Iron(III) *N*,*N*-Dialkylcarbamates Catalyze the Formationof Cyclic Carbonates from Carbon Dioxide and Epoxides at Ambient Conditions via Dynamic CO₂ Trapping as Carbamato Ligand

Giulio Bresciani,^{a,b} Marco Bortoluzzi,^{b,c} Fabio Marchetti,^{a,b,*} Guido Pampaloni^{a,b,*}

^a Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, I-56124 Pisa. ^b CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.

^c Ca' Foscari Università di Venezia, Dipartimento di Scienze Molecolari e Nanosistemi, Via Torino 155, I-30170 Mestre (VE), Italy.

* To whom correspondence should be addressed.

E-mail addresses: fabio.marchetti1974@unipi.it; guido.pampaloni@unipi.it.

Abstract. Easily available and inexpensive Fe(III) carbamates was employed in the solventless synthesis of a series of cyclic carbonates from epoxides, by reaction with CO₂ at room temperature and atmospheric pressure, in the presence of a co-catalyst. Different experimental conditions (type and concentration of catalyst and co-catalyst, as well as reaction time) were investigated: Fe(O₂CNEt₂)₃ and NBu₄Br acted as the best catalyst/co-catalyst combination, allowing the formation of propylene carbonate and 1,2-butylene carbonate with quantitative yield and selectivity during 24 h of reaction time. According to NMR and DFT studies, the reaction proceeds with the dynamic trapping of carbon dioxide as a carbamato ligand.

Introduction

The development of sustainable synthetic routes exploiting carbon dioxide as a largely available, cost effective and non toxic C1 synthon represents one of the most intriguing challenges for contemporary chemistry research.¹ Processes converting CO_2 into a range of useful chemicals have witnessed significant progress in the last decade,² and in particular the synthesis of cyclic carbonates from CO_2 and epoxides has been established even on industrial scale, overcoming the formerly critical use of toxic phosgene (Scheme 1).³

Scheme 1. CO₂/epoxide coupling reaction affording cyclic carbonates.

Cyclic carbonates are valuable compounds finding applications in several fields, e.g. as non-protic high boiling polar solvents,⁴ monomers for polymer synthesis,⁵ fine chemicals ⁶ and electrolytes for lithium-ion batteries.⁷

A wide variety of catalytic systems successfully perform the CO₂/epoxide coupling to access cyclic carbonates,⁸ including metal complexes,⁹metal free organocatalysts,¹⁰ionic liquids ¹¹ and various heterogeneous systems.¹² Concerning the metal complexes, Schiff bases,¹³ porphyrins¹⁴ and polyphenolates¹⁵ are amongst the most commonly employed ligands.

In the light of environmental issues, the development of simple and efficient catalytic systems based on non toxic and earth abundant metals is of ultimate importance to modern synthetic chemistry,¹⁶ and iron certainly plays a central role in this scenario.¹⁷

Various iron compounds have been proposed to catalyze the coupling of CO₂ with propylene oxide or more complex epoxides, working either in the presence or in the absence of a co-catalyst;¹⁸ in most of the cases, the use of high CO₂ pressure (5-90 bar) and/or high temperature (>80 °C) are generally required in order to achieve satisfactory performances.^{13c,19} Remarkably, only few examples of iron complexes, all containing macrocyclic amino-phenolato ligands, are effective in the CO₂/epoxide conversion to cyclic carbonates under mild conditions (RT, $pco_2 = 1-2$ bar), even when the simplest epoxide (i.e., propylene oxide) is concerned.²⁰

Homoleptic metal carbamates, $M(O_2CNR_2)_n$, are inexpensive and versatile materials that have found application as catalytic precursors for some homogeneous reactions, including the alkene hydrogenation ²¹ and the polymerization of cyclic esters ²² and alkenes.²³ $M(O_2CNR_2)_n$ are an intrinsic form of CO₂ activation, being easily accessible from the parent metal chlorides by reaction with dialkylamines under atmospheric CO₂ pressure (Eq. 1).²⁴

$$MCl_n + n CO_2 + 2n NHR_2 \rightarrow M(O_2CNR_2)_n + n (NH_2R_2)Cl$$
(1)

The carbamato ligand has proven to be generally labile towards exchange with free CO_2 ,²⁵ and this feature suggested some potential in CO₂catalysis. Herein, we propose for the first time metal carbamates as CO₂ activation catalysts: Fe(III) compounds effectively, in combination with a co-catalyst converted a series of epoxides into the respective cyclic carbonates by reaction with carbon dioxide at room temperature and atmospheric pressure.

Results and discussion

We selected the easily available iron carbamates $Fe^{II}(O_2CNEt_2)_2^{26}$ and $Fe^{III}(O_2CNEt_2)_3^{27}$ to evaluate their catalytic potential in the formation of propylene carbonate (PC) from propylene oxide (PO) and CO₂. The solvent-free reactions were carried out during 24 h at 25°C and 1 atm, in the presence of [NBu₄]Br (TBAB) as a co-catalyst (Table 1).

Table 1. Conversion and selectivity values of PO/CO2 to PC conversion by Fe catalysts.

Entry	Catalyst	Conversion [%] ^[a]	Selectivity [%] ^[b]	
1	Fe(O ₂ CNEt ₂) ₂	47	>99	
2	Fe(O ₂ CNEt ₂) ₃	66	>99	
3	FeCl ₃	47	38	
<mark>4</mark>	<mark></mark>	<mark>1%</mark>	<mark>>99</mark>	
Reaction conditions: propylene oxide (PO) (1 mL, 14.3 mmol), catalyst 1mol%, TBAB 1mol%, T = 25°C, $p(CO_2) = 1$ bar, t = 24 h. ^[a] Determined by ¹ H NMR ²⁸ using mesitylene as standard. ^[b] Calculated with respect to PC.				

Both iron compounds afforded PC with almost quantitative selectivity and moderate conversion. For the sake of comparison, FeCl₃ was investigated under the same experimental conditions, as an alternative, simple iron-based catalyst.²⁹ In this case, the reaction stood out with a low selectivity value (38%): ¹H NMR analysis on the final mixture showed the presence of by-products which could not be identified. A blank experiment (Table 1, entry 4) demonstrated that a catalyst is needed to achieve an appreciable conversion.

