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In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to ac-

cretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique

capability of using advanced “spectral-timing-polarimetry” techniques to analyze the rapid variations with three orthogonal di-

agnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field

gravity on the material within them and the powerful outflows which are driven by the accretion process.
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1 Introduction

One of the major challenges of modern astrophysics is the

study of matter close to the event horizon of black holes (BH).

The motion of accreting plasma near super-massive black

holes (SMBHs) hosted in Active Galactic Nuclei (AGN) and

stellar-mass black holes in X-ray binaries (XRBs), provides

a powerful diagnostic to study the very deep potential well

generated by the central object. In the widely accepted sce-

nario, the infalling matter forms an accretion disk that may

extend down to the innermost stable circular orbit (ISCO), in

the vicinity of which the bulk of the X-ray radiation is emit-

ted. X-ray timing, spectroscopic and polarimetric techniques

for probing matter flows into the strong gravity regime have

been developed and, the first two, applied to real data.

X-ray measurements in the strong field gravity regime can

be used to infer the two most fundamental black hole param-

eters: mass and spin. The black hole spin plays a major role

in modern astrophysics; for instance it may provide an impor-

tant source of energy, sustain winds and jets in AGN and stel-

lar mass black holes, power the inner engine of gamma ray

bursts and help to explain the apparent radio-loud/radio-quiet

‘dichotomy’ in AGN. Understanding the distribution of spins

is crucial for understanding black hole formation and growth,

giving an insight into the earlier universe (for SMBH) or (for

stellar mass black holes) the physics of super- or hyper-novae

[1]. Furthermore, since the spacetime is dominated by a sin-

gle black hole which is accreting a negligible proportion of

its mass, observations of matter close to the black hole can

be used to verify some of the key predictions of General Rel-

ativity (GR) in a very different - and complementary - set-

ting to that probed using gravitational wave measurements of

black hole mergers. Gravitational wave detectors [2] detect

compact-object inspiral and merger events, where spacetime

is being shaken by closely orbiting masses and hence is dy-

namic. X-ray observations of accreting black holes will probe

instead the stationary spacetime metrics.

Strong field gravity effects in neutron stars are an impor-

tant topic of study also, but in this White Paper, we focus on

the strong-field gravity regions around black holes for two

reasons. Firstly, these objects offer a more pristine environ-

ment to study the behaviour of the accreting gas, free from

the effects of a strong magnetic field or solid surface. Sec-

ondly, astrophysical black holes cover, uniquely, 8-9 orders

of magnitude in object mass, allowing a unique test of the

scale invariance of gravitational effects and a link between

the behaviour of accretion flows in stellar mass systems, the

state changes of which can be studied in only days or weeks,

versus those around supermassive black holes where we see

only a snapshot of the current accretion state, which likely

only changes on time-scales much longer than a human life-

time. Equivalently, the study of AGN can inform us about the

most rapid individual variations around accreting black holes

in much greater detail than can be probed in XRBs, where

we detect far fewer photons per light-crossing time (gaining

sensitivity in XRBs only because we can average over many

more cycles of variability). However, before continuing our

focus on black holes, we stress that many of the techniques

which we apply to BH XRBs here, will be equally applicable

to studying accreting neutron stars.

1.1 Strong field gravity diagnostics

To date, the two most important direct diagnostics of mat-

ter behaviour in the strong-field gravity regime in XRBs and

AGN are (1) relativistically broadened Fe lines [3-5] and (2)

relativistic time-scale variability, in particular, quasi-periodic

oscillations, QPOs [6-12].

The Fe Kα emission line, along with the so-called ‘reflec-

tion continuum’ (a broad bump starting at a few keV and

peaking around 30 keV), is produced when the disk is ex-

ternally illuminated, e.g. by the hot Comptonizing gas (of-

ten referred to as the ‘corona’) which is responsible for the

power-law X-ray emission component of AGN and Galactic

black hole systems. An intrinsically narrow line emitted lo-

cally in the inner disk is hugely broadened and distorted by

a combination of special relativistic (Doppler effect and rela-

tivistic aberration) and GR (gravitational redshift, light bend-

ing) effects. By comparing the data to the line profile that is

obtained by integrating over the line emitting disk region, it

is possible to measure the accretion disk parameters like the

innermost radius and the inclination angle [13, 14]. If the in-

ner disk radius corresponds to the ISCO, then since the ISCO

radius depends on the black hole spin (see Figure 1), the lat-

ter can be inferred. Very broad and asymmetric Fe K profiles

around ∼ 5-7 keV have been observed in the X-ray spectra of

bright AGN and XRBs [15-19].

As a further check, the spin can also be determined in

black hole XRBs by measuring the disk inner radius using

model fitting of the thermal emission coming from the accre-

tion disk itself [20,21], which is visible in the X-ray band for

the high-temperature disks in these stellar mass systems.



A. De Rosa Sci. China-Phys. Mech. Astron. January (2017) Vol. 60 No. 1 000000-4

Figure 1 The relation between the ISCO radius and the black hole spin.

X-ray QPOs are routinely observed [22] in stellar mass

black holes (and neutron stars) at low (0.1–10 Hz) and high

(few hundred Hz) frequencies, within 10-20% of the rela-

tivistic precession, orbital and epicyclic frequencies in the

inner disk, i.e., the fundamental frequencies of orbital mo-

tion in strong-field GR [6, 23]. The low and high-frequency

QPOs have sometimes been seen together, in combinations

of frequencies consistent with those expected from the mul-

tiple relativistic signals associated with a given radius in the

accretion flow [24, 25]. Thus, QPOs may correspond to os-

cillations excited in narrow ranges of radii and are potentially

very strong probes of relativistic dynamics which also pro-

vide measurements of black hole spin, one of the main pa-

rameters which determines the frequencies.

1.2 A complex astrophysical environment

In practice these spectral and timing signals of strong-field

gravity are embedded in a more complex astrophysical en-

vironment, in some cases consisting of a hot, variable, ge-

ometrically thick and possibly optically thin inner accretion

flow which is likely to occur close to the compact object and

may correspond to the X-ray power-law emitting ‘corona’

[26]. The central region is certainly more complex than a

‘standard’ thin accretion disk, and possibly partly masked

by accretion-powered outflows and (in the case of AGN), a

complex gaseous environment. The additional astrophysical

effects pose challenges for application of standard spectro-

scopic and timing methods to study strong-field gravity ef-

fects.

Firstly, the spectral estimators of black hole spin described

above rely on the assumption that the disk inner radius is lo-

cated at the ISCO, but this situation is unlikely to apply in all

observed cases. Most notably, many BH XRBs are transients,

showing strong outburst behaviour and strong spectral and

timing evolution through different ‘states’ during their out-

bursts (see [26, 27] and Figure 2), which suggests evolution

of the inner accretion flow which produces most of the emis-

sion, and possibly corresponding changes in inner disk ra-

dius, as power is transferred between the disk and the corona.

As indicated in Figure 2, low-frequency QPOs are strongest

in the intermediate states where the emission is not clearly

dominated by either disk or corona. High-frequency QPOs

are seen in an even more restricted range of luminous inter-

mediate states [28, 29], but with current data it is not clear

whether this restriction is a real physical effect or simply an

observational bias due to them being stronger and also easier

to detect in these very bright states. Our interpretation of the

QPOs is strongly limited unless we can understand whether

and how they arise in distinct spectral states and what the ac-

tual changes in emission geometry are that correspond to the

changes in state.

