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We extend previous calculations of the non-local form factors of semiclassical gravity in 4D to include the 
Einstein–Hilbert term. The quantized fields are massive scalar, fermion and vector fields. The non-local 
form factor in this case can be seen as the sum of a power series of total derivatives, but it enables us 
to derive the beta function of Newton’s constant and formally evaluate the decoupling law in the new 
sector, which turns out to be the standard quadratic one.
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1. Introduction

The derivation of non-local form factors in the semiclassical 
theory of massive matter fields on a classical curved background 
has several interesting applications. The calculation in the higher 
derivative vacuum sector [1,2] (see also [3]) supports the idea of 
the gravitational decoupling which is relevant for the graceful exit 
from the general version of anomaly induced inflation [4–6]. In-
deed, this mechanism is not sufficient for deriving the Starobinsky 
inflation [7,8] from quantum corrections, but one can hope that 
more detailed study of the gravitational decoupling may be useful 
for constructing the corresponding field theoretical model [9].

An important application of the effective approach to quantum 
field theory in curved spacetime is the possible running of cos-
mological and Newton’s constants at low energies, such as the 
typical energy scale in the late cosmology (which we shall call 
IR). If such a running takes place, there could be measurable im-
plications in both cosmology (see e.g. [10]) and astrophysics (see, 
e.g., [11]). Unfortunately, from the quantum field theory side, there 
is no way to consistently calculate such a running. The reason is 
that the existing methods of quantum calculations in curved space 
are essentially based on the expansion of all quantities around the 
flat space–time. For instance, the normal coordinate expansion and 
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Schwinger–DeWitt technique are based on the expansions into a 
power series in the curvature tensor and its covariant derivatives. 
Such an expansion is not sufficient to establish the physical run-
ning of the cosmological and Newton’s constants. An observation 
of such a running requires at least the expansion around space–
times of constant nonzero curvature [12], which is not available, 
except some special cases [13], which are not sufficient to observe 
the decoupling. In the case when a variation with respect to the 
scale of the cosmological and Newton’s constants does not take 
place, there would be a discrepancy between the well established 
running of these constants in the Minimal Subtraction (MS) renor-
malization scheme [14,15] (see [16] for an introduction) and the 
absence of the non-local form factors for the corresponding terms 
in the effective action.

The reason why there are no non-local form factors in the zero 
and second-derivative sectors of the gravitational action can be 
easily seen from the comparison with the fourth-derivative terms 
[1]. The non-local form factors can emerge in the square of the 
Weyl tensor Cαβρσ k1

( �
m2

)
Cαβρσ , or in the square of the scalar 

curvature R k2
( �

m2

)
R . At the same time it is unclear how to intro-

duce such a form factor for the cosmological constant, because the 
d’Alembert operator acting on a constant gives zero. Furthermore, 
if a non-local form factor is inserted into the Einstein–Hilbert ac-
tion, a function of � acting on R is equivalent to a sum of the 
series of surface terms. The simplest solution which was proposed 
in [1] was to replace the cosmological constant by the non-local 
expressions
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Rαβ

1

�2
Rαβ and R

1

�2
R, (1)

which have the same global scaling as a constant. Similar replace-
ment can be done for the Einstein–Hilbert Lagrangian by using the 
terms

Rαβ

1

� Rαβ and R
1

� R . (2)

The problem with this approach is that the semiclassical form 
factors can not be derived for the terms (1) and (2) within the 
existing field theoretical methods. Thus, the interesting cosmolog-
ical applications of the models based on (1) and (2) which were 
considered in [17] are as phenomenological as the non-covariant 
running which is considered in [10,12], and the unique advan-
tage, from the conceptual point of view, is that those are covariant 
expressions, which are easier to work with. In fact these struc-
tures are becoming increasingly of interest even in the context of 
quantum gravity, in which they might play the role of template to 
reconstruct the effective action [18].

Recently an alternative approach to the physical running of the 
inverse Newton’s constant has been initiated in [19] which is based 
on [3]. The consideration was performed for the two dimensional 
(2D) case and is related to some older works by Avramidi and col-
laborators [20,21]. The idea is to derive the non-local form factors 
for the Einstein–Hilbert term, regardless of the fact that the cor-
responding structures will be total derivatives.1 There is a serious 
justification of this approach, but we postpone this part of the dis-
cussions for the last section. In what follows we generalize the 
calculations of [19] to four dimensions (4D) and perform full con-
sideration of the non-local terms. For the sake of completeness we 
checked all the non-local contributions for higher derivative terms, 
which are well known from [1,2] and [3]. One of the reasons for 
this is the detailed discussion of the distinctions and similarities 
between the form factors for R , �R and R2 terms. As we know 
from previous work (see, e.g., the discussion in [24] with a special 
emphasize to the role of non-local form factors in massive semi-
classical theory), the renormalization of the surface terms results 
in the finite non-surface contributions, and the explicit form of the 
non-local surface terms derived here makes our understanding of 
this relation more detailed.

