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Asymmetric Bimanual Control of Dual-Arm Exoskeletons for Human Cooperative Manipulations

Zhijun Li, Ziting Chen, Arash Ajoudani, Chenguang Yang, Chun-Yi Su, and Antonio Bicchi

Abstract— In this paper, two upper limbs of an exoskeleton
robot are operated within a constrained region of the operational
space with unidentified intention of human operator’s motion as
well as uncertain dynamics including the physical limits. The
motion intention of human operator can be modelled as a desired
trajectory of his/her limb model of variable force and impedance.
Adaptive online estimation for impedance parameters is employed
to deal with the nonlinear and variable stiffness property of
the limb model. In order for the robot to follow a specific
impedance target, we integrate the motion intention estimation into
the Barrier Lyapunov Function (BLF) based adaptive impedance
control, which can drive the dual-arm exoskeleton tracking target
impedance model within the physical ranges of positions and ve-
locities. Experiments have been carried out to test the effectiveness
of the proposed dual-arm coordination control scheme, in terms of
desired motion and force tracking, as well as human-like natural
performance.

I. INTRODUCTION

In the past decades, exoskeleton robotshave been developed
for human power augmentation, rehabilitation training [1], [2].
One of the most critical issues to control a robotic exoskeleton
is to enable the robots understanding the human’s motion
intention so that the robots could actively cooperate with
the human subject. According to [2], the bimanual tasks for
dual-arm manipulation can be classified into two categories:
symmetric bimanual task and asymmetric bimanual task and
the differences between these two categories are summarised
in Table I. Compared with asymmetric tasks for dual-arm
manipulation, it is generally easier for a robot to perform
symmetric task. However, in practice, most tasks need bimanual
dual-arm cooperation in an asymmetric manner, the asymmetric
tasks are more popular than symmetric task in practice, and
asymmetric tasks bring more challenges in the control design
than symmetric tasks. Therefore, in this paper, we develop
an asymmetric bimanual coordinate control for a dual-arm
exoskeleton system for cooperation with human, in which the
left arm implements the constrained motion to a circular object,
to which the right arm is attached. The constraint circular object
is held by the left hand to follow the trajectory planned in the
global frame of coordinate, while the right arm’s end effector
follows a trajectory planned on the circular object.

In [3] and [4], the velocities of the two manipulators’ end-
effectors can be viewed as relative motions by the introduc-
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TABLE 1
DIFFERENCES BETWEEN SYMMETRIC AND ASYMMETRIC BIMANUAL TASK

Task type Functions Motion Examples
Symmetric Identical Identical Rope climbing
Asymmetric Different Different part assembly, opening bottle.

tion of a relative Jacobian which combines the individual
Jacobians of both manipulators together. In [5], by using the
relative Jacobian, the kinematic redundancy of dual-arm system
was utilized for optimizing torque distributions. In [6], both
kinematics and dynamics using relative Jacobian were pre-
sented as well, and robust/model-free impedance controller for
dual-arm system was proposed. However, the aforementioned
works focus on industrial manipulators without consideration
of human participation. Moreover, each manipulator is assumed
to be redundant and far away from singular configurations.
While in practice, singularities and physical constraints can
be encountered during performing the task. Therefore, in this
paper, we need to consider human cooperation for the robotic
exoskeleton, and the position where the singularity happens as
the physical constraints of the exoskeleton.

In human robot cooperative manipulation, to enable a robot
actively collaborate with the human operator, we must solve the
problem that how to make the exoskeleton robot understand
the intention of the human operator’s motion. In robotics
community, impedance control has been regarded as an effective
approach to achieve physical human-robot interaction. When
a human subject intends to change the motion, a load force
would be produced as the robot extracts its motion in terms of
the force exerted by the human subject. To solve this problem,
we expect to estimate intention of the operator’s motion, and
integrate it into control system design. In this paper, we use the
position and force sensors as communication medium between
human’ arm and robot’s arm. In order to estimate the motion
intention of human operator from available sensory information,
much efforts have been made [7], [8] [9]. However, one of
main problems of the these works is that the variable stiffness
property was not considered in the impedance model for motion
intention estimation, and consequently the estimation may be
not accurate enough.

On the other hand, special consideration should be also
taken into the dual-arm exoskeleton with position and velocity
constraints in the manipulation tasks for avoiding the singularity
region, physical limits and dangerous region, etc. The constraint
violation may bring degrade in the control performance. There-
fore, it is necessary to carefully deal with the constraints in
control design of the various robots [14]. For robot control
design, Barrier Lyapunov Functions emerge as a promising
approach for handling such physical constraints such as joint
limits, torque limits, safety zones [10], [11]. Consider the prob-



lems mentioned above, in this paper we propose an asymmetric
bimanual coordinate control for the dual-arm exoskeleton to
perform human cooperative manipulation. The contributions can
be summarized as follows: (i) the intention of human operator’s
motion is estimated through impedance parameter identification;
and the estimation is embedded into impedance control such
that the robot “actively” follow its human subject; (ii) the
approach of impedance parameters identification is proposed
to estimate the variable stiffness which varies among different
subjects, with the instantaneous measurements of force and
position of the dual-arm end-effectors, and (iii) a novel BLF-
based adaptive impedance control is proposed for the dual-arm
exoskeleton under the consideration of the position and velocity
constraints.

