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Abstract—Inversion of electrical resistivity tomography (ERT)

data is an ill-posed problem that is usually solved through deter-

ministic gradient-based methods. These methods guarantee a fast

convergence but hinder accurate assessments of model uncertain-

ties. On the contrary, Markov Chain Monte Carlo (MCMC)

algorithms can be employed for accurate uncertainty appraisals, but

they remain a formidable computational task due to the many

forward model evaluations needed to converge. We present an

alternative approach to ERT that not only provides a best-fitting

resistivity model but also gives an estimate of the uncertainties

affecting the inverse solution. More specifically, the implemented

method aims to provide multiple realizations of the resistivity

values in the subsurface by iteratively updating an initial ensemble

of models based on the difference between the predicted and

measured apparent resistivity pseudosections. The initial ensemble

is generated using a geostatistical method under the assumption of

log-Gaussian distributed resistivity values and a Gaussian vari-

ogram model. A finite-element code constitutes the forward

operator that maps the resistivity values onto the associated

apparent resistivity pseudosection. The optimization procedure is

driven by the ensemble smoother with multiple data assimilation,

an iterative ensemble-based algorithm that performs a Bayesian

updating step at each iteration. The main advantages of the pro-

posed approach are that it can be applied to nonlinear inverse

problems, while also providing an ensemble of models from which

the uncertainty on the recovered solution can be inferred. The ill-

conditioning of the inversion procedure is decreased through a

discrete cosine transform reparameterization of both data and

model spaces. The implemented method is first validated on syn-

thetic data and then applied to field data. We also compare the

proposed method with a deterministic least-square inversion, and

with an MCMC algorithm. We show that the ensemble-based

inversion estimates resistivity models and associated uncertainties

comparable to those yielded by a much more computationally

intensive MCMC sampling.

Keywords: Electrical resistivity tomography, Bayesian

inversion.

1. Introduction

Electrical resistivity tomography (ERT) is one of

the most widely used geophysical methods that can

successfully be employed for geotechnical charac-

terization, monitoring earthen dams and

embankments, landfill monitoring, groundwater

exploration, and mapping of contaminant plumes

(e.g., Aleardi et al., 2020; Arosio et al., 2017; Bièvre

et al., 2018; Chambers et al., 2006; Dahlin, 2020;

Hermans & Paepen, 2020; Hojat et al., 2019a; Kar-

imi-Nasab et al., 2011; Loke et al., 2020; Moradipour

et al., 2016; Müller et al., 2010; Pollock & Cirpka,

2012; Supper et al., 2014; Tresoldi et al., 2019;

Whiteley et al., 2017). The ERT inversion is non-

linear and ill-posed, thus meaning that the solution to

this problem is nonunique due to the limited resolu-

tion and noise contamination in the acquired data.

The methods used to solve the ERT problem can be

classified into two categories: deterministic and

probabilistic algorithms. The former are gradient-

based approaches that minimize an error function

through an iterative linearization procedure (Karoulis

et al., 2014; Pidlisecky & Knight, 2008; Zhang et al.,

2005). To stabilize the problem, the error function

usually includes both a data misfit term and some

type of model regularizations, such as smoothness

constraints or closeness of the solution to a prede-

fined resistivity model. Undoubtedly, these

approaches are the most popular methods to solve the

ERT inversion because they guarantee rapid conver-

gence toward a best-fitting model. However, the loss

of information produced by the local linearization
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hinders accurate uncertainty appraisals. Furthermore,

these local strategies can often get trapped in local

minima of the error function.

On the contrary, probabilistic methods express the

inverse solution through the posterior probability

density (PPD) function in the model space that fully

quantifies the uncertainty on the estimated parameters

(Tarantola, 2005). The main advantage of proba-

bilistic over deterministic approaches lies in their

ability to provide a set of model realizations that

reproduce the measured data. The PPD can be

expressed in a closed-form only for linear forward

operators and Gaussian assumptions about data and

model parameter distributions. For nonlinear prob-

lems and/or non-Gaussian assumptions, a complete

characterization of the PPD is only possible through

sampling, and in these contexts, Markov Chain

Monte Carlo (MCMC; Sambridge & Mosegaard,

2002; Sen & Stoffa, 2013) algorithms can be used to

numerically estimate the target posterior. These

methods provide accurate uncertainty assessments

but require a considerable computational effort to

converge toward stable PPD estimations, especially

in large-dimensional model spaces and for expensive

forward model evaluations (Aleardi & Salusti, 2020;

Aleardi et al., 2017, 2020; Pradhan & Mukerji, 2020;

Sajeva et al., 2014).

To alleviate the computational workload for

uncertainty assessment in nonlinear inverse problems,

an approximate Bayesian method, the ensemble-

based inversion can be applied. This approach is a

data assimilation algorithm in which the PPD is

represented by an ensemble of model realizations

obtained by assimilating the observed data. With an

underlying Gaussian assumption on model parame-

ters and noise distribution, this method provides an

approximate description of the posterior model,

which is usually accurate if the model parameters are

approximately Gaussian, the forward operator is not

highly nonlinear, and the number of models forming

the ensemble is large enough. For example, an initial

ensemble with a limited number of models might lead

to an underestimation of the posterior uncertainty.

The main advantage of this approach is the reduced

number of forward modeling runs required to get

reasonable PPD estimations with respect to MCMC

algorithms. Popular ensemble-based methods are the

ensemble smoother (ES; Evensen, 1994), the

ensemble Kalman filter (EnKF; Evensen, 2009), and

the ensemble smoother with multiple data assimila-

tion (ES-MDA; Emerick & Reynolds, 2013). Some

applications of these approaches to solve geophysical

inverse problems can be found in Jin et al. (2008),

Tveit et al. (2015), Liu and Grana

(2018a, 2018b, 2018c), Thurin et al. (2019), Tveit

et al. (2020).