The outline of the paper is as follows. In Sec. 2 we discuss the 
structure of the effective action and its renormalization, and con-
struct the necessary equations to observe the gravitational version 
of the Applequist–Carazzone theorem [25] for the Newton constant 
in 4D curved space. In Secs. 3, 4 and 5 we give explicit formulas 
for nonminimally coupled scalars, Dirac spinors and Proca fields 
respectively. Finally, in Sec. 6 we draw our conclusions, present a 
general analysis of the results and comment on possible physical 
interpretations and the prospects of further developments. The two 
Appendices are included to clarify further the main text, namely 
in Appendix A we briefly present the heat kernel method which 
is used for the computations, while in Appendix B we survey the 
ultraviolet structure of the effective action and its physical impli-
cations.

2. Nonlocal effective action

We are interested in the contribution to the vacuum effective 
action of a set of free massive matter fields which includes ns non-
minimally coupled scalars, nf Dirac fermions and np Proca fields. 

1 Similar structures have already been explored in the quantum gravity literature 
[22,23].
The integration of the free matter fields fluctuations on curved 
background leads to the expression

�[g] = ns�s[g] + nf�f[g] + np�p[g] , (3)

in which �s[g], �f[g] and �p[g] denote the individual contribu-
tions for a single field of each matter specie. The individual contri-
butions are2

�s[g] = 1

2
Trs ln

(
�g + ξ R + m2

s

)
,

�f[g] = −Trf ln
(
/D + mf

)
,

�p[g] = 1

2
Trv ln

(
δν
μ�g + ∇μ∇ν + Rμ

ν + δν
μm2

v

)
,

(4)

in which each trace is taken over the appropriate degrees of free-
dom and �g is defined as positive in Euclidean space. A little work 
is needed to cast all functional traces in the same form. Squaring 
the Dirac operator we arrive at the expression

�f[g] = −1

2
Trf ln

(
�g + R

4
+ m2

f

)
. (5)

When dealing with the Proca operator we need to take care of the 
longitudinal modes, which can be done in at least two equivalent 
ways [30,31] and results in

�p[g] = 1

2
Trv ln

(
δν
μ�g + Rμ

ν + δν
μm2

v

)
− 1

2
Trs ln

(
�g + m2

v

)
.

(6)

Now each trace acts on the logarithm of an operator of Laplace-
type

�[g] = 1

2
Tr ln

(
�g + E + m2

)
(7)

for an appropriate endomorphism E acting on the field’s bundle. A 
standard way to compute traces of Laplace-type operators is to use 
the heat kernel. We can represent the above trace as an integral 
over the heat kernel proper time s,

�[g] = −1

2
tr

∞∫
0

ds

s

∫
d4x

√
g e−sm2H(s; x, x) , (8)

in which we have also separated the original trace into an inte-
gration over spacetime and a trace over the internal indices, and 
introduced the local heat kernel H(s; x, x′) (see Appendix A for a 
brief explanation regarding the heat kernel technique).

The effective action (8) has ultraviolet divergences, and a simple 
way to regulate them is through dimensional regularization [26]. 
For this purpose we continue the leading power s− d

2 of the heat 
kernel to a generic number d of dimensions, and introduce both a 
reference scale μ to preserve the mass dimension of all quantities 
when leaving four dimensions and a small parameter ε = 4 − d. 
The result of this substitution is the regularized effective action

�[g] = −με

2
tr

∞∫
0

ds

s

∫
d4x

√
g e−sm2H(s; x, x). (9)

2 Starting from this section we assume the Wick rotation and all notations are Eu-
clidean. The positively defined Laplacian operator �g is defined in Appendix A and 
Rμν = ∂λ�λ

μν + . . . . At the same time in all physical discussions we use pseudo-
Euclidean notations.
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Since all fields are massive the above effective action has no 
infrared divergences, thanks to the exponential damping factor 
caused by the mass for large values of s. However, there are ul-
traviolet divergences which appear as inverse powers of ε and 
require renormalization. We follow the standard practice of sub-
tracting poles of the parameter ε̄ , which is defined as

1

ε̄
= 1

ε
+ 1

2
ln

(
4πμ2

m2

)
− γ

2
(10)

(here γ is the Euler’s constant), instead of simply subtracting ε
poles, exploiting the freedom of the choice of renormalization 
scheme.