As a result of the preliminary outcomes, we focused on $Fe(O_2CNEt_2)_3$ as a promising catalyst, concentrating on optimization procedures and further epoxide/CO₂ coupling reactions. First, we investigated the effect of the catalyst concentration (Table 2).

Table 2.PO/CO2 to PC conversion using different amounts of	of Fe(O ₂ CNEt ₂) ₃ as catalyst.
--	--

Entry	Fe(O2CNEt2)3[mol %]	Conversion [%] ^[a]	Selectivity [%] [b]		
1	0	0			
2	0.1	33	>99		
3	1	64	>99		
4	2	79	>99		
Reaction conditions: propylene oxide (PO) (1 mL, 14.3 mmol), TBAB 1 mol%, T = 25 °C, $p(CO_2) = 1$ bar, t = 24 h. ^[a] Determined by ¹ H NMR ²⁸ using mesitylene as standard. ^[b] Calculated with respect to PC.					

The results shown in Table 2 outline a beneficial effect of the increase of catalyst concentration, the conversion reaching a maximum value (79%) when the iron complex was used approximately at its solubility limit in PO (2 mol%), without affecting selectivity.

Then, on account of previous studies evidencing the crucial role exerted by the co-catalyst in CO_2 /epoxide coupling reactions, ^{16c,e,18,30} we studied the synthesis of PC by using a selection of possible co-catalysts (Table 3). The concentration of the iron compound was fixed at 0.1 mol% throughout all these tests, to better evaluate the effect of the co-catalyst.

Entry	Cocatalyst (%)	Conversion [%] ^[a]	Selectivity [%] [b]	
1	NONE	38	0	
2	[NBu₄]Cl (0.1%)	12	83	
3	[NBu₄]Cl (1%)	29	72	
4	[NBu₄]Br (0.1%)	31	95	
5	[NBu₄]Br (1%)	33	>99	
<mark>6</mark>	<mark>[NBu₄]Br (2%</mark>)	<mark>57</mark>	<mark>>99</mark>	
7 <mark>[c]</mark>	[NBu₄]Br (2%)	>99	>99	
8	[NBu₄]I (0.1%)	46	17	
9	[NBu₄]I (1%)	54	72	
10	DMAP (0.1%)	16	19	
11	DMAP (1%)	43	3	
12	[PPN]CI (0.1%)	33	27	
13	[PPN]CI (1%)	40	50	
Reaction conditions: propylene oxide (PO) (1 mL, 14.3 mmol), catalyst 0.1 mol%,				
T = 25 °C, $p(CO_2)$ = 1 bar, t = 24 h. ^[a] Determined by ¹ H NMR ²⁸ using mesitylene as				
standard. ^[b] Calculated with respect to PC. ^[c] Catalyst concentration = 1%.				

Table3.PO/CO₂ to PC conversion catalyzed by $Fe(O_2CNEt_2)_3$ in association with different cocatalysts.

The results shown in Table 3 indicate that the process is inefficient in the absence of co-catalyst, and that [NBu₄]Br (TBAB) performed as the best co-catalyst. The identity of by-products generated from those reactions occurring with low selectivity could not be clearly established, these species being featured by very broad NMR signals. We suppose the possible formation of poly/oligoethers ³¹ and of cyclic carbamates, the latter resulting from amine released from fragmentation of carbamato ligands. Otherwise, the formation of polycarbonates could be ruled out. Remarkably, the

combination of $Fe(O_2CNEt_2)_3$ with TBAB, respectively in 1 mol% and 2 mol% concentration, yielded quantitative conversion and selectivity during an optimal time of 24 h (Table 4).

Entry	Time (h)	Conversion [%] ^[a]	Selectivity [%] [b]	
1	1	21	>99	
2	16	36	>99	
3	20	64	>99	
4	24	>99	>99	
Reaction conditions: propylene oxide (PO) (1 mL, 14.3 mmol), catalyst 1 mol%, co-catalyst (TBAB) 2%, T = 25 °C, $p(CO_2) = 1$ bar. ^[a] Determined by ¹ H NMR ²⁸ using mesitylene as standard. ^[b] Calculated with respect to PC.				

Table 4. Effect of reaction time on PO/CO₂ to PC conversion.

Having found that the Fe(O₂CNEt₂)₃/TBAB system is effective in the conversion of propylene oxide to propylene carbonate at room temperature and atmospheric pressure, we shifted our attention to the analogous reactions involving different epoxides, and the catalysts $Fe(O_2CN^iPr_2)_3$ and $Fe(O_2CNBz_2)_3$ (^{*i*}Pr = CHMe₂; Bz = CH₂Ph)²⁷ were also used in these experiments, see Table 5.

Table 5. Synthesis of cyclic carbonates from	CO2 and various epoxides	using $Fe(O_2CNR_2)_3$ as catalytic
precursors.		

Epoxide	Entry	<mark>Catalytic</mark> precursor ^[a]	Conversion [%] ^[b]	Yield (%) ^[c]	Selectivity [%] [d]
0	1	Fe(O ₂ CNEt ₂₎₃	>99	90	>99
\square	2	Fe(O ₂ CN [/] Pr ₂) ₃	85	80	>99
	3	Fe(O ₂ CNBz ₂) ₃	82	69	>99
	4	Fe(O ₂ CNEt ₂) ₃	60	n.d. ^[e]	>99
	5 ^[f]	Fe(O ₂ CNEt ₂) ₃	76	n.d.	>99
	6	Fe(O ₂ CN [/] Pr ₂) ₃	61	n.d.	>99
	7	Fe(O ₂ CNBz ₂) ₃	60	n.d.	>99
Ő	8 ^[g]	Fe(O ₂ CNEt ₂₎₃	>99	88	>99
	9 ^[g]	Fe(O ₂ CN [/] Pr ₂) ₃	75	73	>99
\rangle	10 ^[f]	Fe(O ₂ CNBz ₂) ₃	80	67	>99
<u>o</u>	11	Fe(O ₂ CNEt ₂₎₃	7	n.d.	>99
	12	Fe(O ₂ CN [/] Pr ₂) ₃	6	n.d.	>99
	13	Fe(O ₂ CNBz ₂) ₃	4	n.d.	>99