In this work, we propose an ensemble-based

inversion of ERT data (EB-ERT) that makes use of

the ES-MDA algorithm. Differently from the ES, in

ES-MDA the observed data are assimilated multiple

times with an inflated data covariance matrix. In this

context, each data-assimilation step corresponds to a

Bayesian updating step in which the conditional

distribution of the model parameters is approximated

by estimating the conditional mean and covariance

matrix from the ensemble of models. In our appli-

cation, a finite element (FE) code (Karaoulis et al.,

2013) constitutes the forward operator that computes

the observed data from the subsurface resistivity

values.

To reduce the ill-conditioning and the number of

unknown of inversion problems, several compression

strategies could be adopted such as wavelet transform

(Li & Oldenburg, 2003), singular value decomposi-

tion (Liu & Grana, 2018b), Legendre polynomials

(Aleardi, 2019), convolutional autoencoder (Liu &

Grana, 2018a). Here we reduce both the ill-condi-

tioning of the ERT problem and the number of

ensemble members needed for reliable uncertainty

through a discrete cosine transform (DCT) reparam-

eterization that is a very common method extensively

used for image compression (Britanak et al., 2010).

The DCT expands a signal (e.g., expressing the

subsurface resistivity model) into a series of cosine

functions oscillating at different frequencies. The

low-order DCT coefficients express most of the

variability of the original signal, and the model

compression is simply accomplished by zeroing the

numerical coefficients of the basis functions beyond a

certain threshold. However, each compression tech-

nique must be applied taking in mind that part of the

information in the original (unreduced) parameter

space could be lost in the reduced space and thus, the

model parameterization must always constitute a

M. Aleardi et al. Pure Appl. Geophys.



compromise between model resolution and model

uncertainty (Aleardi, 2020; Aleardi & Salusti, 2021;

Dejtrakulwong et al., 2012; Fernández-Martı́nez

et al., 2017; Grana et al., 2019; Lochbühler et al.,

2014). Similarly, data parameterization must consti-

tute a compromise between good data resolution (our

ability to match the observed data) and accurate

uncertainty quantification. It should be also noted that

the order of the retained non-zero DCT coefficients in

the model space determines the wavelength of the

recovered solution along different directions (i.e.,

vertical, horizontal). Therefore, in our application,

the DCT also acts as a regularization operator in the

model space that guarantees the preservation of the

spatial continuity of the resistivity values in the

recovered solution.

The EB-ERT is first assessed on synthetic data

and then applied to field data. In both cases, a geo-

statistical method generates the initial ensemble of

models according to a stationary log-Gaussian prior

model and a Gaussian variogram. We also compare

the results of the proposed approach with those

achieved by an MCMC sampling and with a deter-

ministic least-squares inversion. More specifically,

we sample the PPD in the reduced DCT domain by

employing the Differential Evolution Markov Chain

(DEMC; Vrugt, 2016), an MCMC method that

improves over the standard random walk Metropolis

because it exploits multiple and interactive chains to

sample the parameter space. We will demonstrate that

if the number of ensemble members is large enough,

the EB-ERT inversion provides reasonable estima-

tions of uncertainties comparable to the MCMC

algorithm but with a dramatic reduction of the com-

putational workload. We also assess the influence of

the number of ensemble members on the quality of

the EB-ERT inversion results. As far as the authors

are aware, this is the first time that the EB and

MCMC methods are compared in the context of ERT

inversion.

2. Methodology

2.1. The Bayesian Approach and the Ensemble-

Based Inversion

Gradient-based deterministic inversions are aimed

at minimizing a misfit function, which usually is a

linear combination of data error and a model

regularization term. For Gaussian-distributed noise

and model parameters, the error function can be

written as follows:

E mð Þ ¼ C
�1

2

d d� G mð Þð Þ
�
�
�

�
�
�

�
�
�

�
�
�

2

2

þ C
�1

2
m m�mprior

� �
�
�
�

�
�
�

�
�
�

�
�
�

2

2
; ð1Þ

where the vectors m and d identify the model

parameters and the observed data, respectively; Cd

and Cm are the data and prior model covariance

matrices;mprior is the prior model vector, and G is the

forward modeling operator that maps the model into

the corresponding data. The minimum of E mð Þ can

be iteratively approached through a local quadratic

approximation of the error function around a starting

model (Aster et al., 2018; Menke, 2018).

Differently, a Bayesian inversion is aimed at

estimating the full posterior distribution in the model

space expressed by:

p mjdð Þ ¼ pðdjmÞp mð Þ
p dð Þ ; ð2Þ

where p mjdð Þ is the posterior probability density

(PPD), pðdjmÞ is the data likelihood function,

whereas pðmÞ and pðdÞ are the a-priori distributions

of model parameters and data, respectively. Under

Gaussian assumptions for data and model parameter

distributions, and for a linear forward operator G, we

can write (Tarantola, 2005):

p mð Þ / exp � 1

2
m�mprior

� �T
C�1

m m�mprior

� �
� �

;

ð3Þ

pðdjmÞ / exp � 1

2
d�Gmð ÞTC�1

d d�Gmð Þ
� �

;