Furthermore, when modelling relativistically broadened

Fe emission, it is imperative to have a good estimate of the

underlying broad continuum shape [5], but AGN in particular

often show spectra which are significantly modified by inter-

vening absorption or distant reflection components. For ex-

ample, reflection in AGN may also arise from neutral/ionised

Compton-thick gas, like the pc-scale torus envisaged by uni-

fication models [30]. Absorption may be due to accretion

disk winds, discovered and studied in AGN and XRBs for

more than a decade [5, 31-33]. These may take the form of

AGN Ultra-Fast Outflows (UFOs) with velocities∼ 0.1c [34],

observable at locations of sub-parsec scales from the central

super-massive black hole, suggesting an identification with a

disk wind or the base of a possible weak/broad jet. These

components could provide a significant contribution to the

observed AGN feedback between the central supermassive

black hole and its host galaxy [35].

Also, in AGN we may see both neutral absorption from in-

tervening cold matter (due to e.g. the Broad Line Regions, the

absorbing torus or host galaxy dust lanes) and ionised absorp-

tion from intervening warm matter with different velocities.

These latter absorbers are often outflowing with velocities of

hundreds/thousands km s−1 (the standard ‘warm absorber’).

X-ray polarization signatures are also expected from the

regions close to the black hole from several physical compo-

nents, but to date these signatures have been unexplored due

to the lack of sensitive polarimetric capability on previous

and current X-ray observatories. Firstly, electron-scattering

in the accretion disk should produce polarized disk thermal

emission with a polarization fraction of up to a few per cent in

the disk-dominated soft states of black hole XRBs. Further-

more during the propagation of X-ray photons in the strong

gravitational field the effects of relativistic beaming, gravi-
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Figure 2 The distinct spectral and timing properties of the soft, intermediate and hard states (representative examples from the Rossi X-ray Timing Explorer,

RXTE and XMM-Newton data). The spectra (top row) show the disk blackbody (red), power-law (blue) and disk relativistic reflection (purple) components

that best fit the data. (black points). The hard state spectrum shows the components unabsorbed by Galactic absorption, revealing the disk blackbody at low

energies. The states are characterised by a strongly changing ratio of disk blackbody to power-law emission, with the disk strongest in the soft state and weakest

in the hard state. These changes suggest a transfer of power between the disk and the corona, which may also correspond to truncation of the inner disk into

an inner ‘hot flow’, which might also produce low-frequency QPOs via precession. The Fourier power-spectra (bottom row), obtained by RXTE, show that the

hard and soft states are dominated by broadband noise variability, while the intermediate states tend to be dominated by strong low-frequency QPOs.

tational lensing and frame dragging can lead to the rotation

of the integrated polarization vector [36-40]. Another poten-

tial polarized signal from close to accreting black holes is

the central corona (possibly corresponding to the ‘inner hot

flow’ of matter in the innermost disk). The geometry and

emission mechanisms of the corona are still mysterious and

X-ray polarization observations can provide a fundamental

probe of the coronal geometry, which is helpful for under-

standing its physical origin. For example, it is trivial to de-

termine whether a corona is oriented in a plane above the

disk or has a more central spherical geometry [41]. Never-

theless, we expect polarized signals from the disk and corona

to be combined and this will make it difficult for stand-alone

polarimeters to distinguish between the different components

and make the kind of breakthroughs that are opened up with

this important new capability.

1.3 The breakthrough capabilities of eXTP

To tackle these challenges and fully unlock the potential of X-

ray observations of black holes to study the behaviour of mat-

ter in strong field gravity, the enhanced X-ray Timing and Po-

larimetry mission (eXTP) has been proposed by a consortium

led by the Institute of High-Energy Physics of the Chinese

Academy of Sciences and envisaged for a launch in the mid

2020s. It carries 4 instrument packages for the 0.5-50 keV

bandpass, with the primary purpose to study conditions of ex-

treme density [42], gravity (this paper) and magnetism [43]

in and around compact objects in the universe. It will also

be a powerful observatory for a wider range of astrophysical

phenomena since it combines high throughput, good spectral

and timing resolution, polarimetric capability and wide sky

coverage [44].

The scientific payload of eXTP consists of: the Spectro-

scopic Focusing Array (SFA), the Polarimetry Focusing Ar-

ray (PFA), the Large Area Detector (LAD) and the Wide

Field Monitor (WFM). The eXTP instrumentation is dis-

cussed in detail in [45], but here we give a brief overview

along with the breakthroughs that will be provided by eXTP’s

unique combination of instrument capabilities.

eXTP’s large-area and fast-timing and spectroscopy capa-

bility is provided across a broad X-ray energy range by the

combination of the SFA, an array of nine identical X-ray mir-

ror and silicon drift detector combinations, covering the 0.5-
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10 keV energy range with a spectral resolution of better than

180 eV (full width at half maximum, FWHM) at 6 keV, and

the LAD, a set of large-area collimated silicon drift detectors

which cover the 2–50 keV range and have 260 eV resolution

at 6 keV. The LAD and SFA together reach a total effective

area of ∼ 4 m2 at 6 keV and since both use silicon drift de-

tectors, they are capable of sampling extremely high count

rates at high time resolution (10 µs) with minimal deadtime.

The broad X-ray energy coverage and CCD-quality spectral

resolution allows spectral fits to disentangle complex spec-

tra, such as additional absorption and broad reflection contin-

uum features in AGN and the combination of disk blackbody,

coronal continuum and reflection in XRBs, thus enabling

much better measurements of relativistic reflection features in

AGN and XRBs (Sect. 2.1) and the disk thermal emission in

XRBs (Sect. 2.2). Measurements of the larger-scale absorber

and reprocessor properties will themselves provide valuable

information on the outflows of AGN and XRBs and the sur-

rounding environment of AGN (Sect. 4).

The large collecting area and fast timing capability also en-

able differential spectroscopy and spectral-timing techniques

to be applied. Thanks to these techniques we can cleanly

separate the spectral components from the innermost strong-

gravity region, variable on short time-scales, from those at

larger scales which will vary much more slowly. For exam-

ple, quasi-periodic variations can occur due to a precessing

inner flow or orbiting inhomogeneities in the disk, and can be

analyzed using Doppler tomography techniques, where red-

and blueshifts are used to reconstruct the illumination pat-

tern or loci of the inhomogeneities (Sect. 3.1 and 3.3). Black

hole masses of AGN can also be inferred from variability

in the Fe K-line (Sect. 3.3). Reverberation (radiation echo-

ing) of the variability of an incident hard continuum from

the corona off the disk leads to light travel time lags between

the different components, which manifest as distinct features

in plots of lag vs. energy. These lags constrain the geom-

etry on an absolute length scale (km), and in particular, di-

agnose the absolute size of the inner radius of the reflecting

disk (Sect. 3.4), allowing us to constrain black hole masses,

as well as changes in the inner geometry associated with dif-

ferent accretion states.

Furthermore, the high count rates obtained by the SFA

and LAD allow detection and tracking of BH XRB high-

frequency QPOs down to low rms amplitudes, allowing us

to determine their origin and use them as an independent di-

agnostic of the black hole spin and a potential test of the dy-

namics of matter close to the black hole (Sect. 2.3). Increased

sensitivity to weaker HF QPOs may also open up their detec-

tion in much greater numbers and in a wider range of accre-

tion states than sampled previously.