In the process of regularization and renormalization it is of-
ten convenient to deal with dimensionless quantities. Keeping in 
mind that at the moment the energy scales at our disposal are the 
Laplacian �g and the mass m2, we find convenient to introduce 
the following dimensionless operators

z = �g

m2
, a =

√
4z

4 + z
, Y = 1 − 1

a
ln

∣∣∣∣1 + a/2

1 − a/2

∣∣∣∣ . (11)

With the above definitions we have all the ingredients to discuss 
the form that the effective action can take up to the second or-
der in a curvature expansion. We have that to this order the most 
general form can be narrowed down to the sum of a local and a 
non-local part

�[g] = �loc[g] + m2

2(4π)2

∫
d4x

√
g B(z)R

+ 1

2(4π)2

∫
d4x

√
g
{

Cμναβ C1(z) Cμναβ + R C2(z) R
}

,

(12)

in which Cμνρθ is the four dimensional Weyl tensor. Since the 
divergences are local expressions, all dimensional poles are con-
tained in the local part of effective action �loc[g]. The renormal-
ization can be performed through the introduction of appropriate 
counter terms and generically results in a renormalized action of 
the form

Sren[g] =
∫

d4x
√

g
{

b0 + b1 R + a1C2 + a2E4 + a3�R + a4 R2
}

,

(13)

in which E4 is the operator associated to the Euler’s character-
istic, which is the Gauss–Bonnet topological term in d = 4. The 
renormalized action features the couplings that have to be experi-
mentally determined in order for the theory to be predictive. The 
couplings include the cosmological constant � and the Newton’s 
constant G through the relations b0 = 2�G−1 and b1 = −G−1. The 
minimal subtraction (MS) procedure induces a running of all the 
couplings which is encoded in beta functions that we denote as 
βMS

g in which g is any of the couplings of (13). In what follows we 
formulate the beta functions for the parameters b0 and b1, instead 
of � and G .

The minimal subtraction scheme – based one-loop renormaliza-
tion group flow induced by the beta functions of the couplings of 
(13) has been known for a long time for all the field types listed in 
this section. In this work we concentrate instead on the non-local 
contributions of the effective action. In (12) we have introduced 
three new covariant functions B(z), C1(z) and C2(z) of the rescaled 
Laplacian z. These functions are known as form factors of the effec-
tive action and represent a true physical prediction which comes 
from the formalism: in fact one can imagine to pick a specific ob-
servable – either from cosmology or from particle physics – and 
compute it in terms of the form factors themselves [27]. A sim-
ple way to understand the physical consequences of the effective 
action, which is related to the general concept of renormalization 
group, is to use them to construct new non-local beta functions 
which are sensitive to the presence of the mass scale m2.

Let us first recall that the non-local form factors of the heat 
kernel of Appendix A, and consequently the non-local contribu-
tions to the effective action (12), are obtained for asymptotically 
flat Euclidean spacetimes in which curvatures are small (schemat-
ically 

∣∣∇2R
∣∣ � ∣∣R2

∣∣ for any curvature tensor R) [33]. In practice, 
the asymptotic flatness offers a special reference frame which can 
be used to construct meaningful Fourier transformations and in 
which the expansion in curvatures can be related to the expansion 
in fluctuations of the metric. In fact, this is precisely the frame 
in which the form factors are computed in [1–3], even though 
the final expressions are always presented in a manifestly covari-
ant form. In short, this implies that the Laplace operator �g is 
in one-to-one correspondence with the square q2 of a momen-
tum qμ of the asymptotic frame upon Fourier transformation. This 
representation is especially useful for the renormalization group 
applications, where one has to take derivatives with respect to the 
scale parameter.