ð4Þ
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Under the previous assumptions, the maximum a

posteriori (MAP) solution of the Bayesian approach

coincides with the minimizer of E(m) and can be

computed as:

mMAP ¼ argmin
m

E mð Þ ¼ mprior þK d�Gmprior

� �

;

ð6Þ

where the matrix K is the so-called Kalman gain

given by:

mMAP ¼ CmG
T GCmGþ C�1

d

� �

; ð7Þ

whereas the posterior covariance matrix can be

computed as follows:

Cmjd ¼ Cm �KGCm: ð8Þ

However, for nonlinear inverse problems, the

forward operator cannot be expressed into a matrix

form and thus, the posterior covariance cannot be

analytically computed. Moreover, for large dimen-

sional model spaces, the computation of the Kalman

filter becomes computationally unfeasible. To over-

come these issues, EB methods replace the analytical

model covariance with an empirical estimate of the

covariance inferred from the ensemble members. For

example, the ES simultaneously assimilates the

observed data to globally update an initial ensemble

of models generated according to the prior:

mu
k ¼ mp

k þ ~K ~dk � dp
k

� �

; ð9Þ

with k = 1,…,N, where N represents the number of

models in the ensemble and ~dk is a random pertur-

bation of the observed data according to the Gaussian

distribution Nðd;CdÞ. The subscripts u and p repre-

sent the updated (current iteration) and prior

(previous iteration) variables, respectively; dp
k is the

data associated with the kth prior model mp
k . Finally,

~K is the Kalman gain that can be estimated from the

ensemble of models according to:

~K ¼ Cp
mdðC

p
dd þ CdÞ�1

; ð10Þ

where Cp
dd denotes the covariance matrix of the

predicted data; Cp
md is the cross-covariance between

the model vector mp and the vector of the associated

data dp. It can be demonstrated that the EnKF and ES

are equivalent to a single Gauss–Newton iteration.

This means that an iterative updating of the prior

models is equivalent to performing multiple smaller

corrections to the ensemble. The ES usually requires

many iterations to achieve good data predictions. For

this reason, the ES-MDA was proposed in which the

data are assimilated multiple times with an inflated

data covariance. In this context, Eq. (9) can be

interpreted as a Bayesian updating step under the

assumption of Gaussian distributed model parame-

ters. Note that this equation can be also applied to

nonlinear problems because the covariance matrices

Cp
dd and Cp

md are approximately inferred from the

ensemble models and the associated data. The ES-

MDA improves over the ES because it reduces the

model variations at each iteration by employing a

damping parameter a that scales the data covariance

matrix. The steps forming the ES-MDA can be

described as follows:

1. Define the total number of iterations Q, the

number of models in the ensemble N, and the

inflation coefficient a for each iteration with
PQ

i¼1
1
ai
¼ 1;

2. Generate the prior ensemble of models according

to the Gaussian prior;

3. For each ith iteration

(a) Run the forward models to compute the data

associated with each ensemble member

dpf g1;...;N ;
(b) Perturb the observed data for each kth ensem-

ble member according to: ~dk ¼ dþ
ffiffiffiffi
ai

p
C

�1=2
d n, with n ¼ Nð0; IÞ, where I is the

identity matrix, whereas aiCd denotes the

inflated covariance matrix;

(c) Update the ensemble using Eqs. (9) and (10)

in which Cd is replaced by aiCd.

The algorithm updates each model to minimize

the L2 norm difference between the observed data

and the data computed on the ensemble members. All

M. Aleardi et al. Pure Appl. Geophys.



the models that attain the final misfit values can be

considered a sample from the equivalence region of

solution in the model space (Aster et al., 2018). In

other terms, such models equally reproduce the

observed data and for this reason, represent possible

subsurface scenarios in agreement with the acquired

geophysical data and with the prior assumptions.

From this ensemble of models, we can numerically

derive an estimate of the posterior uncertainty.

The number of ensemble members should be large

enough to get an accurate estimate of the Cp
dd and

Cp
md matrices but small enough not to make the

forward evaluations computationally impractical. The

optimal number of members also depends on the

model space dimension: large model spaces require a

considerable number of ensemble members to

achieve reliable uncertainties estimations. Indeed, it

is known that too small ensembles can result in an

underestimation of the model uncertainties. To over-

come these issues and to also mitigate the ill-

conditioning of the problem we compress both data

and model spaces using the DCT.

2.2. Discrete Cosine Transform

Several variants of DCT exist with slightly

modified definitions, but in this work, we use the

so-called DCT-2 formulation that is the most com-

mon. Hereafter we simply refer to the DCT-2

transformation as the DCT. We employ the DCT

parameterization because it exhibits superior com-

pression power over other compression methods

(Lochbühler et al., 2014).

The DCT can be applied to multidimensional

signals (i.e., 2-D matrices) and such multi-dimen-

sional DCT transform follows straightforwardly from

the one-dimensional definition because it is simply a

separable product (equivalently, a composition) of

DCTs along each dimension. For example, if we

assume a 2-D resistivity model q(x,y) in which

x = [0,1,…,Mx - 1] and y = [0,1,…,My - 1] repre-

sent the horizontal and vertical coordinates,

respectively, the associated 2-D transform is defined

as follows:

where R kx; ky

� �

represents the kx-th and ky-th DCT

coefficient. The values within the matrix R represent

the unknowns to be estimated in a DCT-reparame-

trized inverse problem. Equation (11) can be

compactly rearranged in matrix form:

R ¼ ByqB
T
x ; ð12Þ

where Bx and By are the matrices with dimensions

Mx � Mx and My � My, respectively that contain the

DCT basis functions, whereas the My � Mx matrix R

expresses the DCT coefficients. This approach con-

centrates most of the information of the original

signal into the low-order DCT-coefficients, and

hence, an approximation of the subsurface resistivity

model can be obtained as follows:

