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ABSTRACT

The main challenge of Markov Chain Monte Carlo sampling is to define a proposal distribution that 

simultaneously is a good approximation of the posterior probability while being inexpensive to 

manipulate. We present a gradient-based Markov Chain Monte Carlo inversion for elastic pre-stack 

inversion in which the posterior sampling is accelerated by defining a proposal that is a local, 

Gaussian approximation of the posterior model, while a non-parametric prior distribution is assumed 

for the distribution of the elastic properties. The proposal is constructed from the local Hessian and 

gradient information of the log posterior, whereas the non-linear, exact Zoeppritz equations constitute 

the forward modeling engine for the inversion procedure. Hessian and gradient information is made 

computationally tractable by a reduction of data and model spaces through a Discrete Cosine 

Transform reparameterization. This reparameterization acts as a regularization operator in the model 

space, while also preserving the spatial and temporal continuity of the elastic properties in the 

sampled models. We test the implemented algorithm on synthetic pre-stack inversions under different 

signal-to-noise ratios in the observed data. We also compare the results provided by the presented 

method when a computationally expensive (but accurate) finite-difference scheme is used for the 

Jacobian computation, with those obtained when the Jacobian is derived from a linearization of the 

exact Zoeppritz equations. The outcomes of the proposed approach are also compared against those 

yielded by a gradient-free Monte Carlo sampling method and by a deterministic least-squares 
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inversion. Our tests demonstrate that the gradient-based sampling reaches accurate uncertainty 

estimations with a much lower computational effort than the gradient-free approach.

Keywords: AVA; Seismic inversion; Uncertainties.

INTRODUCTION

The great challenge in solving geophysical inverse problems lies in the fact that they are usually 

ill-posed: different combinations of model parameters are consistent with the observed data. No 

uniqueness in the recovered solution arises from noisy measurements, sparse observations, prior 

uncertainties, and approximation in the forward model that maps the model parameters into the 

observed data. The deterministic approach to geophysical inversion guarantees a rapid convergence 

toward a best-fitting model, but is incapable of accounting for the uncertainties affecting the 

recovered solution. On the contrary, Bayesian inference provides a systematic framework for 

incorporating and propagating the uncertainties in observed data, prior knowledge, and forward 

operator into the uncertainties affecting the recovered model (Tarantola, 2005).  The final solution of 

a Bayesian inversion is the so-called posterior probability density (PPD) function in model space that 

fully quantifies the uncertainties in the recovered solution. However, an analytical uncertainty 

assesment is only possible for linear forward operators and Gaussian assumptions about model, data, 

and noise distributions. In all the other cases, Markov Chain Monte Carlo sampling methods can be 

used to numerically assess the posterior density (Sen and Stoffa, 1996; Sambridge and Moseegard, 

2002; Sen and Stoffa, 2013). However, expensive forward model operators and high-dimensional 

parameter spaces make the application of MCMC algorithms computationally unfeasible. Indeed, it 

is known that the sampling ability of these methods dramatically decreases in large-dimensional 

problems due to the so-called curse of dimensionality issue (Curtis and Lomax 2001). In these 

contexts, traditional sampling methods might require billions of forward evaluations before 

converging to stable posterior uncertainties. 
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More in detail, MCMC algorithms generate samples by perturbing the current state of the chain 

(current model) according to a proposal distribution. Once generated, the Metropolis-Hasting 

criterion is used to either accept or reject the proposed sample. This process generates a chain of 

samples whose distribution asymptotically converges to the target PPD. Theoretically, for an infinite 

number of samples, the estimated distribution does not depend on the choice of the proposal. 

However, from a more practical perspective, the Monte Carlo sampling is maximally efficient when 

the proposal is a good approximation of the target density. For this reason, the definition of an 

appropriate proposal is of crucial importance for an efficient probabilistic sampling. The setting of an 

optimal proposal is especially of great importance in large-dimensional parameter spaces, where a 

significant mismatch between the proposal and the target density can drastically affect the 

performance of the sampling: persistent rejections of models, entrapment in local maxima of the PPD, 

and a dramatic increase in the number of forward evaluations needed to attain stable uncertainty 

estimations.  When the classical random walk Metropolis algorithm is employed, a good compromise 

between the exploitation and exploration of the sampling is usually determined by a trial and error 

procedure in which different hyperparameters defining the proposal are tuned. However, more 

sophisticated MCMC recipes can be adopted (e.g. self-adaptive MCMC algorithms, preconditioned 

MCMC, hybrid MCMC approaches; Tierney and Mira 1999; Haario et al. 1999; Haario et al. 2001; 

Haario et al. 2006; ter Braak and Vrugt 2008; Turner and Sederberg 2012; Sambridge 2013; Vrugt 

2016; Holmes et al. 2017). For example, self-adaptive algorithms, iteratively adjust the proposal to 

the local shape of the posterior. As an alternative, Gradient-Based MCMC (GB-MCMC) (e.g. 

Hamiltonian Monte Carlo, Langevin Monte Carlo; Sen and Biswaw; 2017; Fichtner and Simutè, 

2018; Fichtner and Zunino, 2019; Fichtner et al. 2019; Gebrad et al. 2020; Aleardi and Salusti 2020; 

Aleardi, 2020a) exploit the gradient information of the misfit function (the negative natural logarithm 

of the posterior) to efficiently explore the model space and to rapidly converge toward stable posterior 

uncertainties (MacKay, 2003; Neal 2011). The main computational requirement of these methods is 

the need for computing derivatives, although this information is highly beneficial to speeding up the 
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convergence of the sampling and to guarantee high independence of the samples while maintaining 

high acceptance rates. 

It is also well known that MCMC algorithms work well in reduced spaces (Lieberman et al. 2010), 

and hence a popular approach to deal with high-dimensional problems is to use a reparameterization 

strategy that decreases the number of unknowns. In this case, the full state space is projected onto a 

limited number of basis functions and the algorithm generates samples in this reduced domain. This 

technique must be applied taking in mind that part of the information in the original (unreduced) 

parameter space could be lost in the reduced space and for this reason, the model parameterization 

must always constitute a compromise between model resolution and model uncertainty 

(Dejtrakulwong et al. 2012; Lochbühler et al. 2014; Aleardi 2019; Grana et al. 2019; Aleardi 2020b).

Here we propose a sampling strategy in which a gradient-based MCMC algorithm is combined 

with a compression of data and model space through a Discrete Cosine Transform (DCT). In 

particular, on the line of Martin et al. (2012), we exploit the geometrical properties of the misfit 

function to greatly speed up the probabilistic sampling. The approach is derived by analogy with the 

classical Newton approach to deterministic inversion and it defines a proposal density based on a 

local Gaussian approximation to the target PPD informed by local Hessian information. We apply 

this strategy to solve a Bayesian amplitude versus angle (AVA) inversion in which the subsurface 

elastic properties of P-wave velocity (Vp), S-wave velocity (Vs), and density are inferred from 

partially stacked seismic data at different incidence angles, while the exact Zoeppritz equations 

constitute the forward modeling operator. In our approach the dimensions of the Jacobian matrix are 

significantly reduced through a compression of both model and data spaces, thereby rendering the 

Hessian and Gradient manipulations computationally feasible. The DCT expands a signal (e.g. 

expressing the subsurface Vp model) into a series of cosine functions oscillating at different 

frequencies. The low-order discrete cosine transform coefficients express most of the variability of 

the original signal, and the model compression is simply accomplished by zeroing the numerical 
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coefficients beyond a certain threshold. Therefore, the compression also helps to reduce the ill-

conditioning of the inversion and mitigate the curse of dimensionality issue.

A crucial aspect of AVA inversion is the preservation of both the mutual and spatial/temporal 

relationships between the elastic parameters as inferred, for example, from available well log data 

(Aleardi et al. 2015). Usually, to avoid inverting large matrices, the AVA inversion is solved for each 

seismic gather independently. However, with this strategy, the spatial continuity of the elastic 

properties in the predicted model could be lost, especially in case of severe noise contamination. In 

this context, the advantage of the DCT lies in the possibility to apply this transformation to 

multidimensional signals as well (e.g. 2-D images). In this case, the order of the retained non-zero 

coefficients determines the wavelength of the recovered, compressed image along different (i.e. 

vertical, horizontal) directions. In our implementation, the compression is applied both to the elastic 

parameters (Vp, Vs, and density) and the seismic data that are treated as 2-D and 3-D images, 

respectively. This strategy allows for a simultaneous estimation of the elastic parameters over the 

entire considered area while guaranteeing the preservation of the temporal and spatial continuity of 

the elastic properties in all the sampled models.

After discussing the theoretical aspects of the proposed inversion scheme, we consider an 

analytical probability density function to illustrate the benefits of the implemented GB-MCMC 

algorithm over standard gradient-free MCMC approaches. Then, the method is applied to synthetic 

seismic data computed on a realistic subsurface elastic model that mimics a clastic geological setting 

in which a turbiditic sequence host gas saturated sand intervals. The outcomes of the implemented 

GB-MCMC approach are also validated and compared with those yielded by a gradient-free MCMC 

sampling (i.e. the Differential Evolution Markov Chain “DEMC”;  Vrugt 2016) still running in the 

reduced data and model spaces and with those provided by a linearized least-squares algorithm that 

inverts each seismic gather separately working in the full model and data spaces. The proposed 

approach needs computing the Jacobian matrix associated with each sampled model. Therefore, we 

also compare the predictions provided by two GB-MCMC implementations: The former uses a 
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computationally intensive, but accurate forward finite-difference scheme to compute the Jacobian 

matrix around each considered model. The latter replaces the Jacobian with a matrix operator derived 

from a linear approximation of the exact Zoeppritz equations after projection onto the compressed 

space (Aleardi and Salusti, 2020).

The main novelty of this paper is the combination of a gradient-based MCMC sampling and a 

DCT compression of both data and model space to efficiently solve the Bayesian non-linear pre-stack 

inversion.

METHODS

Gradient-based MCMC sampling

Gradient-based deterministic inversions are aimed at minimizing a previously defined misfit 

function, which usually is a linear combination of data error and a model regularization term.  For 

Gaussian-distributed noise and model parameters, the error function can be written as follows (Menke 

2018; Aster et al. 2018): 

𝐸(𝐦) = ||𝐂 ―
1
2

𝑑 (𝐝 ― 𝐺(𝐦))||
2

2

+ ||𝐂 ―
1
2

𝑚 (𝐦 ― 𝐦𝑝𝑟𝑖𝑜𝑟)||
2

2

,              (1)

where the vectors  and  identify the model parameters and the observed data, respectively;   𝐦 𝐝 𝐂 ―1/2
𝑑

and  are the data and prior model covariance matrices;  is the prior model vector, and G 𝐂 ―1/2
𝑚 𝐦𝑝𝑟𝑖𝑜𝑟

is the forward modeling operator that maps the model into the corresponding data. The minimum of 𝐸

 can be iteratively approached through a local quadratic approximation of the error function (𝐦)

around the current model :𝐦𝑘

𝐸(𝐦)

= 𝐸(𝐦𝑘 +  ∆𝐦) ≈ 𝐸(𝐦) == 𝐸(𝐦𝑘) + ∆𝐦𝑻∇𝒎𝐄(𝐦𝑘) +
1
2∆𝐦𝑻∇𝟐

𝒎𝐄(𝐦𝑘)∆𝐦 + 𝑂(||∆𝐦||𝟑)
,   (2) 

where ,  whereas  and  represent the first and second derivative of ∆𝐦 = 𝐦 ― 𝐦𝒌 ∇𝒎𝐄(𝐦𝑘) ∇𝟐
𝒎𝐄(𝐦𝑘)

 computed around . In particular, it results that:𝐸(𝐦) 𝐦𝑘
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∇𝒎𝐄(𝐦𝑘) = 𝐠 = 𝐉𝑇𝐂 ―1

𝑑 ∆𝐝(𝐦𝑘) +  𝐂 ―1
𝑚 (𝐦𝑘 ― 𝐦𝑝𝑟𝑖𝑜𝑟),    (3)

and

∇2
𝐦𝐄(𝐦𝑘) = 𝐇 = (𝐉𝑇𝐂 ―1

𝑑 𝐉) ―1 +
∂𝐉𝑇

∂𝐦𝑇𝐂 ―1
𝑑 (∆𝐝(𝐦𝑘)...∆𝐝(𝐦𝑘)) + 𝐂 ―1

𝑚 = 𝐇𝐨 + 𝐁 + 𝐂 ―1
𝑚 ,   (4)

where ,  whereas  denotes the Jacobian ∆𝐝(𝐦𝑘) = 𝐺(𝐦𝑘) ― 𝐝 𝐁 =
∂𝐉𝑇

∂𝐦𝑇𝐂 ―1
𝑑 (∆𝐝(𝐦𝑘)...∆𝐝(𝐦𝑘)), 𝐉

matrix expressing the partial derivative of the data with respect to model parameters. In practical 

applications and for computational feasibility reason, the Hessian matrix is approximated as 

, thus neglecting the partial derivative of the Jacobian with respect to the model. 𝐇 ≈ 𝐇𝒂 = 𝐇𝐨 + 𝐂 ―1
𝑚

The number of rows and columns of the Hessian is equal to the number of data points and model 

parameters, respectively. The quadratic approximation of the error function can be compactly written 

as:

𝐸(𝐦) =
1
2(𝐦 ― 𝐦𝑘 + 𝐇 ―1

𝑎 𝐠)𝑻𝐇𝒂(𝐦 ―  𝐦𝑘 + 𝐇 ―1
𝑎 𝐠) + 𝑐𝑜𝑛𝑠𝑡.,    (5)

Equation 5 shows that the minimizer of  can be computed as𝐸(𝐦)

𝐦𝑘 + 𝟏 = 𝐦𝑘 ― 𝐇 ―1
𝑎 𝐠,     (6)  

where  is called the Newton step. In the context of deterministic inversions, an approximated 𝐇 ―1
𝑎 𝐠

uncertainty quantification can be computed from the inverse of the Hessian matrix at the convergence 

point. In other terms, a local quadratic approximation of the inverse of the curvature of the error 

function gives the uncertainties affecting the recovered solution.  

Differently, a Bayesian inversion aims to estimate the full posterior distribution in the model space 

given by:

𝑝(𝐦│𝐝) =
𝑝(𝐝|𝐦)𝑝(𝐦)

𝑝(𝐝) ,     (7)

where is the posterior probability density (PPD),  is the so-called likelihood 𝑝(𝐦│𝐝) 𝑝(𝐝|𝐦)

function, whereas  and  are the a-priori distributions of model parameters and data, 𝑝(𝐦) 𝑝(𝐝)

respectively. For problems in which the  can not be expressed in a closed form, an MCMC 𝑝(𝐦│𝐝)
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algorithm can be used for a numerical assessment of the posterior model. In this context, the 

probability to move from the current state of the chain  to the next, proposed state is 𝐦𝑘 𝐦𝑘 + 𝟏 

determined according to the Metropolis-Hasting rule: 

α = 𝑝(𝐦𝑘 + 𝟏│𝐦𝑘) =  min[1,
𝑝(𝐦𝑘 + 𝟏)

𝑝(𝐦𝑘) ×
𝑝(𝐝|𝐦𝑘 + 𝟏)

𝑝(𝐝|𝐦𝑘) ×
𝑞(𝐦𝑘|𝐦𝑘 + 𝟏)
𝑞(𝐦𝑘 + 𝟏|𝐦𝑘)],    (8)

where q(.) is the proposal distribution that defines the new state (i.e. model)  as a random 𝐦𝑘 + 𝟏

deviate from a probability distribution  conditioned only on the current state . The  𝑞(𝐦𝑘 + 𝟏|𝐦𝑘) 𝐦𝑘

proposal ratio term vanishes if symmetric proposals are used. For example, the most popular proposal 

strategy uses a Gaussian step centered on the current state  where C is the 𝐦𝑘 + 𝟏 = 𝐦𝑘 + 𝒩(0,𝐂), 

selected covariance matrix of the proposal and  denotes the Gaussian distribution. This method is 𝒩

referred to as the Random Walk Metropolis. If  is accepted, . Otherwise,  is 𝐦𝑘 + 1 𝐦𝑘 = 𝐦𝑘 + 1 𝐦𝑘

repeated in the chain and another state is generated as a random deviate from . The ensemble of 𝐦𝑘

sampled states after the burn-in period is used to numerically compute the statistical properties (e.g. 

mean, mode, standard deviations, marginal densities) of the target posterior probability.  Now we can 

formulate the Bayesian inversion framework in terms of , H and g, under Gaussian assumptions 𝐸(𝐦)

for data, noise, and model parameter distributions; we can write (Tarantola, 2005): 

𝑝(𝐦) ∝ exp( ―
1
2

(𝐦 ― 𝐦𝑝𝑟𝑖𝑜𝑟)𝑻𝐂 ―𝟏
𝒎 (𝐦 ― 𝐦𝑝𝑟𝑖𝑜𝑟)),     (9)

𝑝(𝐝|𝐦) ∝ exp( ―
1
2(𝐝 ― 𝐺(𝐦))𝑻𝐂 ―𝟏

𝒅 (𝐝 ― 𝐺(𝐦))),     (10)

𝑝(𝐦│𝐝) ∝ exp( ―𝐸(𝐦)),      (11)

If we substitute equation 5 into equation 11 we obtain the approximation of the posterior around 

:𝐦𝑘

𝑝(𝐦│𝐝) ≈ 𝑝(𝐦│𝐝) ∝ exp( ―
𝟏
𝟐(𝐦 ― (𝐦𝑘 ― 𝐇 ―1

𝑎 𝐠))𝑻𝐇𝒂(𝐦 ― (𝐦𝑘 ― 𝐇 ―1
𝑎 𝐠))),      (12)
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Equation 12 indicates that the approximation of the PPD is Gaussian distributed 𝑝(𝐦|𝐝) = 𝒩(𝐦𝑘

 with mean equal to the minimizer of  and covariance equal to the inverse of the ― 𝐇 ―1
𝑎 𝐠;𝐇𝒂) 𝐸(𝐦)

Hessian matrix. After constructing a local Gaussian approximation of the posterior density, we can 

now define a sampling method that uses the following proposal density:

𝑞(𝐦) ∝ exp( ―
1
2(𝐦 ― (𝐦𝑘 ― λ𝐇 ―1

𝑎 𝐠))𝑻𝐇𝒂

µ𝟐 (𝐦 ― (𝐦𝑘 ― λ𝐇 ―1
𝑎 𝐠))).      (13)

Each proposed model is accepted according to the Metropolis Hasting rule taking in mind that in 

this case the proposal is not symmetric and for this reason, the proposal ratio should be evaluated. 