	14	Fe(O ₂ CNEt ₂) ₃	60	n.d.	>99
	15 ^[f]	Fe(O ₂ CNEt ₂₎₃	90	87	>99
	16	Fe(O ₂ CN [/] Pr ₂) ₃	31	n.d.	>99
	17	Fe(O ₂ CNBz ₂) ₃	44	n.d.	>99
Reaction conditions: see Experimental. ^[a] Et = C_2H_5 ; ^{<i>i</i>} Pr = CH(CH ₃) ₂ ; Bz = CH ₂ Ph. ^[b] Determined by ¹ H					
NMR ²⁸ using mesitylene as standard. ^[c] Determined on the isolated product. ^[d] Calculated with respect to					
PC. [e] n.d.: not o	determined	l. ^[f] t = 48 h. ^[g] Determir	ned by ¹ H NMR using (CH ₂ Cl ₂ as standa	ard.

All the epoxides were carbonated into the respective cyclic carbonates with nearly quantitative selectivity. The effective conversion of propylene oxide and 1,2-butylene oxide (Table 5, entries 1 and 8) at room temperature using CO₂at atmospheric pressure represents a rare feature in the field of iron-catalyzed CO₂/epoxide coupling processes. Interestingly, the cyclic carbonate produced from cyclohexene oxide was exclusively of cis-stereochemistry according with the comparison of ¹H and ¹³C NMR spectra registered and previously reported.³²Cyclic carbonates were isolated in high yields by addition of water to the reaction system, followed by dichloromethane extractions(Table 5, Entries 1, 2, 3, 8, 9, 10 and 15). When Fe(O₂CNBz₂)₃ was used as catalyst, the hydrolytic treatment required a small amount of sulphuric acid, affecting the final yields. As a matter of fact, the performance exhibited by Fe(O₂CNEt₂)₃ is superior even when compared to the best iron catalysts reported to date operating under mild conditions, with reference to the same organic substrates.²⁰In general, Fe(O₂CNEt₂)₃ was slightly more effective than the analogous diisopropyl and dibenzyl species. On the other hand, the substantial inertness of cyclohexene oxide is **consistent** with literature reports, the transformation into the corresponding cyclic carbonate usually being unsuccessful at atmospheric pressure and room temperature.^{19b,20a,33}

To shed light on the mechanism of the iron carbamate catalysis, we performed NMR ³⁴ and DFT studies. First, the stoichiometric reaction between $Fe(O_2CNEt_2)_3$, PO and TBAB(molar ratio = 1:4:1) was studied by NMR spectroscopy in the absence of external CO₂, using CDCl₃ as solvent. A sluggish conversion of PO to PC was recognized, reaching 10% after 72 h(see Figure S1 in the Supporting Information). This result suggested that the epoxide/CO₂ coupling could proceed with

pre-activation of reacting CO_2 , via a dynamic incorporation in the iron complex as a carbamato ligand.

DFT calculations were therefore carried out to substantiate this hypothesis. Preliminary calculations on iron(III) dimethyl- and diethylcarbamato species support the idea of D1 polymers with bridging ligands and octahedral geometry around the Fe centres. Accordingly, the IR spectrum of $Fe(O_2CNEt_2)_{3}$ shows an intense band at 1488 cm⁻¹, ascribable to the asymmetric stretching vibration of bidentate (terminal or bridging) [(O₂CNEt₂)]⁻ groups. On the other hand, the more sterically hindered isopropyl derivative is characterized by a strong absorption above 1500 cm⁻¹ (1579 cm⁻¹), indicating the presence of at least one monodentate ligand.²⁷

The model tri-iron chains $[Fe_3(\mu-O_2CNR_2)_6(\kappa^2-O_2CNR_2)_2]^+$ (R = Me, Et) are very stable with respect to fragmentation into monomers (Eq. 2), despite the favourable entropy variations (ca. 120 cal mol⁻¹ K⁻¹):

$$[Fe_{3}(\mu-O_{2}CNR_{2})_{6}(\kappa^{2}-O_{2}CNR_{2})_{2}]^{+} \rightarrow [Fe(\kappa^{2}-O_{2}CNR_{2})_{2}]^{+} + 2 [Fe(\kappa^{2}-O_{2}CNR_{2})_{3}]$$
(2)

$$\Delta G = + 66.7 \text{ kcal mol}^{-1} (R = Me); + 60.0 \text{ kcal mol}^{-1} (R = Et).$$

The DFT-optimized structure of $[Fe_3(\mu-O_2CNMe_2)_6(\kappa^2-O_2CNMe_2)_2]^+$ is representatively shown in Figure 1, while a view of the homologous structure $[Fe_3(\mu-O_2CNEt_2)_6(\kappa^2-O_2CNEt_2)_2]^+$ is given in Figure S2.

Figure 1. DFT-optimized structure of $[Fe_3(\mu-O_2CNMe_2)_6(\kappa^2-O_2CNMe_2)_2]^+$. Hydrogen atoms omitted for clarity. Selected averaged computed bond lengths and angles referred to the central iron atom: Fe-O 2.008 Å, O-Fe-O (trans) 175.4°.

To reduce the computational effort, the former was selected as the starting point for further calculations. In addition, the model was further simplified by replacing the terminal κ^2 -carbamates with chlorides, and bromide ion was introduced as a counteranion simulating the role of the co-catalyst. In conclusion, we identified [Fe₃(μ -O₂CNMe₂)₆Cl₂]Br (**A**, Figure 2) as the most simple, reliable model of the catalytic system, and we proceeded to investigate the possible reactivity around the central iron.

Figure 2. DFT-optimized structure of $[Fe_3(\mu-O_2CNMe_2)_6Cl_2]Br$ (**A**). Hydrogen atoms omitted for clarity. Selected averaged computed bond lengths and angles referred to the central iron atom: Fe-O 1.999 Å, O-Fe-O (trans) 173.3°.