Another independent diagnostic of strong field gravity is

offered by X-ray polarimetric measurements carried out by

the PFA, which consists of four identical X-ray telescopes

that are sensitive between 2 and 10 keV, have an angular res-

olution better than 30” and a total effective area of ∼ 500 cm2

at 3 keV (including the detector effciency). The PFA features

Gas Pixel Detectors (GPDs) to measure X-ray polarisation,

reaching a minimum detectable polarization (MDP) of 5% in

100 ks for a source with mCrab-level flux 3×10−11 erg s−1

cm−2. The spectral resolution is 1.8 keV at 6 keV. While

it offers stand-alone capability to make X-ray polarimetric

measurements with greater sensitivity than any previous in-

strument, the true strength of the PFA for studying strong

field gravity lies in its capability to measure polarization sig-

nals simultaneously with other independent diagnostics of

strong field gravity (Sect. 2.2), as well as combine the polar-

ization signal with the flux-variability signal from the large-

area detectors. This combination opens up the possibility of

‘spectral-timing-polarimetry’, to analyze the rapid variations

with three orthogonal constraints on the flow and its geome-

try, namely, (i) spectroscopy yielding velocities and redshifts,

(ii) timing of orbiting patterns revealing orbital periods and

GR precession in the accretion flow and (iii) polarimetry pro-

viding clues to the geometry and additional GR effects, yield-

ing unprecedented insight into the inner flow. In fact eXTP

can use the combination of polarization signal and energy-

resolved flux-variability signal from the large-area detectors

to separate the different polarized components according to

how they correlate differently with the X-ray spectral and

flux variability produced in the innermost regions, allowing

the data to be used in entirely new ways (Sect. 3.2, 3.5).

The science payload is completed by the WFM, consisting

of 6 coded-mask cameras covering 3.7 sr of the sky at a sen-

sitivity of 4 mCrab for an exposure time of 1 d in the 2 to 50

keV energy range, and for a typical sensitivity of 0.2 mCrab

combining 1 yr of observations outside the Galactic plane.

The instrument will feature an angular resolution of a few ar-

cminutes and will be endowed with an energy resolution of

about 300 eV. The baseline for the observatory response time

to targets of opportunity within the 50% part of the sky acces-

sible to eXTP at any one time is 4-8 hours. Dependent on the

outcome of mission studies, this may improve to 1-3 hours.

The monitoring capability of the WFM will be essential to

identify and follow up outbursts of new and known transient

XRBs, as well as target specific states of transient and persis-

tent XRBs and AGN for detailed follow-up with the pointed

instruments, enabling the wide range of strong field gravity

studies described in this White Paper.

In the remaining Sections we will present eXTP’s capa-

bility to explore physical phenomena in the regions close to
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black holes. We will discuss the three independent diagnos-

tics provided by eXTP data, in order to infer either the be-

haviour of matter in the strong-field gravity regime (Sect. 2)

and the accretion physics and geometry in the inner region

around black holes (Sect. 3). Moreover, eXTP will provide

new important information in the wider context of the astro-

physics of accreting black holes (Sect. 4) and, in particular,

of the new gravitational wave astrophysics (Sect. 5).

2 Matter in the strong-field gravity regime

This section describes how eXTP will revolutionise the mea-

surement of the core diagnostics of the behaviour of mat-

ter in strong-field gravity, using spectroscopic, polarimetric

and timing measurements to provide independent estimates

of black hole spin and the effects of strong field gravity. The

techniques employed are relatively ‘standard’, either using

time-averaged measurements of spectral and polarization sig-

nals, or measurements of QPO signals with Fourier power-

spectral techniques applied to a broad continuum bandpass.

Nevertheless all these techniques benefit from the large col-

lecting area and/or new instrumental capabilities of eXTP and

provide a powerful suite of separate diagnostics that is unique

to the mission. In Sect. 3 we will further show how we can

combine these different types of measurement using state-of-

the-art differential spectroscopy, spectral-timing and spectral-

timing-polarimetry techniques, to gain even more insight into

the central regions and the effects of strong field gravity.

2.1 Relativistically broadened reflection

The very broad Fe Kα profiles at 6.4 keV often observed in

accreting black holes (both AGN and XRBs) and neutron

stars are successfully modeled by X-ray reprocessing of a

hard irradiating continuum by the accretion disk plasma in

tight relativistic orbits around the compact object. In the case

of black holes, the inner disk reflection models of increas-

ing sophistication now include full Kerr-metric GR calcu-

lations of flow dynamics as well as photon trajectories and

Doppler and gravitational redshifts, and an advanced treat-

ment of the radiation processes [46]. Models reproduce the

broad Fe K line, the fluorescent emission features at lower

energies and the Compton hump at energies above 10 keV.

They allow us to study reflection of radiation described by

different spectral slopes and radial distributions, from mat-

ter over a large range of ionizations, densities and chemical

abundances, as a function of disk inclination and black hole

spin [47, 48]. In order to understand the emergent reflection

spectrum, it is necessary also to understand the illumination

pattern of the accretion disk, that is its emissivity profile, the

reflected power per unit area as a function of location on the

disk [49, 50]. By comparing observed emissivity profiles to

those computed theoretically for different locations and ge-

ometries of the source, it is possible to constrain the loca-

tion and extent of the primary X-ray source (i.e. the emitting

corona). The Fe line profiles in X-ray spectra of the black

hole systems thus provide a sensitive probe of the matter in

the strong field region and estimates of black hole spin. Some

current stellar as well as super-massive black hole spin esti-

mates based on measuring time-averaged line profiles suggest

near-maximal spins [51], but, as specificed above, there are

complications related to spectral complexity [52] and pile-up

effects (in XRBs) [53], so that significant discrepancies occur

with respect to other techniques, e.g. disk continuum fitting

(Sect. 2.2)

The enormous S/N and good energy resolution available

with eXTP, will allow us to measure average Fe line pro-

files with exceptional precision in both XRBs and AGN (as

well as in neutron stars, as widely discussed in [42]), using

state of the art reflection models to measure black hole spins.

In Figure 3 left panels, we show the eXTP spectrum as ob-

tained by a 100 ks integration of a bright 2 mCrab, spin a=0.7

AGN where the photoionized, relativistically broadened re-

flection component has been contaminated by contributions

from three ionised absorber components as well as cold re-

flection and associated narrow Fe line Kα, Fe Kβ and Ni Kα,

as expected in typical type 1 AGN (see Sect. 1.2 and 4.1).

Our simulations show that for AGN, the energy resolution

of eXTP together with the large effective area and broadband

energy coverage provided by the SFA and LAD combination,

allow us to disentangle the spectral complexities in the Fe K

region and measure the reflection continuum shape, to suc-

cessfully extract the relativistic reflection parameters and re-

cover the black hole spin with a precision of ∼10 per cent

(Figure 3 lower-left panel), despite the presence of the con-

taminating components. In order to measur the black hole

spin with high precision, we require a minimun S/N of 400

in the 2–10 keV band, this limit will allow eXTP to carry out

such detailed broad Fe line modeling on a large sample of

AGN (more than 400 sources at different redshifts) with flux

above ∼ 10−12 erg cm−2s−1.