However, since the proposal is Gaussian both  and  can be analytically 𝑞(𝐦𝑘 + 𝟏|𝐦𝑘) 𝑞(𝐦𝑘|𝐦𝑘 + 𝟏)

computed.  and  are tunable parameters that determine the step length along the negative gradient λ µ2

direction and the variance of the random perturbation around the minimizer of . These 𝐸(𝐦)

parameters must be properly set to get the desired acceptance rate or in other words to find a good 

compromise between exploitation and exploration of the sampling. More in detail, the  value should λ

be large enough to make the proposal dependent on the gradient information, but small enough so 

that the model update is not dominated by the deterministic information. On the contrary, the  value µ𝟐

should be large enough to ensure an efficient exploration of the model space, but small enough so 

that the gradient information is not completely masked by the random update. We will consider the 

full Hessian and not only its diagonal entries so that possible posterior correlations between the 

inverted parameters are fully taken into account. 

Therefore, we have “tailored” the proposal density  to the underlying local Gaussian 𝑞(𝐦)

approximation of the posterior probability using the derivative information of the error function. From 

a practical point of view, the proposed model can be straightforwardly generated according to:

𝐦𝑘 + 𝟏 = 𝐦𝑘 ― λ𝐇 ―1
𝑎 𝐠 + µ𝐇

―
1
2

𝒂 𝐧,    (14)
 

with , whereas  is a random column vector with the number of rows equal 𝐇 ―𝟏
𝒂 = 𝐇 ―𝟏/𝟐

𝒂 (𝐇 ―𝟏/𝟐
𝒂 )𝑇 𝐧

to the number of model parameters drawn from  where  denotes the identity matrix. 𝒩(0,𝐈), 𝐈
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Note that for a Gaussian PPD and an exact Hessian, the proposed method results in a perfect 

sampling, in which all the samples are independently drawn from the posterior density with an 

acceptance probability equal to 1 (Martin et al. 2012).  Also, note that for  equation 14 gives the µ = 0

standard gradient descent model update. On the contrary, if  we have the standard random walk λ = 0

with some constraints given by the inverse Hessian. It can also be demonstrated that the previous GB-

MCMC approach is related to the Hamiltonian Monte Carlo and Langevin Monte Carlo approaches 

(Martin et al. 2012). Finally, even though the proposal is derived by assuming a local Gaussian 

assumption, it can be used to sample from whatever type of posterior model and under whatever a-

priori assumption (e.g. non-parametric), as it has been done in the following examples.

The major computational requirement of the implemented approach is the need for computing the 

Jacobian associated with each sampled model. When the forward is expressed by a partial differential 

equation the adjoint state method can be used to rapidly estimate the Gradient and Hessian with a 

reduced number of forward evaluations. The Jacobian can be also evaluated using a finite-difference 

scheme or in the case of weakly non-linear problems, a linearized approximation of the non-linear 

forward operator can be adopted as well. An extra computational workload also arises in large 

dimensional spaces due to the manipulation of large Hessian matrices and gradient vectors. In these 

contexts, a compression strategy would be useful to reduce the number of data points and model 

parameters and hence the dimensions of   and . If a finite difference scheme is employed, the 𝐇𝒂 𝐠

compression of the model parameter space also reduces the number of forward evaluations needed 

for the Jacobian computation. 

Discrete Cosine Transform

Several variants of discrete cosine transform exist with slightly modified definitions, but in this 

work, we use the so-called DCT-II formulation that is the most common (Britanak et al. 2010). 

Hereafter we simply refer to the DCT-II as the DCT. We employ this parameterization because it 

exhibits superior compression power over other compression methods (Lochbühler et al. 2014). 
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Geophysical Prospecting Proof for Review
This compression technique can be applied to multidimensional signals (i.e. 2-D matrices) and 

such multi-dimensional transform follows straightforwardly from the one-dimensional definition 

because it is simply a separable product (equivalently, a composition) of DCTs along each dimension. 

For example, if we assume a 2-D density model (x,y) in which x=[0,1,…, -1] and y=[0,1,…, -𝛒 𝑀𝑥 𝑀𝑦

1] represent the horizontal and vertical coordinates, respectively, the associated 2-D transform is 

defined as follows:                                    

{ 𝐑(𝑘𝑥,𝑘𝑦) =
1
𝑀𝑥

1
𝑀𝑦

𝑀𝑥 + 1

∑
𝑥 = 0

𝑀𝑦 + 1

∑
𝑦 = 0

𝛒(𝑥,𝑦),  𝑖𝑓𝑘𝑥 = 𝑘𝑦 = 0

𝐑(𝑘𝑥,𝑘𝑦) =
2

𝑀𝑥

2
𝑀𝑦

𝑀𝑥 + 1

∑
𝑥 = 0

𝑀𝑦 + 1

∑
𝑦 = 0

𝛒(𝑥,𝑦)𝑐𝑜𝑠((2𝑥 + 1)𝜋𝑘𝑥

2𝑀𝑥 )𝑐𝑜𝑠((2𝑦 + 1)𝜋𝑘𝑦

2𝑀𝑦 ),𝑖𝑓𝑘𝑥,𝑘𝑦 ≠ 0

,(15)

where  represent the -th and -th coefficient. The values within the matrix R represent 𝐑(𝑘𝑥,𝑘𝑦) 𝑘𝑥 𝑘𝑦

the unknowns to be estimated in a reparametrized inverse problem. Equation 15 can be compactly 

rearranged in matrix form: 

                                                                (16)                                                               𝐑 = 𝐁𝑦𝛒𝐁𝑇
𝑥,

where  and  are the matrices with dimensions  and , respectively that contain 𝐁𝑥 𝐁𝑦 𝑀𝑥 × 𝑀𝑥 𝑀𝑦 × 𝑀𝑦

the basis functions spanning the compressed space, whereas the  matrix R expresses the 𝑀𝑦 × 𝑀𝑥

DCT coefficients. This approach concentrates most of the information of the original signal into the 

low-order coefficients, and hence an approximation of the subsurface density model can be obtained 

as follows: 

𝛒 = (𝐁𝑞
𝑦)𝑇𝐑𝑞𝑝𝐁𝑝

𝑥,  (17)

where  is the approximated [ ] density model,  is a [ ] matrix containing only the 𝛒 𝑀𝑦 × 𝑀𝑥 𝐁𝑞
𝑦 𝑞 × 𝑀𝑦

first  rows of ;  is a [ ] matrix containing only the first  rows of , whereas the matrix 𝑞 𝐁𝑦 𝐁𝑝
𝑥 𝑝 × 𝑀𝑥 𝑝 𝐁𝑥

 represents the first q rows and p columns of R. In other words, the scalar q and p represent the 𝐑𝑞𝑝

retained number of base functions along the y and x directions used to derive the approximated model. 

Therefore, the DCT transformation allows for a reduction of the ( )-D full density model 𝑀𝑦 × 𝑀𝑥
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Geophysical Prospecting Proof for Review
space to a ( )-D DCT-compressed parameter space with  and . In this context the 𝑞 × 𝑝 𝑝 < 𝑀𝑥 𝑞 < 𝑀𝑦

 non-zero numerical coefficients of the  matrix becomes the unknowns to be estimated after 𝑝 × 𝑞 𝐑𝑞𝑝

a compression of the model space. Estimating the retained coefficients reduces the parameter space 

dimensionality and can significantly improve the computational efficiency of the inversion procedure. 

Figure 1 shows some DCT base functions of different orders in a 2-D space. Note that the variability 

of the solution along each dimension is directly determined by the orders of the retained coefficients. 

The implemented AVA inversion scheme

We consider a 2-D subsurface model in which the parameters to be estimated are the Vp, Vs, and 

density values. The observed data are partial angle stacks computed by separately applying the 

Zoeppritz equations to the elastic properties at each spatial location. For a  subsurface model 𝑀𝑦 × 𝑀𝑥

and for N incidence angles (usually N=3; near, mid, and far stacks), we have  model 3 × 𝑀𝑦 × 𝑀𝑥

parameters to be estimated from  data points. The spatial dimensions , are 𝑁 × (𝑀𝑦 ―1) × 𝑀𝑥 𝑀𝑦 𝑀𝑥 

usually large, and hence the simultaneous estimation of the Vp, Vs, and density over the entire study 

area becomes computationally impractical for both deterministic and MCMC methods: In the former 

case, the large dimension of the Hessian and gradient matrices makes their manipulation and/or 

computation problematic. In the latter, the convergence of the probabilistic sampling is hampered by 

the curse of dimensionality issue. For this reason, common deterministic and probabilistic inversion 

approaches separately estimate the elastic properties at each seismic gather location. This means that 

 inversions are run, each one estimating   parameters from  observations. 𝑀𝑥 3 × 𝑀𝑦 3 × (𝑀𝑦 ―1)

Although this method makes the inversion computationally feasible it does not preserve the spatial 

continuity on the predicted elastic models. To overcome this issue, we compress both data and model 

space. In more details, the Vp, Vs, and density models are treated as separate  images to 𝑀𝑦 × 𝑀𝑥

which the 2-D DCT is applied. Therefore, each  matrix expressing a given elastic property 𝑀𝑦 × 𝑀𝑥

is approximated with a reduced number of coefficients contained within a  matrix  (  and 𝑞 × 𝑝 𝑝 < 𝑀𝑥
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Geophysical Prospecting Proof for Review
. This reduces the full -D elastic space to a compressed  -D space. 𝑞 < 𝑀𝑦) (3 × 𝑀𝑦 × 𝑀𝑥) (3 × 𝑝 × 𝑞)

The compression is also applied to decrease the dimensionality of the data space. In this case, we 

apply a 3-D DCT in which the first two coordinates represent the spatial and temporal directions, 

while the third axis identifies the incidence angles. The application of this transformation allows for 

a reduction of the original -D data space to a )-D space with , (𝑁 × (𝑀𝑦 ―1) × 𝑀𝑥) (𝑏 × 𝑣 × c 𝑏 < 𝑁

 and  (Figure 2). The map between the full data and model spaces is constituted by 𝑣 < 𝑀𝑦 ―1 𝑐 < 𝑀𝑥

the Zoeppritz equations that are separately applied to the elastic properties at each spatial location 

and provide the seismic gathers associated with each sampled model. 

In this context, the GB-MCMC algorithm samples the compressed -D model space (3 × 𝑝 × 𝑞)

and estimate the DCT coefficients expressing the elastic properties from the retained  basis 𝑏 × 𝑣 × c

in the data space. This means that the computation of the proposal ratio, likelihood ratio, and prior 

ratio for each sampled model (see equation 8) is performed in the compressed model and data 

domains. A schematic representation of this strategy is given in Figure 3. We note that multiple 

forward and inverse transformations are needed in each iteration. However, these transformations can 

be run with a negligible computational cost. The sampled models after the burn-in phase are projected 

onto the elastic space through equation 17 to numerically compute the statistical characteristics of the 

PPD in the Vp, Vs, and density domain. 

We assume a non-parametric prior for the elastic parameters in order to properly model their 

facies-dependent behavior, while a stationary Gaussian variogram expresses their lateral and temporal 

variability. Similarly, we assume a Gaussian noise model. The non-parametric prior in the elastic 

domain impedes an analytical derivation of the prior in the compressed space and for this reason, the 

prior model in the compressed space is numerically computed by applying the kernel density 

estimation algorithm to prior elastic realizations projected onto the DCT space. Differently, the 

assumed Gaussian noise model allows for an analytical derivation of the data covariance matrix in 

the compressed data space. 
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Geophysical Prospecting Proof for Review
The main limitation of any GB-MCMC approach arises from the need for computing the gradient 

of the posterior model, and hence this strategy is usually applied to problems in which such derivative 

information can be computed quickly (Neal, 2011). In our case of elastic pre-stack inversion, the 

Jacobian matrix can be derived, for example, by adopting an accurate but computationally quite 

expensive forward finite-difference scheme. In this case,  forward modeling runs are needed 3 × 𝑝 × 𝑞

to compute the Jacobian associated with the current compressed model. The good news is that each 

column of the Jacobian can be independently computed and hence the finite difference computation 

can be easily distributed across different cores.

Another and much less demanding strategy replaces the Jacobian with an analytical operator 

derived from a linear approximation of the full Zoeppritz equations (for example the linear equation 

proposed by Aki and Richards, 1980) properly projected onto the compressed model and data spaces 

(Aleardi, 2020). Note that, in this case, we are inherently assuming that the curvature of the misfit 

function, and hence the variance of the proposal distribution is constant over the entire model space. 

This simplification could decrease the convergence speed of the algorithm, but dramatically reduces 

the computing time of the entire sampling with respect to the finite difference strategy (Aleardi and 

Salusti, 2020). However, it should be also noted that any linear approximation of the Zoeppritz 

equations, although widely employed in AVA studies, is theoretically valid in case of weak elastic 

contrasts at the reflecting interfaces and within a limited angle range (usually not beyond 30-35 

degrees). For this reason, the suitability of this approach should be evaluated case-by-case. In the 

following, we solve the GB-MCMC inversion using both approaches. Their results are also validated 

against those provided by a gradient-free sampling approach (i.e. the Differential Evolution Markov 

Chain; DEMC, Vrugt, 2016) running in the reduced model and data spaces, and with the outcomes 

of a linearized least-squares inversion running in the full elastic and data spaces and inverting each 

seismic gather separately. 

RESULTS
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Analytical example

Before applying the GB-MCMC algorithm, we briefly illustrate the benefits provided by the 

gradient-based sampling over a more standard, gradient-free sampling method. In this section, we 

aim to draw samples from a posterior model derived from the 2-D Rosenbrock function. This function 

has challenging features: its minimum is located at the bottom of a narrow parabolic valley where a 

small change in direction can lead to a steep increase of the gradient. The Rosenbrock can be turned 

into a probability density that maintains the same basic characteristics of the original function, and 

hence it has been frequently adopted to test sampling methods (Christen and Fox, 2010; Pagani et al. 

2019). In this example the posterior model can be expressed as follows:

𝑝(𝑥,𝑦) ∝ exp ( ― (100(𝑦 ― 𝑥2)2 + (1 ― 𝑥)2)).     (18)

We compare the GB-MCMC approach with a random walk Metropolis (RWM). Both algorithms 

have been run for 80000 iterations employing 10 parallel chains and under uninformative prior for 

the x and y variables. The standard deviation of the proposal distribution for the random walk 

Metropolis has been properly set in order to get an acceptance rate lying in the interval [0.2, 0.4].