The addition of propylene oxide (PO) to $[Fe_3(\mu-O_2CNMe_2)_6Cl_2]Br$ giving **B** is slightly endergonic (see Scheme 2 for an overall view of reaction intermediates, and Figure S4). Notwithstanding, subsequent Br-ring opening to **C**(Figure S5) strongly lowers the Gibbs free energy of the system. On the other hand, the alternative Fe-coordination of CO₂ and interaction of the latter with bromide affords the less probable intermediate **C'** in Scheme 2 (see also Figure S6). It is therefore reasonable to assume that the first substrate interacting with the iron catalyst is PO rather than CO₂. Noticeably, no stable intermediate was obtained on considering the reaction between **C** and external CO₂. Conversely, the intramolecular nucleophilic attack on the C–Br bond by a carbamato ligand leads to the formation of **D** (Figure S7), that is only about 3 kcal mol⁻¹ less stable than **C**. In **D**, the alkoxido-carbamato anion [OCH(Me)CH₂OC(NMe₂)O]⁻ behaves as a bridging ligand towards two iron centres. The Alkoxide termination can attack the adjacent carbonylic function, generating one coordinated molecule of propylene carbonate (PC) and a Fe–NMe₂unit. This amido-complex, **E** (Figure S8), is the highest-energy intermediate of the process, being 15.3 kcal mol⁻¹ less stable than the reactants. The release of PC by incoming CO₂affords **F** (Figure S9),and the successive transformation of the [Fe-NMe₂] fragment into [Fe(O₂CNEt₂)] allows the recovery of the catalytic precursor, making the overall reaction thermodynamically favourable ($\Delta G = -7.7$ kcal mol⁻¹).

Despite the fact that the simplified molecular model can only supply qualitative information about the catalytic reaction, the DFT calculations agree with the experimental evidence (NMR) that carbamato ligands in the catalyst play a non-innocent role in the activation of CO₂along the formation of cyclic carbonates.

Scheme 2. Proposed DFT-optimized intermediates and relative Gibbs free energy values for the formation of PC from PO and CO₂, catalyzed by a Fe(III)-carbamate.

Conclusions

The use of carbon dioxide as a convenient C1 building block has been established as one of the most intriguing challenges of modern synthetic chemistry, and in this setting a variety of efficient

catalytic systems have been reported for the CO_2 /epoxide coupling reaction to obtain cyclic carbonates. In the light of the key importance of mild reaction conditions 3^a and the central role played by iron in the development of environmentally benign processes, we have described herein the use of Fe(III) carbamates as simple, easily available and cost effective catalysts working in the solventless conversion of a series of epoxides into the respective cyclic carbonates, at room temperature and atmospheric CO₂ pressure. Under optimized reaction conditions, including the use of tetrabutylammonium bromide as co-catalyst, quantitative conversion and quantitative selectivity were achieved starting from propylene oxide and 1,2-butylene oxide. In view of the easy availability of large amounts of the catalytic precursor, Fe(O₂CNEt₂)₃ impresses as one of the most attractive and efficient iron catalysts reported to date for the CO₂/propylene oxide coupling. According to preliminary DFT and NMR investigations, the performance exhibited by iron carbamates may be related to the previously documented lability of the metal-carbamato moiety towards CO₂ exchange, thus determining an unusual pathway for CO₂ activation. In general, although still rather unexplored for their catalytic applications, iron carbamates appear to be promising systems for the next advance in sustainable CO₂ organic chemistry.

Experimental section

General details. Unless otherwise stated, all the operations were carried out under a nitrogen atmosphere using standard Schlenk techniques. The reaction vessels were oven dried at 140 °C prior to use, evacuated (10^{-2} mmHg) and then filled with nitrogen. CO₂ (99.99%) was purchased from Rivoira. The chemicals, of the highest purity available, were purchased from Sigma Aldrich or TCI Europe, and stored under nitrogen atmosphere as received. FeCl₃,³⁵ Fe(O₂CNEt₂)₂²⁶ and Fe(O₂CNR₂)₃ (R = Et, ⁱPr, CH₂Ph)²⁷ were prepared according to literature procedures. Solvents (Sigma Aldrich)and mesitylene were distilled before use over appropriate drying agents. Infrared spectra were recorded at 298 K on a FTIR-Perkin Elmer Spectrometer, equipped with an UATR sampling accessory. NMR spectra were recorded at 298 K on a Bruker Avance II DRX400

instrument equipped with a BBFO broadband probe. Values of selectivity and conversion were evaluatedon¹H NMR spectra using mesitylene as internal standard.

Iron catalysts, Fe(O₂CNR₂)₃.

The iron(III) carbamates Fe(O₂CNR₂)₃, R =) were prepared according to the literature procedure (REF) from FeCl₃ and......The analytical and spectroscopic data are as reported in the literature (REF). In the following, the solid state IR characterization of the compounds, not reported in the literature, is reported: R = $-CH_2CH_3$, v/cm⁻¹ = 2973w, 2931w, 2869w, 1488vs ($\tilde{v}_{c=o}$ asym), 1456m-s, 1428s, 1374m, 1309s ($\tilde{v}_{c=o}$ sym), 1222m, 1089m, 1073w, 972w, 939w, 804m, 785m. R = $-CH(CH_3)_2$, v/cm⁻¹ = 2961w, 2931w, 2873vw, 1579m-s ($\tilde{v}_{c=o}$ asym), 1564m, 1527m-s, 1487s, 1465s, 1445s, 1382m, 1347vs ($\tilde{v}_{c=o}$ sym), 1211w-m, 1159ms, 1134w-m, 1059m, 1034w, 900vw, 869vw, 811m, 795m-s, 729vw. R = $-CH_2Ph$, v/cm⁻¹ = 3087vw, 3063vw, 3028w, 1478vs ($\tilde{v}_{c=o}$ asym), 1453m-s, 1428s, 1319m-s ($\tilde{v}_{c=o}$ sym), 1270m-s, 1206w, 1074w, 1029w, 966w, 858w, 796m, 753w-m, 695vs.

Catalytic reactions.