~q ¼ Bq
y

� T

RqpB
p
x ; ð13Þ

where ~q is the approximated [My � Mx] resistivity

model, Bq
y is a [q�My] matrix containing only the

first q rows of By; B
p
x is a [p�Mx] matrix containing

only the first p rows of Bx, whereas the matrix Rqp

represents the first q rows and p columns of R. In

other words, the scalar q and p represent the retained

number of basis functions along the y and x directions

used to derive the approximated model. Therefore,

the DCT transformation allows a reduction of the

(My�Mx)-D full resistivity model space to a (q � p)-

R kx; ky

� �

¼ 1ffiffiffiffiffi
Mx

p 1ffiffiffiffiffi
My

p PMx�1

x¼0

PMy�1

y¼0

q x; yð Þ; if kx ¼ ky ¼ 0

R kx; ky

� �

¼
ffiffiffiffiffi
2

Mx

q ffiffiffiffiffi
2

My

q PMx�1

x¼0

PMy�1

y¼0

q x; yð Þcos 2xþ1ð Þpkx

2Mx

� 

cos
2yþ1ð Þpky

2My

� 

; if kx; ky 6¼ 0

8

>>><

>>>:

; ð11Þ
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D DCT-compressed parameter space with p\Mx and

q\My. In this context the p � q non-zero numerical

coefficients of the Rqp matrix become the unknowns

to be estimated after a DCT compression of the

model space. Estimating the retained DCT-coeffi-

cients reduces the parameter space dimensionality

and can significantly improve the computational

efficiency of the inversion procedure. Figure 1 shows

some DCT basis functions of different orders in a 2-D

space and illustrates that the variability of the solu-

tion along each dimension is directly determined by

the orders of the retained DCT coefficients. Note that

moving from the full data and model spaces to the

DCT-compressed domains reduces both the numbers

of ensemble members needed for reliable uncertainty

estimation and the dimensions of the Cp
dd and Cp

md

matrices, thereby reducing the computational effort

of the entire inversion procedure.

In this work, we apply the 1D DCT to compress

the measured apparent resistivity values, and the 2D

DCT to compress the subsurface resistivity model.

This means that the model parameter vector m in-

cludes the retained number of coefficients in the

model space, while the observed data vector d in-

cludes the retained coefficients in the data space.

Figure 2 shows a schematic representation of the

projection of the full model and data spaces onto the

compressed DCT domain and the so derived model

and data vectors for the EB-ERT inversion. Note that

because of its trapezoidal shape, the apparent resis-

tivity pseudosection cannot be expressed with a 2D

matrix and thus, it has been flattened to a 1D vector

before the DCT projection. After generating the

initial ensemble according to the prior assumptions

and computing the associated predicted data, all the

Figure 1
2-D DCT basis functions of different orders. Blue and red code low

and high numerical values, respectively

Figure 2
Derivation of the model (a) and data (b) vectors in the DCT space from the resistivity model and the associated pseudosection

M. Aleardi et al. Pure Appl. Geophys.



models and data are projected onto the DCT space.

We will consider log-Gaussian distributed resistivity

values and for this reason, the DCT coefficients to be

estimated refer to the natural logarithm of the

resistivity. The inversion runs in the reduced domain

and after the selected number of iteration has been

Figure 3
a Marginal log-Gaussian prior distribution for the resistivity values. b, c represent the spatial correlation functions associated with the

assumed 2-D variogram model along the lateral and vertical directions, respectively. d The true model for the synthetic inversion

Figure 4
a Examples of explained model variability as the number of DCT coefficients along the 1st and 2nd DCT dimension increases. We illustrate

the explained variability for a resistivity model drawn from the prior distribution. The numerical value with coordinate (x, y) indicates the

explained variability if the first x, and y DCT coefficients along the 1st and 2nd DCT dimensions, respectively, are used for compressing the

resistivity model. It emerges that 10 DCT coefficients along the 1st dimension and 4 along the and 2nd dimension explain almost the 100% of

the variability of the uncompressed resistivity model. b Explained variability as the number of DCT coefficients increases for the data

associated with the model shown in a. In this case, 80 DCT coefficients express almost the total variability of the uncompressed dataset

Ensemble-Based Electrical Resistivity Tomography with Data and Model Space Compression



reached, the ensemble of DCT models collected at the

last iteration are projected back onto the resistivity

space to compute the mean model and the associated

uncertainty in the original, uncompressed domain.

3. Synthetic Inversion

In the following synthetic example, the study area

is 35 m long and 5.5 m deep and is discretized with

rectangular cells with spatial dimensions of 1 m and

0.5 m along the horizontal and vertical directions,

respectively. We define a stationary log-Gaussian

prior model and a spatial Gaussian variogram that can

be expressed by the following correlation function:

sx ¼ exp � h2
x

a2x

� �

; ð14Þ

where sx indicates the correlation along the horizontal

x-direction, hx is the spatial distance of the autocor-

relation function along the same direction, and ax is

the parameter that defines the spatial dependency

along the x-axis. Note that the scalar value ax directly

influences the variogram range along the x-direction.

