysis alone
constrains the structure of the beta functions and in particular
the stability matrix. We have used this information to prove
that the formulas for the order ε critical exponents (5.16) are
valid for all the V and Z couplings.

The functional perturbative RG as introduced in this
paper is very general and can be systematically pushed to
higher levels of accuracy by including new families of oper-
ators, a fact which is made particularly evident by work-
ing at the functional level. We have recently also success-
fully applied this method to study [47] the non-unitary fam-
ily of multi-critical universality classes described by sin-
gle scalar field models with odd potentials, whose first
elements are the Lee-Yang and tricritical Lee-Yang
(Blume-Capel [33,48,49]), for which some CFT results
are already available [10] finding again full agreement. We
plan to further develop the main ideas and apply the method
to other universality classes, e.g. for multifield cases, as well
as to carry on investigations at higher orders in perturbation
theory.

Another extremely important line of investigation, which
could possibly overcome the limitations of the perturbative
approach, is to move to one of the non-perturbative functional
RG frameworks [35–38]. This step is absolutely non-trivial
because such approaches are based on massive renormaliza-
tion schemes, which often result into a much stronger defor-
mation of the basis of scaling operators (as compared to the
Gaussian basis), and make it difficult to establish a direct
link to the CFT results. We leave this line of investigation to
future research.
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Appendix A: Perturbative expansion

In this appendix we review briefly how perturbative calcula-
tions in the functional form are done. We concentrate on the
leading and next to leading-order results. We will be brief
and closely following [8].

The ε-expansion is intimately related to an expansion in
the couplings through their fixed-point value. The pertur-
bative expansion performed here is therefore in powers of
couplings that define the potential V or the function Z . How-
ever, in dimensional regularization, given a universality class
φ2n and restricting to operators of a fixed number of deriva-
tives, there is a one-to-one correspondence between terms of
a certain loop order in the beta functional and those of fixed
coupling order.

The leading-order counter-terms are quadratic in the cou-
plings. At this level there are two possible terms that con-
tribute to the V, Z counter-terms. One is represented dia-
grammatically as in Fig. 1 and involves V contributions only.
The corresponding expression for this diagram is

∑

r≥2

1

2 r !
∫

dd x dd y V (r)(φx )G
r
x−y V

(r)(φy). (A.1)

It turns out that for r = n this “melon” type diagram has a
pole that contributes to the potential. On the other hand, for
r = 2n − 1 there is a pole term with two derivatives that
contributes to the function Z . The corresponding counter-
terms in the MS scheme can be straightforwardly computed
using (A.1) and are given by

Sc.t.(φ) = 1

ε

∫
dd x

{
cn−1

4 n! V (n)(φ)2

− (n − 1)c2n−2

16 (2n)! V (2n)(φ)2(∂φ)2
}

. (A.2)

The first counter-term is therefore of (n−1)-loop order, while
the second term is at 2(n − 1) loops. The other diagram that
contributes at quadratic level is shown in Fig. 2. This involves
both the V and Z functions and contributes to the flow of Z
for r = n, which will therefore be of (n − 1)-loop order.
Notice that there are three different diagrams of this kind
depending on whether one, two or none of the fields in (∂φ)2

are involved in the propagators, as shown in Fig. 2.

V (r)

r

V (r)

Fig. 1 Diagram contributing to the counter-term of the potential V and
the function Z at quadratic level in the couplings

Z(r)(∂φ)2
r

V (r)
Z(r−1)∂φ

Z(r−2)

Fig. 2 Diagrams contributing to the counter-term of the Z function at
quadratic level in the couplings

At cubic order in the couplings, restricting to the con-
tribution from V only, i.e. LPA, there are three types of
counter-term diagrams for the potential. The first one can
be seen as a one-loop graph with three vertices whose prop-
agators are replaced with a bunch of r , s and t propagators
as shown in Fig. 3a. In order to have a pole contributing to
the potential the number of propagators must be constrained
to r + s + t = 2n. The second one consists of two melon
diagrams as in Fig. 3b, and the third graph, shown in Fig. 3c,
is a melon diagram involving the potential and its counter-
term at quadratic level Vc.t.(φ) which is the first term on the
right-hand side of (A.2). In both diagrams the ε singularity
that contributes to the potential occurs when the number of
propagators in each melon is equal to n. These three diagrams
are therefore all of 2(n − 1)-loop order. They give rise to the
cubic terms in the second and third lines of (5.4).