The iron compound and TBAB (Table 6) were introduced into a Schlenk tube, which was evacuated by a vacuum pump and then filled with CO₂ at atmospheric pressure. The vacuum/CO₂ sequence was repeated twice. Epoxide (1 mL) was added, and the resulting mixture was stirred for 24 hours at 25 °C with periodical addition of CO₂. Afterwards, mesitylene as internal standard (0.30 mL) was added, and ca. 0.1 mL of the mixture was mixed with CDCl₃ (0.5 mL) in a NMR tube. Subsequent NMR analysis allowed the determination of selectivity and conversion values. **Table 6.** Experimental details of the synthesis of cyclic carbonates from CO₂ and epoxides using Fe(O₂CNR₂)₃ as catalytic precursors.

<mark>Epoxide</mark>	Entry	Catalytic precursor, ^[a] (g, mmol)	<mark>TBAB,</mark> (g, mmol)	
0	<mark>1</mark>	Fe(O ₂ CNEt ₂₎₃ (,)	<mark>(,)</mark>	
	<mark>2</mark>	Fe(O2CN ⁱ Pr2)3 (,)	<mark>(,)</mark>	
	<mark>3</mark>	Fe(O ₂ CNBz ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>4</mark>	Fe(O ₂ CNEt ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>5^[b]</mark>	Fe(O ₂ CNEt ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>6</mark>	Fe(O ₂ CN ⁱ Pr ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>7</mark>	Fe(O ₂ CNBz ₂) ₃ (,)	<mark>(,)</mark>	
0	<mark>8</mark>	Fe(O ₂ CNEt ₂) ₃ (,)	<mark>(,)</mark>	
\searrow	<mark>9</mark>	Fe(O ₂ CN [/] Pr ₂) ₃ (,)	<mark>()</mark>	
	10 ^[b]	Fe(O ₂ CNBz ₂) ₃ (,)	<mark>(,)</mark>	
o	<mark>11</mark>	Fe(O ₂ CNEt ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>12</mark>	Fe(O ₂ CN [/] Pr ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>13</mark>	Fe(O ₂ CNBz ₂) ₃ (,)	<mark>(,)</mark>	
°	<mark>14</mark>	Fe(O ₂ CNEt ₂) ₃ (,)	<mark>(,)</mark>	
	15 ^[b]	Fe(O ₂ CN [/] Pr ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>16</mark>	Fe(O ₂ CNBz ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>17</mark>	Fe(O ₂ CNEt ₂) ₃ (,)	<mark>(,)</mark>	
^[a] Et = C ₂ H ₅ ; [/] Pr = CH(CH ₃) ₂ ; Bz = CH ₂ Ph. ^[b] t = 48 h.				

Isolation of cyclic carbonates.

A Schlenk tube containing the iron catalyst and TBAB (Table 7) was added of the epoxide (3 mL) under CO₂ atmosphere. The resulting mixture was stirred for 24 hours at 25 °C with periodical addition of CO₂. The solution obtained at the end of the experiment was treated with H₂O (5 mL). In the case of Fe(O₂CNBz₂)₃ (Entry....), H₂O (10 mL) and H₂SO₄ 95-97% (2 mL) were added. The resulting mixture was stirred for 4 hours, and then the cyclic carbonate was extracted with dichlorometane (5 x 5 mL). The organic phases were collected, and the volatiles were evaporated under vacuum. The residue was dried over MgSO₄ and its purity was checked by GC and NMR spectroscopy (Table 8).

Table 7. Experimental details of the synthesis and isolation of cyclic carbonates from CO₂ and epoxides using Fe(O₂CNR₂)₃ as catalytic precursors.

<mark>Epoxide</mark>	<mark>Entry</mark>	Catalytic precursor, ^[a] (g, mmol)	<mark>TBAB,</mark> (g, mmol)	<mark>Yield</mark> (%)
0	<mark>1</mark>	Fe(O ₂ CNEt ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>2</mark>	Fe(O ₂ CN ⁱ Pr ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>3</mark>	Fe(O ₂ CNBz ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>4</mark>	Fe(O2CNEt2)3 (,)	<mark>(,)</mark>	
	5 ^[b]	Fe(O2CNEt2)3 (,)	<mark>(,)</mark>	
	<mark>6</mark>	Fe(O ₂ CN ⁱ Pr ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>7</mark>	Fe(O ₂ CNBz ₂) ₃ (,)	<mark>(,)</mark>	
<u> </u>	<mark>8</mark>	Fe(O ₂ CNEt ₂) ₃ (,)	<mark>(,)</mark>	
	7 <mark>8</mark>	Fe(O ₂ CN [/] Pr ₂) ₃ (,)	<mark>(,)</mark>	
	10 ^[b]	Fe(O ₂ CNBz ₂) ₃ (,)	<mark>(,)</mark>	
<u> </u>	<mark>11</mark>	Fe(O2CNEt2)3 (,)	<mark>(,)</mark>	
	<mark>12</mark>	Fe(O ₂ CN [/] Pr ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>13</mark>	Fe(O ₂ CNBz ₂) ₃ (,)	<mark>(,)</mark>	
<u> </u>	<mark>14</mark>	Fe(O2CNEt2)3 (,)	<mark>(,)</mark>	
	15 ^[b]	Fe(O ₂ CN [/] Pr ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>16</mark>	Fe(O ₂ CNBz ₂) ₃ (,)	<mark>(,)</mark>	
	<mark>17</mark>	Fe(O ₂ CNEt ₂) ₃ (,)	<mark>(,)</mark>	
$[a] Et = C_2 H_5; F$	Pr = CH(C)	CH ₃) ₂ ; Bz = CH ₂ Ph. ^[b] t = 48 h.		

Table 8. ¹H NMR data (δ /ppm, CDCl₃ solutions) of epoxides and cyclic carbonates.