In this example we consider ax and ay equal to 4 and

2 m, respectively. The marginal log-Gaussian prior

together with the lateral correlation functions are

represented in Fig. 3. The true model is simply gen-

erated as a random realization extracted from the

prior assumptions. This means that we put ourselves

in the most favorable case in which the prior

assumptions correctly capture the statistical

Figure 5
A comparison between the true resistivity model drawn from the prior distribution and some approximations obtained with different numbers

of DCT coefficients. The parentheses express the number of coefficients retained along the first and second DCT dimensions. For example [7,

4] indicates that we consider 7 and 4 coefficients along the first and second DCT directions, respectively

Table 1

Quantitative summary of the EB inversion results

N.

models

CC

model

RMSE

model

CC

data

RMSE

data

Cov.

ratio

Time to

converge (s)

100 0.75 16.43 0.98 4.55 0.65 90

200 0.78 15.30 0.98 4.57 0.71 150

500 0.80 14.61 0.98 4.59 0.83 360

1000 0.80 14.65 0.98 4.60 0.85 720

2000 0.80 14.63 0.98 4.58 0.86 1440

From left to right: the number of models forming the ensemble (N.

models). Correlation coefficient and RMSE between the true model

and the estimated mean model (CC model, and RMSE model,

respectively). Correlation coefficient and RMSE between the

observed data and the data generated by the mean model (CC data,

and RMSE data, respectively). Coverage ratio for the 80% confi-

dence interval. Time to converge. Note that the comparison

between the true and predicted model and between the predicted

and observed data is performed in the linear domain and not in the

logarithmic domain

M. Aleardi et al. Pure Appl. Geophys.



properties and spatial variability patterns of the sub-

surface resistivity values. The true model includes

two high-resistivity anomalies embedded in a low

resistivity medium: one wider anomaly is located at

the center of the model, while the other is located

around the horizontal coordinate of 7.5 m. At the

right edge of the model (between the horizontal

coordinates of 25 and 30 m) we have also simulated a

shallow and low-resistivity body.

We simulate a Wenner acquisition layout with 36

electrodes evenly spaced of 1 m and an injected

current of 1 A. The maximum a value is 11. This

configuration results in 11� 35 ¼ 385 model

parameters to be estimated from 198 data points. The

previously mentioned FE code has been used to

Figure 6
Estimated mean models (left) and associated standard deviation maps (right) for the different tests. a 100 models in the ensemble. b 200

models in the ensemble. c 500 models in the ensemble. d 1000 models in the ensemble. e 2000 models in the ensemble
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compute the noise-free observed data that have been

contaminated with uncorrelated Gaussian noise with

a standard deviation equal to the 20% of the total

standard deviation of the noise-free dataset. This

results in a signal-to-noise ratio of 20 dB.

After defining the prior we must determine the

optimal number of DCT coefficients needed to

approximate the subsurface resistivity model. To this

end, we quantify how the explained variability of the

resistivity model changes as the number of DCT basis

functions increases. The selection of the optimal

number of DCT coefficients is a very delicate step

that must guarantee uncertainty estimations, model

resolution, and data fitting comparable to those

achieved by an inversion running in the full,

uncompressed space. A detailed discussion on how

the model and data compressions affect the inversion

results is far beyond the scope of this work and we

refer the interested reader to Grana et al. (2019) for

more theoretical insights. Figure 4a shows the

explained variability for a model drawn from the

prior as the number of retained DCT coefficients

increases. We note that only 40 coefficients (i.e., 10

and 4 coefficients along the first and second DCT

directions, respectively) explain almost the total

variability of the uncompressed resistivity model.

This means that the DCT allows for a reduction of the

Figure 7
Evolution of the L2 norm data misfit for the different tests

Figure 8
Some examples of resistivity sections drawn from the prior distribution and associated with the test employing 500 models in the ensemble

M. Aleardi et al. Pure Appl. Geophys.



385D model space to 4� 10 ¼ 40D domain. A

similar analysis has been carried out on some datasets

derived from prior realizations. An example is shown

in Fig. 4b where it emerges that 80 coefficients suc-

cessfully compress almost the total variability of the

uncompressed dataset. Therefore, in this case, the full

385D model space has been reduced to a 40D

domain, while the full data space has been reduced to

an 80D domain. As an example, Fig. 5 compares the

true resistivity model with the approximated models

derived for different numbers of retained DCT coef-

ficients. If only two coefficients are considered along

the two DCT dimensions, the actual resistivity values

are not recovered. Four coefficients along the two

DCT dimensions provide just a very smoothed ver-

sion of the original model, while only 10 and 4

coefficients guarantee an almost complete reproduc-

tion of the lateral and vertical variations of the actual

resistivity values. Therefore, the reduced spatial res-

olution that we will observe in the synthetic results is

only related to the acquisition layout we simulate and

not to the number of DCT coefficients employed.

In the following synthetic experiments, we per-

form 5 tests employing different numbers of

ensemble members with the aim to assess how the

dimension of the ensemble affects the recovered

model and the associated uncertainty. In all cases, the

ensemble is evolved for 5 iterations. The simple

kriging algorithm is used to generate the initial

ensemble according to the assumed variogram model

and the prior Gaussian distribution in the logarithm

domain. We implement Matlab codes in which the

generation of the initial ensemble and the forward

evaluations are distributed across different cores to

reduce the computational workload. The inversions

are run on two deca-core intel E5-2630 at 2.2 GHz

(128 Gb RAM). We measure the accuracy of the

results using the linear correlation coefficient and

root-mean-square error (RMSE) between the true

model and the mean estimated model, and between

the observed data and the data predicted on the mean

model. We also assess the estimated posterior quan-

tification by computing the coverage ratio for the

80% confidence interval (Table 1). We also evaluate

Figure 9
Some examples of models forming the ensemble at the third iteration for the test with 500 models
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the computing time needed to achieve a stable data

misfit value.