The precise relation between the counter-terms and the
dimensionful beta functions of the potential at quadratic level
βV,2 and at cubic level βV,3 and also the dimensionful beta
of the wavefunction at quadratic level βZ are given by the
following equations:

βV,2 = εVc.t.2 − μ
d

dμ

∣∣∣∣
1
Vc.t.2 = (n − 1)εVc.t.2, (A.3)

βV,3 = εVc.t.3 − μ
d

dμ

∣∣∣∣
1
Vc.t.3 − μ

d

dμ

∣∣∣∣
2
Vc.t.2

= 2(n − 1)εVc.t.3 − μ
d

dμ

∣∣∣∣
2
Vc.t.2, (A.4)

βZ = − μ
d

dμ

∣∣∣∣
1
Zv2

c.t.2 − μ
d

dμ

∣∣∣∣
1
Zvz
c.t.2

= 2(n − 1)εZv2

c.t.2 + (n − 1)εZvz
c.t.2. (A.5)

The total beta of the potential βV = βV,2 + βV,3 and the
beta of the wavefunction βZ are related to the dimensionless
betas through (3.3) and (3.6) respectively. The cubic counter-
term Vc.t.3(φ) is the sum of the diagrams Fig. 3a–c, and the
quadratic counter-terms for the wavefunction Zv2

c.t.2 and Zvz
c.t.2

are extracted, respectively, from the second term on the r.h.s.
of (A.2) and from the counter-term diagram of Fig. 2 for
r = n. The μ-derivatives with an index 1 are taken using the
tree-level flow which for the derivatives of the potential and
the wavefunction are given by the following relations:
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r s

t

V (r+s)

V (r+t) V (s+t)

(a)

V (s+t)s

V (s) V (t)

t

(b)

V
(r)
c.t.

r

V (r)

(c)

Fig. 3 Diagrams contributing to the counter-term of the potential at cubic level in the couplings

μ
d

dμ

∣∣∣∣
1
V (r) = −r − 2

2
ε V (r), μ

d

dμ

∣∣∣∣
1
Z (r) = − r

2
ε Z (r),

(A.6)

while the μ-derivative with an index 2 is based on the
quadratic flow. In particular

μ
d

dμ

∣∣∣∣
2
V (r) = β

(r)
V,2. (A.7)

Appendix B: A general scaling relation

In this appendix we would like to obtain a relation valid
among the scaling of two couplings induced by the RG
flow. This information can then be compared to the relation
obtained in CFT for the scaling of the field operator and one
of its descendants.

We have already encountered the scaling dimensions of
the operator φi and its corresponding dimensionless coupling
gi , which were denoted by �i and θi in Eqs. (2.15) and (2.14),
together with their anomalous parts γi and γ̃i , respectively.
Let us consider for a moment the case of a multi-critical the-
ory φ2n . Then, for i 
= 2n−1, the relation θi +�i = d holds.
This is equivalent to γi = γ̃i . Instead, for the descendant
operator corresponding to i = 2n − 1 this relation is modi-
fied to θi + �i = d + η by the presence of η = 2γ1 = 2γ̃1,
which is twice the anomalous dimension of φ. One can link
this fact to the relation γ2n−1 = (n − 1)ε + γ1 coming from
the descendant constraint in CFT, �2n−1 = 2 + �1 and
from another relation that we shall prove in general in the
following. Indeed we shall see that the latter is equivalent to
γ̃2n−1 + γ̃1 = (n−1)ε so that the two anomalous dimensions
(associated to the CFT operator and RG coupling) are related
by γ2n−1 = γ̃2n−1 + η.