	R	
<mark>R = Me</mark>	2.92 (m, 1H); 2.68 (t, 1H); 2.37 (t, 1H); 1.25 (d, 3H)	4.80 (m, 1H); 4.50 (t, 1H); 3.96 (t, 1H); 1.42 (d, 3H)
$\mathbf{R} = \mathbf{C}\mathbf{H}_{2}\mathbf{C}\mathbf{I}$	4.34, 3.49 (dd, 2H); 3.05 (m, 1H); 2.69 (t, 1H); 2.50 (m, 1H)	4.88 (m, 1H); 4.44 (t, 1H); 4.22 (m, 1H); 3.68, 3.60 (dd, 2H)
$\mathbf{R} = \mathbf{CH}_2\mathbf{CH}_3$	2.87 (m, 1H); 2.71 (t, 1H); 2.45 (t, 1H); 1.55 (m, 2H); 1.05 (t, 3H)	4.69 (m, 1H); 4.55 (t, 1H); 4.09 (t, 1H); 1.78 (m, 2H); 1.01 (t, 3H)
<mark>R = Ph</mark>	7.43–7.34 (m, 5H); 3.88 (t, 1H); 3.15 (t, 1H); 2.82 (q, 1H)	7.47–7.39 (m, 5H); 5.66 (t, 1H); 4.77 (t, 1H); 4.31 (t, 1H)

	H H
2.80 (br, 2H); 1.63 (m, 2H); 1.55 (m,	4.63 (br, 2H); 1.88 (m, 2H); 1.78 (m,
2H); 1.13 (m, 2H); 0.96 (m, 2H)	2H); 1.37 (m, 2H); 1.19 (m, 2H)

Computational details

The computational geometry optimizations of the complexes were carried out without symmetry constrains, using the hybrid-GGA EDF2 functional ³⁶ in combination with the 6-31G(d,p) basis set and the ECP-based LANL2DZ basis set for bromine.³⁷ The "unrestricted" formalism was always applied, and the initial multiplicity was introduced considering five unpaired electrons for each metal ion. The stationary points were characterised by IR simulations (harmonic approximation), from which zero-point vibrational energies and thermal corrections (T = 298.15 K) were obtained.³⁸ Calculations were performed with Spartan '16 (Wavefunction Inc.), build 2.0.3,³⁹ running on Intel Xeon-bases x84-64 workstations.

Acknowledgements.

The M.I.U.R. (*Finanziamento delle attività base di ricerca*) is gratefully acknowledged for financial support.

Supporting Information

¹H NMR study of CO₂ transfer (Figure S1); optimized DFT geometries (Figures S2-S9). Cartesian coordinates of the DFT structures are collected in a separated .xyz file.

Reference

- (a) Q. Liu, L. Wu, R. Jackstell, M. Beller, *Nat. Commun.* 2015, *6*, 5933. (b) J. Vaitla, Y. Guttormsen, J. K. Mannisto, A. Nova, T. Repo, A. Bayer, K. H. Hopmann, *ACS Catal.* 2017, *7*, 7231-7244. (c) M. Brill, F. Lazreg, C. S. J. Cazin, S. P. Nolan, *Top. Organomet. Chem.* 2016, *53*, 225-278. (d) M. Aresta, *Coord. Chem. Rev.* 2017, *334*, 150-183. (e) A. W. Kleij, M. North, A. Urakawa, *ChemSusChem* 2017, *10*, 1036-1038.
- Selected recent references: (a) M. Aresta, A. Dibenedetto, A. Angelini, *Chem. Rev.* 2014, *114*, 1709-1742. (b) P. Gao, S. Dang, S. Li, X. Bu, Z. Liu, M. Qiu, C. Yang, H. Wang, L. Zhong, Y. Han, Q. Liu, W. Wei, Y. Sun, *ACS Catal.* 2018, *8*, 571-578. (c) X.-T. Gao, C.-C. Gan, S.-Y. Liu, F. Zhou, H.-H. Wu, J. Zhou, *ACS Catal.* 2017, *7*, 8588-8593. (d) C.-X. Guo, W.-Z. Zhang, H. Zhou, N. Zhang, X.-B. Lu, *Chem. Eur. J.* 2016, *22*, 17156-17159. (e) M. Everett and D. F. Wass, *Chem. Commun.* 2017, *53*, 9502-9504. (f) M. Aresta, *Carbon Dioxide as Chemical Feedstock*, WILEY-VCH, Weinheim, 2010.
- 3 (a) H. Büttner, L. Longwitz, J. Steinbauer, C. Wulf, T. Werner, *Top.Curr. Chem.* 2017, 375, 49-105. (b) R. R. Shaikh, S. Pornpraprom, V. D'Elia, ACS Catal. 2018, 8, 419-450. (c) M. North, *Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides*, Elsevier, London, 2013. (d) M. North, R. Pasquale, C. Young, *Green Chem.* 2010, 12, 1514-1539. (e) L. Bottenbruck, *Engineering Thermoplastics: Polycarbonates, Polyacetals, Polyesters, Cellulose Esters*, Hanser Publishers, New York, 1996, p 112.
- 4 B. Schaffner, F. Schaffner, S. P. Verevkin, A. Borner, *Chem. Rev.* **2010**, *110*, 4554-4581.
- (a) P. Zarras, P. A. Goodman, A. J. Baca, J. E. Baca, S. Vang, *Biobased and Environmental Benign Coatings*, T. Atul, G. Anthony, S. D. Mark Eds., Scrivener Publishing LLC, Beverly, Mass., USA, 2016. (b) G. L. Gregory, E. M. Lopez-Vidal, A. Buchard, *Chem. Commun.* 2017, 53, 2198-2217. (c) G. W. Coates, D. R. Moore, *Angew. Chem. Int. Ed.* 2004, 43, 6618-6639; *Angew. Chem.* 2004, *116*, 6784-6806.