Figure 4 illustrates that both MCMC approaches provide similar posterior estimations, in good 

agreement with the target density. To assess the convergence of the sampling we use the potential 

scale reduction factor (PSRF), a popular convergence diagnostic tool proposed by Brooks and 

Gelman (1998) to which we refer the reader for its formal definition. This tool compares within-chain 

variances to the variance computed from all mixed chains for a given parameter. In practice, one can 

consider that the convergence to a stable posterior model has been achieved if the potential scale 

reduction factor is lower than 1.1. By the inspection of the PSRF evolution for the two unknown 

parameters (Figures 5a-c), we observe that 50000 iterations are needed by the random walk 

Metropolis to converge toward a stable posterior, while the GB-MCMC converges after only 2000 

iterations. This significant difference is related to the different sampling strategies employed by the 

two approaches. Indeed, Figures 5d-e illustrates that the GB-MCMC not only focus the sampling 

around the most promising zones of the parameter space (i.e. those characterized by high posterior 
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density values) but also uses a proposal that incorporates information about the local covariance 

structure of the target density as provided by the inverse of the Hessian matrix. Differently, the 

random walk proposal is not influenced by the local, geometrical properties of the target posterior 

and thus the proposed model could also be located far away from the posterior maximum. This 

difference also indicates that the acceptance rate for the GB-MCMC is usually much higher than that 

of the random walk Metropolis: in this example, the GB-MCMC acceptance oscillates around 60-

80%, whereas only the 30%, on average, of the proposed states, were accepted by the random walk 

Metropolis. This is another strength of the gradient-based sampling methods because avoid wasting 

computing time to run forward evaluations for proposed models with a low probability to be accepted.

 

Synthetic inversion tests

For the lack of available real seismic data, we discuss synthetic experiments in which we applied 

the implemented approach to invert seismic data generated on a reference model that simulates a 

realistic geological context in which a turbiditic sequence hosts a gas-saturated reservoir (see Figure 

6a). This subsurface model has been derived by integrating the borehole information provided by 

several wells with an accurate geologic interpretation. The true model represents an in-line section 

with 61 time samples and 91 cross-lines. The time sampling is 0.004 s, whereas 50 m is the cross-line 

distance. Figure 6a shows that significant elastic contrasts occur at the interface separating the 

encasing shales from the reservoir sands. 

A forward modeling based on the full Zoeppritz equations computes the observed seismic gathers 

by convolving the angle-dependent reflectivity series with a 30-Hz, zero-phase Ricker wavelet. We 

consider three partial angle stacks corresponding to incidence angles of 0 (near stack), 20 (mid stack), 

and 40 (far stack) degrees. This means that the full model space comprises  61 × 91 × 3 = 16653

parameters to be estimated from  data points.60 × 91 × 3 = 16380

Two columns extracted from the reference models at the horizontal coordinates of 1000 and 3000 

m have been considered as available well log data, used to derive the prior information. We assume 
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Geophysical Prospecting Proof for Review
a non-parametric distribution for the elastic parameters, which has been computed by applying the 

kernel density estimation algorithm (Parzen 1962) to the available well log information (Figure 6b). 

We also assume a stationary 2D Gaussian variogram model in which the vertical and lateral ranges 

have been inferred from the vertical variability of the available well log data and the lateral variability 

of the observed seismic data, respectively. The ranges of the variogram are equal to 0.008 s and 160 

m along the temporal (vertical) and spatial (lateral) directions, respectively.

The previously defined elastic prior model must be projected onto the DCT space where the 

MCMC sampling runs. To this end and given the non-parametric prior, we adopt a Monte Carlo 

simulation approach. The direct-sequential co-simulation method with joint probability distribution 

(Horta and Soares, 2010) has been used to draw 5000 2-D elastic models in accordance with the prior 

assumptions. Such models have been projected onto the compressed space, and the kernel density 

algorithm has been again employed to numerically compute the non-parametric prior in the reduced 

domain for the Vp, Vs, and density (Figure 6c). Two examples of Vp, Vs, and density prior realizations 

are represented in Figure 7. 

The next step is to define the optimal number of coefficients needed to approximate the elastic 

profiles. To this end, we quantified how the explained variability of the elastic properties changes as 

the number of basis functions increases. The selection of the optimal number of coefficients is a very 

delicate step that must guarantee uncertainty estimations, model resolution, and data fitting 

comparable to those achieved by an inversion running in the full, uncompressed space. A detailed 

discussion on how the model and data compressions affect the AVA inversion results is far beyond 

the scope of this work and for this reason, we refer the interested reader to Grana et al. (2019) for 

more theoretical insights. Figure 8 shows the explained variability for a Vp, Vs, and density model 

drawn from the prior as the number of retained coefficients increases. We note that only 25 

coefficients per elastic property (q=p=25) along the two DCT spatial dimensions explain almost the 

total variability of the three elastic parameters. This means that the compression allows for a reduction 

of the -D model space to -D domain. A similar analysis has been carried 16653 25 × 25 × 3 = 1875
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Geophysical Prospecting Proof for Review
out on some seismic gathers derived from prior elastic realizations.  An example is shown in Figure 

9a where the green rectangle encloses the   retained coefficients in the data space 40 × 45 × 2 = 3600

that explain almost the total variability of the uncompressed seismic gather (Figure 9b). Therefore, in 

this case, the full -D data space has been reduced to a 3600-D domain. These data and model 16380

parameter reductions not only guarantees a considerable speed-up in the finite-difference Jacobian 

computation but also drastically reduces the computational cost of the Hessian and gradient 

manipulation. For example, the  Hessian in the full domain has been reduced to a  16653 × 16653

 matrix in the compressed space. 3600 × 3600

In the following inversion tests, we consider two different scenarios: in the former (Test 1) the 

data computed on the reference model have been contaminated with uncorrelated Gaussian random 

noise with a standard deviation of 0.03 that corresponds to the 20% of the total standard deviation of 

the noise-free dataset. However, the popular assumption of uncorrelated noise usually constitutes an 

oversimplification because in real data applications correlated noise can be ascribed, for example, to 

residual of multiple reflections or diffractions not successfully removed during the processing phase. 

For this reason, in the second example (named Test 2 in the following), the observed data have been 

contaminated with both incoherent and coherent Gaussian noise with the same standard deviation 

value of 0.06. The temporal and lateral correlation pattern of the coherent noise is the same as the 

elastic prior model. 

In what follows, we discuss the results provided by the GB-MCMC approaches when the Jacobian 

is computed with a forward finite-difference scheme (GB-MCMC-FD), and when the Jacobian is 

replaced by the linear operator derived from the Aki and Richards equation (GB-MCMC-L). The 

outcomes of these inversions are also benchmarked against the predictions of a gradient-free DEMC 

inversion still running in the reduced model and data spaces and with the results provided by a 

deterministic linearized least-squares inversion running in the full data and model spaces and 

inverting each seismic gather independently. All the considered MCMC inversions take advantage of 

parallel implementations. In the DEMC and GB-MCMC-L each chain is run in parallel, while the 
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GB-MCMC-FD runs the chains serially but distributes the Jacobian computation across different 

cores. 

We start with the results of Test 1 in which the noise model and the source wavelet are assumed 

perfectly known during the inversion phase.  Figure 10 and Figure 11 show the posterior mean models 

and posterior standard deviations provided by the GB-MCMC-FD and GB-MCMC-L approaches, 

respectively. The GB-MCMC-FD and GB-MCMC-L have been run for 10000 iterations and 

employing 10 independent chains. Both algorithms yield similar and congruent estimates of the 

posterior mean and the associated uncertainties. We note that the posterior standard deviation 

increases as the velocities and density values increase. This indicates that the curvature of the error 

function is expected to change over the model space. Figure 12 compares the elastic properties 

extracted at two different spatial coordinates (1200 and 2500 m, respectively) with the posterior mean 

and the 95 % confidence interval estimated by the two GB-MCMC algorithms. We observe that the 

mean model closely reproduces the vertical variations of the true model, and more importantly, the 

posterior mean usually lies within the range depicted by the 95% confidence interval, thus ensuring 

us about the reliability of the final predictions. As an example, Figure 13 shows a comparison between 

the observed data and the data predicted on the mean model provided by the GB-MCMC-L inversion. 

The close similarity between the two seismic datasets prove that the predicted mean model can 

accurately reproduce the observed seismic amplitudes. A similar conclusion would have been drawn 

for the GB-MCMC-FD algorithm. Figures 10-13 demonstrate that both algorithms provide similar 

and congruent model and uncertainty estimations, thereby confirming that in both cases a stable 

posterior model has been reached within the selected number of iterations. For both the GB-MCMC-

FD and GB-MCMC-L inversion we set the  and values to 0.2 and 0.95, respectively. This λ µ2 

combination resulted in an acceptance rate oscillating around 0.7-0.85.

However, If we analyze the evolution of the negative log-likelihood we observe that the two GB-

MCMC implementations are characterized by different convergence speeds toward the stationary 

regime (Figure 14). The GB-MCMC-FD converges to the steady-state in less than 5 iterations, while 
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50 iterations are needed by the GB-MCMC-L, although in both cases the same final likelihood value 

has been reached. This fact is related to the different strategies used to define the Jacobian matrix. In 

other words, a more accurate Jacobian reflects into a more accurate estimate of the local curvature of 

the error function thus guaranteeing a faster convergence toward the stationary regime. At a closer 

inspection, we also observe another difference between the two approaches (see the two close-ups on 

the right of Figure 14). The GB-MCMC-FD shows strongly variable misfit values with iterations, 

while the GB-MCMC-L misfit oscillates with a longer period. This proves that the use of an accurate 

Jacobian guarantees the sampling of maximally decoupled models, while for a linear approximation 

the successively sampled models are mutually correlated. Therefore, the sampling is expected to 

attain accurate uncertainty estimations with a lower number of iterations when the finite-difference 

strategy is adopted (MacKay, 2003). Indeed, Figure 15 shows the evolution of the potential scale 

reduction factor for all the model parameters in the compressed space and for the two algorithms. In 

both cases, as expected, the sampling converges faster for the Vp coefficients since this is the elastic 

parameter better constrained by the data, while a longer sampling is needed to attain stable PPDs for 

the Vs and density coefficients (i.e., Vs and density are less informed by the seismic data). From the 

evolution of the PSRF values, we can claim that the GB-MCMC-FD attains convergence for all the 

parameters with 1000 iterations, while 4000 iterations are needed by the GB-MCMC-L. However, 

the computational costs of a single GB-MCMC-FD and GB-MCMC-L iteration are very different: 30 

s for the former and just 2.5 s, for the latter. This means that, despite the less accurate approximation 

of the Hessian matrix, the GB-MCMC-L attains convergence in less than 3 hours, while more than 8 

hours are needed by the GB-MCMC-FD (see Table 1). 

Figure 16 compares the assumed Gaussian correlograms and the average vertical and spatial 

correlograms computed on the true model and on the posterior solution provided by the GB-MCMC-L 

inversion. We observe that the assumed correlogram is well reproduced by the estimated model, 

which also shows a good agreement with the actual lateral and temporal variability patterns. The 

match between the marginal distributions derived on the true model with those computed on the 
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posterior mean GB-MCMC-L solution also demonstrates that the implemented method guarantees a 

good reproduction of the actual distribution of the elastic parameters in the investigated area (Figure 

17). 

We now present the results of the DEMC and the linearized inversion for Test 1. For the DEMC we 

employ 10 parallel chains evolving for 100000 iterations, with a burn-in period of 70000 samples. In 

Figure 18a we observe that the linearized approach estimates elastic profiles affected by lateral 

scattering related to noise propagation from data to model space. This method converges in a few 

seconds to the final solution but it hampers accurate uncertainty assessments. Figure 18b shows that 

the DEMC algorithm has not reached accurate model estimations and stable uncertainty appraisals 

within the selected number of iterations. In particular, we note scattered standard deviation maps 

completely different from those provided by the two GB-MCMC algorithms. Indeed, the evolution 

of the negative log-likelihood values (Figure 19) proves that the gradient-free sampling has not even 

reached the stationary regime within the selected number of iterations. We point out that the 

acceptance rate of the DEMC oscillated around the optimal values of 0.22-0.33. For this reason, the 

slow convergence toward the steady-state is not related to an erroneous hyperparameters setting but 

to the difficulty in sampling the high-dimensional parameter space starting from random prior 

realizations. In other terms, due to the curse of dimensionality issue, a much higher number of 

iterations is now needed for accurate uncertainty estimations. To reduce the burn-in stage, the starting 

model can be generated from the results of a previous inversion step (for example a fast analytical 

inversion; de Figueiredo et al. 2018). The total computing time for running 100000 DEMC iterations 

was 11.1 hours, while a single iteration of this approach takes on average 0.4 s (Table 1). However, 

since the gradient-free sampling does not even reach the stationary regime within the selected number 

of iterations, we envisage that a much higher computing time is needed to achieve stable posterior 

assessments. The results of Test 1 indicate that, although the extra time needed for vector/matrix 

manipulation and Jacobian computation, both gradient-based MCMC algorithms outperform the 
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gradient-free method because they achieve accurate model estimations and uncertainty appraisals 

with a much lower computational effort. 

In the second test, we want to assess the applicability of the proposed approach to a more realistic 

scenario with a low signal-to-noise ratio and both coherent, and uncorrelated noise affecting the data. 

For the sake of conciseness, we will only present the results provided by the GB-MCMC-L and 

linearized approaches. Indeed, on the one hand, the two GB-MCMC strategies still provided very 

similar predictions, with the GB-MCMC-FD still needing a lower number of iterations to converge, 

but a higher computing time with respect to the  GB-MCMC-L. On the other hand, the DEMC was 

again severely affected by the curse of dimensionality issue: thus, it would have needed a much higher 

computing time than the two GB-MCMC implementations to attain stable posterior estimations. In 

this example, only the uncorrelated Gaussian random noise is taken into account by the data 

covariance matrix, while the source wavelet is again assumed to be known. The hyperparameter 

setting for the GB-MCMC-L inversion is the same previously used in Test 1.

Figure 20 compares the results of the deterministic and GB-MCMC-L algorithms. We observe that 

the inclusion of coherent noise and the overestimation of the signal-to-noise ratio of the data has 

severely decreased the overall quality of the predictions. The linearized inversion provides final 

estimates severely affected by lateral scattering. In this case, the lateral formation boundaries of the 

main gas-saturated reservoir can not be mapped with reasonable accuracy. Differently, in the GB-

MCMC-L predictions, we can still appreciate the significant decrease of Vp, Vs, and density occurring 

at the interface separating the reservoir sand and the encasing shale. As expected, the posterior 

uncertainty is increased with respect to the previous example (compare Figures 20c and 11b), such 

as the sample-by-sample difference between the observed and predicted seismic amplitudes (Figure 

21). The direct comparison of the outcomes of the GB-MCMC-L and deterministic approach better 

highlights the superior predictions achieved by the proposed approach (Figure 22): the mean model 

estimated by the GB-MCMC is usually closer to the true model than the deterministic results. 

However, differently from the previous example we now note that the erroneous assumption in the 
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statistical properties of the noise results in estimated confidence intervals that sometimes do not 

include the true model.  Finally, the inspection of the evolution of the potential scale reduction factor 

(Figure 23) shows that similarly to Test 1, the GB-MCMC-L reaches accurate uncertainty appraisals 

for all the model parameters in 4000 iterations, approximately.  

DISCUSSION

The aim of this work was twofold: implementing an sampling algorithm for accurate and fast 

uncertainty assessments in non-linear AVA inversion and mitigating the curse-of-dimensionality 

issues, thus allowing for a simultaneous estimation of the elastic properties along the entire considered 

2-D section. To this end, we combined a GB-MCMC sampling with a DCT reparameterization of 

both data and model spaces. 

We compared two different implementations of the GB-MCMC method: The first uses a finite-

difference scheme to compute the Jacobian (named GB-MCMC-FD), while the second replaces the 

Jacobian with a matrix operator derived from a linearization of the Zoepprtiz equation (named GB-

MCMC-L). Theoretically, the validity of the linear approximation of the Zoeppritz equations depends 

on the considered angle range and the magnitude of the elastic contrasts at the reflecting interfaces. 