The estimated mean ensemble models and the

associated standard deviations are represented in

Fig. 6. We observe that in all cases we get similar

estimates for the mean model: the wide anomaly in

the central part of the investigated area is well

recovered, as well as the low resistivity body located

in the shallowest part and between the horizontal

coordinates of 25–30 m. The actual resistivity value

associated with the deeper and smaller anomaly is

always underestimated. In all cases, as expected, the

uncertainty increases moving from the shallow to the

deep and lateral parts of the model. The uncertainty

also increases as the resistivity value increases.

However, for 100 and 200 models in the ensemble,

we obtain an underestimation of the uncertainties

compared with the other tests. This underestimation

increases as the data illumination decreases and for

this reason, it is more significant at the bottom and at

the lateral edges of the study area. Differently, the

estimated uncertainty is similar for the tests with 500,

1000, and 2000 models. Table 1 indicates that all the

tests provide a mean model that closely reproduces

the observed data. The correlation coefficients and

the RMSE in the model space indicate that the

Figure 10
a Predicted model provided by the deteminitsic inversion. b Posterior mean model estimated by the MCMC inversion. c posterior standard

deviation provided by the MCMC algorithm. d Evolution of the negative log-likelihood for the 20 chains. e Evolution of the potential scale

reduction factor for the 40 model parameters
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accuracy of the results does not significantly change

for ensembles with 500 or more models. Similarly,

the coverage ratio shows that the precision of the

results does not change in the last three tests with

500, 1000, and 2000 models. The computational cost

per iteration is 29 s when 100 models are considered

for the ensemble and it is increased up to 480 s when

we consider 2000 models. Figure 7 represents the

evolution of the L2 norm data misfit values for dif-

ferent tests and over 5 iterations. In all cases, the

same final error value is reached in just 3 iterations.

This means that the total computing time goes from

90 s for an ensemble of 100 models up to 1440 s

(24 min) for 2000 ensemble members. However, we

also note that larger ensembles are associated with a

faster convergence rate in the very first iterations

because they more accurate approximate the Cp
dd and

Cp
md matrices. These results indicate that for this test

an ensemble of 500 models constitutes the best

compromise between the accuracy and precision of

the results and the computational cost of the EB-ERT

inversion (i.e., 6 min to attain convergence). Fig-

ures 8 and 9 compare some resistivity sections

associated with the test employing 500 ensemble

Figure 11
a Observed pseudosection. b Predicted data computed on the model estimated by the deterministic inversion (b), on the mean model estimated

by the EB (c), and on the mean model provided by the MCMC inversion (d)
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members: Fig. 8 represents some models sampled

from the prior, whereas Fig. 9 shows some resistivity

sections forming the ensemble at the third iteration.

In the latter case, we note that the resistivity

anomalies are univocally recovered by all the models.

We now compare the outcomes of the EB-ERT

inversion with those provided by an MCMC sampling

running in the compressed space and with a standard,

least-squares deterministic inversion running in the

full data and model spaces. We implement a DEMC

algorithm running for 20,000 iterations and employ-

ing 20 chains. The prior is the same used for the EB

inversion. The deterministic inversion provides a

Table 2

Quantitative summary of the deterministic and MCMC inversion

results

CC

model

RMSE

model

CC

data

RMSE

data

Cov.

ratio

Time to

converge

Deterministic 0.80 14.62 0.98 4.53 – 2 min

MCMC 0.80 14.65 0.98 4.58 0.89 74 h

From left to right: Correlation coefficient and RMSE between the

true model and the estimated mean model (CC model, and RMSE

model, respectively). Correlation coefficient and RMSE between

the observed data and the data generated on the mean model (CC

data, and RMSE data, respectively). Coverage ratio for the 80%

confidence interval. Total computing time to converge toward a

stable PPD

Figure 12
a Marginal log-Gaussian prior distribution for the resistivity values in the real data application. b, c The spatial correlation functions

associated with the assumed 2-D variogram model along the lateral and vertical directions, respectively

Figure 13
a Examples of explained model variability as the number of DCT coefficients along the 1st and 2nd DCT dimension increases. We illustrate

the explained variability for a resistivity model drawn from the prior distribution. The numerical value with coordinate (x, y) indicates the

explained variability if the first x, and y DCT coefficients along the 1st and 2nd DCT dimensions, respectively, are used for compressing the

resistivity model. It emerges that 15 DCT coefficients along the 1st dimension and 10 along the and 2nd dimension explain almost the100% of

the variability of the uncompressed resistivity models. b Explained variability as the number of DCT coefficients increases for the data

associated with the model shown in a. In this case, 150 DCT coefficients express the total variability of the uncompressed data
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final prediction very similar to the posterior model

estimated by the MCMC algorithm (Fig. 10a, b).