II. SYSTEM DESCRIPTION

The illustration of asymmetric bimanual manipulation by our
dual-arm robot is shown in Fig. 1, where the arm II’s end
effector tightly holds the circular object moving as required
in task space, and the arm I’s end effector follows a desired
trajectory on the circular object and meanwhile imposes a given
certain force on the circular object, where OoXoYoZo is the
coordinate on the circular object and its origin at the mass centre
Oo; OhXhYhZh is the coordinate on the manipulator I’s end
effector and its origin at the mass centre Oh; OcXcYcZc is the
coordinate on the manipulator II’s end effector and its origin at
the mass centre Oc; and OXY Z is world coordinate.

The relative position of the system can be described by χc =
χo+Ao(θo)χco, χh = χo+Ao(θo)χho, Ac = Ao(θo)Aco(θco),
Ah = Ao(θo), where Ao(θo) ∈ R3×3 represents the rotation
matrix of θo and Aco(θco) ∈ R3×3 denotes the rotation matrix
of θco; Ac ∈ R3×3, χc, χh, and χo are the position vectors
in OcXcYcZc, OhXhYhZh, OoXoYoZo, respectively, and χco

is the position vector in OcXcYcZc expressed in OoXoYoZo;
χho is is the position vector in OhXhYhZh expressed in
OoXoYoZo; θc is the orientation vector of OcXcYcZc; θo is
the orientation vector of OoXoYoZo; θco is the orientation
vector of OcXcYcZc expressed in OoXoYoZo; θho is the
orientation vector of OhXhYhZh expressed in OoXoYoZo; rc =
[χT

c , θ
T
c ]

T ∈ R6, rh = [χT
h , θ

T
h ]

T ∈ R6, ro = [χT
o , θ

T
o ]

T ∈ R6,
rco = [χT

co, θ
T
co]

T ∈ R6, rho = [χT
ho, θ

T
ho]

T ∈ R6. Considering
that the circular object tightly grasped by manipulator II, we
have ṙho = [χ̇T

ho, θ̇
T
ho]

T = 0, accordingly, χ̇ho = 0 and
θ̇ho = 0, then we can obtain the derivatives of the relative
position as χ̇c = χ̇o + Ao(θo)χ̇co − S(Ao(θo)χco)θ̇o, χ̇h =
χ̇o − S(Ao(θo)χho)θ̇o, θ̇c = θ̇o + Ao(θo)θ̇co, θ̇h = θ̇o, where
S(t) = [0,−t3, t2; t3, 0,−t1;−t2, t1, 0] [3] with a given vector
t = [t1, t2, t3]

T . Define Ẋc = [χ̇T
c , θ̇

T
c ]

T , Ẋo = [χ̇T
o , θ̇

T
o ]

T ,
Ẋh = [χ̇T

h , θ̇
T
h ]

T , Ẋco = [χ̇T
co, θ̇

T
co]

T . Then we have the
following relationship

Ẋco = R−1
A Ẋc −R−1

A PẊo (1)

Ẋh = QẊo (2)

where RA = diag[Ao(θo), Ao(θo)],
P = [I3×3,−S(Ao(θo)χco); 0, I

3×3], Q =
[I3×3,−S(Ao(θo)χho); 0, I

3×3]. Due to the rotation matrix
Ao(θo), Ao(θo)A

T
o (θo) = I3×3 and RAR

T
A = I6×6, it is

Fig. 1. Schematic diagram of a dual
arm.

Fig. 2. The asymmetric bimanual
tasks.

obvious that P and Q are of full rank. From (1), one can obtain
the relative Jacobian JR as Ẋco = [R−1

A ,−R−1
A P ][ẊT

c , Ẋ
T
o ]

T .
Considering Ẋc = JAq̇A and Ẋo = JB q̇B , and letting
q = [qTA, q

T
B ]

T , then we have

Ẋco = [R−1
A ,−R−1

A P ][JAq̇A, JB q̇B]
T

= [R−1
A JA,−R−1

A PJB ]q̇
T (3)

where JR = [R−1
A JA,−R−1

A PJB ] is the relative Jacobian in
the world coordination.

III. HUMAN-ROBOT COOPERATIVE MOTION GENERATION

Some approaches have been proposed for estimating the stiff-
ness of robot actuators [17]–[20]. However, these approaches
can not be applied to human-robot cooperation due to ignoring
the human intention estimation. To overcome the practical issue,
it is sufficient to consider the case of an additional unknown
force function ς(x, u) in [16], i.e.

f = mẍ+ bẋ+ kx+ ς(x, u) (4)

where the perfect and complete information of u is not avail-
able. Assume that exact values of the applied force f and the
position x are measurable, and the corresponding derivatives
of these variables can be obtained, and the stiffness-regulating
input u is bounded with its first derivative u̇. Then, assume that
the ratio between the stiffness regulation rate of change and
the velocity of the trajectory measurement is bounded, namely,
during the observer application for all times t it holds

|u̇(t)| < u|ẋ(t)|, ∀t (5)

Let ∂ς(x,u)
∂x = ξ(x, u) denote the stiffness to be measured.