However, in our tests, this strategy provided satisfactory model predictions and uncertainty 

quantifications comparable to those yielded by the GB-MCMC-FD algorithm, although the reference 

model was characterized by significant elastic contrasts at the interface separating the encasing shale 

from the reservoir sand. Besides, the GB-MCMC-L approach made it also possible for a significant 

reduction of the computational cost of a single GB-MCMC inversion. This reduced computational 

effort occurs at the expense of a slower convergence toward the stationary regime and to an overall 

decrease in the independence of successively sampled models. The choice of replacing the Jacobian 

with the linear matrix operator must be considered case-by-case and should constitute a compromise 

between the sampling efficiency and the computational cost of the GB-MCMC inversion. Another 

possibility is to employ the finite-difference strategy only for the first iterations when the stationary 
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regime is not yet attained and hence maintaining the same Jacobian during the sampling stage. This 

recipe should guarantee a faster convergence toward the steady-state and a more efficient sampling, 

with a limited extra computational cost. 

The computing times shown in Table 1 refer to Matlab codes running on a single server equipped 

with two deca-core intel E5-2630 at 2.2 GHz (128 Gb RAM). So there is still room for a substantial 

decrease of the computational costs of the GB-MCMC inversion, for example by running the codes 

on a large computer cluster or utilizing fast computing units and/or adopting a more efficient 

implementation (e.g., codes written in a lower-level programming language). The computational cost 

of the GB-MCMC inversion related to the computation of the inverse Hessian can be also reduced by 

dropping the off-diagonal entries of . This strategy results in a proposal distribution that neglects 𝐇𝒂

the possible correlation between model parameters, which might have a negative impact on the 

convergence rate of the sampling.

A proper setting of the hyperparameters λ and µ is important for the efficiency of the sampling.  

Indeed, a poorly chosen parameter combination would result in a slow convergence toward stable 

uncertainty estimations. A good parameter combinations would guarantee a good compromise 

between exploitation and exploration, rendering reasonable acceptance rates. The λ parameter acts as 

the step length in gradient descent methods. Its value should be similar to the one used in gradient-

based local optimization methods so that the linearized Taylor expansion is still locally valid. The µ 

parameter determines the variance of the proposal distribution: A too small µ would results in poor 

mixing, while a too-large µ would decrease the acceptance rate.  In our experiments, we found the 

optimal combination using a trial-and-error procedure in which our goal was to get an acceptance rate 

around 0.7-0.8 during the sampling stage. Another viable strategy could be employing a self-adaptive 

scheme (Haario et al., 2001; Atchadé, 2006) that automatically adjusts the proposal variance during 

the sampling process. However, the many inversion tests we carried out showed that the optimal 

acceptance rate can be achieved by many different parameter combinations and hence a proper 

selection of λ and µ is not that hard to find; for example in the previous tests a good compromise 
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between exploitation and exploration is guaranteed for  and  values lying in the range [0.1, 0.7] λ µ2

and [0.5, 1.5], respectively. From our experiments also emerged that if the approximated Hessian is 

used, a good values should lie in the range ]0, 1] because a higher  puts more emphasis on the λ λ

exploitation while penalizing the exploration. On the other hand, an optimal  value is usually around µ2

1. Appendix A uses a didactic example to analyze the effect of the  and  values on the sampling λ µ2

efficiency. 

The implemented method can be also extended to 3-D models and in this case, a 4-D 

transformation must be used to compress the data space. Some experiments on a 3D elastic model 

with 61 time samples,  cross-line and 91 in-line have been carried out employing the same Matlab 91

implementation previously considered. In these preliminary tests, the DCT allowed for a compression 

of the full 1515423-D elastic space into a -D  domain. However, the 25 × 25 × 25 × 3 = 46875

current Matlab implementation and the limited available hardware resources make the computation 

of the Jacobian, the derivation of the inverse Hessian, and also the manipulation of both the Hessian 

and Gradient, prohibitive. In this context, the GB-MCMC-FD approach is unfeasible, while the GB-

MCMC-L works but requires more than a week of computing time to converge. For this reason, a 

more scalable inversion code and additional hardware resources are needed to invert 3D data. 

Regarding the performance scaling of the adopted GB-MCMC recipe, Martins et al. (2012) observed 

similar convergence rates for different model space dimensionalities. They claimed that although this 

desirable characteristic is not yet proved theoretically, the numerical observations seem to indicate 

an insensitivity of convergence of the proposed GB-MCMC method to the parameter dimension. We 

refer the interested reader to Martins et al. (2012) for a more in-depth discussion of this aspect. 

CONCLUSIONS

We presented a gradient-based MCMC method for casting the non-linear elastic pre-stack 

inversion into a solid Bayesian framework that also guarantees fast convergence toward stable PPD 

assessments. The key idea is to guide the parameter sampling by exploiting the gradient and Hessian 
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information of the PPD, thereby generating proposal densities that are locally a good approximation 

of the target posterior. This results in a proposal distribution that is easy to construct, and in an 

increased efficiency of the probabilistic sampling: the gradient guides the sampling toward “better” 

solutions, whereas the random perturbation term avoids entrapments in local maxima of the PPD. The 

good compromise between the gradient and random perturbation (that is the optimal compromise 

between exploitation and exploration) can be found by adjusting two hyperparameters (λ and µ). We 

reduced the computational effort related to Hessian and gradient manipulation and Jacobian 

computation by employing a discrete cosine transform reparameterization of data and model spaces. 

Our synthetic inversion experiments showed very promising results, in which the posterior mean 

model well reproduced the ground truth even when coherent noise contaminates the seismic gathers, 

and for erroneous assumptions about the noise properties. Our results indicated that the exploitation 

of the Hessian and gradient information always guarantees a much faster convergence toward stable 

uncertainty estimations than a gradient-free MCMC algorithm. The use of the finite-difference 

scheme reduced the number of iterations needed to achieve stable PPDs, but it required a significant 

extra computational cost per iteration for the Jacobian computation. Deriving the Jacobian from a 

linear approximation of the Zoeppritz equations decreased the sampling efficiency (e.g. slower 

convergence toward the stationary regime and increase of the correlation value between successively 

sampled models) but it also greatly reduced the computing time to attain convergence. However, the 

applicability of this strategy should be evaluated case-by-case because the validity of the linearization 

of the Zoeppritz equations depends on the considered angle range and the elastic contrasts at the 

reflective interfaces. The computational cost of the GB-MCMC inversion is orders of magnitude 

higher than that of the deterministic approaches. However, the main advantage of any MCMC 

algorithm over deterministic inversions is the possibility to evaluate the posterior uncertainties. 
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APPENDIX A

To investigate in more detail the effects of the  and  values on the sampling efficiency of the λ µ2

GB-MCMC inversion we consider a simple example with a 2-D multivariate target density. We run 

two different tests: in the first, we set   and , whereas in the second  and λ = 0.05 µ2 = 3  λ = 0.5 µ2 =

. Both tests use 5 independent chains running for just 1000 iterations. Figure 24 demonstrates that 0.5

in both cases we get a reasonable prediction of the target density, despite the limited maximum 

number of iterations considered. However, the inspection of the PSRF highlights that in the first test 

more than 500 iterations are needed to reach the threshold of convergence, while in the second case 

the convergence is attained in less than 150 iterations. This proves that in the first case we select a 

too low  value and a too-high  thus meaning that we are promoting the exploration at the expense λ µ2

of the exploitation. Instead, in the second case, the hyperparameter setting guarantees an efficient 

sampling of the parameter space that results in a rapid convergence toward a stable PPD.
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FIGURE LEGENDS

Figure 1: 2-D DCT base functions of different orders. Dark and light colors code low and high 

numerical values, respectively.

Figure 2: Derivation of data and model space vectors in the DCT space from the elastic properties 

and seismic gathers.

Figure 3: Schematic representation of the GB-MCMC inversion scheme. Green and pink 

rectangles refer to steps performed in the reduced and full spaces, respectively. 

Figure 4: a) True posterior density function. b) Posterior density provided by the random walk 

Metropolis. c) Posterior density estimated by the GB-MCMC. The colormap codes the normalized 

probability values. 

Figure 5: a) Evolution of the potential scale reduction factor for the random walk Metropolis. b) 

Evolution of the potential scale reduction factor for the GB-MCMC. c) Close-up of b). In a)-c) the 

horizontal dotted green lines represent the threshold of convergence, whereas the blue and red lines 

refer to the x and y variables, respectively. d) Example of current, proposed model, and proposal 

distribution for the random walk Metropolis. e) Example of current, proposed model, and proposal 

distribution for the GB-MCMC. In d) and e) the magenta curves represents the contour lines of the 

proposal while the colored curves are the contour lines of the Rosenbrock error function. 

Figure 6: a) The elastic properties of Vp, Vs, and density of the reference model. In a) the black 

arrows point toward the main sand reservoir body, whereas the dotted red lines depict the columns of 

the model considered as available well log data for defining the a-priori elastic distribution. b) The 

marginal non-parametric prior distributions for the three elastic properties derived from the two wells 

shown in a). c) The marginal prior projected onto the compressed space through a Monte Carlo 

simulation.
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Figure 7: a), b) Two examples of Vp, Vs, and density model drawn from the non-parametric elastic 

prior. 

Figure 8: Examples of explained model variability for an elastic model extracted from the prior 

and as the number of coefficients along the 1st and 2nd DCT dimension increases. In each plot, the 

numerical value with coordinate (x, y) indicates the explained variability if the first x, and y 

coefficients along the 1st and 2nd dimensions, respectively, are used for compressing the model. It 

emerges that 25 coefficients along both the 1st dimension explain almost the 100 % of the variability 

of the uncompressed Vp, Vs, and density profiles.

Figure 9: a) DCT decomposition of a seismic gather computed on an elastic model drawn from the 

prior. Blue and red colors code low and high values, respectively while the green rectangles enclose 

the retained coefficients in the data space. b) Explained data variability as the number of considered 

basis functions increases. 

Figure 10: Results provided by the GB-MCMC-FD approach for Tests 1. a) A-posteriori mean 

model. b) Posterior standard deviation. In a), and b) the Vp, Vs, and density are represented from left 

to right.

Figure 11: As in Figure 10 but for the GB-MCMC-L approach. 

Figure 12: Comparison between the true model, the posterior mean, and 95% confidence interval 

at two different spatial locations. a) GB-MCMC-FD. b) GB-MCMC-L. The leftmost plot refers to the 

spatial position of 1200 m, while the plot on the right refers to the spatial position of 2500 m. 

Figure 13: Comparison between observed data (left column), predicted data (central column), and 

their sample-by-sample difference (right column) for Test 1. The predicted data have been computed 

on the mean posterior model estimated by the GB-MCMC-L algorithm. a), b), and c) refer to near, 

mid and far stack, respectively. 
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Figure 14: Evolution of the negative log-likelihood values for the GB-MCMC-FD and GB-

MCMC-L inversions (part a) and b), respectively). Each color represents a different chain. 

Figure 15: Evolution of the potential scale reduction factor over iterations for the DCT coefficients 

associated with the three elastic properties. a) GB-MCMC-FD. b) GB-MCMC-L. The red dotted lines 

depict the threshold of convergence. 

Figure 16: Comparison between the lateral (a) and vertical (b) assumed correlogram functions with 

the average correlograms computed on the true model (blue line) and on the posterior mean estimated 

by the GB-MCMC-L algorithm (red lines). From left to right we represent Vp, Vs, and density. 

Figure 17: Marginal probabilities for the three elastic parameters computed on the true model and 

on the posterior mean estimated by the GB-MCMC-L algorithm. 

Figure 18: a) Results of the linearized least-squares inversion. b) Estimated mean model by the 

DEMC algorithm. c) Posterior standard deviation estimated by the DEMC algorithm.  

Figure 19: Evolution of the negative log-likelihood value during the DEMC sampling. Each color 

refers to a different chain.

Figure 20: Results for Test 2: a) Vp, Vs, and density profiled estimated by the linearized least-

squares approach. b) Posterior mean model provided by the GB-MCMC-L approach. c) Posterior 

standard deviation estimated by the GB-MCMC-L inversion. 

Figure 21: Comparison between observed data (left column), predicted data (central column), and 

their sample-by-sample difference (right column) for Test 2. The predicted data have been computed 

on the mean posterior model estimated by the GB-MCMC-L algorithm. a), b) and c) refer to near, 

mid and far stack, respectively.
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Figure 22: Comparison between the true model, the deterministic inversion results, the posterior 

mean, and 95% confidence interval estimated by the GB-MCMC- L approach. a) refers to the spatial 

position of 1200 m, while b) refers to the spatial position of 2500 m.

Figure 23: Evolution of the potential scale reduction factor over iterations and for the coefficients 

associated with the three elastic properties. The dotted red lines depict the threshold of convergence.

Figure 24: GB-MCMC sampling of a 2D multivariate density for different hyperparameter 

settings. a)  and . b)  and . From left to right we represent the target λ = 0.05 µ2 = 3 λ = 0.5 µ2 = 0.5

probability density, the estimated probability density, and the evolution of the PSRF for the two 

parameters. Blue and yellow colors code low and high probability values, respectively. On the 

rightmost plot, the horizontal dotted green line represents the threshold of convergence, whereas the 

blue and red lines refer to the x and y variable, respectively.
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ABSTRACT

The main challenge of Markov Chain Monte Carlo sampling is to define a proposal distribution that 

simultaneously is a good approximation of the posterior probability while being inexpensive to 

manipulate. We present a gradient-based Markov Chain Monte Carlo inversion for elastic pre-stack 

inversion in which the posterior sampling is accelerated by defining a proposal that is a local, 

Gaussian approximation of the posterior model, while a non-parametric prior distribution is assumed 

for the distribution of the elastic properties. The proposal is constructed from the local Hessian and 

gradient information of the log posterior, whereas the non-linear, exact Zoeppritz equations constitute 

the forward modeling engine for the inversion procedure. Hessian and gradient information is made 

computationally tractable by a reduction of data and model spaces through a Discrete Cosine 

Transform reparameterization. This reparameterization acts as a regularization operator in the model 

space, while also preserving the spatial and temporal continuity of the elastic properties in the 

sampled models. We test the implemented algorithm on synthetic pre-stack inversions under different 

signal-to-noise ratios in the observed data. We also compare the results provided by the presented 

method when a computationally expensive (but accurate) finite-difference scheme is used for the 

Jacobian computation, with those obtained when the Jacobian is derived from a linearization of the 

exact Zoeppritz equations. The outcomes of the proposed approach are also compared against those 

yielded by a gradient-free Monte Carlo sampling method and by a deterministic least-squares 
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inversion. Our tests demonstrate that the gradient-based sampling reaches accurate uncertainty 

estimations with a much lower computational effort than the gradient-free approach.

Keywords: AVA; Seismic inversion; Uncertainties.

INTRODUCTION

The great challenge in solving geophysical inverse problems lies in the fact that they are usually 

ill-posed: different combinations of model parameters are consistent with the observed data. No 

uniqueness in the recovered solution arises from noisy measurements, sparse observations, prior 

uncertainties, and approximation in the forward model that maps the model parameters into the 

observed data. The deterministic approach to geophysical inversion guarantees a rapid convergence 

toward a best-fitting model, but is incapable of accounting for the uncertainties affecting the 

recovered solution. On the contrary, Bayesian inference provides a systematic framework for 

incorporating and propagating the uncertainties in observed data, prior knowledge, and forward 

operator into the uncertainties affecting the recovered model (Tarantola, 2005).  The final solution of 

a Bayesian inversion is the so-called posterior probability density (PPD) function in model space that 

fully quantifies the uncertainties in the recovered solution. However, an analytical uncertainty 

assesment is only possible for linear forward operators and Gaussian assumptions about model, data, 

and noise distributions. In all the other cases, Markov Chain Monte Carlo sampling methods can be 

used to numerically assess the posterior density (Sen and Stoffa, 1996; Sambridge and Moseegard, 

2002; Sen and Stoffa, 2013). However, expensive forward model operators and high-dimensional 

parameter spaces make the application of MCMC algorithms computationally unfeasible. Indeed, it 

is known that the sampling ability of these methods dramatically decreases in large-dimensional 

problems due to the so-called curse of dimensionality issue (Curtis and Lomax 2001). In these 

contexts, traditional sampling methods might require billions of forward evaluations before 

converging to stable posterior uncertainties. 
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More in detail, MCMC algorithms generate samples by perturbing the current state of the chain 

(current model) according to a proposal distribution. Once generated, the Metropolis-Hasting 

criterion is used to either accept or reject the proposed sample. This process generates a chain of 

samples whose distribution asymptotically converges to the target PPD. Theoretically, for an infinite 

number of samples, the estimated distribution does not depend on the choice of the proposal. 