Both these predicted models and the standard devia-

tion estimated by the MCMC inversion (Fig. 10a, b)

are similar to those provided by the EB-ERT

approach with more than 500 members forming the

ensemble, although we observe a slight increase of

the posterior uncertainties where the illumination is

poor (e.g., at the bottom of the model; Fig. 10c) with

respect to the EB results (Fig. 6c). The evolution of

the negative log-likelihood illustrates that the sta-

tionary regime for the MCMC algorithm is attained in

3000 iterations, approximately (Fig. 10d). To quan-

titatively assess the convergence of the sampling we

use the potential scale reduction factor (PSRF), a

popular MCMC convergence diagnostic tool

Figure 14
Estimated mean models (left) and associated standard deviation maps (right) for different tests. a 100 models in the ensemble. b 200 models in

the ensemble. c 500 models in the ensemble. d 1000 models in the ensemble. e 2000 models in the ensemble
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proposed by Brooks and Gelman (1998) to which we

refer the reader for its formal definition. PSRF com-

pares within-chain variances to the variance

computed from all mixed chains for a given param-

eter. In practice, one can consider that the

convergence to a stable posterior model has been

achieved if the PSRF is lower than 1.2. In Fig. 10e

we observe that more than 17,000 iterations are

needed to achieve convergence for all the 40 model

parameters. This translates into a total computational

cost for the MCMC inversion of more than three

days, approximately, using a parallel Matlab code

running on the previously described hardware con-

figuration. Figure 11 shows the comparison between

the observed data and the data generated on the

deterministic results and on the mean models esti-

mated by the EB and MCMC inversion. In this

synthetic example, all the approaches provide final

predictions that closely reproduce the observed

pseudosection.

Table 2 summarizes the results achieved by the

deterministic and MCMC inversion. In both cases, we

note that the RMSE and correlation coefficients are

congruent with those obtained by the EB approach.

The coverage ratio can not be determined for the

deterministic inversion because this method does not

provide model uncertainties. The slightly higher

coverage ratio provided by MCMC demonstrates that

this method gives more accurate uncertainty estima-

tions than the EB approach but at the expense of a

dramatic increase of the computational effort of more

than 3 orders of magnitude. Table 2 also shows that

the computational cost of the deterministic inversion

is negligible in comparison to that of the MCMC

sampling. From this synthetic test emerges that the

EB method tends to slightly underestimate the

uncertainties in the least illuminated parts of the

subsurface. However, from a practical point of view,

we deem that the model uncertainties estimated by

the EB inversion are reasonable and comparable to

those yielded by the Monte Carlo sampling.

4. Field Data Inversion

We now discuss the application to 2D field data

acquired by a permanent system installed along a

critical part of Parma river embankment in Colorno,

Italy. In this work, we limit to invert a single dataset

and we refer the reader to Hojat et al., (2019b) for

more information about the study site. The electrode

layout is buried in a 0.5 m-deep trench and the

inversion covers an area that is 94 m wide and 14 m

deep and has been discretized with rectangular cells

with dimensions of 1 m and 2 m along the vertical

and horizontal directions, respectively. We employ a

Wenner acquisition geometry with 48 electrodes and

the unit electrode spacing a = 2 m. This configura-

tion results in 705 resistivity values to be estimated

from 360 data points. The data have been corrected

for the effect of the soil overlaying electrodes (Hojat

et al., 2020).

Based on the available information about the

study area we define a log-Gaussian prior resistivity

model and a spatial variability pattern described by a

Table 3

Computing time to converge toward a stable data misfit value for

the field inversion tests with different number of ensemble members

N. models Time to converge (s)

100 111

200 213

500 519

1000 960

2000 2040

Figure 15
Evolution of the L2 norm data misfit for the tests with 200, 500,

and 1000 models in the ensemble
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Gaussian variogram with ay and ax values equal to 2

and 6 m, respectively (Fig. 12). From previous

studies on this investigated site, we expect a mainly

low-resistivity clay body that, at the two lateral parts

of the section and around 2–3 m depth, hosts a more

permeable layer constituted by sand and gravel and

characterized by higher resistivity values.

To determine the optimal number of DCT coef-

ficients in the model and data spaces we again

generate some prior realizations and compute the

associated data, to evaluate how the explained vari-

ability changes as the number of retained coefficients

increases. From Fig. 13a we observe that 15 and 10

coefficients along the first and second DCT dimen-

sions, respectively, explain almost the total

variability of the uncompressed model, whereas

Fig. 13b illustrates that 150 coefficients recover the

total variability in the data space. Therefore, in this

case, the DCT transformation allows reducing the full

705D model and 360D data spaces into compressed

150D domains.

Again, we run different tests that employ different

numbers of ensemble members and we compare the

different mean models and PPD estimations to select

the best compromise between the computational cost

and the accuracy and precision of the final results.

The FE code previously used in the synthetic inver-

sion again constitutes the forward modeling engine

for the inversion process. Similar to the synthetic

example, we run 5 iterations for each test.

Figure 14 shows the estimated mean models and

the standard deviations for the different tests. In all

cases, and as expected from previous information

about the study site, we predict the two lateral high

resistivity bodies around 2 m depth (associated with

sand/gravel) hosted in a low resistivity medium

(clay). We also note that the estimated mean model

and the associated uncertainties stabilize for the tests

employing 1000, and 2000 members, while the tests

with only 100, 200, and 500 models provide esti-

mated mean with some artifacts and underestimated

uncertainties. However, as expected, all the tests

yield uncertainty estimations in which the shallowest

Figure 16
Some examples of resistivity sections drawn from the prior distribution and associated with the test employing 1000 models in the ensemble
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Figure 17
Some examples of models sampled at the third iteration for the test with 1000 models

Figure 18
a Posterior mean estimated by the DEMC algorithm. b Posterior standard deviation estimated by the DEMC method. c Final model provided

by the deterministic inversion

M. Aleardi et al. Pure Appl. Geophys.



part of the subsurface is characterized by the lowest

ambiguity while the uncertainties increase within the

high resistivity formation, and at the lateral edges and

the deepest part of the model due to the lower illu-

mination. The computing times listed in Table 3 still

refer to parallel Matlab codes running on the hard-

ware configuration previously described. All tests

yielded final mean models producing similar good

matches with the observed data.