The straightforward way to derive the beta functions is to sub-
tract the divergences at the scale q = ∣∣qμ

∣∣. For convenience, let us 
define the dimensionless scale q̂ = q/m which is simply q in units 
of the mass; by definition after the Fourier transform q̂ is related 
to z as q̂2 = z and the renormalization group flow is parametrized 
by

q
∂

∂q
= q̂

∂

∂q̂
= 2z

∂

∂z
. (14)

Let us begin by discussing the renormalization group flow of 
the terms that are quadratic in the curvatures which has been 
studied in detail in [1,2]. A simple inspection suggests the non-
local generalization of the beta functions of a1

βa1 = 2z
∂

∂z

[
1

2(4π)2
C1(z)

]
= z

(4π)2
C ′

1(z) , (15)

in which we indicate the derivative with a prime. The same can be 
done for the coupling a4

βa4 = z

(4π)2
C ′

2(z) . (16)

In practice the form factors C1(z) and C2(z) play the role of non-
local scale-dependent generalizations of the couplings. Since our 
heat kernel methods work on spaces that are asymptotically flat, 
we do not have enough information to compute the running of 
the topological term in this context (although it is still possible to 
complement this result with standard Seeley–DeWitt methods).

Now let us turn our attention to the couplings of the terms that 
are linear in the curvature R . On the one hand we have that the 
renormalized action features two couplings – b1 and a3 – but on 
the other hand there is only a single form factor B(z) acting on R
in (12). Naively we are tempted to define a master beta function

� = 1

(4π)2
z ∂z

[
B(z)

z

]
, (17)

which we denoted with a new symbol to avoid confusion. The run-
ning function � is defined to take into account that in (12) we 
are measuring a dimensionfull quantity – the coefficient of R – in 
units of m2 while instead our rescaling should be done in units 
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of q2, hence the quotient with z = q2/m2 that restores the right 
units. While we will find useful to study this object later on, at 
this stage it is not clear if its renormalization group flow should 
be associated to the coupling b1 or to a3. Returning to (13) it is 
easy to see that if m2 � q2 the operator R will dominate over 
the operator �R , and conversely if m2 � q2 the operator �R will 
dominate over the operator R . This implies that in the high en-
ergy limit z � 1 the function � should encode information of βa3 , 
while in the opposite limit z ∼ 0 the function � should encode in-
formation of βb1 . This property is discussed in more detail later. 
However, βb1 and βa3 have well known ultraviolet limits which we 
would like to preserve, associated to MS as we will also see later. 
We find that the best solution is to define the following beta func-
tions

βa3 = − 1

(4π)2
z ∂z

[
B(z) − B(0)

z

]
,

βb1 = m2

(4π)2
z ∂z

[
B(z) − B∞(z)

]
.

(18)

The first equation is implied by the comparison with (13) and in-
cludes the removal of the constant part that should be attributed 
to b1. In the second equation we subtract the dominating �R ef-
fect from the running of B(z) in the form of B∞(z) which is the 
leading logarithmic asymptotic behavior for z 
 ∞ of B(z) itself. 
The leftover terms of the subtraction is thus identified with the 
running of the operator R and hence the coupling b1. In the prac-
tical computations instead of subtracting the leading logarithm at 
infinity, we will subtract instead the combination

a(1 − Y ) 
 ln(z) , (19)

which is shown to be valid for z � 1 using the definitions (11). 
General features of the definitions (18) and their ultraviolet prop-
erties are discussed in more detail in Appendix B.

In the next section we present explicit results for the form fac-
tor and the beta function for the Einstein–Hilbert term. The full set 
of the form factors and the expressions for all the non-local beta 
functions in the fourth-derivatives sector, and also the correspond-
ing MS beta functions can be found in the papers [2,3]. All results 
will be collected in a mini review to appear shortly [28]. However, 
there are still some general properties that we can discuss here in 
anticipation. For all the couplings and all the beta functions we can 
show that there are sensible ultraviolet z � 1 and infrared z ∼ 0
limits. Each beta function satisfies the additional property

βg = βMS
g +O

(
m2

q2

)
for q2 � m2, (20)

where g is any of the couplings. Furthermore, all the renormaliza-
tion group running the subject to the effect of decoupling towards 
the infrared, meaning that when q2 goes below the m2 threshold 
fluctuations stop propagating and have no effect on the quantum 
physics anymore. We have that

βg = O
(

q2

m2

)
for q2 � m2, (21)

which is the practical evidence of the Applequist–Carazzone theo-
rem in four dimensional curved space.

Finally, it is interesting to observe the practical implications of 
the discussion on the function �(z). As argued above, the limits 
m2 � q2 and m2 � q2 should see the operators �R and R domi-
nating the running �(z) respectively. For all the matter types that 
we consider we have the following two limits
� =
⎧⎨
⎩

−βMS
a3

for q2 � m2

m2

q2 βMS
b1

for q2 � m2
(22)

which reflect the previous consideration. Notice that while the ul-
traviolet limit can be straightforwardly proven on the basis of the 
definitions of βMS

a3
and �, the infrared limit is much less trivial. No-

tice also that the infrared limit does not sharply decouple, because 
it grows with the square of the mass, but this is to be expected 
since we are measuring a massive quantity in units of q for q → 0. 
To get rid of the divergence it is sufficient to switch to measuring 
the same quantity in units of m in the infrared.