However, from a more practical perspective, the Monte Carlo sampling is maximally efficient when 

the proposal is a good approximation of the target density. For this reason, the definition of an 

appropriate proposal is of crucial importance for an efficient probabilistic sampling. The setting of an 

optimal proposal is especially of great importance in large-dimensional parameter spaces, where a 

significant mismatch between the proposal and the target density can drastically affect the 

performance of the sampling: persistent rejections of models, entrapment in local maxima of the PPD, 

and a dramatic increase in the number of forward evaluations needed to attain stable uncertainty 

estimations.  When the classical random walk Metropolis algorithm is employed, a good compromise 

between the exploitation and exploration of the sampling is usually determined by a trial and error 

procedure in which different hyperparameters defining the proposal are tuned. However, more 

sophisticated MCMC recipes can be adopted (e.g. self-adaptive MCMC algorithms, preconditioned 

MCMC, hybrid MCMC approaches; Tierney and Mira 1999; Haario et al. 1999; Haario et al. 2001; 

Haario et al. 2006; ter Braak and Vrugt 2008; Turner and Sederberg 2012; Sambridge 2013; Vrugt 

2016; Holmes et al. 2017). For example, self-adaptive algorithms, iteratively adjust the proposal to 

the local shape of the posterior. As an alternative, Gradient-Based MCMC (GB-MCMC) (e.g. 

Hamiltonian Monte Carlo, Langevin Monte Carlo; Sen and Biswaw; 2017; Fichtner and Simutè, 

2018; Fichtner and Zunino, 2019; Fichtner et al. 2019; Gebrad et al. 2020; Aleardi and Salusti 2020; 

Aleardi, 2020a) exploit the gradient information of the misfit function (the negative natural logarithm 

of the posterior) to efficiently explore the model space and to rapidly converge toward stable posterior 

uncertainties (MacKay, 2003; Neal 2011). The main computational requirement of these methods is 

the need for computing derivatives, although this information is highly beneficial to speeding up the 
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convergence of the sampling and to guarantee high independence of the samples while maintaining 

high acceptance rates. 

It is also well known that MCMC algorithms work well in reduced spaces (Lieberman et al. 2010), 

and hence a popular approach to deal with high-dimensional problems is to use a reparameterization 

strategy that decreases the number of unknowns. In this case, the full state space is projected onto a 

limited number of basis functions and the algorithm generates samples in this reduced domain. This 

technique must be applied taking in mind that part of the information in the original (unreduced) 

parameter space could be lost in the reduced space and for this reason, the model parameterization 

must always constitute a compromise between model resolution and model uncertainty 

(Dejtrakulwong et al. 2012; Lochbühler et al. 2014; Aleardi 2019; Grana et al. 2019; Aleardi 2020b).

Here we propose a sampling strategy in which a gradient-based MCMC algorithm is combined 

with a compression of data and model space through a Discrete Cosine Transform (DCT). In 

particular, on the line of Martin et al. (2012), we exploit the geometrical properties of the misfit 

function to greatly speed up the probabilistic sampling. The approach is derived by analogy with the 

classical Newton approach to deterministic inversion and it defines a proposal density based on a 

local Gaussian approximation to the target PPD informed by local Hessian information. We apply 

this strategy to solve a Bayesian amplitude versus angle (AVA) inversion in which the subsurface 

elastic properties of P-wave velocity (Vp), S-wave velocity (Vs), and density are inferred from 

partially stacked seismic data at different incidence angles, while the exact Zoeppritz equations 

constitute the forward modeling operator. In our approach the dimensions of the Jacobian matrix are 

significantly reduced through a compression of both model and data spaces, thereby rendering the 

Hessian and Gradient manipulations computationally feasible. The DCT expands a signal (e.g. 

expressing the subsurface Vp model) into a series of cosine functions oscillating at different 

frequencies. The low-order discrete cosine transform coefficients express most of the variability of 

the original signal, and the model compression is simply accomplished by zeroing the numerical 
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coefficients beyond a certain threshold. Therefore, the compression also helps to reduce the ill-

conditioning of the inversion and mitigate the curse of dimensionality issue.

A crucial aspect of AVA inversion is the preservation of both the mutual and spatial/temporal 

relationships between the elastic parameters as inferred, for example, from available well log data 

(Aleardi et al. 2015). Usually, to avoid inverting large matrices, the AVA inversion is solved for each 

seismic gather independently. However, with this strategy, the spatial continuity of the elastic 

properties in the predicted model could be lost, especially in case of severe noise contamination. In 

this context, the advantage of the DCT lies in the possibility to apply this transformation to 

multidimensional signals as well (e.g. 2-D images). In this case, the order of the retained non-zero 

coefficients determines the wavelength of the recovered, compressed image along different (i.e. 

vertical, horizontal) directions. In our implementation, the compression is applied both to the elastic 

parameters (Vp, Vs, and density) and the seismic data that are treated as 2-D and 3-D images, 

respectively. This strategy allows for a simultaneous estimation of the elastic parameters over the 

entire considered area while guaranteeing the preservation of the temporal and spatial continuity of 

the elastic properties in all the sampled models.

After discussing the theoretical aspects of the proposed inversion scheme, we consider an 

analytical probability density function to illustrate the benefits of the implemented GB-MCMC 

algorithm over standard gradient-free MCMC approaches. Then, the method is applied to synthetic 

seismic data computed on a realistic subsurface elastic model that mimics a clastic geological setting 

in which a turbiditic sequence host gas saturated sand intervals. The outcomes of the implemented 

GB-MCMC approach are also validated and compared with those yielded by a gradient-free MCMC 

sampling (i.e. the Differential Evolution Markov Chain “DEMC”;  Vrugt 2016) still running in the 

reduced data and model spaces and with those provided by a linearized least-squares algorithm that 

inverts each seismic gather separately working in the full model and data spaces. The proposed 

approach needs computing the Jacobian matrix associated with each sampled model. Therefore, we 

also compare the predictions provided by two GB-MCMC implementations: The former uses a 
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computationally intensive, but accurate forward finite-difference scheme to compute the Jacobian 

matrix around each considered model. The latter replaces the Jacobian with a matrix operator derived 

from a linear approximation of the exact Zoeppritz equations after projection onto the compressed 

space (Aleardi and Salusti, 2020).

The main novelty of this paper is the combination of a gradient-based MCMC sampling and a 

DCT compression of both data and model space to efficiently solve the Bayesian non-linear pre-stack 

inversion.

METHODS

Gradient-based MCMC sampling

Gradient-based deterministic inversions are aimed at minimizing a previously defined misfit 

function, which usually is a linear combination of data error and a model regularization term.  For 

Gaussian-distributed noise and model parameters, the error function can be written as follows (Menke 

2018; Aster et al. 2018): 

𝐸(𝐦) = ||𝐂 ―
1
2

𝑑 (𝐝 ― 𝐺(𝐦))||
2

2

+ ||𝐂 ―
1
2

𝑚 (𝐦 ― 𝐦𝑝𝑟𝑖𝑜𝑟)||
2

2

,              (1)

where the vectors  and  identify the model parameters and the observed data, respectively;   𝐦 𝐝 𝐂 ―1/2
𝑑

and  are the data and prior model covariance matrices;  is the prior model vector, and G 𝐂 ―1/2
𝑚 𝐦𝑝𝑟𝑖𝑜𝑟

is the forward modeling operator that maps the model into the corresponding data. The minimum of 𝐸

 can be iteratively approached through a local quadratic approximation of the error function (𝐦)

around the current model :𝐦𝑘

𝐸(𝐦)

= 𝐸(𝐦𝑘 +  ∆𝐦) ≈ 𝐸(𝐦) == 𝐸(𝐦𝑘) + ∆𝐦𝑻∇𝒎𝐄(𝐦𝑘) +
1
2∆𝐦𝑻∇𝟐

𝒎𝐄(𝐦𝑘)∆𝐦 + 𝑂(||∆𝐦||𝟑)
,   (2) 

where ,  whereas  and  represent the first and second derivative of ∆𝐦 = 𝐦 ― 𝐦𝒌 ∇𝒎𝐄(𝐦𝑘) ∇𝟐
𝒎𝐄(𝐦𝑘)

 computed around . In particular, it results that:𝐸(𝐦) 𝐦𝑘
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∇𝒎𝐄(𝐦𝑘) = 𝐠 = 𝐉𝑇𝐂 ―1

𝑑 ∆𝐝(𝐦𝑘) +  𝐂 ―1
𝑚 (𝐦𝑘 ― 𝐦𝑝𝑟𝑖𝑜𝑟),    (3)

and

∇2
𝐦𝐄(𝐦𝑘) = 𝐇 = (𝐉𝑇𝐂 ―1

𝑑 𝐉) ―1 +
∂𝐉𝑇

∂𝐦𝑇𝐂 ―1
𝑑 (∆𝐝(𝐦𝑘)...∆𝐝(𝐦𝑘)) + 𝐂 ―1

𝑚 = 𝐇𝐨 + 𝐁 + 𝐂 ―1
𝑚 ,   (4)

where ,  whereas  denotes the Jacobian ∆𝐝(𝐦𝑘) = 𝐺(𝐦𝑘) ― 𝐝 𝐁 =
∂𝐉𝑇

∂𝐦𝑇𝐂 ―1
𝑑 (∆𝐝(𝐦𝑘)...∆𝐝(𝐦𝑘)), 𝐉

matrix expressing the partial derivative of the data with respect to model parameters. In practical 

applications and for computational feasibility reason, the Hessian matrix is approximated as 

, thus neglecting the partial derivative of the Jacobian with respect to the model. 𝐇 ≈ 𝐇𝒂 = 𝐇𝐨 + 𝐂 ―1
𝑚

The number of rows and columns of the Hessian is equal to the number of data points and model 

parameters, respectively. The quadratic approximation of the error function can be compactly written 

as:

𝐸(𝐦) =
1
2(𝐦 ― 𝐦𝑘 + 𝐇 ―1

𝑎 𝐠)𝑻𝐇𝒂(𝐦 ―  𝐦𝑘 + 𝐇 ―1
𝑎 𝐠) + 𝑐𝑜𝑛𝑠𝑡.,    (5)

Equation 5 shows that the minimizer of  can be computed as𝐸(𝐦)

𝐦𝑘 + 𝟏 = 𝐦𝑘 ― 𝐇 ―1
𝑎 𝐠,     (6)  

where  is called the Newton step. In the context of deterministic inversions, an approximated 𝐇 ―1
𝑎 𝐠

uncertainty quantification can be computed from the inverse of the Hessian matrix at the convergence 

point. In other terms, a local quadratic approximation of the inverse of the curvature of the error 

function gives the uncertainties affecting the recovered solution.  

Differently, a Bayesian inversion aims to estimate the full posterior distribution in the model space 

given by:

𝑝(𝐦│𝐝) =
𝑝(𝐝|𝐦)𝑝(𝐦)

𝑝(𝐝) ,     (7)

where is the posterior probability density (PPD),  is the so-called likelihood 𝑝(𝐦│𝐝) 𝑝(𝐝|𝐦)

function, whereas  and  are the a-priori distributions of model parameters and data, 𝑝(𝐦) 𝑝(𝐝)

respectively. For problems in which the  can not be expressed in a closed form, an MCMC 𝑝(𝐦│𝐝)
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Geophysical Prospecting Proof for Review
algorithm can be used for a numerical assessment of the posterior model. In this context, the 

probability to move from the current state of the chain  to the next, proposed state is 𝐦𝑘 𝐦𝑘 + 𝟏 

determined according to the Metropolis-Hasting rule: 

α = 𝑝(𝐦𝑘 + 𝟏│𝐦𝑘) =  min[1,
𝑝(𝐦𝑘 + 𝟏)

𝑝(𝐦𝑘) ×
𝑝(𝐝|𝐦𝑘 + 𝟏)

𝑝(𝐝|𝐦𝑘) ×
𝑞(𝐦𝑘|𝐦𝑘 + 𝟏)
𝑞(𝐦𝑘 + 𝟏|𝐦𝑘)],    (8)

where q(.) is the proposal distribution that defines the new state (i.e. model)  as a random 𝐦𝑘 + 𝟏

deviate from a probability distribution  conditioned only on the current state . The  𝑞(𝐦𝑘 + 𝟏|𝐦𝑘) 𝐦𝑘

proposal ratio term vanishes if symmetric proposals are used. For example, the most popular proposal 

strategy uses a Gaussian step centered on the current state  where C is the 𝐦𝑘 + 𝟏 = 𝐦𝑘 + 𝒩(0,𝐂), 

selected covariance matrix of the proposal and  denotes the Gaussian distribution. This method is 𝒩

referred to as the Random Walk Metropolis. If  is accepted, . Otherwise,  is 𝐦𝑘 + 1 𝐦𝑘 = 𝐦𝑘 + 1 𝐦𝑘

repeated in the chain and another state is generated as a random deviate from . The ensemble of 𝐦𝑘

sampled states after the burn-in period is used to numerically compute the statistical properties (e.g. 

mean, mode, standard deviations, marginal densities) of the target posterior probability.  Now we can 

formulate the Bayesian inversion framework in terms of , H and g, under Gaussian assumptions 𝐸(𝐦)

for data, noise, and model parameter distributions; we can write (Tarantola, 2005): 

𝑝(𝐦) ∝ exp( ―
1
2

(𝐦 ― 𝐦𝑝𝑟𝑖𝑜𝑟)𝑻𝐂 ―𝟏
𝒎 (𝐦 ― 𝐦𝑝𝑟𝑖𝑜𝑟)),     (9)

𝑝(𝐝|𝐦) ∝ exp( ―
1
2(𝐝 ― 𝐺(𝐦))𝑻𝐂 ―𝟏

𝒅 (𝐝 ― 𝐺(𝐦))),     (10)

𝑝(𝐦│𝐝) ∝ exp( ―𝐸(𝐦)),      (11)

If we substitute equation 5 into equation 11 we obtain the approximation of the posterior around 

:𝐦𝑘

𝑝(𝐦│𝐝) ≈ 𝑝(𝐦│𝐝) ∝ exp( ―
𝟏
𝟐(𝐦 ― (𝐦𝑘 ― 𝐇 ―1

𝑎 𝐠))𝑻𝐇𝒂(𝐦 ― (𝐦𝑘 ― 𝐇 ―1
𝑎 𝐠))),      (12)
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Geophysical Prospecting Proof for Review
Equation 12 indicates that the approximation of the PPD is Gaussian distributed 𝑝(𝐦|𝐝) = 𝒩(𝐦𝑘

 with mean equal to the minimizer of  and covariance equal to the inverse of the ― 𝐇 ―1
𝑎 𝐠;𝐇𝒂) 𝐸(𝐦)

Hessian matrix. After constructing a local Gaussian approximation of the posterior density, we can 

now define a sampling method that uses the following proposal density:

𝑞(𝐦) ∝ exp( ―
1
2(𝐦 ― (𝐦𝑘 ― λ𝐇 ―1

𝑎 𝐠))𝑻𝐇𝒂

µ𝟐 (𝐦 ― (𝐦𝑘 ― λ𝐇 ―1
𝑎 𝐠))).      (13)

Each proposed model is accepted according to the Metropolis Hasting rule taking in mind that in 

this case the proposal is not symmetric and for this reason, the proposal ratio should be evaluated. 

However, since the proposal is Gaussian both  and  can be analytically 𝑞(𝐦𝑘 + 𝟏|𝐦𝑘) 𝑞(𝐦𝑘|𝐦𝑘 + 𝟏)

computed.  and  are tunable parameters that determine the step length along the negative gradient λ µ2

direction and the variance of the random perturbation around the minimizer of . These 𝐸(𝐦)

parameters must be properly set to get the desired acceptance rate or in other words to find a good 

compromise between exploitation and exploration of the sampling. More in detail, the  value should λ

be large enough to make the proposal dependent on the gradient information, but small enough so 

that the model update is not dominated by the deterministic information. On the contrary, the  value µ𝟐

should be large enough to ensure an efficient exploration of the model space, but small enough so 

that the gradient information is not completely masked by the random update. We will consider the 

full Hessian and not only its diagonal entries so that possible posterior correlations between the 

inverted parameters are fully taken into account. 