Also let ξ̂(t) denote its estimate at time t, and ξ̃ = ξ(x, u)− ξ̂
be the estimation error. Differentiate (4) once with respect to
time to get

ḟ = m
...
x + bẍ+ kẋ+ ξẋ+ ςuu̇ (6)

where ςu = ∂ς(x,u)
∂u . Using the current estimate of stiffness and

the assumptions stated above, a best-effort prediction for ḟ can
be written (in the absence of information on ς(x, u) and on u)
as

˙̂
f = m

...
x + bẍ+ kẋ+ ξ̂ẋ (7)

The update law can be chosen as

˙̂
ξ = α

˙̃
fsgn(ẋ) (8)
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with α > 0 and sgn(•) = •
∥•∥ , if ∥ • ∥ ̸= 0, else, sgn(•) = 0,

when ∥•∥ = 0. It is such that ξ̂ can be made to converge to the
true stiffness value ξ within an uniformly ultimately bounded
error.

The traditional mass-damper-spring model to mimic human
limb dynamics [16] can be presented as Me(Ẍm − Ẍe) +
Be(Ẋm− Ẋe)+Ke(Xm−Xe)+Ξ = Fm, where Me, Be and
Ke are diagonal matrices and respectively denote the human
limb mass, damper and stiffness matrix; Ξ denotes the variable
stiffness, Ξ = [ξ1, ξ2, . . . , ξn]

T ; Xe represents the human-
environment interaction location; Fm is the measured contact
force; and Xm is the measurement of Cartesian space coordinate
of the dual-arm exoskeleton. In this paper, we view the human
limb stiffness as the addition of fixed term Ke and variable term
Ξ. From [15], the environment model is mainly related with the
damper and spring components, and it can be simplified as

Be(Ẋm − Ẋe) +Ke(Xm −Xe) + Ξ = Fm (9)

where Be and Ke are unknown impedance parameters, and the
stiffness Ke can be estimated by the previous method (8). From
(9), it is difficult to calculate Xe, even if Fm can be measured
by a force sensor, therefore, we need to estimate Be and Ke.

In human and robot cooperation, human should be active in
the task and user inputs control into the system to assist the
dual-arm robot to complete the manipulation task, moreover,
two arms of the dual-arm exoskeleton robot contact with each
other and the interaction force would be produced between
them. Two-tiers control loop control is considered in such a
manner that the dual-arm exoskeleton robot is controlled to
follow the interactive force in between the human limb and
the exoskeleton robot. As a result, the interaction force should
be minimized. The outer loop generates the human intention
trajectory, and the inner loop guarantees position tracking.

Let Fd represent the desired force and ef = Fd − Fm

represent the force tracking-error with the actual force Fm.
When the dual arm exoskeleton robot follows human intention,
the interaction between robot and its human subject should be
small. Therefore, Fd is desired to be equal to 0. The impedance
filter is chosen as G(s) = s/Kf − 1/Ke with constant
impedance coefficient Kf , and G(s)Ef (s) = Xm(s)−Xr(s)+
Ξ(s)/Ke is the position perturbation due to the interaction
force with Xr(s), Xm(s), Ξ(s) and Ef (s) respectively being
the Laplace transformations of Xr, Xm, Ξ and ef . The force
tracking error ef is given by

ef = Fd − Fm = Fd −Be(Ẋm − Ẋe)

−Ke(Xm −Xe)− Ξ (10)
Xm(s) = G(s)Ef (s) + Xr(s)− Ξ(s)/Ke (11)

Taking Laplace transformation on (10) and then combining (11),
we have

Ef (s) =
Kf

Kes
[Fd(s) +Bes(Xm(s)−Xe(s))

−Ke(Xr(s)−Xe(s))] (12)

where Fd(s) is the Laplace transformation of Fd. Then the

steady-state force tracking error efs can be obtained

efs = lim
s→0

sEf (s)

= lim
s→0

Kf

Ke
(Fd(s) +KeXe(s)−KeXr(s)) (13)

If the desired position trajectory is precisely selected as,

Xr = Xe + Fd/Ke (14)

then tracking error of the steady-state force is efs = 0. If the
parameters of environment Ke and Xe are accurately known,
the reference position trajectory Xr could be generated from
(14) to exert the desired interaction force Fd. However, the
values of Xe, Ke and Be are always unknown. Let us consider
using its estimate to instead the real values. Here, F̂m denotes
the estimation of Fm, therefore, we have Xr = X̂e +

1
K̂e

Fd,

where X̂e and K̂e are adaptively computed estimates of Xe

and Ke, respectively. The measured force Fm from (9) can be
written as

Fm = KeXm +BeẊm − F0 (15)

where F0 = KeXe + BeẊe − Ξ, Be and Ke are the desired
values. Considering the estimation of Ke and Be, we have

F̂m = K̂eXm + B̂eẊm − F̂0 (16)

where F̂0 = K̂eX̂e+B̂e
˙̂
X−Ξ̂, X̂e can be viewed as a predictive

of F̂m, based on the current estimates of K̂e and X̂e. From (15)
and (16), we can obtain

F̃m = K̃eXe + B̃eẊe − F̃0 (17)

where K̃e = K̂e − Ke, B̃e = B̂e − Be, F̃m = F̂m − Fm,
F̃0 = F̂0 − F0 are estimation errors.