In the case of stellar mass black holes eXTP, mainly thanks

to the virtually pile-up free LAD data, will allow us to mea-

sure changes in the accretion flow structure close to black

holes on unprecedentedly short time-scales. In XRBs the disk

inclination angle is usually obtained from optical/IR observa-

tions so that the high S/N broadband data will allow to mea-

sure the disk emissivity profile thus putting strong constraints

on the corona geometry. In the simulation reported in Fig-

ure 3, right panels, we show the case of a 0.5 Crab object

with maximal spin (such as the microquasar GRO J1655−40
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Figure 3 Black hole spin measurements with eXTP (SFA in black and LAD in red). Upper panels Left. eXTP spectrum as obtained by a 100 ks integration of

a 2 mCrab, spin a=0.7 AGN composed of: the continuum, three ionized absorber components, the cold reflection and narrow Fe line Kα, Fe Kβ and Ni Kα, the

ionized lines FeXXV and FeXXVI and the blurred ionized reflection component. Right. eXTP simulated spectrum as obtained in a 0.1 ks integration of a 0.5

Crab, spin a = 0.97 XRB black hole. The simulated soft state spectrum includes a thermal disk component, hard Comptonized continuum, relativistic reflection

features and highly photoionized absorption (log ξ=3.6 for ionisation parameter ξ in units of erg cm s−1) due to an outflow producing narrow lines/edges in the

Fe K region as observed in GRO J1655−40 [55]. Lower panels Confidence levels for inclination vs. black hole spin for the AGN (left) and the radial emissivity

index vs. inner radius (in units of the gravitational radius Rg=GM/c2) for the XRB (right), 1, 2 and 3 sigma as solid, dotted, and dashed lines respectively.

[54, 55]). An eXTP observation of Fe K emission in such

a system will measure the inner radius of the disk and the

index of the radial emissivity profile with a precision of (re-

spectively) about 2 and 5 per cent in only 100 s. This result

is obtained using the best current models including complex

absorption (see Figure 3 upper-right panel). The unprece-

dentedly short timescale of such a measurement will allow us

for the first time to observe the variability of the structure of

the innermost region on a time-scale comparable to that of the

fastest known changes in outflow components such as winds

and jets, to open a completely new domain for the study of the

inner regions around black holes and how the ejection proper-

ties are linked to the inner accretion flow (see also Sect. 4.2).

2.2 The disk thermal emission in XRBs

Besides producing the reflection features already discussed,

the accretion disk also emits blackbody radiation produced

by internal heating as well as external heating by the illumi-

nating corona. In AGN the disk thermal emission peaks in

the UV band. However, in stellar mass black holes accreting

at the moderate to high rates seen in outbursting or persis-

tent sources, the disk emission peaks in the X-ray band and

provides an additional probe of the accretion flow close to

the black hole. In particular, in the disk-dominated soft state

of black hole XRBs the disk is expected to reach the ISCO

and hence a measurement of the disk inner radius could pro-

vide a direct measure of the black hole spin. Since the disk

emission is a superposition of blackbodies, the normalisation

of the disk spectrum yields the emitting area and hence the

radius: this is the so-called continuum-fitting method for esti-

mating black hole spin [20, 56].

The fundamental assumptions underpinning the

continuum-fitting method are already well-supported by ob-

servations and theory [57, 58]. To use the method to estimate

the disk inner radius in gravitational units (and hence spin), it

is essential to have good estimates of the source distance, the

disk inclination and the black hole mass. These system pa-

rameters are usually determined beforehand from optical/IR

observations. Currently, most distances are estimated from

optical study of the companion star, which can be subject

to significant uncertainties for sources in the galactic plane

where extinction is large. Measurements of Galactic structure

and dynamics obtained from the Gaia mission should signif-

icantly reduce these uncertainties. Also, in a recent break-
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Figure 4 Spin estimates from the literature for Galactic black holes (ordered by increasing black hole mass from bottom to top), with measurements made

using the continuum fitting method (red circles or triangles). Where they exist, estimates from relativistic Fe K line fitting (blue squares or triangles) and

QPOs (black stars) are also given. Triangles denote 3-σ lower limits. Solid symbols and error bars denote 90% confidence intervals, while open symbols with

dot-dashed error bars denote 68% confidence intervals. Errors on the QPO spin estimates are smaller than the data points and not shown. Some significant

discrepancies arise between the different techniques (e.g. for GRO J1655-40), likely due to systematic errors in the current data and methods. eXTPs unique

capabilities and combination of instruments and new diagnostics will substantially reduce these systematic errors. References: Continuum fitting: Cyg X-1

[60], GRS 1915+105 [59], GS 1124-683 [61], LMC X-1 [62], 4U 1543-47 [63], XTE J1550-564 [64], LMC X-3 [65], A0620-00 [66], GRO J1655-40 [63],

H1743-322 [67]. Fe K fitting: Cyg X-1 [68], GRS 1915+105 [69], LMC X-1 [70], 4U 1543-47 [71], XTE J1550-564 [64], GRO J1655-40 [54]. QPO method:

XTE J1550-564 [25] , GRO J1655-40 [24].

Figure 5 Simulated eXTP PFA measurement of polarization degree (left panel) and angle (right panel) as a function of energy, expected from a 150 ks

exposure of GRS 1915+105 in the soft state. Blue and black curves show the expected dependencies of the polarization quantities on spin, while the black data

points show the simulated data corresponding to the black curves.

through, much more accurate (to better than ∼ 10 per cent

uncertainty) distances to XRBs have been obtained via Very

Long Baseline Interferometry (VLBI) parallax measurements

of their radio emission (e.g. [59]). By the mid-2020s, such

measurements will be routine and made even more power-

ful by incorporating data from the Square Kilometre Array

(SKA), so that errors on distance estimates should be reduced

to ∼ 3 per cent (James Miller-Jones, private communication),

leading to similar systematic uncertainties on the disk inner

radius (and hence spin) from continuum fitting.
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Figure 4 summarises the current state-of-the-art of BH

XRB spin measurements using the continuum fitting method,

in comparison with spin estimates from other techniques

where available. A wide range of spins have been measured,

but in many cases errors are large and significant discrepan-

cies arise with estimates of spin from iron line fitting, which

may be a result of the systematic errors in both techniques.

However, in the mid-2020s eXTP will allow a big step for-

ward in the accuracy of the use of disk thermal emission to

map the innermost regions and measure black hole spin by

combining spectral and polarimetric diagnostics.

The Wide Field Monitor (WFM) will first enable precise

targeting of the soft states best suited for spin measurements,

with minimal contamination by power-law emission. The

broad energy bandpass of the SFA and LAD will then allow

an accurate determination of the disk spectral shape, with ab-

sorption features in the soft state accurately modelled (see

Sect. 4.2) and the hard response of the LAD enabling a pre-

cise constraint on the hard power-law tail which can other-

wise bias fits to the disk spectrum.

Due to the planar structure of the disk, its thermal emis-

sion is expected to be polarized due to Thomson scattering in

the disk atmosphere. Assuming a standard thin disk emission

with a Thomson scattering in the disk atmosphere as the ori-

gin of polarization, the black hole spin can then be obtained

independently of disk continuum fitting, by measuring the ro-

tation with energy of the polarization angle of the disk emis-

sion. In fact, due to GR effects, the polarization plane of the

disk radiation rotates while travelling along a geodesic. As

a result, for a distant observer the plane of polarization is no

longer parallel or perpendicular to the disk, as it would be in

the Newtonian case. The rotation angle depends on the loca-

tion of the emitting point in the disk, and it is larger the closer

to the black hole the emitting point is. Since the temperature

decreases with the disk radius, higher energy photons suffer

a larger rotation. When the emission is integrated over the

disk, a rotation of the polarization plane (together with varia-

tions in polarization degree) with energy is expected [36-40].

The effect increases with the spin of the black hole, follow-

ing the decrease with the spin of the ISCO radius; the spin can

therefore be estimated via this effect (e.g. [38]), as shown in

Figure 5.