Therefore, we have “tailored” the proposal density  to the underlying local Gaussian 𝑞(𝐦)

approximation of the posterior probability using the derivative information of the error function. From 

a practical point of view, the proposed model can be straightforwardly generated according to:

𝐦𝑘 + 𝟏 = 𝐦𝑘 ― λ𝐇 ―1
𝑎 𝐠 + µ𝐇

―
1
2

𝒂 𝐧,    (14)
 

with , whereas  is a random column vector with the number of rows equal 𝐇 ―𝟏
𝒂 = 𝐇 ―𝟏/𝟐

𝒂 (𝐇 ―𝟏/𝟐
𝒂 )𝑇 𝐧

to the number of model parameters drawn from  where  denotes the identity matrix. 𝒩(0,𝐈), 𝐈
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Geophysical Prospecting Proof for Review
Note that for a Gaussian PPD and an exact Hessian, the proposed method results in a perfect 

sampling, in which all the samples are independently drawn from the posterior density with an 

acceptance probability equal to 1 (Martin et al. 2012).  Also, note that for  equation 14 gives the µ = 0

standard gradient descent model update. On the contrary, if  we have the standard random walk λ = 0

with some constraints given by the inverse Hessian. It can also be demonstrated that the previous GB-

MCMC approach is related to the Hamiltonian Monte Carlo and Langevin Monte Carlo approaches 

(Martin et al. 2012). Finally, even though the proposal is derived by assuming a local Gaussian 

assumption, it can be used to sample from whatever type of posterior model and under whatever a-

priori assumption (e.g. non-parametric), as it has been done in the following examples.

The major computational requirement of the implemented approach is the need for computing the 

Jacobian associated with each sampled model. When the forward is expressed by a partial differential 

equation the adjoint state method can be used to rapidly estimate the Gradient and Hessian with a 

reduced number of forward evaluations. The Jacobian can be also evaluated using a finite-difference 

scheme or in the case of weakly non-linear problems, a linearized approximation of the non-linear 

forward operator can be adopted as well. An extra computational workload also arises in large 

dimensional spaces due to the manipulation of large Hessian matrices and gradient vectors. In these 

contexts, a compression strategy would be useful to reduce the number of data points and model 

parameters and hence the dimensions of   and . If a finite difference scheme is employed, the 𝐇𝒂 𝐠

compression of the model parameter space also reduces the number of forward evaluations needed 

for the Jacobian computation. 

Discrete Cosine Transform

Several variants of discrete cosine transform exist with slightly modified definitions, but in this 

work, we use the so-called DCT-II formulation that is the most common (Britanak et al. 2010). 

Hereafter we simply refer to the DCT-II as the DCT. We employ this parameterization because it 

exhibits superior compression power over other compression methods (Lochbühler et al. 2014). 
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Geophysical Prospecting Proof for Review
This compression technique can be applied to multidimensional signals (i.e. 2-D matrices) and 

such multi-dimensional transform follows straightforwardly from the one-dimensional definition 

because it is simply a separable product (equivalently, a composition) of DCTs along each dimension. 

For example, if we assume a 2-D density model (x,y) in which x=[0,1,…, -1] and y=[0,1,…, -𝛒 𝑀𝑥 𝑀𝑦

1] represent the horizontal and vertical coordinates, respectively, the associated 2-D transform is 

defined as follows:                                    

{ 𝐑(𝑘𝑥,𝑘𝑦) =
1
𝑀𝑥

1
𝑀𝑦

𝑀𝑥 + 1

∑
𝑥 = 0

𝑀𝑦 + 1

∑
𝑦 = 0

𝛒(𝑥,𝑦),  𝑖𝑓𝑘𝑥 = 𝑘𝑦 = 0

𝐑(𝑘𝑥,𝑘𝑦) =
2

𝑀𝑥

2
𝑀𝑦

𝑀𝑥 + 1

∑
𝑥 = 0

𝑀𝑦 + 1

∑
𝑦 = 0

𝛒(𝑥,𝑦)𝑐𝑜𝑠((2𝑥 + 1)𝜋𝑘𝑥

2𝑀𝑥 )𝑐𝑜𝑠((2𝑦 + 1)𝜋𝑘𝑦

2𝑀𝑦 ),𝑖𝑓𝑘𝑥,𝑘𝑦 ≠ 0

,(15)

where  represent the -th and -th coefficient. The values within the matrix R represent 𝐑(𝑘𝑥,𝑘𝑦) 𝑘𝑥 𝑘𝑦

the unknowns to be estimated in a reparametrized inverse problem. Equation 15 can be compactly 

rearranged in matrix form: 

                                                                (16)                                                               𝐑 = 𝐁𝑦𝛒𝐁𝑇
𝑥,

where  and  are the matrices with dimensions  and , respectively that contain 𝐁𝑥 𝐁𝑦 𝑀𝑥 × 𝑀𝑥 𝑀𝑦 × 𝑀𝑦

the basis functions spanning the compressed space, whereas the  matrix R expresses the 𝑀𝑦 × 𝑀𝑥

DCT coefficients. This approach concentrates most of the information of the original signal into the 

low-order coefficients, and hence an approximation of the subsurface density model can be obtained 

as follows: 

𝛒 = (𝐁𝑞
𝑦)𝑇𝐑𝑞𝑝𝐁𝑝

𝑥,  (17)

where  is the approximated [ ] density model,  is a [ ] matrix containing only the 𝛒 𝑀𝑦 × 𝑀𝑥 𝐁𝑞
𝑦 𝑞 × 𝑀𝑦

first  rows of ;  is a [ ] matrix containing only the first  rows of , whereas the matrix 𝑞 𝐁𝑦 𝐁𝑝
𝑥 𝑝 × 𝑀𝑥 𝑝 𝐁𝑥

 represents the first q rows and p columns of R. In other words, the scalar q and p represent the 𝐑𝑞𝑝

retained number of base functions along the y and x directions used to derive the approximated model. 

Therefore, the DCT transformation allows for a reduction of the ( )-D full density model 𝑀𝑦 × 𝑀𝑥
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Geophysical Prospecting Proof for Review
space to a ( )-D DCT-compressed parameter space with  and . In this context the 𝑞 × 𝑝 𝑝 < 𝑀𝑥 𝑞 < 𝑀𝑦

 non-zero numerical coefficients of the  matrix becomes the unknowns to be estimated after 𝑝 × 𝑞 𝐑𝑞𝑝

a compression of the model space. Estimating the retained coefficients reduces the parameter space 

dimensionality and can significantly improve the computational efficiency of the inversion procedure. 

Figure 1 shows some DCT base functions of different orders in a 2-D space. Note that the variability 

of the solution along each dimension is directly determined by the orders of the retained coefficients. 

The implemented AVA inversion scheme

We consider a 2-D subsurface model in which the parameters to be estimated are the Vp, Vs, and 

density values. The observed data are partial angle stacks computed by separately applying the 

Zoeppritz equations to the elastic properties at each spatial location. For a  subsurface model 𝑀𝑦 × 𝑀𝑥

and for N incidence angles (usually N=3; near, mid, and far stacks), we have  model 3 × 𝑀𝑦 × 𝑀𝑥

parameters to be estimated from  data points. The spatial dimensions , are 𝑁 × (𝑀𝑦 ―1) × 𝑀𝑥 𝑀𝑦 𝑀𝑥 

usually large, and hence the simultaneous estimation of the Vp, Vs, and density over the entire study 

area becomes computationally impractical for both deterministic and MCMC methods: In the former 

case, the large dimension of the Hessian and gradient matrices makes their manipulation and/or 

computation problematic. In the latter, the convergence of the probabilistic sampling is hampered by 

the curse of dimensionality issue. For this reason, common deterministic and probabilistic inversion 

approaches separately estimate the elastic properties at each seismic gather location. This means that 

 inversions are run, each one estimating   parameters from  observations. 𝑀𝑥 3 × 𝑀𝑦 3 × (𝑀𝑦 ―1)

Although this method makes the inversion computationally feasible it does not preserve the spatial 

continuity on the predicted elastic models. To overcome this issue, we compress both data and model 

space. In more details, the Vp, Vs, and density models are treated as separate  images to 𝑀𝑦 × 𝑀𝑥

which the 2-D DCT is applied. Therefore, each  matrix expressing a given elastic property 𝑀𝑦 × 𝑀𝑥

is approximated with a reduced number of coefficients contained within a  matrix  (  and 𝑞 × 𝑝 𝑝 < 𝑀𝑥
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Geophysical Prospecting Proof for Review
. This reduces the full -D elastic space to a compressed  -D space. 𝑞 < 𝑀𝑦) (3 × 𝑀𝑦 × 𝑀𝑥) (3 × 𝑝 × 𝑞)

The compression is also applied to decrease the dimensionality of the data space. In this case, we 

apply a 3-D DCT in which the first two coordinates represent the spatial and temporal directions, 

while the third axis identifies the incidence angles. The application of this transformation allows for 

a reduction of the original -D data space to a )-D space with , (𝑁 × (𝑀𝑦 ―1) × 𝑀𝑥) (𝑏 × 𝑣 × c 𝑏 < 𝑁

 and  (Figure 2). The map between the full data and model spaces is constituted by 𝑣 < 𝑀𝑦 ―1 𝑐 < 𝑀𝑥

the Zoeppritz equations that are separately applied to the elastic properties at each spatial location 

and provide the seismic gathers associated with each sampled model. 

In this context, the GB-MCMC algorithm samples the compressed -D model space (3 × 𝑝 × 𝑞)

and estimate the DCT coefficients expressing the elastic properties from the retained  basis 𝑏 × 𝑣 × c

in the data space. This means that the computation of the proposal ratio, likelihood ratio, and prior 

ratio for each sampled model (see equation 8) is performed in the compressed model and data 

domains. A schematic representation of this strategy is given in Figure 3. We note that multiple 

forward and inverse transformations are needed in each iteration. However, these transformations can 

be run with a negligible computational cost. The sampled models after the burn-in phase are projected 

onto the elastic space through equation 17 to numerically compute the statistical characteristics of the 

PPD in the Vp, Vs, and density domain. 

We assume a non-parametric prior for the elastic parameters in order to properly model their 

facies-dependent behavior, while a stationary Gaussian variogram expresses their lateral and temporal 

variability. Similarly, we assume a Gaussian noise model. The non-parametric prior in the elastic 

domain impedes an analytical derivation of the prior in the compressed space and for this reason, the 

prior model in the compressed space is numerically computed by applying the kernel density 

estimation algorithm to prior elastic realizations projected onto the DCT space. Differently, the 

assumed Gaussian noise model allows for an analytical derivation of the data covariance matrix in 

the compressed data space. 
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The main limitation of any GB-MCMC approach arises from the need for computing the gradient 

of the posterior model, and hence this strategy is usually applied to problems in which such derivative 

information can be computed quickly (Neal, 2011). In our case of elastic pre-stack inversion, the 

Jacobian matrix can be derived, for example, by adopting an accurate but computationally quite 

expensive forward finite-difference scheme. In this case,  forward modeling runs are needed 3 × 𝑝 × 𝑞

to compute the Jacobian associated with the current compressed model. The good news is that each 

column of the Jacobian can be independently computed and hence the finite difference computation 

can be easily distributed across different cores.

Another and much less demanding strategy replaces the Jacobian with an analytical operator 

derived from a linear approximation of the full Zoeppritz equations (for example the linear equation 

proposed by Aki and Richards, 1980) properly projected onto the compressed model and data spaces 

(Aleardi, 2020). Note that, in this case, we are inherently assuming that the curvature of the misfit 

function, and hence the variance of the proposal distribution is constant over the entire model space. 

This simplification could decrease the convergence speed of the algorithm, but dramatically reduces 

the computing time of the entire sampling with respect to the finite difference strategy (Aleardi and 

Salusti, 2020). However, it should be also noted that any linear approximation of the Zoeppritz 

equations, although widely employed in AVA studies, is theoretically valid in case of weak elastic 

contrasts at the reflecting interfaces and within a limited angle range (usually not beyond 30-35 

degrees). For this reason, the suitability of this approach should be evaluated case-by-case. In the 

following, we solve the GB-MCMC inversion using both approaches. Their results are also validated 

against those provided by a gradient-free sampling approach (i.e. the Differential Evolution Markov 

Chain; DEMC, Vrugt, 2016) running in the reduced model and data spaces, and with the outcomes 

of a linearized least-squares inversion running in the full elastic and data spaces and inverting each 

seismic gather separately. 

RESULTS
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Analytical example

Before applying the GB-MCMC algorithm, we briefly illustrate the benefits provided by the 

gradient-based sampling over a more standard, gradient-free sampling method. In this section, we 

aim to draw samples from a posterior model derived from the 2-D Rosenbrock function. This function 

has challenging features: its minimum is located at the bottom of a narrow parabolic valley where a 

small change in direction can lead to a steep increase of the gradient. The Rosenbrock can be turned 

into a probability density that maintains the same basic characteristics of the original function, and 

hence it has been frequently adopted to test sampling methods (Christen and Fox, 2010; Pagani et al. 

2019). In this example the posterior model can be expressed as follows:

𝑝(𝑥,𝑦) ∝ exp ( ― (100(𝑦 ― 𝑥2)2 + (1 ― 𝑥)2)).     (18)

We compare the GB-MCMC approach with a random walk Metropolis (RWM). Both algorithms 

have been run for 80000 iterations employing 10 parallel chains and under uninformative prior for 

the x and y variables. The standard deviation of the proposal distribution for the random walk 

Metropolis has been properly set in order to get an acceptance rate lying in the interval [0.2, 0.4].

Figure 4 illustrates that both MCMC approaches provide similar posterior estimations, in good 

agreement with the target density. To assess the convergence of the sampling we use the potential 

scale reduction factor (PSRF), a popular convergence diagnostic tool proposed by Brooks and 

Gelman (1998) to which we refer the reader for its formal definition. This tool compares within-chain 

variances to the variance computed from all mixed chains for a given parameter. In practice, one can 

consider that the convergence to a stable posterior model has been achieved if the potential scale 

reduction factor is lower than 1.1. By the inspection of the PSRF evolution for the two unknown 

parameters (Figures 5a-c), we observe that 50000 iterations are needed by the random walk 

Metropolis to converge toward a stable posterior, while the GB-MCMC converges after only 2000 

iterations. This significant difference is related to the different sampling strategies employed by the 

two approaches. Indeed, Figures 5d-e illustrates that the GB-MCMC not only focus the sampling 

around the most promising zones of the parameter space (i.e. those characterized by high posterior 
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density values) but also uses a proposal that incorporates information about the local covariance 

structure of the target density as provided by the inverse of the Hessian matrix. Differently, the 

random walk proposal is not influenced by the local, geometrical properties of the target posterior 

and thus the proposed model could also be located far away from the posterior maximum. This 

difference also indicates that the acceptance rate for the GB-MCMC is usually much higher than that 

of the random walk Metropolis: in this example, the GB-MCMC acceptance oscillates around 60-

80%, whereas only the 30%, on average, of the proposed states, were accepted by the random walk 

Metropolis. This is another strength of the gradient-based sampling methods because avoid wasting 

computing time to run forward evaluations for proposed models with a low probability to be accepted.

 

Synthetic inversion tests

For the lack of available real seismic data, we discuss synthetic experiments in which we applied 

the implemented approach to invert seismic data generated on a reference model that simulates a 

realistic geological context in which a turbiditic sequence hosts a gas-saturated reservoir (see Figure 

6a). This subsurface model has been derived by integrating the borehole information provided by 

several wells with an accurate geologic interpretation. The true model represents an in-line section 

with 61 time samples and 91 cross-lines. The time sampling is 0.004 s, whereas 50 m is the cross-line 

distance. Figure 6a shows that significant elastic contrasts occur at the interface separating the 

encasing shales from the reservoir sands. 

A forward modeling based on the full Zoeppritz equations computes the observed seismic gathers 

by convolving the angle-dependent reflectivity series with a 30-Hz, zero-phase Ricker wavelet. We 

consider three partial angle stacks corresponding to incidence angles of 0 (near stack), 20 (mid stack), 

and 40 (far stack) degrees. This means that the full model space comprises  61 × 91 × 3 = 16653

parameters to be estimated from  data points.60 × 91 × 3 = 16380

Two columns extracted from the reference models at the horizontal coordinates of 1000 and 3000 

m have been considered as available well log data, used to derive the prior information. We assume 
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Geophysical Prospecting Proof for Review
a non-parametric distribution for the elastic parameters, which has been computed by applying the 

kernel density estimation algorithm (Parzen 1962) to the available well log information (Figure 6b). 

We also assume a stationary 2D Gaussian variogram model in which the vertical and lateral ranges 

have been inferred from the vertical variability of the available well log data and the lateral variability 

of the observed seismic data, respectively. The ranges of the variogram are equal to 0.008 s and 160 

m along the temporal (vertical) and spatial (lateral) directions, respectively.