We shall work at a general functional level [35]. Let us
consider for the truncation with two functions V and Z which
describes deformations with composite (non-total derivative)
operators containing up to two derivatives. The beta functions

describing the RG flow are generically written as in Eqs. (3.3)
and (3.6).

Linearizing such equations around the FP one obtains

θδv =
∑

i

∂βv

∂v(i)
δv(i)+

∑

i

∂βz

∂z(i)
δz(i)

= −d δv + 1

2
(d−2+η)ϕ δv′ + μ−d

∑

i

∂βV

∂v(i)
δv(i)

+μ−d
∑

i

∂βV

∂z(i)
δz(i), (B.1)

θδz =
∑

i

∂βz

∂v(i)
δv(i)+

∑

i

∂βz

∂z(i)
δz(i)

= η δz + 1

2
(d−2+η)ϕ δz′ + Z−1

0

∑

i

∂βZ

∂v(i)
δv(i)

+Z−1
0

∑

i

∂βZ

∂z(i)
δz(i). (B.2)

Let the fixed-point solution be (v∗(ϕ), z∗(ϕ)). Taking the
derivative in ϕ of the fixed-point equations

0 = dβv(v∗, z∗, ϕ)

dϕ
=

∑

i

∂βv

∂v(i)
v(i+1)∗

+
∑

i

∂βz

∂z(i)
z(i+1)∗ + ∂βv

∂ϕ
,

0 = dβz(v∗, z∗, ϕ)

dϕ
=

∑

i

∂βz

∂v(i)
v(i+1)∗

+
∑

i

∂βz

∂z(i)
z(i+1)∗ + ∂βz

∂ϕ
, (B.3)

one immediately sees that (δv, δz)r = (v′∗(ϕ), z′∗(ϕ)) is a
solution of the linearized equation and is a relevant eigenop-
erator with eigenvalue θr = 1

2 (d − 2 + η). Moreover, since
∑

i
∂βV,Z

∂v(i) δv(i) contains only terms with at least two deriva-
tives on v, one can easily check that (δv, δz)1 = (ϕ, 0) is a
solution of the linearized equations and is a relevant eigenop-
erator with eigenvalue θ1 = 1

2 (d+2−η). Therefore one can
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immediately obtain from the RG flow the scaling relation

θr + θ1 = d.

Specializing now to the multi-critical φ2n models, this is
equivalent to the relation given after Eq. (5.14), i.e. γ̃2n−1 +
γ̃1 = (n − 1)ε.

Appendix C: Relations with the functional
non-perturbative RG

In this appendix we want to spell out an interesting relation
that the functional perturbative RG has with the functional
non-perturbative RG in the effective average action imple-
mentation that was originally proposed by Wetterich [37]
and independently by Morris [38].

In this approach a scale k is introduced by modifying the
theory’s propagator through the inclusion of an IR cutoff Rk

in momentum space. This modification generates an RG flow
equation for the generator of the irreducible diagrams

k∂k�k = 1

2
Tr

(
�(2) + Rk

)
k∂k Rk . (C.1)

Using a truncation of the space of all possible operators
appearing in �k such as (3.1) and adopting a specific form for
the cutoff, we can compute the flow of the effective potential

βV = k∂kV = cd
kd+2

k2 + V ′′ , (C.2)

in which we defined c−1
d = (4π)d/2�(1 +d/2). To compute

the above flow one can choose to work with the so-called
optimized cutoff Rk(q2) = (k2 −q2)θ(k2 −q2) because the
result is particularly simple, but the results of this appendix
will be independent of this particular choice.

Let us expand the right-hand side of (C.2) in powers of
V ′′(ϕ)

βV=cd
{
kd − kd−2V ′′ + kd−4(V ′′)2 − kd−6(V ′′)3+ · · ·

}
.