Figure 15 compares the evolution of the L2 norm

data misfit for the tests employing ensembles of 200,

500, and 1000 models. Similar to the synthetic

experiments we observe that just three iterations are

needed to attain a stable misfit value and that a larger

ensemble guarantees a faster decrease of the error in

the very first iterations. From the previous consider-

ations it emerges that in this case, the ensemble with

1000 models is the one that guarantees the best

compromise between the reliability of the results and

the computational effort. This test attains conver-

gence in 16 min.

Figure 16 shows some examples of resistivity

sections sampled from the prior and pertaining to the

test with 1000 models. These resistivity sections

evolve into those shown in Fig. 17, where we observe

that all the considered models univocally predict

lateral high resistivity bodies located around 2 m

depth.

To assess the quality of the results we compare

the outcomes provided by the EB-ERT inversion with

those achieved by a DEMC algorithm sampling the

same reduced space, and with a standard determin-

istic least-squares inversion running in the full data

and model spaces. The DEMC employed 20 chains

evolving for 50,000 iterations and takes 7 days,

approximately, of computing time to converge. Fig-

ure 18a, b represent the posterior mean models and

standard deviation provided by the DEMC algorithm,

whereas Fig. 18c shows the predictions of the deter-

ministic inversion. The close agreement between

these results and those achieved by the EB-ERT

approach (Fig. 14d) ensures us about the applicability

and the reliability of the proposed inversion

approach. Similar to the synthetic example, we

observe that the EB approach slightly underestimates

the uncertainties for the model parameters poorly

informed by the data. The evolution of the negative

log-likelihood value and of the potential scale

reduction factor for the DEMC inversion (Fig. 19),

highlights that also in the reduced domain the sta-

tionary regime is reached in more than 5000

iterations, while more than 45,000 iterations are

needed to achieve stable posterior assessments. Note

that a much longer sampling stage and longer burn-in

period would have been needed to sample the PPD in

the full model space.

These results demonstrate that the EB-ERT pro-

vides estimations comparable with those provided by

the DEMC with a reduction of the total computing

time of more than 3 orders of magnitudes. The

deterministic solution is obtained in less than a

minute, but this method does not provide neither an

estimate of the uncertainty affecting the recovered

model nor an ensemble of models that reproduces the

acquired data.

In this field experiment, all the methods provide

final model estimations that well reproduce the

observed pseudosection (Fig. 20). In Table 4 we

observe that the RMSE for the data is similar for EB

and MCMC and slightly lower for the deterministic

Figure 19
a Evolution of the negative log-likelihood for the 20 chains during

the DEMC inversion. Each color represents a chain. b Evolution of

the PSRF for the model parameters during the DEMC inversion.

The dotted red line at 1.2 represents the threshold of convergence
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inversion. However, note that the predicted data

associated with the deterministic approach is com-

puted on the model that minimizes the error function,

while for the EB and MCMC inversion we compute

the predicted data on posterior mean models

computed taking into account the entire ensemble

(for EB) and all the samples collected after the burn-

in period (for MCMC).

5. Conclusions

In this paper, we applied an ensemble-based

approach to cast the ERT inversion (EB-ERT) into a

Bayesian setting, where prior assumptions and

reduced model, and data reparametrizations are

incorporated to regularize the problem. The approach

uses the ES-MDA stochastic algorithm that provides

multiple realizations of the subsurface resistivity

Figure 20
a Observed apparent resistivity pseudosection. Calculated apparent resistivity pseudosections from, b the mean model estimated by the EB-

ERT inversion with 1000 ensemble members (see Fig. 14d), c the deterministic solution (see Fig. 18c), d the mean model estimated by the

MCMC inversion (see Fig. 18a)

Table 4

Root-mean-square data errors for the EB, MCMC, and determin-

istic inversion

EB MCMC Deterministic

RMSE data 2.32 2.44 2.11
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values that honor the observed data and that

approximates the target posterior probability distri-

bution. The computational cost of the implemented

approach is mostly dependent on the number of

ensemble members and the cost of running the for-

ward model. The DCT compression of the data and

model space mitigated the ill-conditioning of the

ERT problem and also allowed running the inversion

in lower-dimensional data and model spaces. This

strategy consequently reduced the computational cost

of the EB-ERT inversion because reliable model

estimations and uncertainty assessments can be

obtained with smaller ensembles.

Inversions of both synthetic and field data illus-

trated the applicability and the reliability of the

proposed inversion approach. We demonstrated that

in the context of ERT application, the implemented

inversion provides final mean models and uncertainty

quantifications comparable to those yielded by a

much more computationally expensive MCMC sam-

pling, although the EB tends to slightly underpredict

the uncertainties associated with the parameters

poorly informed by the data. In both the synthetic and

filed data application, the EB-ERT approach reduced

the computational effort of the Bayesian ERT inver-

sion by more than 3 orders of magnitude with respect

to the MCMC algorithm. The main advantage of

probabilistic methods over standard deterministic

inversions is that they provide multiple stochastic

realizations that can be visualized and queried to

provide meaningful information about the accuracy

and the precision of the recovered solution.

The implemented approach can be applied to

other nonlinear inverse problems, and it provides

uncertainty estimations without requiring the lin-

earization of the forward operator, thus avoiding the

modeling errors introduced by the linear approxima-

tion. In this work, we generated the initial ensemble

using the simple kriging approach, but other geosta-

tistical methods, such as variogram-based and

multiple-point geostatistics algorithms, can be inclu-

ded in the inversion framework for generating the

initial ensemble.
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