3. Nonminimally coupled scalar field

The effective action of the nonminimally coupled scalar field 
can be obtained specifying the endomorphism E = ξ R in the non-
local heat kernel expansion and then performing the integration in 
s [29]. We find the local contributions of the regularized action to 
be

�loc[g] = 1

2(4π)2

∫
d4x

√
g
{
−m4

(1

ε̄
+ 3

4

)
− 2m2

(
ξ − 1

6

)1

ε̄
R

+ 1

3

(
ξ − 1

5

)1

ε̄
�R − 1

60ε̄
Cμνρθ Cμνρθ (23)

−
(
ξ − 1

6

)2 1

ε̄
R2

}
.

The minimal subtraction of the divergences of local contributions 
induces the following MS beta functions for the terms with up to 
one curvature

βMS
b0

= 1

(4π)2

m4

2
, βMS

b1
= 1

(4π)2
m2

(
ξ − 1

6

)
,

βMS
a3

= − 1

(4π)2

1

6

(
ξ − 1

5

)
.

(24)

The non-local part of the effective action includes the following 
form factor

B(z)

z
= − 4Y

15a4
+ Y

9a2
− 1

45a2
+ 4

675

+
(

ξ − 1

6

)(
− 4Y

3a2
− 1

a2
+ 5

36

)
, (25)

while C1(z) and C2(z) confirm the results reported in [1]. Using 
our definitions the non-local beta functions of the couplings asso-
ciated to the curvature R are

βb1 = z

(4π)2

{ 2Y

5a4
− 2Y

9a2
+ 1

30a2
− aY

180
+ a

120
+ Y

24
− 1

40

+
(

ξ − 1

6

)(
2Y

3a2
+ aY

6
− a

4
− Y

2
+ 1

2

)}
(26)

and

βa3 = 1

(4π)2

{
− 2Y

3a4
+ Y

3a2
− 1

18a2
− Y

24
+ 7

360

+
(

ξ − 1

6

)(
−2Y

a2
+ Y

2
− 1

6

)}
. (27)

The Eqs. (26) and (27) provide all necessary ingredients to study 
the Applequist–Carazzone theorem of both parameters. Plots of 
these beta functions are given in Fig. 1.

As we have explained in the Introduction, the most interesting 
is the decoupling theorem for the running of the Newton’s con-
stant which is related to the inverse of b1 = −G−1. The non-local 
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Fig. 1. Plots of the beta functions βb1 and βa3 rescaled by a factor (4π)2 that are induced by a single scalar field for the values ξ = 0 (blue) and ξ = 1
6 (yellow) as a function 

of the variable a defined in (11). The plot ranges from the IR at a = 0 (q2 � m2) to the UV at a = 2 (q2 � m2). The effects of the Applequist–Carazzone theorem are seen on 
the left where the beta functions become zero. The beta function βb1 for the special conformal value ξ = 1

6 is zero also in the UV.
beta function of the couplings b1 and a3 in units of the mass have 
the two limits

βb1

m2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
(4π)2

(
ξ − 1

6

) + 1
(4π)2

{(
3
5 − ξ

)
− ξ ln

(
q2

m2

)}
m2

q2

+O
(

m2

q2

)2
for q2 � m2,

1
(4π)2

(
4
9 ξ − 77

900

)
q2

m2 +O
(

q2

m2

) 3
2

for q2 � m2

(28)

and

βa3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
6(4π)2

(
ξ − 1

5

)
+ 1

(4π)2

{
5

18 − 2ξ + (
ξ − 1

6

)
ln

(
q2

m2

)}
m2

q2

+O
(

m2

q2

)2
for q2 � m2,

1
(4π)2

1
840 (3 − 14ξ)

q2

m2 +O
(

q2

m2

)2
for q2 � m2.

(29)

The last expressions show standard quadratic decoupling in the IR 
for both parameters, exactly as in the usual QED situation [25] and 
as for the fourth derivative non-surface gravitational terms [1,2]. 
In the high energy limit (UV) we meet the usual MS beta function 
plus a small correction to it.