2.3 QPOs in X-ray binaries

High frequency QPOs (HFQPOs) are one of the most im-

portant discoveries made by the Rossi X-ray Timing Explorer

(RXTE) (see ref. [22]). They are normally found at several

hundreds of Hz in black hole XRBs and appear stable in fre-

quency at values that, as predicted for relativistic frequencies,

scale inversely with black-hole mass [27]. The black hole

HFQPOs are particularly intriguing, but weak and transient,

so it has been impossible to determine if their frequencies

are really fixed, or only appear to be so because we are only

just detecting them when they are strongest. Their amplitude

distribution is severely cut-off by current instrumental limita-

tions [28], but this will be remedied by eXTP.

Figure 6 shows the sensitivity (in fractional rms) of the

eXTP instruments (LAD, SFA and the combination of the

two) for detection against the Poisson noise level of a QPO

of arbitrary frequency and with a FWHM of 10 Hz. The left

panel shows the case of a fixed exposure time of 10 ks for

a variable source flux (between 1 mCrab and 1 Crab, the

flux range where most XRBs are found during their active

phases). The right panel shows the case for a source at 1 Crab

flux, for a variable exposure time (100 s to 10 ks). eXTP will

bring a significant improvement in HFQPO sensitivity com-

pared to the RXTE Proportional Counter Array (PCA), the

only instrument to detect HFQPOs to date. This improvement

will allow the detection in short intervals of transient HFQPO

signals, enabling us to study the duty cycles of the HFQPO

signal and its links to changes in inner accretion structure

which will be measured simultaneously by the suite of other

techniques (e.g. reflection spectroscopy, reverberation) de-

scribed in this paper.

This leap forward in HFQPO detection capability will en-

able a further leap in our understanding of the physical ori-

gin of the HFQPO signal, potentially allowing detection of

weak signals associated with the epicyclic motion expected

in strong-field gravity, along with accurate measurement of

the key parameters of the Kerr metric: black hole mass and

spin. Given their rarity and the detection limits in RXTE data,

it is likely that the relatively few HFQPOs observed to date

are the ‘tip of the iceberg’ of a population of weaker sig-

nals which may occur simultaneously at multiple frequen-

cies, as predicted by the best current models for the QPOs

as being linked to orbital motion in strong-field gravity. For

example, besides the expected strong signal linked to the or-

bital motion and Lense-Thirring precession, which produce

respectively the main high and low-frequency QPO peaks,

the relativistic precession model (RPM, [6]) explains addi-

tional weaker high-frequency signals as being due to GR ef-

fects, notably radial epicyclic motion (for which QPO can-

didates have not been detected to date) and associated peri-

astron precession (which in the RPM can explain the lower-

frequency signals in pairs of HFQPOs). These signals have

been poorly-studied to date, due to limitations in data-quality,

but could be detected in as little as 100 s by eXTP and are

expected to evolve significantly with changes in the inner ac-

cretion flow, e.g. linked to changing flux, in a way which

can be detected within just a few ks using a dynamical power
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Figure 6 Left. Simulated eXTP sensitivity (for detection against the Poisson noise level) in fractional rms, for a QPO of arbitrary frequency with FWHM=10

Hz, as a function of flux for 10 ks exposure. Right. Simulated eXTP sensitivity in fractional rms, for a QPO of arbitrary frequency with FWHM=10 Hz,

as a function of exposure for a source with flux equal to 1 Crab. In both panels each stripe marks the 3 sigma and 5 sigma significance levels (lower and

upper boundary, respectively). Different colors correspond to different instrument: RXTE PCA (with 5 proportional counter units operating) (magenta); SFA, 9

telescopes (red); LAD, 40 elements (blue), sum of SFA (0.5-10 keV) and LAD (0.5-30 keV) (white).

spectrum of the photon count rate (see Figure 7, left panel).

In the Kerr metric, the radial epicyclic and periastron pre-

cession frequencies are uniquely related (via the orbital fre-

quency) to the black hole mass, radius and spin, such that

if the inner disk radius changes (as envisaged by the RPM

model), the comparison of all three frequencies will provide

a powerful test of the model. If the RPM model is con-

firmed, measurements of multiple, changing frequencies for

any pair of these high-frequency signals may be then be used

as a powerful spin and mass estimator. For example, split-

ting the eXTP simulated RPM signal into 100 s segments to

accurately measure both radial epicyclic and periastron pre-

cession QPO frequencies, we show the comparison in Fig-

ure 7 (right panel), where a strong distinction is seen between

the ‘observed’ MBH = 7.1 M⊙, a = 0.6 curve and a curve

for the same mass but spin a = 0.7. Such measurements

could also be made using the low-frequency QPO, which in

the RPM model corresponds to nodal (Lense-Thirring) pre-

cession (see below). However, since other, accretion-related

effects may influence these lower-frequency signals [77], the

HFQPO measurements should be seen as the strongest test. It

is important to note that a HFQPO measure of spin would be

completely independent of the other spin-measurement tech-

niques described in this paper, yielding a further powerful test

on these measurements, should the RPM model turn out to be

the correct model for HFQPOs. If the HFQPOs are better ex-

plained by other models, different frequency behaviour will

be highlighted in the data. For example, the epicyclic res-

onance model [73] predicts HFQPOs at a constant resonant

frequency, regardless of changes in inner disk radius, with

combinations of additional frequencies which yield their own

checks on the spacetime metric.

Low frequency QPOs (LFQPOs, with frequencies below

∼ 50 Hz in black hole systems) have been known for many

years and are divided into different types according to their

phenomenological properties [74-76]. The variations in the

characteristic frequencies of the Type-C QPOs are associ-

ated with the hard states and are likely related to variations

of the inner disk truncation radius (see [77, 78]), offering

the possibility to directly track the changes in the geometry

of the accretion flow. On the other hand, the abrupt appear-

ance/disappearance of the so-called type-B QPO might be the

X-ray signature of the occurrence of fast relativistic ejections

along the jet [79, 80].

Several models have been proposed for these QPOs in

terms of strong-field orbital and epicyclic motion in the disk

flow, most notably the ‘Lense-Thirring’ precession [23] of the

inner hot, geometrically thick accretion flow caused by GR

frame-dragging of orbiting plasma due to the misalignment of

the black hole spin and the angular momentum of the accret-

ing material in the disk. Interpretations along these lines have

received support from large-scale MHD simulations [81-83].

Precession models have also gained significant observational

support in recent years from the observed dependence of key

type-C QPO properties (rms amplitude and energy-dependent

phase lag) on the inclination of the X-ray binary system or-

bit, with higher-inclination systems showing systematically

higher rms amplitudes and soft lags as opposed to the low

rms amplitudes and hard lags seen in lower-inclination sys-

tems [80, 84]. Such behaviour is easy to explain when these

QPO characteristics are linked to a changing emission geom-

etry as seen by the observer (as expected from precession of
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Figure 7 Left. Simulated dynamical power spectrum of HFQPO signals from a 1 Crab BH XRB observed with eXTP LAD for 4 ks. The simulation assumes

the RPM model for the QPO and includes (from low to high frequency) the contributions from Lense-Thirring precession, radial epicyclic motion, periastron

precession and orbital motion. The QPO frequencies drift as the disk inner radius changes (leading also to correlated flux variability). Right. Comparison

of radial epicyclic and periastron precession frequencies measured using maximum likelihood fitting [72] of power spectra from 100 s segments of the same

simulation, including as a solid line the expected curve for the black hole mass (7.1 M⊙) and spin (a = 0.6) assumed in the simulation. Measuring such a

curve will be a powerful confirmation of the RPM model. The curve for a = 0.7 is also shown, demonstrating that eXTP can use the HFQPOs to place tight

constraints on spin, independent of other methods or the assumption that the disk inner radius is fixed at the ISCO.

the inner flow), as opposed to an intrinsic variation in accre-

tion rate.