The previously defined elastic prior model must be projected onto the DCT space where the 

MCMC sampling runs. To this end and given the non-parametric prior, we adopt a Monte Carlo 

simulation approach. The direct-sequential co-simulation method with joint probability distribution 

(Horta and Soares, 2010) has been used to draw 5000 2-D elastic models in accordance with the prior 

assumptions. Such models have been projected onto the compressed space, and the kernel density 

algorithm has been again employed to numerically compute the non-parametric prior in the reduced 

domain for the Vp, Vs, and density (Figure 6c). Two examples of Vp, Vs, and density prior realizations 

are represented in Figure 7. 

The next step is to define the optimal number of coefficients needed to approximate the elastic 

profiles. To this end, we quantified how the explained variability of the elastic properties changes as 

the number of basis functions increases. The selection of the optimal number of coefficients is a very 

delicate step that must guarantee uncertainty estimations, model resolution, and data fitting 

comparable to those achieved by an inversion running in the full, uncompressed space. A detailed 

discussion on how the model and data compressions affect the AVA inversion results is far beyond 

the scope of this work and for this reason, we refer the interested reader to Grana et al. (2019) for 

more theoretical insights. Figure 8 shows the explained variability for a Vp, Vs, and density model 

drawn from the prior as the number of retained coefficients increases. We note that only 25 

coefficients per elastic property (q=p=25) along the two DCT spatial dimensions explain almost the 

total variability of the three elastic parameters. This means that the compression allows for a reduction 

of the -D model space to -D domain. A similar analysis has been carried 16653 25 × 25 × 3 = 1875
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Geophysical Prospecting Proof for Review
out on some seismic gathers derived from prior elastic realizations.  An example is shown in Figure 

9a where the green rectangle encloses the   retained coefficients in the data space 40 × 45 × 2 = 3600

that explain almost the total variability of the uncompressed seismic gather (Figure 9b). Therefore, in 

this case, the full -D data space has been reduced to a 3600-D domain. These data and model 16380

parameter reductions not only guarantees a considerable speed-up in the finite-difference Jacobian 

computation but also drastically reduces the computational cost of the Hessian and gradient 

manipulation. For example, the  Hessian in the full domain has been reduced to a  16653 × 16653

 matrix in the compressed space. 3600 × 3600

In the following inversion tests, we consider two different scenarios: in the former (Test 1) the 

data computed on the reference model have been contaminated with uncorrelated Gaussian random 

noise with a standard deviation of 0.03 that corresponds to the 20% of the total standard deviation of 

the noise-free dataset. However, the popular assumption of uncorrelated noise usually constitutes an 

oversimplification because in real data applications correlated noise can be ascribed, for example, to 

residual of multiple reflections or diffractions not successfully removed during the processing phase. 

For this reason, in the second example (named Test 2 in the following), the observed data have been 

contaminated with both incoherent and coherent Gaussian noise with the same standard deviation 

value of 0.06. The temporal and lateral correlation pattern of the coherent noise is the same as the 

elastic prior model. 

In what follows, we discuss the results provided by the GB-MCMC approaches when the Jacobian 

is computed with a forward finite-difference scheme (GB-MCMC-FD), and when the Jacobian is 

replaced by the linear operator derived from the Aki and Richards equation (GB-MCMC-L). The 

outcomes of these inversions are also benchmarked against the predictions of a gradient-free DEMC 

inversion still running in the reduced model and data spaces and with the results provided by a 

deterministic linearized least-squares inversion running in the full data and model spaces and 

inverting each seismic gather independently. All the considered MCMC inversions take advantage of 

parallel implementations. In the DEMC and GB-MCMC-L each chain is run in parallel, while the 
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Geophysical Prospecting Proof for Review
GB-MCMC-FD runs the chains serially but distributes the Jacobian computation across different 

cores. 

We start with the results of Test 1 in which the noise model and the source wavelet are assumed 

perfectly known during the inversion phase.  Figure 10 and Figure 11 show the posterior mean models 

and posterior standard deviations provided by the GB-MCMC-FD and GB-MCMC-L approaches, 

respectively. The GB-MCMC-FD and GB-MCMC-L have been run for 10000 iterations and 

employing 10 independent chains. Both algorithms yield similar and congruent estimates of the 

posterior mean and the associated uncertainties. We note that the posterior standard deviation 

increases as the velocities and density values increase. This indicates that the curvature of the error 

function is expected to change over the model space. Figure 12 compares the elastic properties 

extracted at two different spatial coordinates (1200 and 2500 m, respectively) with the posterior mean 

and the 95 % confidence interval estimated by the two GB-MCMC algorithms. We observe that the 

mean model closely reproduces the vertical variations of the true model, and more importantly, the 

posterior mean usually lies within the range depicted by the 95% confidence interval, thus ensuring 

us about the reliability of the final predictions. As an example, Figure 13 shows a comparison between 

the observed data and the data predicted on the mean model provided by the GB-MCMC-L inversion. 

The close similarity between the two seismic datasets prove that the predicted mean model can 

accurately reproduce the observed seismic amplitudes. A similar conclusion would have been drawn 

for the GB-MCMC-FD algorithm. Figures 10-13 demonstrate that both algorithms provide similar 

and congruent model and uncertainty estimations, thereby confirming that in both cases a stable 

posterior model has been reached within the selected number of iterations. For both the GB-MCMC-

FD and GB-MCMC-L inversion we set the  and values to 0.2 and 0.95, respectively. This λ µ2 

combination resulted in an acceptance rate oscillating around 0.7-0.85.

However, If we analyze the evolution of the negative log-likelihood we observe that the two GB-

MCMC implementations are characterized by different convergence speeds toward the stationary 

regime (Figure 14). The GB-MCMC-FD converges to the steady-state in less than 5 iterations, while 
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50 iterations are needed by the GB-MCMC-L, although in both cases the same final likelihood value 

has been reached. This fact is related to the different strategies used to define the Jacobian matrix. In 

other words, a more accurate Jacobian reflects into a more accurate estimate of the local curvature of 

the error function thus guaranteeing a faster convergence toward the stationary regime. At a closer 

inspection, we also observe another difference between the two approaches (see the two close-ups on 

the right of Figure 14). The GB-MCMC-FD shows strongly variable misfit values with iterations, 

while the GB-MCMC-L misfit oscillates with a longer period. This proves that the use of an accurate 

Jacobian guarantees the sampling of maximally decoupled models, while for a linear approximation 

the successively sampled models are mutually correlated. Therefore, the sampling is expected to 

attain accurate uncertainty estimations with a lower number of iterations when the finite-difference 

strategy is adopted (MacKay, 2003). Indeed, Figure 15 shows the evolution of the potential scale 

reduction factor for all the model parameters in the compressed space and for the two algorithms. In 

both cases, as expected, the sampling converges faster for the Vp coefficients since this is the elastic 

parameter better constrained by the data, while a longer sampling is needed to attain stable PPDs for 

the Vs and density coefficients (i.e., Vs and density are less informed by the seismic data). From the 

evolution of the PSRF values, we can claim that the GB-MCMC-FD attains convergence for all the 

parameters with 1000 iterations, while 4000 iterations are needed by the GB-MCMC-L. However, 

the computational costs of a single GB-MCMC-FD and GB-MCMC-L iteration are very different: 30 

s for the former and just 2.5 s, for the latter. This means that, despite the less accurate approximation 

of the Hessian matrix, the GB-MCMC-L attains convergence in less than 3 hours, while more than 8 

hours are needed by the GB-MCMC-FD (see Table 1). 

Figure 16 compares the assumed Gaussian correlograms and the average vertical and spatial 

correlograms computed on the true model and on the posterior solution provided by the GB-MCMC-L 

inversion. We observe that the assumed correlogram is well reproduced by the estimated model, 

which also shows a good agreement with the actual lateral and temporal variability patterns. The 

match between the marginal distributions derived on the true model with those computed on the 
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posterior mean GB-MCMC-L solution also demonstrates that the implemented method guarantees a 

good reproduction of the actual distribution of the elastic parameters in the investigated area (Figure 

17). 

We now present the results of the DEMC and the linearized inversion for Test 1. For the DEMC we 

employ 10 parallel chains evolving for 100000 iterations, with a burn-in period of 70000 samples. In 

Figure 18a we observe that the linearized approach estimates elastic profiles affected by lateral 

scattering related to noise propagation from data to model space. This method converges in a few 

seconds to the final solution but it hampers accurate uncertainty assessments. Figure 18b shows that 

the DEMC algorithm has not reached accurate model estimations and stable uncertainty appraisals 

within the selected number of iterations. In particular, we note scattered standard deviation maps 

completely different from those provided by the two GB-MCMC algorithms. Indeed, the evolution 

of the negative log-likelihood values (Figure 19) proves that the gradient-free sampling has not even 

reached the stationary regime within the selected number of iterations. We point out that the 

acceptance rate of the DEMC oscillated around the optimal values of 0.22-0.33. For this reason, the 

slow convergence toward the steady-state is not related to an erroneous hyperparameters setting but 

to the difficulty in sampling the high-dimensional parameter space starting from random prior 

realizations. In other terms, due to the curse of dimensionality issue, a much higher number of 

iterations is now needed for accurate uncertainty estimations. To reduce the burn-in stage, the starting 

model can be generated from the results of a previous inversion step (for example a fast analytical 

inversion; de Figueiredo et al. 2018). The total computing time for running 100000 DEMC iterations 

was 11.1 hours, while a single iteration of this approach takes on average 0.4 s (Table 1). However, 

since the gradient-free sampling does not even reach the stationary regime within the selected number 

of iterations, we envisage that a much higher computing time is needed to achieve stable posterior 

assessments. The results of Test 1 indicate that, although the extra time needed for vector/matrix 

manipulation and Jacobian computation, both gradient-based MCMC algorithms outperform the 

Page 59 of 101

EAGE Publications B.V., PO Box 59, 3990 DB, Houten, The Netherlands

Geophysical Prospecting Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Geophysical Prospecting Proof for Review
gradient-free method because they achieve accurate model estimations and uncertainty appraisals 

with a much lower computational effort. 

In the second test, we want to assess the applicability of the proposed approach to a more realistic 

scenario with a low signal-to-noise ratio and both coherent, and uncorrelated noise affecting the data. 

For the sake of conciseness, we will only present the results provided by the GB-MCMC-L and 

linearized approaches. Indeed, on the one hand, the two GB-MCMC strategies still provided very 

similar predictions, with the GB-MCMC-FD still needing a lower number of iterations to converge, 

but a higher computing time with respect to the  GB-MCMC-L. On the other hand, the DEMC was 

again severely affected by the curse of dimensionality issue: thus, it would have needed a much higher 

computing time than the two GB-MCMC implementations to attain stable posterior estimations. In 

this example, only the uncorrelated Gaussian random noise is taken into account by the data 

covariance matrix, while the source wavelet is again assumed to be known. The hyperparameter 

setting for the GB-MCMC-L inversion is the same previously used in Test 1.

Figure 20 compares the results of the deterministic and GB-MCMC-L algorithms. We observe that 

the inclusion of coherent noise and the overestimation of the signal-to-noise ratio of the data has 

severely decreased the overall quality of the predictions. The linearized inversion provides final 

estimates severely affected by lateral scattering. In this case, the lateral formation boundaries of the 

main gas-saturated reservoir can not be mapped with reasonable accuracy. Differently, in the GB-

MCMC-L predictions, we can still appreciate the significant decrease of Vp, Vs, and density occurring 

at the interface separating the reservoir sand and the encasing shale. As expected, the posterior 

uncertainty is increased with respect to the previous example (compare Figures 20c and 11b), such 

as the sample-by-sample difference between the observed and predicted seismic amplitudes (Figure 

21). The direct comparison of the outcomes of the GB-MCMC-L and deterministic approach better 

highlights the superior predictions achieved by the proposed approach (Figure 22): the mean model 

estimated by the GB-MCMC is usually closer to the true model than the deterministic results. 

However, differently from the previous example we now note that the erroneous assumption in the 
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statistical properties of the noise results in estimated confidence intervals that sometimes do not 

include the true model.  Finally, the inspection of the evolution of the potential scale reduction factor 

(Figure 23) shows that similarly to Test 1, the GB-MCMC-L reaches accurate uncertainty appraisals 

for all the model parameters in 4000 iterations, approximately.  

DISCUSSION

The aim of this work was twofold: implementing an sampling algorithm for accurate and fast 

uncertainty assessments in non-linear AVA inversion and mitigating the curse-of-dimensionality 

issues, thus allowing for a simultaneous estimation of the elastic properties along the entire considered 

2-D section. To this end, we combined a GB-MCMC sampling with a DCT reparameterization of 

both data and model spaces. 

We compared two different implementations of the GB-MCMC method: The first uses a finite-

difference scheme to compute the Jacobian (named GB-MCMC-FD), while the second replaces the 

Jacobian with a matrix operator derived from a linearization of the Zoepprtiz equation (named GB-

MCMC-L). Theoretically, the validity of the linear approximation of the Zoeppritz equations depends 

on the considered angle range and the magnitude of the elastic contrasts at the reflecting interfaces. 

However, in our tests, this strategy provided satisfactory model predictions and uncertainty 

quantifications comparable to those yielded by the GB-MCMC-FD algorithm, although the reference 

model was characterized by significant elastic contrasts at the interface separating the encasing shale 

from the reservoir sand. Besides, the GB-MCMC-L approach made it also possible for a significant 

reduction of the computational cost of a single GB-MCMC inversion. This reduced computational 

effort occurs at the expense of a slower convergence toward the stationary regime and to an overall 

decrease in the independence of successively sampled models. The choice of replacing the Jacobian 

with the linear matrix operator must be considered case-by-case and should constitute a compromise 

between the sampling efficiency and the computational cost of the GB-MCMC inversion. Another 

possibility is to employ the finite-difference strategy only for the first iterations when the stationary 
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regime is not yet attained and hence maintaining the same Jacobian during the sampling stage. This 

recipe should guarantee a faster convergence toward the steady-state and a more efficient sampling, 

with a limited extra computational cost. 

The computing times shown in Table 1 refer to Matlab codes running on a single server equipped 

with two deca-core intel E5-2630 at 2.2 GHz (128 Gb RAM). So there is still room for a substantial 

decrease of the computational costs of the GB-MCMC inversion, for example by running the codes 

on a large computer cluster or utilizing fast computing units and/or adopting a more efficient 

implementation (e.g., codes written in a lower-level programming language). The computational cost 

of the GB-MCMC inversion related to the computation of the inverse Hessian can be also reduced by 

dropping the off-diagonal entries of . This strategy results in a proposal distribution that neglects 𝐇𝒂

the possible correlation between model parameters, which might have a negative impact on the 

convergence rate of the sampling.

A proper setting of the hyperparameters λ and µ is important for the efficiency of the sampling.  

Indeed, a poorly chosen parameter combination would result in a slow convergence toward stable 

uncertainty estimations. A good parameter combinations would guarantee a good compromise 

between exploitation and exploration, rendering reasonable acceptance rates. The λ parameter acts as 

the step length in gradient descent methods. Its value should be similar to the one used in gradient-

based local optimization methods so that the linearized Taylor expansion is still locally valid. The µ 

parameter determines the variance of the proposal distribution: A too small µ would results in poor 

mixing, while a too-large µ would decrease the acceptance rate.  In our experiments, we found the 

optimal combination using a trial-and-error procedure in which our goal was to get an acceptance rate 

around 0.7-0.8 during the sampling stage. Another viable strategy could be employing a self-adaptive 

scheme (Haario et al., 2001; Atchadé, 2006) that automatically adjusts the proposal variance during 

the sampling process. However, the many inversion tests we carried out showed that the optimal 

acceptance rate can be achieved by many different parameter combinations and hence a proper 

selection of λ and µ is not that hard to find; for example in the previous tests a good compromise 
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between exploitation and exploration is guaranteed for  and  values lying in the range [0.1, 0.7] λ µ2

and [0.5, 1.5], respectively. From our experiments also emerged that if the approximated Hessian is 

used, a good values should lie in the range ]0, 1] because a higher  puts more emphasis on the λ λ

exploitation while penalizing the exploration. On the other hand, an optimal  value is usually around µ2

1. Appendix A uses a didactic example to analyze the effect of the  and  values on the sampling λ µ2

efficiency. 