- 6 (a) X.-B. Lu, *Top. Organomet. Chem.* 2016, *53*, 171-197. (b) P. Olsén, M. Oschmann, E. V. Johnston, B. Åkermark, *Green Chem.* 2018, *20*, 469-475.
- 7 (a) M. Petrowsky, M. Ismail, D. T. Glatzhofer, R. Frech, J. Phys. Chem. B 2013, 117, 5963-5970. (b) M. Philipp, R. Bernhard, H. A. Gasteiger, B. Rieger, J. Electrochem. Soc. 2015, 162, A1319-A1326.
- 8 (a) Q.-W. Song, Z.-H. Zhou L.-N. He, *Green Chem.* 2017, 56, 3707-3728, and references therein. (b) G. Laugel, C. C. Rocha, P. Massiani, T. Onfroy, F. Launay, *Adv. Chem. Lett.* 2013, 1, 195-214.
- 9 (a) C. Martin, G. Fiorani, A. Kleij, ACS Catal. 2015, 5, 1353-1370. (b) S. Narang, R. Mehta, S. N. Upadhyay, Curr. Org. Chem. 2015, 19, 2344-2357.
- (a) F. D. Bobbink, D. Vasilyev, M. Hulla,S. Chamam, F. Menoud, G. Laurenczy, S. Katsyuba,
 P. J. Dyson, *ACS Catal.* 2018, *8*, 2589-2594. (b) M. Alves, B. Grignard, R. Mereau, C. Jerome,
 T. Tassaing, C. Detrembleur, *Catal. Sci. Technol.* 2017, *7*, 2651-2684. (c) Y. Ren, J. J. Shim, *ChemCatChem.* 2013, *5*, 1344-1349. (d) Q. W. Song, L.-N. He, J.-Q. Wang, H. Yasuda, T.
 Sakakura, *Green Chem.* 2013, *15*, 110-115. (e) M. Cokoja, M. E. Wilhelm, M. H. Anthofer, W.
 A. Herrmann, F. E. Kuehn, *ChemSusChem.* 2015, *8*, 2436-2454.
- (a) A. A. Chaugule, A. H. Tamboli, H. Kim, *Fuel* 2017, 200, 316-332. (b) F. D. Bobbink, P. J. Dyson, *J. Catal.* 2016, 343, 52-61. (c) S. Zhang, R. Ma, L. N. He, *Top. Organomet. Chem.* 2016, 53, 143-169. (d) B. H. Xu, J. Q. Wang, J. Sun, Y. Huang, J. P. Zhang, X. P. Zhang, S. J. Zhang, *Green Chem.* 2015, 17, 108-122.
- (a) X.-D. Lang, X.-F. Liu, L.-N. He, *Curr. Org. Chem.* 2015, *19*, 681-694. (b) J. Qu, C.-Y. Cao,
 Z.-F. Dou, H. Liu, Y. Yu, P. Li, W.-G. Song, *ChemSusChem.* 2012, *5*, 652-655. (d) A. A.
 Goncalves, A. C. Fonseca, J. F. J. Coelho, A. C. Serra, *Curr. Green Chem.* 2015, *2*, 43-65.
- (a) Y. Xu, D. Yuan, Y. Wang, Y. Yao, *Dalton Trans.* 2017, 46, 5848-5855. (b) J. A. Castro-Osma, K. J. Lamb, M. North, ACS Catal. 2016, 6, 5012-5025. (c) F. M. Al-Qaisi, M. Nieger,

M. L. Kemell, T. J. Repo, *ChemistrySelect* 2016, *1*, 545-548. (d) J. A. Castro-Osma, K. J. Lamb, M. North, *ACS Catal.* 2016, *6*, 5012-5025. (e) A. Decortes, A. M. Castilla, A. W. Kleij, *Angew. Chem. Int. Ed.* 2010, *49*, 9822-9837; *Angew. Chem. Int. Ed.* 2010, *122*, 10016-10132.
(f) M. Ikiz, E. Ispir, E. Aytar, M. Ulusoy, S. Karabuga, M. Aslantas, O. Celik, *New J. Chem.* 2015, *39*, 7786-7796. (g) Y. Ren, J. Chen, C. Qi, H. Jiang, *ChemCatChem* 2015, *7*, 1535-1538.
(h) X. B. Lu, D. J. Darensbourg, *Chem. Soc. Rev.* 2012, *41*, 1462-1484.

- (a) P. Li, Z. Cao, Organometallics 2018, 37, 406-414. (b) Y. Chen, R. Luo, Q. Xu, J. Jiang, X. Zhou, H. Ji, ACS Sustain. Chem. Eng. 2018, 6, 1074-1082. (c) Y. Chen, R. Luo, Q. Xu, W. Zhang, X. Zhou, H. Ji, ChemCatChem 2017,9,767-773. (d) P. Li, Z. Cao, Organometallics 2018, 37, 406-414. (e) Y. Qin, H. Guo, X. Sheng, X. Wang, F. Wang, Green Chem. 2015, 17, 2853-2858. (f) T. Ema, Y. Miyazaki, J. Shimonishi, C. Maeda, J. Hasegawa, J. Am. Chem. Soc. 2014, 136, 15270-15279.
- 15 P. Gao, Z. Zhao, L. Chen, D. Yuan, Y. Yao, Organometallics 2016, 35, 1707–1712.
- (a) J. W. Comerford, I. D. Ingram, M. North, X. Wu, *Green Chem.* 2015, *17*, 1966-1987. (b) J. Steinbauer, T. Werner, *ChemSusChem* 2017, *10*, 3025-3029. (c) X. Liu, S. Zhang, Q.-W. Song, X.-F. Liu, R. Ma, L.-N. He, *Green Chem.* 2016, *18*, 2871-2876. (d) C. J. Whiteoak, N.Kielland, V.Laserna, E. C. Escudero-Adan, E. Martin, A. W.Kleij, *J. Am. Chem. Soc.* 2013, *135*, 1228-1231. (e) M. North, *Sustainable Catalysis with Non-endangered Metals*, RSC Publishing, 2016, pp. 1-13. (f) L.Longwitz, J. Steinbauer, A. Spannenberg, T. Werner, *ACS Catal.* 2018, *8*, 665-672.
- 17 (a) I. Bauer, H. J. Knolker, *Chem. Rev.* 2015, 115, 3170-3387 (b) A. Fürstner, *ACS Cent. Sci.*2016, 2, 778-789. (c) E.Bauer, *Top. Organomet. Chem.* 2016, 50, 173-216. (d) X. Jiang, J. Zhang, S. Ma, J. Am. Chem. Soc. 2016, 138, 8344-8347.
- 18 J. W. Comerford, I. D. Ingram, M. North, X. Wu, Encyclopedia of Inorganic and Bioinorganic Chemistry, Wiley, 2016.