Theorem 3.1: Considering the human limb dynamic model
(9), we propose the following adaptation law as

˙̂
Bei = −γBiχ̇i(F̂mi − Fmi) (18)
˙̂
Kei = −γKiχi(F̂mi − Fmi) (19)

˙̂
Xri =

F̂mi − Fmi

K̂ei + B̂ei

[
γei + (γKiXmi + γBiẊmi)X̂ri

]
(20)

˙̂
Ξi = αi

˙̃Fmisgn(Ẋmi − ˙̂
Xei) (21)

where αi, γBi and γKi are properly selected by the designer,
the estimation values B̂ei and K̂ei converge to their respective
true values Bei and Kei as t → ∞, and the corresponding
motion generation can be given as

Xri = X̂ri + Fdi/K̂ei (22)

K̂ei(t) = K̂ei(0)− γKi

∫ t

0

Xmi(F̂mi − Fmi)dτ (23)

B̂ei(t) = B̂ei(0)− γBi

∫ t

0

Ẋmi(F̂mi − Fmi)dτ (24)

F̂mi = K̂ei(Xmi − X̂ei) + B̂ei(Ẋmi − ˙̂
Xei) + Ξi (25)

and the the estimated motion intention is X̂ri(t) = X̂ri(0) +∫ t

0
F̂mi−Fmi

K̂ei+B̂ei
(γei + (γKiXmi + γBiẊmi)X̂ri)dτ .

Proof: See Appendix.
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Remark 3.1: According to [21], [22], [23], the human arm
parameters are used to discriminate subjects through mapping
the suitable control parameters for achieving smooth human-
robot interaction. Since a human arm dynamic model can
be characterized by its impedance parameters (mass, stiffness
and damping), it has been verified that human arm stiffness
varied greatly between subjects, tasks, perturbation patterns
and experimental devices. A drawing task investigated in the
paper requires low velocity, since a high-velocity drawing might
not be feasible. During the drawing task, in the impedance
characteristic of human arm movements, the range of the
stiffness are wider than mass and viscosity. Since both inertia
and damping would be decreased in the range of low velocity,
the influence of the stiffness parameter is largest among the
impedance characteristics, and it dominates the human arm
dynamics over the mass and the damping parameters during
a human-robot task. Therefore, in the paper, the variation of
damping and inertia in the muscle are negligible.

IV. DYNAMICS OF DUAL ARM EXOSKELETON ROBOT

The complete dual-arm exoskeleton dynamics including the
human and robot can be described in the joint space as

H(q)q̈ + C(q, q̇)q̇ +Mg(q) + τd = τ + JT
Rλ (26)

with Ẋco = JRq̇, where q is the dual-arm system’s joint
variables, and q = [qTA, q

T
B ]

T ∈ Rn; qA is the vector of the
manipulator I’s joint variables, qA ∈ RnA ; qB is the vector of
the manipulator II’s joint variables, qB ∈ RnB ; nA is DOF
of the manipulator I; nB is DOF of the manipulator II; n is
DOF of the dual-arm exoskeleton robot, and n = nA + nB ;
H(q) is the block diagonal of combined inertia matrices, and
H(q) = diag[MA(qA),MB(qB)] ∈ Rn×n; C(q, q̇) is the
combined torques of Coriolis and centrifugal forces, C(q, q̇)q =
diag[CT

A(qA, q̇A)q̇A, C
T
B(qB, q̇B)q̇B]

T ∈ Rn; MA(qA) is the
inertial matrix contributed by both the human arm and the
exoskeleton manipulator I; MB(qB) is the inertial matrix con-
tributed by both human arm and the exoskeleton manipulator
II; CA(qA, q̇A) is the Coriolis and centrifugal matrix of the
human arm and the exoskeleton manipulator I; CB(qB , q̇B) is
the Coriolis and centrifugal matrix of the the human arm and
exoskeleton manipulator II; GT

A(qA) is the torque of gravita-
tional forces of the human arm and exoskeleton manipulator I;
GT

B(qB) is the torque of gravitational forces of the human arm
and exoskeleton manipulator II; τ is the joint torque vector
of dual arms, τ = [τTA , τTB ]T ∈ Rn with the control inputs
τA and τB from the manipulator I and II, respectively; τh is
the human joint torque, τh ∈ Rn; Mg(q) is the gravitational
matrxi contributed by both the human operator and exoskeleton
robot; τd is unknown mechanical disturbance τd ∈ Rn; J(q)
is the Jacobian transformation matrix; JR(q) is the Jacobian
transformation matrix; X is the coordinate in the task space,
and X = [Xo, Xc]

T ; λ is the applied external force, λ ∈ Rn.
Consider an l-dimensional independent constraints in the

relative trajectory for the system with a generalized coordinate
q ∈ Rn, which can be expressed as h(q) = 0 ∈ Rl. The
constraint force can be measured by a force sensor on the end-
effector and can be converted into joint space as f = JT

R (q)λ ∈

Rn where JR(q) =
∂h
∂q ∈ Rl×n, where λ ∈ Rl is a generalized

Lagrangian multiplier.
Inspired by the implicit function theorem in [12], there

exists a proper partition of q, i.e., q = [(q1)T , (q2)T ]T for
q1 ∈ Rn−l, and q2 ∈ Rl, where q2 = Ω(q1) with a
nonlinear mapping function Ω. Note that the superscript in q1

and q2 just denote the index of coordinate partition not the
exponent operation. Consider the partition Ẋco = JR(q)q̇. It
is easy for us to derive Ẋco = [ẊT

1 , Ẋ
T
2 ]

T and JR(q) =
diag[J1(q), J2(q)], Ẋ1 = J1q̇

1. One can obtain that the terms
∂Ω/∂q1 and ∂2Ω/∂(q1)2 are bounded. Moreover, we have the
following relationship for the independent coordinates q1, q̇1

as q = [(q1)T ,Ω(q1)T ]T , q̇ = [In−l,
∂Ω(q1)
∂q1 ]T q̇1 = A(q1)q̇1.