The implemented method can be also extended to 3-D models and in this case, a 4-D 

transformation must be used to compress the data space. Some experiments on a 3D elastic model 

with 61 time samples,  cross-line and 91 in-line have been carried out employing the same Matlab 91

implementation previously considered. In these preliminary tests, the DCT allowed for a compression 

of the full 1515423-D elastic space into a -D  domain. However, the 25 × 25 × 25 × 3 = 46875

current Matlab implementation and the limited available hardware resources make the computation 

of the Jacobian, the derivation of the inverse Hessian, and also the manipulation of both the Hessian 

and Gradient, prohibitive. In this context, the GB-MCMC-FD approach is unfeasible, while the GB-

MCMC-L works but requires more than a week of computing time to converge. For this reason, a 

more scalable inversion code and additional hardware resources are needed to invert 3D data. 

Regarding the performance scaling of the adopted GB-MCMC recipe, Martins et al. (2012) observed 

similar convergence rates for different model space dimensionalities. They claimed that although this 

desirable characteristic is not yet proved theoretically, the numerical observations seem to indicate 

an insensitivity of convergence of the proposed GB-MCMC method to the parameter dimension. We 

refer the interested reader to Martins et al. (2012) for a more in-depth discussion of this aspect. 

CONCLUSIONS

We presented a gradient-based MCMC method for casting the non-linear elastic pre-stack 

inversion into a solid Bayesian framework that also guarantees fast convergence toward stable PPD 

assessments. The key idea is to guide the parameter sampling by exploiting the gradient and Hessian 
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information of the PPD, thereby generating proposal densities that are locally a good approximation 

of the target posterior. This results in a proposal distribution that is easy to construct, and in an 

increased efficiency of the probabilistic sampling: the gradient guides the sampling toward “better” 

solutions, whereas the random perturbation term avoids entrapments in local maxima of the PPD. The 

good compromise between the gradient and random perturbation (that is the optimal compromise 

between exploitation and exploration) can be found by adjusting two hyperparameters (λ and µ). We 

reduced the computational effort related to Hessian and gradient manipulation and Jacobian 

computation by employing a discrete cosine transform reparameterization of data and model spaces. 

Our synthetic inversion experiments showed very promising results, in which the posterior mean 

model well reproduced the ground truth even when coherent noise contaminates the seismic gathers, 

and for erroneous assumptions about the noise properties. Our results indicated that the exploitation 

of the Hessian and gradient information always guarantees a much faster convergence toward stable 

uncertainty estimations than a gradient-free MCMC algorithm. The use of the finite-difference 

scheme reduced the number of iterations needed to achieve stable PPDs, but it required a significant 

extra computational cost per iteration for the Jacobian computation. Deriving the Jacobian from a 

linear approximation of the Zoeppritz equations decreased the sampling efficiency (e.g. slower 

convergence toward the stationary regime and increase of the correlation value between successively 

sampled models) but it also greatly reduced the computing time to attain convergence. However, the 

applicability of this strategy should be evaluated case-by-case because the validity of the linearization 

of the Zoeppritz equations depends on the considered angle range and the elastic contrasts at the 

reflective interfaces. The computational cost of the GB-MCMC inversion is orders of magnitude 

higher than that of the deterministic approaches. However, the main advantage of any MCMC 

algorithm over deterministic inversions is the possibility to evaluate the posterior uncertainties. 
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APPENDIX A

To investigate in more detail the effects of the  and  values on the sampling efficiency of the λ µ2

GB-MCMC inversion we consider a simple example with a 2-D multivariate target density. We run 

two different tests: in the first, we set   and , whereas in the second  and λ = 0.05 µ2 = 3  λ = 0.5 µ2 =

. Both tests use 5 independent chains running for just 1000 iterations. Figure 24 demonstrates that 0.5

in both cases we get a reasonable prediction of the target density, despite the limited maximum 

number of iterations considered. However, the inspection of the PSRF highlights that in the first test 

more than 500 iterations are needed to reach the threshold of convergence, while in the second case 

the convergence is attained in less than 150 iterations. This proves that in the first case we select a 

too low  value and a too-high  thus meaning that we are promoting the exploration at the expense λ µ2

of the exploitation. Instead, in the second case, the hyperparameter setting guarantees an efficient 

sampling of the parameter space that results in a rapid convergence toward a stable PPD.
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FIGURE LEGENDS

Figure 1: 2-D DCT base functions of different orders. Dark and light colors code low and high 

numerical values, respectively.

Figure 2: Derivation of data and model space vectors in the DCT space from the elastic properties 

and seismic gathers.

Figure 3: Schematic representation of the GB-MCMC inversion scheme. Green and pink 

rectangles refer to steps performed in the reduced and full spaces, respectively. 

Figure 4: a) True posterior density function. b) Posterior density provided by the random walk 

Metropolis. c) Posterior density estimated by the GB-MCMC. The colormap codes the normalized 

probability values. 

Figure 5: a) Evolution of the potential scale reduction factor for the random walk Metropolis. b) 

Evolution of the potential scale reduction factor for the GB-MCMC. c) Close-up of b). In a)-c) the 

horizontal dotted green lines represent the threshold of convergence, whereas the blue and red lines 

refer to the x and y variables, respectively. d) Example of current, proposed model, and proposal 

distribution for the random walk Metropolis. e) Example of current, proposed model, and proposal 

distribution for the GB-MCMC. In d) and e) the magenta curves represents the contour lines of the 

proposal while the colored curves are the contour lines of the Rosenbrock error function. 

Figure 6: a) The elastic properties of Vp, Vs, and density of the reference model. In a) the black 

arrows point toward the main sand reservoir body, whereas the dotted red lines depict the columns of 

the model considered as available well log data for defining the a-priori elastic distribution. b) The 

marginal non-parametric prior distributions for the three elastic properties derived from the two wells 

shown in a). c) The marginal prior projected onto the compressed space through a Monte Carlo 

simulation.
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Figure 7: a), b) Two examples of Vp, Vs, and density model drawn from the non-parametric elastic 

prior. 

Figure 8: Examples of explained model variability for an elastic model extracted from the prior 

and as the number of coefficients along the 1st and 2nd DCT dimension increases. In each plot, the 

numerical value with coordinate (x, y) indicates the explained variability if the first x, and y 

coefficients along the 1st and 2nd dimensions, respectively, are used for compressing the model. It 

emerges that 25 coefficients along both the 1st dimension explain almost the 100 % of the variability 

of the uncompressed Vp, Vs, and density profiles.

Figure 9: a) DCT decomposition of a seismic gather computed on an elastic model drawn from the 

prior. Blue and red colors code low and high values, respectively while the green rectangles enclose 

the retained coefficients in the data space. b) Explained data variability as the number of considered 

basis functions increases. 

Figure 10: Results provided by the GB-MCMC-FD approach for Tests 1. a) A-posteriori mean 

model. b) Posterior standard deviation. In a), and b) the Vp, Vs, and density are represented from left 

to right.

Figure 11: As in Figure 10 but for the GB-MCMC-L approach. 

Figure 12: Comparison between the true model, the posterior mean, and 95% confidence interval 

at two different spatial locations. a) GB-MCMC-FD. b) GB-MCMC-L. The leftmost plot refers to the 

spatial position of 1200 m, while the plot on the right refers to the spatial position of 2500 m. 

Figure 13: Comparison between observed data (left column), predicted data (central column), and 

their sample-by-sample difference (right column) for Test 1. The predicted data have been computed 

on the mean posterior model estimated by the GB-MCMC-L algorithm. a), b), and c) refer to near, 

mid and far stack, respectively. 
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Figure 14: Evolution of the negative log-likelihood values for the GB-MCMC-FD and GB-

MCMC-L inversions (part a) and b), respectively). Each color represents a different chain. 

Figure 15: Evolution of the potential scale reduction factor over iterations for the DCT coefficients 

associated with the three elastic properties. a) GB-MCMC-FD. b) GB-MCMC-L. The red dotted lines 

depict the threshold of convergence. 

Figure 16: Comparison between the lateral (a) and vertical (b) assumed correlogram functions with 

the average correlograms computed on the true model (blue line) and on the posterior mean estimated 

by the GB-MCMC-L algorithm (red lines). From left to right we represent Vp, Vs, and density. 

Figure 17: Marginal probabilities for the three elastic parameters computed on the true model and 

on the posterior mean estimated by the GB-MCMC-L algorithm. 

Figure 18: a) Results of the linearized least-squares inversion. b) Estimated mean model by the 

DEMC algorithm. c) Posterior standard deviation estimated by the DEMC algorithm.  

Figure 19: Evolution of the negative log-likelihood value during the DEMC sampling. Each color 

refers to a different chain.

Figure 20: Results for Test 2: a) Vp, Vs, and density profiled estimated by the linearized least-

squares approach. b) Posterior mean model provided by the GB-MCMC-L approach. c) Posterior 

standard deviation estimated by the GB-MCMC-L inversion. 

Figure 21: Comparison between observed data (left column), predicted data (central column), and 

their sample-by-sample difference (right column) for Test 2. The predicted data have been computed 

on the mean posterior model estimated by the GB-MCMC-L algorithm. a), b) and c) refer to near, 

mid and far stack, respectively.
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Figure 22: Comparison between the true model, the deterministic inversion results, the posterior 

mean, and 95% confidence interval estimated by the GB-MCMC- L approach. a) refers to the spatial 

position of 1200 m, while b) refers to the spatial position of 2500 m.

Figure 23: Evolution of the potential scale reduction factor over iterations and for the coefficients 

associated with the three elastic properties. The dotted red lines depict the threshold of convergence.

Figure 24: GB-MCMC sampling of a 2D multivariate density for different hyperparameter 

settings. a)  and . b)  and . From left to right we represent the target λ = 0.05 µ2 = 3 λ = 0.5 µ2 = 0.5

probability density, the estimated probability density, and the evolution of the PSRF for the two 

parameters. Blue and yellow colors code low and high probability values, respectively. On the 

rightmost plot, the horizontal dotted green line represents the threshold of convergence, whereas the 

blue and red lines refer to the x and y variable, respectively.
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Figure 1: 2-D DCT base functions of different orders. Dark and light colors code low and high numerical 
values, respectively. 
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Figure 2: Derivation of data and model space vectors in the DCT space from the elastic properties and 
seismic gathers. 
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Figure 3: Schematic representation of the GB-MCMC inversion scheme. Green and pink rectangles refer to 
steps performed in the reduced and full spaces, respectively. 
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Figure 4: a) True posterior density function. b) Posterior density provided by the random walk Metropolis. c) 
Posterior density estimated by the GB-MCMC. The colormap codes the normalized probability values. 
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Figure 5: a) Evolution of the potential scale reduction factor for the random walk Metropolis. b) Evolution of 
the potential scale reduction factor for the GB-MCMC. c) Close-up of b). In a)-c) the horizontal dotted green 
lines represent the threshold of convergence, whereas the blue and red lines refer to the x and y variables, 

respectively. d) Example of current, proposed model, and proposal distribution for the random walk 
Metropolis. e) Example of current, proposed model, and proposal distribution for the GB-MCMC. In d) and e) 

the magenta curves represents the contour lines of the proposal while the colored curves are the contour 
lines of the Rosenbrock error function. 
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Figure 6: a) The elastic properties of Vp, Vs, and density of the reference model. In a) the black arrows 
point toward the main sand reservoir body, whereas the dotted red lines depict the columns of the model 

considered as available well log data for defining the a-priori elastic distribution. b) The marginal non-
parametric prior distributions for the three elastic properties derived from the two wells shown in a). c) The 

marginal prior projected onto the compressed space through a Monte Carlo simulation. 
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Figure 7: a), b) Two examples of Vp, Vs, and density model drawn from the non-parametric elastic prior. 
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Figure 8: Examples of explained model variability for an elastic model extracted from the prior and as the 
number of coefficients along the 1st and 2nd DCT dimension increases. In each plot, the numerical value 
with coordinate (x, y) indicates the explained variability if the first x, and y coefficients along the 1st and 
2nd dimensions, respectively, are used for compressing the model. It emerges that 25 coefficients along 

both the 1st dimension explain almost the 100 % of the variability of the uncompressed Vp, Vs, and density 
profiles. 

120x20mm (300 x 300 DPI) 

Page 84 of 101

EAGE Publications B.V., PO Box 59, 3990 DB, Houten, The Netherlands

Geophysical Prospecting Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Geophysical Prospecting Proof for Review
 

Figure 9: a) DCT decomposition of a seismic gather computed on an elastic model drawn from the prior. 
Blue and red colors code low and high values, respectively while the green rectangles enclose the retained 

coefficients in the data space. b) Explained data variability as the number of considered basis functions 
increases. 
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Figure 10: Results provided by the GB-MCMC-FD approach for Tests 1. a) A-posteriori mean model. b) 
Posterior standard deviation. In a), and b) the Vp, Vs, and density are represented from left to right. 
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Figure 11: As in Figure 10 but for the GB-MCMC-L approach. 

120x64mm (300 x 300 DPI) 

Page 87 of 101

EAGE Publications B.V., PO Box 59, 3990 DB, Houten, The Netherlands

Geophysical Prospecting Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Geophysical Prospecting Proof for Review
 

Figure 12: Comparison between the true model, the posterior mean, and 95% confidence interval at two 
different spatial locations. a) GB-MCMC-FD. b) GB-MCMC-L. The leftmost plot refers to the spatial position of 

1200 m, while the plot on the right refers to the spatial position of 2500 m. 
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Figure 13: Comparison between observed data (left column), predicted data (central column), and their 
sample-by-sample difference (right column) for Test 1. The predicted data have been computed on the 
mean posterior model estimated by the GB-MCMC-L algorithm. a), b), and c) refer to near, mid and far 

stack, respectively. 
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Figure 14: Evolution of the negative log-likelihood values for the GB-MCMC-FD and GB-MCMC-L inversions 
(part a) and b), respectively). Each color represents a different chain. 
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Figure 15: Evolution of the potential scale reduction factor over iterations for the DCT coefficients associated 
with the three elastic properties. a) GB-MCMC-FD. b) GB-MCMC-L. The red dotted lines depict the threshold 

of convergence. 
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Figure 16: Comparison between the lateral (a) and vertical (b) assumed correlogram functions with the 
average correlograms computed on the true model (blue line) and on the posterior mean estimated by the 

GB-MCMC-L algorithm (red lines). From left to right we represent Vp, Vs, and density. 
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Figure 17: Marginal probabilities for the three elastic parameters computed on the true model and on the 
posterior mean estimated by the GB-MCMC-L algorithm. 
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Figure 18: a) Results of the linearized least-squares inversion. b) Estimated mean model by the DEMC 
algorithm. c) Posterior standard deviation estimated by the DEMC algorithm.   
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Figure 19: Evolution of the negative log-likelihood value during the DEMC sampling. Each color refers to a 
different chain. 

80x43mm (300 x 300 DPI) 

Page 95 of 101

EAGE Publications B.V., PO Box 59, 3990 DB, Houten, The Netherlands

Geophysical Prospecting Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Geophysical Prospecting Proof for Review
 

Figure 20: Results for Test 2: a) Vp, Vs, and density profiled estimated by the linearized least-squares 
approach. b) Posterior mean model provided by the GB-MCMC-L approach. c) Posterior standard deviation 

estimated by the GB-MCMC-L inversion. 
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Figure 21: Comparison between observed data (left column), predicted data (central column), and their 
sample-by-sample difference (right column) for Test 2. The predicted data have been computed on the 
mean posterior model estimated by the GB-MCMC-L algorithm. a), b) and c) refer to near, mid and far 

stack, respectively. 
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Figure 22: Comparison between the true model, the deterministic inversion results, the posterior mean, and 
95% confidence interval estimated by the GB-MCMC- L approach. a) refers to the spatial position of 1200 m, 

while b) refers to the spatial position of 2500 m. 
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Figure 23: Evolution of the potential scale reduction factor over iterations and for the coefficients associated 
with the three elastic properties. The dotted red lines depict the threshold of convergence. 
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Figure 24: GB-MCMC sampling of a 2D multivariate density for different hyperparameter settings. a) λ=0.05 
and µ^2=3. b) λ=0.5 and µ^2=0.5. From left to right we represent the target probability density, the 

estimated probability density, and the evolution of the PSRF for the two parameters. Blue and yellow colors 
code low and high probability values, respectively. On the rightmost plot, the horizontal dotted green line 

represents the threshold of convergence, whereas the blue and red lines refer to the x and y variable, 
respectively. 
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TABLE

Method Time per iteration 

(s)

# iterations to converge Time to converge 

(hours)

GB-MCMC-FD 30 1000 8.3

GB-MCMC-L 2.5 4000 2.8

DEMC 0.4 >>100000 >> 11.1

Table 1: Some characteristics of the GB-MCMC-FD, GB-MCMC-L, and DEMC inversions 

(see the text for details). The computational cost of the deterministic inversion is negligible 

compared to the MCMC algorithms.
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