LFQPOs, thanks to their intrinsically high amplitudes, are

normally detected with high significance even by instruments

with limited sensitivity. With eXTP observations, LFQPOs

will become a much more effective tool for the study of

strong-field gravity. Firstly, the greatly increased sensitivity

to high-frequency signals will enable the LFQPOs to be de-

tected simultaneously with higher-frequency signals. These

new measurements will allow dynamical frequencies and the

slower, possibly precession frequencies to be combined, to

give strong constraints on black hole mass and spin [24, 25].

Secondly, the high count rates obtained by eXTP will rou-

tinely allow the detailed study of the QPO waveform and/or

the dependence on the QPO phase of the spectral shape of

XRBs (tomography). These techniques will enable a new

form of mapping of the inner accretion flow and the changing

geometry associated with the QPO, which will be discussed

in Sect. 3.1 and 3.2.

3 Mapping the inner regions

The methods described in the previous Section make use of

either ‘time-averaged’ (spectral fitting and polarimetric mod-

elling) or ‘energy-averaged’ (power-spectral) methods to ob-

tain some key diagnostics of matter behaviour in strong field

gravity. Such methods will always suffer to some extent

from systematics made by the implicit time or spectral av-

eraging that is done on what are complex, variable, multi-

time-scale and multi-component processes, leading to poten-

tial model degeneracies. However, the large collecting area,

good spectral capability and high time-resolution and count

rate capability of eXTP allows a new approach, currently ap-

plied in a few cases and still being developed, of combin-

ing spectral, timing and (in the future) polarimetric infor-

mation. These spectral-timing(-polarimetry) methods enable

us to disentangle different spectral and polarization compo-

nents according to their variability and causal relationships,

either in phase (for quasi-periodic variations) or time-delay

with respect to one another (for aperiodic broadband noise

variability). Thereby we can significantly reduce the system-

atic error inherent from the degeneracy involved with time-

or energy-averaged modelling. In the following, we report on

detailed simulations based on spectral-timing and spectral-

timing-polarimetric techniques, applied to eXTP data from

both XRBs and AGN. These studies are necessarily prelimi-

nary, as the techniques and models to describe what is a new

kind of data are still under development. But it is already

clear that these methods combined with eXTP data will pro-

vide an innovative and powerful way to map the accretion

flows and emitting regions in the strong field gravity regime

of accreting black holes.

3.1 Accretion flow tomography with LFQPOs

The high throughput and spectroscopic and polarimetric ca-

pabilities of eXTP make it uniquely suited to probing the

physical origin of LFQPOs and using the QPO signal it-

self as a probe of the inner flow structure and the effects of

strong-field gravity. For example, in the case of the strongly-

favoured precession models for the QPO, as the inner hot flow
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Figure 8 Schematic geometry for a precessing inner hot flow at two phases of the resulting QPO signal, showing the different azimuthal regions on the disk

(coloured regions on grey) that are predominantly illuminated by the top and bottom sides of the flow. In this example we assume that the hot flow is seen more

edge-on at a phase of 0.5 cycles, and that orbital motion of the disk is clockwise as seen on the page. The colour scheme indicates whether disk emission is

redshifted or blueshifted due to relativistic effects. The relativistic distortion of the disk reflection spectrum should change systematically with QPO phase.

precesses it should illuminate different azimuths of the accre-

tion disk, leading to a variation in the appearance of relativis-

tic reflection signatures (Figure 8). The rapid orbital motion

of the disk material means that an inclined observer will see

a blue-shifted line when the approaching material is illumi-

nated and a red-shifted line when the receding material is il-

luminated [85]. Thus, phase-resolved spectroscopy of a QPO

from a precessing hot inner flow in an XRB enables tomogra-

phy of the disk emission. The predicted quasi-periodic mod-

ulation of the iron line centroid energy was recently detected

(3.7σ significance) for the first time using XMM-Newton and

NuSTAR data from the black hole XRB H 1743-322 [86],

and tomographic mapping was subsequently carried out [87].

This provided an excellent proof of principle demonstration

of the technique, but required a very long exposure of a com-

paratively dim source so as to avoid problems of photon pile-

up in the XMM-Newton detectors.

The large-area detectors of eXTP enable phase-resolved

spectroscopy of any of the LFQPOs observed to date in black

hole XRBs, by applying state-of-the-art techniques to recover

the QPO phase from the Fourier information on short time-

scales and bin the spectral data accordingly [86, 88]. Fig-

ure 9 shows LAD data from a simulated eXTP observation of

GRS 1915+105 in an intermediate state. The assumed spec-

trum is modelled to agree with an RXTE observation of the

source from 6th March 2002, when it exhibited a strong QPO

at 0.46 Hz and prominent iron line. The very high count rate

detected by the LAD means that the change in shape of the

iron line as a function of QPO phase resulting from Lense-

Thirring precession of the inner flow can be clearly detected.

It is not only possible to detect that the iron line has a higher

centroid energy during the approaching phase, but it is also

clear that the shape of the red wing (∼ 6 keV) and the smeared

iron K edge (∼ 9 keV) changes significantly between QPO

phases. The inset shows the same simulation for the PCA in-

strument on board RXTE. For the real RXTE observation that

this simulation is based on, Ingram & van der Klis [88] did

find tentative evidence of a line centroid energy modulation,

but only with a significance of 1.9σ.

Other current observatories can potentially improve upon

the current state-of-the-art, but without the large step-change

in performance expected for eXTP. For example, the XMM-

Newton EPIC-pn instrument and NuSTAR mission all provide

the required spectral resolution, but have lower effective area

at the iron line than RXTE (while XMM-Newton cannot ob-

serve such bright sources due to pile-up and telemetry issues

and NuSTAR has its count rate limited by instrumental dead-

time). ASTROSAT’s LAXPC instrument [89] has a compa-

rable area and energy resolution at Fe K energies to RXTE.

The recently launched Neutron Star Interior Composition Ex-

plorer (NICER, [90]) has CCD spectral resolution and high

count-rate capability, but also has a soft spectral response,

covering 0.2-10 keV and peaking at 1.5 keV, which is not so

well-matched to the hard shape of the QPO spectrum, so is

not optimal for studies of reflection modulation.

The LAD allows a vast improvement on all of these alter-

natives, with the required spectral resolution and far larger

effective area at Fe K energies (∼ 6 times greater than AS-

TROSAT LAXPC and > 40 times greater than instruments

such as XMM-Newton EPIC-pn and NICER which have com-

parable CCD-like spectral resolution to the LAD), as demon-

strated by Figure 9. How the iron line changes shape with

QPO phase depends on how the disk illumination profile

evolves with precession phase, which ultimately depends on

the geometry and emission mechanism of the inner flow. The

phase-resolved iron line profile also depends strongly on the

disk inner radius, which sets the rotational velocity of the

reflecting material, and the inclination, which sets the line-
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Figure 9 Simulation of a 50 ks eXTP observation of GRS 1915+105, split up into 20 QPO phase bins, each of 2.5 ks integration time. We assume a disk

truncation radius of 30 rg, a disk inclination angle of 70◦ and an empirical, phase-dependent illumination pattern on the disk to match that obtained for H 1743-

322 by [87]. The synthetic data are plotted as a ratio to an absorbed power-law with photon index Γ = 1.8.The main panel shows the synthetic LAD data for

the QPO phase bins corresponding to maximum illumination of the approaching disk material (blue) and maximum illumination of the receding material (red).