Differentiating the constraint h(q) = 0 with regard to time t,
we have JR(q)A(q

1)q̇1 = 0. Noting that q̇1 is an independent
coordinate, we have JR(q)A(q1) = 0 and AT (q1)JT

R (q) = 0.
Due to the velocity transformation, the derivatives of q̇ should
satisfy q̈ = A(q1)q̈1 + Ȧ(q1)q̇1.

To simplify the notations, we will omit variables in function
vectors or matrices in the rest of this paper. For example,
without causing ambiguity, we will use H , C, Mg , h and A
to denote H(q), C(q, q̇), Mg(q), h(q) and A(q1) respectively.
Then, we can have

HAq̈1 + (CA+HȦ)q̇1 +Mg + τd = τ + JT
Rλ (27)

Multiplying AT by both sides of (27), we can obtain

Hq̈1 + Cq̇1 + G ++Td = T (28)

with Ẋ1 = J1q̇
1, where H = ATHA ∈ R(n−l)×(n−l), C =

AT (CA + HȦ) ∈ R(n−l)×(n−l), G = ATMg ∈ Rn−l, Td =
AT τd ∈ Rn−l and T = AT τ ∈ Rn−l.

Property 4.1: The H and its inverse H−1 are positive and
symmetric definite matrices, and the Ḣ − 2C is a skew-
symmetric matrix [13].

V. CONTROL DESIGN

Define error variables e1 = X1 − X1d, and e2 = q̇1 − ϑ1,
with a virtual input can be designed as

ϑ1 = J+
1 (q)[−cos2(

πeT1 e1
2ε2

)K1e1 + Ẋ1d] (29)

where ε denotes the constraint on e1 and can be designed as a
small positive constant.

The human joints have physical limits, in order to avoid
possible danger to human during the motion, the constraint of
tension should be considered in the control design. Therefore,
we require errors e1 and e2 remain in their respective constraint
set Ω1 = {∥e1∥ < ε} and Ω2 = {∥e2∥ < ϱ}. It should be noted
that due to non-singularity assumption, the pseudo inverse J+

1

exists, and J1J
+
1 = I , In order to assure the constraints for X1

and q̇1, we need to guarantee that e1 and e2 do not transgress
the constrained region.

Consider the following desired control law

T ∗ = T ∗
a + T ∗

b (30)

T ∗
a = − cos2(

πeT2 He2
2ϱ2

)

(
JT
1 e1

cos2(
πeT1 e1
2ε2 )

+K2e2

)
(31)

T ∗
b = Hϑ̇1 + Cϑ1 + G + Td (32)

4



where ϱ denotes the constraint on e2 and can be designed as
a small positive constant, K2 is a positive definite constant
matrix to be designed. Since H, C, G and Td can not be
obtained beforehand, the designed control law (30) can not be
implemented, therefore, we have the following property.

Property 5.1: Define Ψ = Hϑ̇1 + Cϑ1 + G + Td, and there
exist some unknown finite non-negative constants ci ≥ 0(i =
1, 2, 3, 4) such that ∀q ∈ Rn, ∀q̇ ∈ Rn, ∥Hϑ̇1∥ ≤ c1∥ϑ̇1∥,
∥Cϑ1∥ ≤ c2∥q̇∥∥ϑ1∥, ∥G∥ ≤ c3 and ∥Td∥ ≤ c4.

Since 0 ≤ cos2(
πλmaxe

T
2 e2

2ϱ2 ) ≤ cos2(
πeT2 He2

2ϱ2 ) ≤
cos2(

πλmine
T
2 e2

2ϱ2 ) ≤ 1, let us define

β1 = cos2(
πλmaxe

T
2 e2

2ϱ2
), β2 = cos2(

πλmine
T
2 e2

2ϱ2
) (33)

Definition 5.1: Consider time varying positive function
δ(t) which converge to zero as t → ∞ and satisfy
limt→∞

∫ t

0
δ(s)ds = b < ∞, with finite constant b. Many

a choice of δ(t) satisfy the above condition, for example,
δ(t) = 1/(1 + t)2.

To overcome the uncertain dynamics, consider the adaptive
robust approach to estimate the unknown entities as

T = Ta + Tb (34)

Ta = − β1J
T
1 e1

cos2(
πeT1 e1
2ε2 )

− β2K2e2 (35)

Tb = −β2

β1

4∑
i=1

|ĉi|Φ2
i e2

Φi∥e2∥+ β1ωi
(36)

where K2 is a positive definite constant matrix; ĉi is the estima-
tion of ci; ωi satisfies Definition 5.1, and limt→∞

∫ t

0
ωi(s)ds =

b1i < ∞ with positive constants b1i(i = 1, 2, 3, 4); Φ =[
∥ϑ̇1∥, ∥q̇∥∥ϑ1∥, 1, 1

]T ∈ R6. As similar to model-based con-
troller (30), Ta and Tb can be respectively interpreted as a
control input for constraints and a control input that deals with
the dynamics of the robot.