4. Dirac field

The effective action of the minimally coupled Dirac fields re-
quires the specification of the endomorphism E = R/4. The final 
result turns out to be proportional to the dimension dγ of the Clif-
ford algebra and hence to the number of spinor components. We 
do not set dγ = 4, but choose instead to leave it arbitrary so that 
the formulas can be generalized to other spinor species easily. We 
find the local regularized action to be

�loc[g] = dγ

2(4π)2

∫
d4x

√
g
{

m4
(1

ε̄
+ 3

4

)
+ m2

6ε̄
R

− 1

60ε̄
�R − 1

40ε̄
Cμνρθ Cμνρθ

}
. (30)

The minimal subtraction of the 1/ε̄ divergences induces the fol-
lowing MS beta functions

βMS
b0

= − dγ

(4π)2

m4

2
, βMS

b1
= − dγ

(4π)2

m2

12
,

βMS
a3

= dγ

(4π)2

1

120
.

(31)

The non-local part of the effective action includes the following 
form factor
B(z)

z
= dγ

{
− 7

400
+ 19

180a2
+ 4Y

15a4

}
, (32)

while C1(z) and C2(z) agree with [1]. The non-local beta functions 
are

βb1 = dγ z

(4π)2

{
− 2Y

5a4
+ Y

6a2
− 1

30a2
− aY

120
+ a

80
− 1

60

}
,

βa3 = dγ

(4π)2

{ 2Y

3a4
− Y

6a2
+ 1

18a2
− 1

180

}
.

(33)

Likewise the scalar case the non-local beta functions of b1 and a3

have the two limits

βb1

m2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− dγ

(4π)2
1

12 − dγ

(4π)2

[
7

20 − 1
4 ln

(
q2

m2

)]
m2

q2 +O
(

m2

q2

)2

for q2 � m2 ;
− dγ

(4π)2
23

900
q2

m2 +O
(

q2

m2

) 3
2

for q2 � m2 .

βa3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dγ

(4π)2
1

120 + dγ

(4π)2

{
2
9 − 1

12 ln
(

q2

m2

)}
m2

q2 +O
(

m2

q2

)2

for q2 � m2 ;
dγ

(4π)2
1

1680
q2

m2 +O
(

q2

m2

)2
for q2 � m2 .

(34)

Once again, there is a standard quadratic decoupling in the IR for 
both parameters, while in the UV we find the MS beta function 
and a sub-leading correction.

5. Proca field

The minimally coupled Proca field could be understood as a 
four-components vector field, but one of these components is sub-
tracted through a single scalar ghost, so it has effectively three 
degrees of freedom in four dimensions. The local regularized ac-
tion is

�loc[g] = 1

2(4π)2

∫
d4x

√
g
{
−m4

(3

ε̄
+ 9

4

)
− m2

ε̄
R

+ 2

15ε̄
�R − 13

60ε̄
Cμνρθ Cμνρθ − 1

36
R2

}
.

(35)

The minimal subtraction of the 1/ε̄ poles induces the following MS
beta functions

βMS
b0

= 1

(4π)2

3m4

2
, βMS

b1
= 1

(4π)2

m2

2
,

βMS
a3

= − 1
2

1
.

(36)
(4π) 15
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The non-local part of the effective action includes the following 
form factors

B(z)

z
= 157

1800
− 17

30a2
− 4Y

5a4
− Y

3a2
, (37)

and C1(z) and C2(z) reproduce [1]. The non-local beta functions 
are

βb1 = z

(4π)2

(
6Y

5a4
− Y

3a2
+ 1

10a2
+ aY

15
− a

10
− Y

8
+ 7

40

)

βa3 = 1

(4π)2

{
−2Y

a4
− 1

6a2
+ Y

8
− 1

40

}
.

(38)

The beta functions of b1 and a3 have the two limits

βb1

m2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
(4π)2

1
2 + 1

(4π)2

(
4
5 − ln

(
q2

m2

))
m2

q2 +O
(

m2

q2

)2

for q2 � m2 ;
1

(4π)2
169
900

q2

m2 +O
(

q2

m2

) 3
2

for q2 � m2 .

βa3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
(4π)2

1
15 − 1

(4π)2

{
7
6 − 1

2 ln
(

q2

m2

)}
m2

q2 +O
(

m2

q2

)2

for q2 � m2 ;
− 1

(4π)2
1

168
q2

m2 +O
(

q2

m2

)2
for q2 � m2 .

(39)

We can observe that for the Proca field there is the same quadratic 
decoupling for both couplings, and the same MS beta function plus 
a small correction in the UV.