- (a) F. Chen, N. Liu, B. Dai, ACS Sustain. Chem. Eng. 2017, 5, 9065-9075. (b) A. Farhadian, M. Babapour Gol Afshani, A. BabaeiMiyardan, M. Reza Nabid, N. Safari, ChemistrySelect 2017, 2, 1431-1435. (c) D. Alhashmialameer, J. Collins, K. Hattenhauer, F. M. Kerton, Catal. Sci. Technol. 2016, 6, 5364-5373. (d) M. A. Fuchs, T. A. Zevaco, E. Ember, O. Walter, I. Held, E. Dinjusa, M. Döring, Dalton Trans. 2013, 42, 5322-5329. (e) M. Taherimehr, S. M. Al-Amsyar, C. J. Whiteoak, A. W. Kleij, P. P. Pescarmona, Green Chem. 2013, 15, 3083-3090. (f) A.Buonerba, F. Della Monica, A. De Nisi, E. Luciano, S. Milione, A. Grassi, C. Capacchione, B.Rieger, Faraday Discuss. 2015, 183, 83-95.
- 20 (a) C. K. Karan, M. Bhattacharjee, *Inorg. Chem.* 2018, 57, 4649-4656. (b) A. Buchard, M. R. Kember, K. G. Sandeman, C. K. Williams, *Chem. Commun.* 2011, 47, 212-214. (c) C. J. Whiteoak, E. Martin, M. Martinez Belmonte, J. Benet-Buchholz, A. W. Kleija, *Adv. Synth. Catal.* 2012, 354, 469-476.
- 21 D. Belli Dell'Amico, F. Calderazzo, U. Englert, L. Labella, F. Marchetti, M. Specos, Eur. J. Inorg. Chem. 2004, 3938-3945.
- F. Marchetti, G. Pampaloni, C. Pinzino, F. Renili, T. Repo, S. Vuorinen, *Dalton Trans.* 2013, 42, 2792-2802.
- 23 A. M. Raspolli Galletti, G. Pampaloni, Coord. Chem. Rev. 2010, 254, 525-536.
- (a) D. Belli Dell'Amico, F. Calderazzo, L. Labella, F. Marchetti, G. Pampaloni, *Chem. Rev.* **2003**, *103*, 3857-3898. (b) L. Biancalana, G. Bresciani, C. Chiappe, F. Marchetti, G. Pampaloni, C. S. Pomelli, Phys. *Chem. Chem. Phys.* **2018**, *20*, 5057-5066.
- 25 M. H. Chisholm, M. W. Extine, J. Am. Chem. Soc. 1977, 99, 782-792.
- 26 D. Belli Dell'Amico, L: Labella, F. Marchetti, P. Mastrorilli, S Samaritani, S. Todisco, Polyhedron, 2013, 65, 275-281.
- D. Belli Dell'Amico, D. Boschi, F. Calderazzo, S. Ianelli, L. Labella, F. Marchetti, G. Pelizzi,
 E. G. Frieda Quadrelli, *Inorg. Chim. Acta* 2000, 300-302, 882-831.

- 28 NMR data of epoxides and related carbonates are enclosed in the Supporting Information.
- (a) H. Büttner, C. Grimmer, J. Steinbauer, T. Werner, ACS Sustain. Chem. Eng. 2016, 4, 4805-4814.
 (b) T. Bok, E. Kyung Noh, B. Y. Lee, Bull. Korean, Chem. Soc. 2006, 27, 1171-1174.
- 30 (a) L. Wang, C. Xu, Q. Han, X. Tang, P. Zhou, R. Zhang, G. Gao, B. Xu, W. Qina, W. Liu, *Chem. Commun.* 2018, 54, 2212-2215. (b) P. Li, Z. Cao, *Organometallics* 2018, 37, 406-414.
- (a) O. Figovsky, L. Shapovalov, A. Leykin, O. Birukova, R. Potashnikova, Chem. & Chem.
 Technol. 2013, 7,79-87. (b) D. J. Brunelle, Cyclic oligomers of polycarbonates and polyesters in Cyclic Polymers (A. J. Semlyen, Ed.), Springer, Dordrecht, 2nd. ed., 2011, pp. 185-228.
- 32 C.-X. Miao, J.-Q. Wang, Y. Wu, Y. Du, L.-N. He, *ChemSusChem*, 2008, 1, 236-241.
- (a) A. Monassier, V. D'Elia, M. Cokoja, H. Dong, J. D. A. Pelletier, J. M. Basset, F. E. Kuhn, *ChemCatChem* 2013, *5*, 1321-1324; (b) F. Zadehahmadi, F. Ahmadi, S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, R. Kardanpour, *J. Mol. Cat. A* 2015, *398*, 1-10; (c) G. Zhang, G. Wei, Z. Liu, S. R. J. Oliver, H. Fei, *Chem. Mater.* 2016, *28*, 6276-6281.
- 34 Iron(III) carbamates are paramagnetic species with magnetic moments ranging from 5.1 (R = Cy) to 4.5 (R = Et), Ref. 27. Nevertheless, the NMR spectra of solutions were sufficiently resolved due to the low concentration of paramagnetic species, after dilution of an aliquot of mother solution (see Experimental).
- 35 A. R. Pray, Inorg. Synth. 1957, 5, 153-156.
- 36 C.Y. Lin, M.W. George, P.M.W. Gill, Aust. J. Chem. 2004, 57, 365-370.
- (a) W.J. Henre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 1972, 56, 2257-2261; (b) P.J. Hay,
 W.R. Wadt, J. Chem. Phys. 1985, 82, 270–283; (c) M. Dolg, Effective core potentials, in J.
 Grotendorst (Ed.), Modern Methods and Algorithms of Quantum Chemistry, Vol. 1, John
 Neumann Institute for Computing, Jülich, 2000, pp. 479-508.
- 38 C.J. Cramer, *Essentials of Computational Chemistry*, 2ndEd., Wiley, Chichester, **2004**.

39 (a) Spartan'16, Build 2.0.3, Wavefunction Inc., Irvine CA, USA, 2016; (b) a) Spartan 16, Build 1. 1.0, Wavefunction Inc., Irvine, CA, 2016; b) Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W.Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D.Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B.Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D.Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio Jr., H. Do, A. D.Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W.Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K.Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F.Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J.Mayhall, E. Neuscamman, C. M. Oana, R. Olivares-Amaya, D. P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein, D.Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, V. Vanovschi, L. Vogt, O.Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R.Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard III, M. S.Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer III, M. W. Schmidt, C. D.Sherrill, D. G. Truhlar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T.Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R.Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, M. Head-Gordon, Mol. Phys. 2015, 113, 184-215.