Choose the adaptive updating law as ˙̂ci =

−Γi

(
σiĉi − Φ2

i ∥e2∥
2

β1(Φi∥e2∥+β1ωi)

)
, where Γi is a positive

constant to be designed; σi satisfies Definition 5.1, and
limt→∞

∫ t

0
σi(s)ds = b2i < ∞ with positive constants b2i.

The stability of the proposed controller (34) is analysed in
Appendix.

The designed controller (34) just contains motion control law.
For force control, we need design the force controller. Consider
(27) and let us derive the force λ as

λ = Z[(CA+HȦ)q̇1 +Mg + τd − τ ] (37)

where Z = (JRH
−1JT

R )−1JRH
−1. Consider the overall con-

trol input τ = τm+JT
Rτf with the motion control τm satisfying

τm = A+TT (A+ is the left inverse of AT which can be
calculated by A+ = A(ATA)−1) and the force control τf , then
one can obtain

λ = Z[(CA+HȦ)q̇1 +Mg + τd + τh − τm]− τf (38)

The force control law is designed as follows

τf = λd −Kfeλ (39)

Fig. 3. The location of force sensor.
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Fig. 4. The external force exerted on
the circular object holding by arm II’s
end effector.

where Kf is a designed parameter, eλ = λ − λd. Substituting
(39) into (38), we have

(Kf + I)eλ = Z[(CA+HȦ)q̇1 +Mg + τd − τm] (40)

Theorem 5.1: Consider the dynamics of dual-arm exoskele-
ton (28) with actuator dynamics, the adaptive controller (34)
and the update law ˙̂ci. If the initial errors satisfy ∥e1(0)∥ < ε
and ∥e2(0)∥ < ϱ, then the following conclusions can be made:
(i)all the closed-loop signals are bounded; (ii) for ∀t > 0, the
constraints ∥e1(t)∥ < ε and ∥e2(t)∥ < ϱ hold, where ε and ϱ
are two small positive constants to be designed; (iii) the position
X1(t) of the end-effector satisfies X1(t) < X1(t) < X1(t)
with the upper and lower limits X1(t) = −ε + X1d(t) and
X1(t) = ε + X1d(t), respectively, ∀t > 0, which makes
the constraints non-violated; (iv) the tracking errors e1(t) and
e2(t) and eλ(t) converge to the origin, i.e., X(t) → X1d(t),
q̇1(t) → ϑ; (v) the force tracking error eλ is bounded as t → ∞.

Proof: See Appendix .

VI. EXPERIMENTS

The developed dual arm exoskeleton robot consists of two
5-DOF exoskeleton platforms shown in Fig. 2. There are five
revolute joints in the developed exoskeleton. Motors 1, 2, 3, 4
and 5 are the motors for shoulder abduction-adduction, shoulder
flexion-extension, elbow flexion-extension, forearm pronation-
supination and wrist radial-ulnar deviation, respectively. By
using (18) and (19), we can estimate the human intention Xr

in (22). Therefore, a force sensor need to be used to measure
interactive force between human and the dual-arm exoskeleton
robot, as shown in Fig. 3, it is mounted on the end-effector of
the right arm.

A drawing task is considered in the experiment shown in Fig.
2. The left arm moves according to the predetermined trajectory
on the circular object held by the end effector of the reference
right arm. Five joints/DOFs are involved in the experiment, i.e.,
three joints/DOFs for the left arm to perform drawing task, two
joints/DOFs for the right arm to maintain the circular object.
The left arm maintains the contact during the drawing. During
executing the task, the the desired relative trajectories are
designed to keep the end effector of the left arm perpendicular
to the surface of the circular object, which is held by the end
effector of the right arm. The constant force is exerted in the
constrained direction perpendicular on the circular object. We
firstly predefine a time-varying target trajectory and secondly

5



employ the designed human intention estimation method to
recognize the human’s real intention and then drive the dual-arm
exoskeleton robot follow the recognized human intention by the
developed adaptive control strategy. Specifically, the shoulder
joint of the exoskeleton robot’s left arm is constrained between
two predefined target positions, i.e., 0.4 rad and 0.0 rad which
are respectively depicted by dot dashed line in Fig. 5(a), while
the elbow joint of the exoskeleton robot’s left arm is expected to
be constrained between another two predefined target positions,
i.e., 1.6 rad and 0.4 rad which are respectively depicted by dot
dashed line in Fig. 5(b). The same experiment are repeatedly
performed 5 times with 5 different subjects whose information
are Subject 1 (Male, Age:25, Height: 181 cm, Weight: 65kg),
Subject 2 (Male, Age: 24, Height: 165 cm, Weight: 59 kg),
Subject 3 (Male, Age: 24, Height: 172 cm, Weight: 72 kg),
Subject 4 ( Female, Age: 28, Height: 158 cm, Weight: 51 kg),
and Subject 5( Female, Age: 23, Height: 160 cm, Weight: 45
kg).