6. Conclusions

We computed the covariant non-local form factors of the Eu-
clidean effective action of nonminimal scalars, Dirac spinors and 
Proca fields up to the second order of the curvature expansion 
on asymptotically flat space. The calculations were performed by 
means of heat kernel method for the massive quantum fields and 
an arbitrary external metric. We checked explicitly that the results 
for the fourth derivative terms confirmed the previous ones de-
rived by [1–3] which were obtained by both Feynman diagrams 
and heat kernel method as presented in the paper of Barvinsky 
and Vilkovisky [33]. We used the results for the effective action 
to find suitable beta functions which arise from the subtraction 
of the divergences at a physical momentum scale q2. These beta 
functions are special because they display two important limits: in 
the ultraviolet they reproduce the universal results coming from 
the minimal subtraction of the poles of dimensional regularization, 
while in the infrared (IR) limit q2 � m2 they exhibit a quadratic 
decoupling, as expected from the Applequist–Carazzone theorem. 
The decoupling can be observed for both inverse Newton constant 
and for a3. With respect to the global scaling the �R-term is the 
same as the R2 term. It is well known that the finite contribu-
tion for the R2 term is linked to the divergences of the �R-term, 
while the finite nonlocal contribution for the surface �R term has 
smaller relevance than the one for the second derivative term.

The main new result of our work is the non-local form factors 
for the Einstein–Hilbert term, which has the form k(�)R . For the 
non-zero mass m of the quantum field such a form factor can be 
expanded into power series in the ratio �/m2 and thus it repre-
sents a power series of total derivatives. If we forget that the total 
derivatives do not contribute to the equations of motion, these 
form factors show typical quadratic decoupling in the IR limit 
q2 � m2. The same effect can be observed from both form fac-
tors in the effective action and from the “physical” beta functions 
defined in the Momentum Subtraction scheme of renormalization.
The relevant question is whether there is a manner to construct 
a physical application for the results for the total derivative terms. 
In this respect we can note that the total derivative terms may be 
relevant in the case of manifolds with boundaries. In the theoret-
ical cosmology there are objects of this type called domain walls, 
and it would be interesting to consider the implications of our re-
sults in this case. Even more simple is the situation in cosmology. 
One can regard the cosmological spacetime of the expanding uni-
verse as a manifold with boundary (horizon) which has a size de-
fined by the inverse of Hubble parameter. Taking this into account, 
the natural interpretation is that we have, for the Einstein–Hilbert 
term, the decoupling in the form of identification

q2

m2
−→ H2

m2
. (40)

Indeed, the quadratic decoupling for the inverse Newton constant 
in the IR is not what we need for the phenomenological models of 
quantum corrections in cosmology [10] or astrophysics [11]. Using 
the approach of [10] one can easily see that in this case the en-
ergy conservation law will tell us that the cosmological constant 
does not show any significant running in the IR. This is the re-
sult which some of the present authors could not achieve in [12]. 
In our opinion, however, this conclusion can not be seen as final, 
since it is based on the qualitative and phenomenological identi-
fication of the scale (40). Nevertheless, one can expect that the 
study based on surface terms can be useful in the further explo-
ration of this interesting subject.
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Appendix A. The non-local expansion of the heat kernel

In this Appendix we briefly present the non-local expansion of 
the heat kernel [3,32,33]. Consider a Laplace-type operator

D = �g + E (A.1)

which acts on a generic tensor bundle equipped with a connec-
tion over a Riemaniann manifold which has Euclidean metric gμν . 
We introduced the Laplacian �g which is defined as the negative 
of the square of the covariant derivative �g = −∇2 = −gμν∇μ∇ν

and a local endomorphism E which acts multiplicatively.
The (local) heat kernel H(s; x, x′) is defined as the solution of 

the initial value problem

(∂s +Dx)H(s; x, x′) = 0 , H(s; x, x′) = δ(x, x′) , (A.2)

in which δ(x, x′) is the covariant Dirac delta. The heat kernel al-
lows us to give a covariant representation to traces of functions of 
the Laplace-type operator D, and specifically allows us to compute 
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the 1-loop effective action �[g]. The dimensionally regularized ef-
fective action is3

�[g] = 1

2
Tr ln

(
�g + E + m2

)
= −με

2
Tr

∞∫
0

ds

s
e−sm2H(s) .