The change in line profile between QPO phases is clearly resolved by the LAD. The inset shows the same simulation for the case of RXTE, which fails to

resolve the change in line profile, due to photon counting noise and the modest spectral resolution offered by the RXTE PCA instrument.

of-sight velocities. These parameters can be measured accu-

rately with high quality data from the LAD. Fitting a preces-

sion model [87] to the synthetic LAD data shown in Fig-

ure 9 gives an inclination angle of i = 66.7+2.3
−2

degrees and a

disk truncation radius of 27.2+1.5
−1.5

rg. We can achieve even

greater precision by considering all 20 QPO phases rather

than just two, and also including the data from the SFA. Ob-

serving how the spectrum evolves with QPO phase provides

many more independent data points than the time-averaged

spectrum, with each phase preferentially sampling the reflec-

tion spectrum from different azimuths on the disk, which (as

seen by the observer) experience different relativistic effects.

E.g. emission from the sides moving perpendicular to our

line of sight is mostly affected by gravitational and special-

relativistic time-dilation, while emission from the approach-

ing side also undergoes substantial Doppler boosting. This

differential sampling of relativistic effects allows model pa-

rameter degeneracies to be more easily broken.

3.2 Accretion flow geometry with QPO timing-

polarimetry

In addition to measuring changes in the iron line profile with

QPO phase, eXTP will be able to measure changes in po-

larization degree and angle with QPO phase, giving an ad-

ditional powerful and independent probe of the variations in

coronal geometry associated with the QPO modulation (see

also discussion in Sect. 3.5). We simulate this variation in po-

larization properties for the same synthetic GRS 1915+105

observation described above. According to the calculations

of [91], Lense-Thirring precession of a flattened hot inner

flow will also produce a QPO in the polarization degree with

an absolute rms amplitude (at the fundamental frequency) of

∼ 1.4% and a QPO in the polarization angle with absolute

rms amplitude (again, at the fundamental frequency) of ∼ 4◦.

We simulate a 1 Hz QPO in the flux and polarization prop-

erties, taking into account the quasi-periodicity of the oscil-

lation and also the coincident broadband noise observed in

the flux, which is intrinsic to the source rather than instru-

mental. The QPO phase drifts on a random walk away from

that of a strictly periodic sine wave, as is observed for QPOs

in GRS 1915+105 [92]. The flux, polarization degree and

polarization angle vary sinusoidally with this varying QPO

phase, following the results of [91]. Data corresponding to

these variations are then simulated accounting for the detec-

tor characteristics of the SFA and LAD. Here we have used

the high count rate (∼ 70000 count s−1) LAD synthetic light

curve to assign instantaneous QPO phase values through a

filtering method [93]. Using the phase values assigned from

the synthetic LAD light curve, we bin the Stokes parameters

measured by the SFA into 16 phase bins and used them to

calculate the polarization degree and angle for each bin. Fig-

ure 10 (black points) shows the simulated phase-folded po-

larization degree (left) and angle (right) plotted as a function

of QPO phase. The points are clearly not consistent with con-

stant polarization properties. The red line on each plot shows

the input variation, which the simulation recovers well.

eXTP’s combination of high throughput and polarimetric

capabilities will enable the search for HFQPOs in the polar-

ization properties of black hole and neutron star XRBs. High

frequency variations in the polarization degree and angle are
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Figure 10 Variation of observed coronal polarization due to quasi-periodic precession of the corona: measured (black points) and input (red lines) polarization

degree (left) and angle (right) as a function of QPO phase from our simulation of a 50 ks exposure of GRS 1915+105 in a state showing a 1 Hz QPO. We see

that the variations in polarization properties are recovered well by eXTP.

expected for most HFQPO models, for example the orbiting

hot spot model [94, 95]. Detection of such variations will

provide a completely new way to diagnose the true HFQPO

mechanism, and will also enable the HFQPO polarization

signature to be used as a tool to map the inner accretion flow.

We simulate a 50 ks observation of the upper HFQPO in

the black hole XRB GRO J1655−40 studied by [24] (i.e. a

frequency of 441 Hz, an rms of 4.5% and a FWHM of 30

Hz). We input sinusoidal variations of the polarization de-

gree and angle as a function of HFQPO phase. For the po-

larization degree, we input a mean and standard deviation of

4% and 1% respectively and for the polarization angle, we

assume a mean of 0◦ and a variability amplitude of 10◦, as

expected from orbiting hotspot models (see Figure 15 of [95]

for comparison). Since detection of these high frequency fea-

tures is more challenging, we use the Fourier method of [96],

which is more sensitive than the phase-folding method, mak-

ing use of the cross-spectral combination of the polarisation

signal from the SFA with the high-count rate light curve from

the LAD, which is used as a reference signal to isolate the

HFQPO polarisation signal.

Figure 11 shows the resulting sinusoidal modulation of

fractional rms at the HFQPO frequency as a function of de-

tector modulation angle (red line), and the null-hypothesis of

constant polarization properties (grey line). The data points

show the recovered modulation from the simulated eXTP

data. Such a detection of HFQPO polarisation would not be

possible with currently planned single-instrument X-ray po-

larimeters such as on board the Imaging X-ray Polarimetry

Explorer (IXPE). The larger area of the eXTP PFA is an ad-

vantage here, but the most pivotal factor is the photon collect-

ing capability of the LAD. The high count rates collected by

the LAD enable polarimetric-timing to be conducted for high

frequencies (> 100 Hz), commensurate with the azimuthal

epicyclic frequencies of GR in the vicinity of the compact

object and allowing the strong light-bending effects on the

polarized signal in these regions to be studied.

Figure 11 Fractional rms of a simulated HFQPO as a function of mod-

ulation angle (which defines the direction of the electron track caused by a

photon hitting the detector). The red line shows the sinusoidal pattern caused

by quasi-periodic variability of the polarisation degree and angle at the fre-

quency of the HFQPO (441 Hz in this case), and the grey line represents

the null hypothesis in which only the flux varies with QPO phase, whereas

the polarisation properties remain constant. The data points show the results

from a simulated 50 ks observation with eXTP, showing that the expected

modulation is easily detected using the SFA/LAD combination.

Individually, the QPO phase dependence of both the iron

line profile and the polarization properties, provide powerful

diagnostics of the accretion flow geometry. When analysed

jointly, as will be uniquely possible with eXTP, it will be pos-

sible to piece together the detailed geometry of the emitting
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Figure 12 AGN Doppler tomography. Left: eXTP (both LAD and SFA) Fe line profile residuals (in terms of contributions to chi-squared) to line average

resulting from two 10-ks orbits of a coronal hot spot around a 107 M⊙ spin a=0.5 black hole at 10 rg, for a total of 20 ks ( 3000 s per profile plotted, each

color represents a different phase on the accretion disk). The assumed disk inclination is 30◦. Right: Error contours (1, 2 and 3 sigma in black, red, and green

respectively) of disk inclination vs. hotspot orbital radius resulting from a fit to the line profiles at three different phases.

region closest to the black hole.

3.3 AGN Doppler tomography of orbiting hot spot pat-

terns

In AGN the characteristic time scales of variability are much

longer with respect to BH XRBs (see Sect. 1) allowing us to

collect a larger number of photons per cycle. Despite the fact

that this characteristic represents a great opportunity to in-

vestigate the physical origin of QPOs, we have only one con-

vincing detection of AGN QPO in the Narrow Line Seyfert

(NLSy1) RE J1034+396 ([12]).