In order to illustrate the advantage of the proposed human in-
tention estimation approach, we also performance a comparison
experiment using the conventional impedance control method.
It is well known that the impedance model can be described
as Md(Ẍm − Ẍr) + Bd(Ẋm − Ẋr) + Kd(Xm − Xr) = Fm,
where Md, Bd and Kd are the desired inertia, damping and
siffness matrices, respectively. In the comparative experiment,
we choose the impedance parameters as Md = diag[0.0, 0.0],
Bd = diag[7.0, 6.0] and Kd = diag[0.1, 0.1]. The controller
parameters are chosen as K1 = diag[27.45, 25.8], K2 =
diag[8.01, 6.4], ε = 0.03, ϱ = 2 λmax = 3.5336, λmin = 0.08,
ωj = 5/(t + 1)2. The force controller parameter in (39) is
chosen as Kf = 5. The target external force is λd = −2.0N .
We choose ĉi = 0(i = 1, 2, 3, 4) as the initial values of
adaptive laws. Parameters in adaptive laws are set to Γi = 0.15
and σi = 2/(t + 1)2. The interaction force is measured by a
force sensor on the end-effector of the right arm. The design
parameters with regard to human arm model are chosen as
γKi = 0.1, γBi = 0.1 and γei = 0.01.

The results of experiment on the elbow and shoulder joints
are shown in Figs. 5-10. Firstly, the subject 1’s experiment
results are shown in Fig. 5. The estimated human intention
trajectories for the two joints are shown in Figs. 5(a) and 5(b).
The two figures illustrate that the positions of these two joints
track their respective desired trajectories with small errors. It is
obvious that the tracking errors are reducing smaller with time
evolves. Fig. 5(c) shows the evolution of the input signals for the
corresponding motors. The adaptive parameters are presented
in Fig. 5(d). The interaction force is shown in Fig. 5(e). The
human arm model parameters, i.e, Be, Ke and Ξ, are updated
in Figs. 5(f)-5(h). From these figures, the desired performance
is obtained by using the proposed control scheme, even if
little dynamics knowledge of the exoskeleton and the external
disturbances in the environment is available. Figs. 5(a) and 5(b)
show that the actual position converges to the estimated human
intention trajectory. The boundedness of input signals is shown
in Fig. 5(c).

For the experiment results of subject 2-5, we only present
figures about human intention estimation. Figs. 6-9 show the
results of subject 2-5. From these figures, we observe that the
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Fig. 5. Experiment results of comparative experiment results for Subject 1.

dual-arm exoskeleton can recognize the human intention by
the proposed human intention estimation method and also can
track the desired human intention trajectory effectively by the
proposed adaptive control strategy. The external force exerted
on the circular object holding by arm II’s end effector is shown
in Fig. 4. We can observe that the actual external force λ
tracks the target force λd with small tracking error in Fig. 4
for the 5 subject. And the trajectory of λ shows the tendency
of converging to the target force λd.

The results of comparative experiment within the 5 subjects
using the traditional impedance control method presented in
[9] are shown in Fig. 10. The five lines in every figure
denote the experiment result of one subject. The estimated
human intention for exoskeleton shoulder and elbow joints are
presented in Fig. 10(a) and Fig. 10(b). Fig. 10(c) and Fig.
10(d) respectively denotes the measured interaction force in
the experiment process. The input torque for the two joints
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Fig. 6. Experiment results of subject 2.

are shown in Fig. 10(e) and Fig. 10(f). From the subplot (f)
of Figs. 5-9 and Fig. 10(c) and Fig. 10(d), we can observe
that when using our human intention identification scheme,
the interactive force between exoskeleton robot arm and its
human partner is smaller. In the comparative experiment, we
use same impedance parameters for the 5 subjects. Moreover,
we have compared the inter-subject experiment results in Figs.
5-9. From these figures, we can see that the estimated human
arm parameters Be, Ke and Ξ are considerable different. It is
understandable because different human should have different
arm parameters. The developed method can identify its human
partner’s arm parameters and then use the recognized parameter
synthesizing the desired human intention that the exoskeleton
robot to precisely follow.

VII. CONCLUSION

The paper developed a Barrier Lyapunov Function (BLF)
based adaptive impedance control for dual-arm exoskeleton
with unknown intention of the human operator, unknown robot
dynamics, and the physical limits. Motion intention of human
operator is considered as the desired trajectory and impedance
parameter online identification is employed to deal with the
nonlinear and variable stiffness property of human limb model.
Experiments have been conducted to demonstrate that the
proposed dual-arm coordination controller is effective. In the
future work, we shall consider stroke patients participated in
the actual experiments.

0 2 4 6 8 10 12 14
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t [sec]

am
pl

itu
de

 [r
ad

]

 

 
desired
actual
target

(a) Trajectories of the exoskeleton
shoulder joint.

0 2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t [sec]

am
pl

itu
de

 [r
ad

]

 

 
desired
actual
target

(b) Trajectories of the exoskeleton
elbow joint.
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Fig. 7. Experiment results of subject 3.

APPENDIX

Consider the Barrier Composite Energy Function candidate
as V = ε2

π tan(
πeT1 e1
2ε2 ) + ϱ2

π tan(
πeT2 He2

2ϱ2 ) + 1
2

∑4
i=1

1
Γi
c̃ic̃i +∑n

i=1
1

2γBi
B̃2

ei +
∑n

i=1
1

2γKi
K̃2

ei +
∑n

i=1
1

2γei
F̃ 2
0i, where c̃i =

ĉi − ci. Considering the derivative of V and using Property 4.1
and (18) and (19), by defining ˙̃F0i = γe(F̂mi − Fmi) we have

V̇ ≤ −eT1 K1e1 +
eT1 J1e2

cos2(
πeT1 e1
2ε2 )

− eT2

cos2(
πeT2 He2

2ϱ2 )

(
Cϑ1

+G + Td +Hϑ̇1

)
+

eT2 T
cos2(

πeT2 He2
2ϱ2 )