(A.3)

The trace of the local heat kernel admits a curvature expansion 
that to the second order is

TrH(s) = 1

(4π s)d/2

∫
d4x

√
g tr

{
1 + sG E(s�g)E + sG R(s�g)R

+ s2 R F R(s�g)R + s2 Rμν F Ric(s�g)Rμν

+ s2 E F E(s�g)E + s2 E F R E(s�g)R

+ s2�μν F�(s�g)�μν

}
+O (R)3 , (A.4)

in which O (R)3 represents all possible non-local terms with three 
or more curvatures [32,33]. The functions whose argument is �g

are known as form factors of the heat kernel: they act on the 
curvatures of the expansion and should be regarded as non-local 
functions of the Laplacian. The form factors appearing in the linear 
terms have been derived in [3] as

G E(x) = − f (x) , G R(x) = f (x)

4
+ f (x) − 1

2x
, (A.5)

while those appearing in the quadratic terms can be found in [3,
32,33]. All form factors depend on a single basic form factor which 
is defined as

f (x) =
1∫

0

dα e−α(1−α)x . (A.6)

All the form factors admit well-defined expansions both for large 
and small values of the parameter s, since s is dual to the energy 
of the fluctuations the non-local expansion is a suitable tool to 
explore the effective action from high- to low-energies

Appendix B. Comments on the UV structure of the effective 
action

The local and non-local contributions to the effective action 
(12) are not fully independent, but rather display some important 
relations which underline the properties described in Sect. 2. Let 
us concentrate here on the renormalization of a generic operator 
O [g] on which a form factor B O (z) acts. (The explicit example that 
appears in the text would be to take R as the operator and B(z) as 
the corresponding form factor.) For small mass m2 ∼ 0 we notice 
that the regularized vacuum action is always of the form

�[g] ⊃ − bO

(4π)2ε̄

∫
d4x O [g] + 1

2(4π)2

∫
d4x B O (z) O [g]

= − bO

2(4π)2

∫
d4x

[2

ε̄
− ln

(
−∇2/m2

)]
O [g] + . . . (B.1)

in which the dots hide subleading contributions in the mass and 
bO is a pure number related to the renormalization of the operator. 
The above relation underlines an explicit connection between the 

3 Notice that we use the formal notation H(s) = e−sD from which it follows 
that the heat kernel is given by the matrix values of this operator, i.e. H(s; x, x′) =
〈x|H|x′〉.
coefficient of the 1/ε̄ pole and the leading ultraviolet logarithmic 
behavior of the form factor [34,35].

The subtraction of the pole requires the introduction of the 
renormalized coupling gO

Sren[g] ⊃
∫

gO O [g] , (B.2)

which in the MS scheme will have the beta function

βMS
gO

= bO

(4π)2
. (B.3)

Following our discussion of Sect. 2 we find that if we subtract the 
divergence at the momentum scale q2 coming from the Fourier 
transform of the form factor we get the non-local beta function

βgO = z

(4π)2
B ′

gO
(z) . (B.4)

Using (B.1) it is easy to see that in the ultraviolet limit z � 1

B(z) = bO ln (z) + . . . , (B.5)

from which it is easy to see in general that the ultraviolet limit of 
the non-local beta function coincides with the MS result

βgO = βMS
gO

+ . . . for z � 1 . (B.6)

In the above discussion we have however always implicitly as-
sumed that the operator O [g] is kept fixed upon actions of the 
renormalization group operator q∂q = 2z∂z . Suppose now that the 
operator O [g] is actually a total derivative of the form

O [g] = � O ′[g] = −�g O ′[g] , (B.7)

in which we introduce another operator O ′[g], which itself 
needs to be renormalized with a coupling gO ′ and a local term 
ggO ′

∫
O ′[g]. If we now act with q∂q and keep O ′[g] instead of 

O [g] the renormalization group flow will acquire an overall scal-
ing term due to the above relation. A solution to this problem is 
to manually remove such scaling and define

βgO ′ = − 1

(4π)2
z ∂z

[
B O (z)

z

]
. (B.8)

This definition ensures that the MS beta function of the coupling 
of the total derivative � O ′[g] is correctly reproduced in the ultra-
violet limit of the non-local beta function. This is seen in the main 
text in the definition of � (17).

As a final step to this analysis we point out that there are sit-
uations in which the definitions of (B.4) and (B.8) might need to 
coexist because both the operator O′ and its total derivative re-
quire renormalization. In the main text, and in particular in the 
definition (18) we have adopted the strategy of subtracting the 
leading behaviors at large and small energies to ensure the cor-
rect scaling properties of the renormalization group running.
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