(C.3)

For any given dimensionality, we shall refer to the terms of
this expansion as critical if they scale as k0 and off-critical
if they do not. For example the term cdkd−4(V ′′)2 is critical
in d = 4, while all other terms are off-critical. The critical
terms have two important properties: On the one hand they are
independent by the cutoff; this is because once the momen-
tum scale q2 is integrated out, the scale k is what remains
of Rk(q2), so independence of k implies independence of
the cutoff function itself (this, of course, can be proven more
rigorously). On the other hand they are related to the loga-
rithmic divergences of the theory; using again d = 4 as an
example

V = −
∫ � dk

k
βV ∼ −cd

∫ � dk

k
kd−4(V ′′)2

∼ −(V ′′)2 log � in d = 4, (C.4)

which also implies that they correspond to the 1
ε

poles of
dimensionally regulated perturbation theory.

It is instructive to choose a procedure that deliberately
removes the off-critical terms from the flow (C.2). We obtain

βV = c4(V
′′)2 = 1

2(4π)2 (V ′′)2 in d = 4, (C.5)

βV = −c6(V
′′)3 = − 1

6(4π)3 (V ′′)3 in d = 6. (C.6)

It is easy to see that the above results correspond to the leading
one-loop contributions of the two tutorial examples Ising
and Lee-Yang. These two examples are the only two uni-
versality classes that are captured through critical terms by
the above procedure, even though (C.2) is well known to
be able to “see” critical points corresponding to all the φ2n

models [50,51] and more [33]. The reason why only those
two critical terms appear has to do with the fact that a local
potential truncation of the operator space of �k does not con-
tain all possible terms that can be generated perturbatively
by higher loops. This should also explain why (C.2) returns
only the leading terms of the Ising and Lee-Yang uni-
versality classes. The study of truncations that include the
higher loops effects has been initiated in [52], in which also
the scheme dependence of functional renormalization group
is carefully investigated, but those results have not yet been
formulated in a fully functional form as in the models of the
present paper.

The careful reader must have noticed that the second term
of (C.3) is critical for any even value of d. In d = 2 the critical
model corresponds to the Sine-Gordon universality class.
The beta function of the dimensionful potential is

βV = −c2V
′′ = − 1

4π
V ′′, in d = 2. (C.7)

It is interesting to investigate explicitly the flow of the dimen-
sionless potential in d = 2, which is

βv = −2v(ϕ) − 1

4π
v′′(ϕ). (C.8)

The above beta function does not contain the scaling term
contributed by the field ϕ because the field is canonically
dimensionless in d = 2 and fluctuations do not generate a
non-zero anomalous dimension. Interestingly, the fixed-point
solution of the Sine-Gordon universality can be obtained
by directly integrating the right-hand side of (C.8). Using
v′′(0) = σ as boundary condition we obtain

v(ϕ) = − σ

8π
cos(

√
8πϕ), (C.9)

in which we can recognize the well-known Coleman phase√
8π . This fact is quite amazing since the Coleman phase
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is a non-perturbative result, which we just obtained on the
basis of a perturbative approximation. We plan to return to
the study of the Sine-Gordon universality class and of all
other universal terms in a future work.

As mentioned above, the method presented in this
appendix is limited to the universal terms which come from
one-loop diagrams because of the local potential truncation.
The truncation of this appendix is by definition unable of
dealing with higher-derivative operators, or operators which
are generally generated beyond the first loop. Furthermore,
we have made a specific choice of the cutoff which forces
us to resort to the rather brute force method of “chopping”
all non-zero powers of the cutoff scale k to locate universal
terms. A more refined approach to both these shortcomings
which also aligns with our discussion of the scheme trans-
formations of Sect. 2.3 can be found in [43] where special
“normal” coordinates in the space of all couplings are found
in the context of the functional renormalization group (using
the Polchinski equation instead of the Wetterich equation,
but arguably the conclusions are very similar). The normal
coordinates of [43] could be understood as a geometrical gen-
eralization of the basis of couplings with well-behaved scal-
ing properties introduced in Sect. 2.3 and their application
clearly shows that a consistent renormalization of correla-
tors of all composite operators, thus including in principle all
possible OPE coefficients, is possible within the functional
renormalization group approach (at least in the vicinity of the
Gaussian fixed point). In order to achieve the same results,
the functional method presented in the main text of this paper
requires the consistent inclusion of higher-derivative opera-
tors according to their mixing patters as described in Sect. 4.
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