+
4∑

i=1

1

Γi
c̃i ˙̃ci (41)

Integrating (34) into (41), considering (33) and Property
5.1, and using the fact of −β2/ cos

2(
πeT2 He2

2ϱ2 ) ≤ −1, we

can rewrite V̇ as V̇ ≤ −eT1

(
K1 − α/2 cos2(

πeT1 e1
2ε2 )

)
e1 −

eT2

(
K2 − α/2 cos2(

πeT1 e1
2ε2 )

)
e2 +

eT2 Tb−eT2 Ψ

cos2(
πeT2 He2

2ϱ2
)
, where α =

∥J1∥(1 − β1

β2
). Considering the following inequality, which is

bounded by eT2 Tb

cos2(
πeT2 He2

2ϱ2
)
− eT2 Ψ

cos2(
πeT2 He2

2ϱ2
)
+ 1

2

∑4
i=1 Γ

−1
i c̃i ˙̃ci ≤∑4

i=1 ciωi −
∑4

i=1
1
2σic̃ic̃i +

∑4
i=1

1
2σic

2
i , where we use the

facts: −β2/ cos
2(

πeT2 He2
2ϱ2 ) ≤ −1, β1ciΦi∥e2∥ωi

Φi∥e2∥+β1ωi
≤ β1ciωi and

−|ĉi| ≤ −ĉi(i = 1, . . . , 4). The last inequality obtained is
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Fig. 8. Experiment results of subject 4.

because that −c̃iĉi = −c̃i(ci + c̃i) = −c̃ic̃i − c̃ici and
−c̃ici ≤ 1

2 (c̃ic̃i+cici), we have −c̃iĉi ≤ − 1
2 c̃ic̃i+

1
2cici. Then,

we can rewrite V̇ as V̇ ≤ −eT1

(
K1 − α/2 cos2(

πeT1 e1
2ε2 )

)
e1 −

eT2

(
K2 − α/2 cos2(

πeT1 e1
2ε2 )

)
e2 +

∑4
i=1 ciωi +

∑4
i=1

1
2σic

2
i −∑4

i=1
1
2σic̃ic̃i. Since

∑4
i=1 ciωi → 0 and

∑4
i=1

1
2σic

2
i → 0

as t → ∞ due to the definition of ωi and σi, and by
selecting the suitable positive definite constant matrices K1,
K2 satisfying K1 ≥ α

2 I and K2 ≥ α
2 I , and positive constants

Γi(i = 1, . . . , 4), one can conclude that V̇ < 0 as t →
∞. Thus, e1 and e2 converge to the origin as t → ∞.
Integrating both sides of the above equation gives V (t) −
V (0) ≤ −

∫ t

0

{
eT1

(
K1 − α/2 cos2(

πeT1 e1
2ε2 )

)
e1 + eT2

(
K2 −

α/2 cos2(
πeT1 e1
2ε2 )

)
e2+

∑4
j=1

1
2σj c̃j c̃j

}
ds+

∫ t

0

{∑4
i=1 ciωi+∑4

i=1
1
2σic

2
i

}
ds. Since ci is constant

∫∞
0

ωids = b1i and and∫∞
0

σids = b2i(i = 1, . . . , 4) are constants, we can rewrite
it as V (t) − V (0) < ∞. Thus, V is bounded such that
e1, e2 ∈ L∞ and X ∈ L∞ according to the boundedness of X1d

in Assumption 3.1. We can conclude that J1 and q are bounded.
Since ci is a constant, we have ĉi is also bounded. Then, we can
obtain the follows. (i) Since the augmented Lyapunov function
V is bounded, it is obvious that all the closed-loop signals are
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Fig. 9. Experiment results of subject 5.

all bounded. (ii) Assume that there exists some t = T such
that ∥e1(t)∥ or ∥e2(t)∥ grows to their respective constraint ε
or ϱ, i.e., ∥e1(T )∥ = ε or ∥e2(T )∥ = ϱ. The initial values
∥e1(0)∥ < ε and ∥e2(0)∥ < ϱ. Then, it is obtained that V rises
infinite by substituting e1(T ) or e2(T ) into V̇ . However, V is
bounded. According to the method of proof by contradiction,
we have the constraints ∥e1(t)∥ < ε and ∥e2(t)∥ < ϱ holding
for ∀t > 0. (iii) We have ∥e1(t)∥ < ε from (ii). From the
definition of e1(t), we have X1(t) = e1(t) +X1d(t). Then, it
obtains −ε + X1d(t) < X1(t) < ε + X1d(t), which indicates
X1(t) < X1(t) < X1(t) where X1(t) = −ε + X1d(t) and
X1(t) = ε +X1d(t). (iv) According to the Definition 5.1, we
have ωj → 0 and σj → 0(j = 1, . . . , 4) as t → ∞. We have
V̇ ≤ 0 as t → ∞ by choosing appropriate design parameters
K1, K2 and Γj(j = 1, . . . , 4), X(t) → X1d(t) and q̇1(t) → ϑ.
(v) Since e2 = q̇1−ϑ1 and ϑ1 are bounded, q̇1 is also bounded.
Then Z, C, A, Ȧ, Mg, τh and τm in (40) are both bounded.
Considering the bounded H and q̇1 , we obtain the right hand
side of (40) is bounded. In other words, (Kf+I)eλ is bounded.
Then the force error ef is bounded.
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