As the inhomogeneities associated with QPOs inevitably

lead to variations in patterns of emissivity and illumination of

the disk (see Sect. 3.1), the variations in emissivity patterns

can also occur due to orbiting inhomogeneities in the disk

due to ‘hot spots’ [97]. These inhomogeneities can be gen-

erated if the disk illumination is provided by a localized flare

just above the disk, rather than a central illuminator or an ex-

tended corona. Orbiting hot spot patterns in the accretion disk

should undergo alternating Doppler redshifts and blueshifts,

which lead to quasi-periodic distortions of the spectrum, in-

cluding the broad Fe line profile. The hotspot orbiting lumi-

nous blob in the accretion disk will cause a feature to move

back and forth through the line profile as the blob transits the

red- and blue-shifted regions. This signal can be used to re-

construct the geometry with the technique of Doppler tomog-

raphy, as well as probing the orbital dynamics of the flow.

Narrow and (apparently) transient features in the ∼ 4–6

keV energy range were observed in the AGN NGC 3516

[98,99] and in a larger XMM sample [100]; they were charac-

terized by relatively short-time-scale variability, of the order

of tens of ks, but were not confirmed in subsequent observa-

tions, being at the limits of current X-ray telescope sensitiv-

ity. More recently the double-peak structure in X-ray flares

observed in Sgr A⋆ has been reproduced with a simple orbit-

ing hotspot model [101]. It has been argued that a hotspot

can be stable long enough to create a flare. eXTP has the ca-

pability to confirm whether these intriguing features are real

and if so, to use them as a powerful probe of the dynamics of

matter in strong field gravity.

In AGN, where the orbital time-scale around the ISCO is

of the order of a few ks (for 107M⊙), eXTP will be able to

follow the distortion of the Fe line profile due to orbiting

hotspots in the time domain. As an example of the power

of eXTP in applying this technique, we report in Figure 12

(left panel) the Fe line profile ratios to line average result-

ing from two 10-ks orbits of a coronal hot spot around a 107

M⊙, spin a=0.5 black hole at 10 rg and contributing 10 per

cent of the Fe line flux in a bright 2.5 mCrab AGN observed

for a total of 20 ks (about 3000 s per profile plotted). Only

the fluorescent spectral component is plotted [102]. As these

measurements rely on variability in the residuals, any narrow

lines in the profile (arising by necessity at larger radii and

hence varying much slower than the 10 ks inner disk orbital

period, see Sect. 4.1) drop out automatically.

In the right panel we show the error contours (1, 2, and

3 σ in black, red, and green, respectively) of disk inclina-

tion versus hotspot orbital radius resulting from a fit to the

line profiles in the three different phases. The hot spot or-

bital radius in rg can be measured to a precision of 1-2 per

cent and combined with the spin measurement from the av-

erage line profile (see Sect. 2.1) allows measurement of the
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black hole mass to <30 per cent. Conversely, if the black hole

mass is independently measured (e.g. via optical reverbera-

tion mapping [103]), spin can be determined to a precision

comparable to that of the mass determination. Such a con-

straint would apply to any hotspot radius and hence is inde-

pendent of whether or not the disk is assumed to extend to the

ISCO, as is the case for spin constraints from spectral fitting.

Thanks to its unprecedented throughput, eXTP will be able to

perform such measurements for any AGN with flux above 1

mCrab.

3.4 Measuring light-travel times to the inner disk

The X-ray power-law emission shows rapid aperiodic vari-

ability, on time-scales down to milliseconds for stellar mass

black holes, and minutes for the supermassive black holes in

AGN. The fastest time-scales of the variability show that the

bulk of the power-law emission originates in a central com-

pact corona, which may be less than 10 rg in radius. The

corona illuminates the accretion disk and is reprocessed to

produce the observed relativistically broadened reflection sig-

natures (see Sect. 2.1) and (due to heating by the absorbed

part of the incident flux) extra blackbody emission, which is

hot enough to be emitted in the X-ray band in stellar mass

black holes and also in high accretion-rate, low black hole

mass AGN. However, the reprocessed emission does not re-

spond instantly to coronal variations: it is delayed with re-

spect to the observed power-law variations by the extra light-

travel time from the corona to the disk and then to the ob-

server (see Figure 13). This effect is known as reverberation

and, due to the compactness of the emitting region and the

fact that the delay is simply related to a light-travel time, it

can be used to reverberation map the innermost regions of ac-

creting black holes on scales down to the event horizon [104].

Figure 13 Conceptual schematic of X-ray reverberation showing how the

coronal emission is reflected by the disk resulting in a light-travel time delay

of the reflected emission which constrains the light-travel time. Note that

in strong gravitational fields, strongly curved light-travel paths are expected

(i.e. light-bending leading to the so-called ‘Shapiro delay’) the effects of

which can be constrained with accurate reverberation measurements.

Unlike conventional spectral-fitting, which reveals only

velocity shifts and strong-field gravity effects (i.e. Fe line

redshifts), from which radii are inferred in relative units of

the gravitational radius (which assumes relativistic motions

in a known metric), reverberation mapping also reveals dis-

tances of emission in absolute units (i.e. km) given by the

light travel time. Thus it provides an independent and com-

plementary check on the emission geometry inferred from

spectral-fitting techniques. In combination with the dynam-

ics obtained by spectral-fitting measurements, reverberation

can determine the mass of the central object [105]. In other

words, the optical reverberation methods currently routinely

used to measure AGN black hole masses using optical line

emission from thousands of rg [103] can be applied on much

smaller size-scales of a few rg (and to stellar mass black

holes). In cases where a black hole mass is already known

(e.g. from optical reverberation in AGN, or binary orbital

dynamics in X-ray binary systems), it can be compared with

the estimate based on X-ray reverberation of the innermost

regions, to provide a powerful consistency test of black hole

mass estimated from dynamics in the weaker field at thou-

sands of rg, to the strong-field at a few rg.

To date, reflection reverberation signatures have been dis-

covered in the short-time-scale variability of a number of

AGN (e.g. see [106-108]), however the plots of lag vs. en-

ergy (‘lag-energy spectra’) used to detect reverberation via,

e.g. local peaks in the lag at Fe K energies, must be heav-

ily binned in energy and hence have poor spectral resolution

(see ref. [104] for a detailed review). Furthermore, the limits

on making spectral-timing measurements of short-term varia-

tions in stellar mass systems mean that disk thermal reverber-

ation has only been seen in a handful of X-ray binary systems

[109,110] and Fe K reverberation is difficult to observe with-

out very high count rates. Thus we know that the X-ray re-

verberation phenomenon exists and that the observed lags are

consistent with our basic physical picture, but we cannot yet

confront them with detailed models for the innermost emit-

ting regions, which can predict the energy-dependent time-

delays and thus map those regions. To make the step-change

from phenomenology to mapping for both AGN and XRBs,

we need much better signal-to-noise measurements at good

(CCD-quality) spectral-resolution and across a broad energy

range, so that we can study all the reverberation components

simultaneously. This is what eXTP will provide.

The signal-to-noise for spectral-timing measurements

scales with the square-root of count rate for AGN but linearly

with count rate for XRBs (see details in [104]), so eXTP will

enable the biggest improvements in reverberation measure-

ments on the stellar-mass systems. An example plot of lag

vs. energy from a 100 ks eXTP observation of a black hole

X-ray binary in a bright (1 Crab) hard state is shown in Fig-
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Figure 14 Simulated eXTP (100 ks exposure) lag vs. energy spectrum of a 10 M⊙ black hole XRB with 30 degrees disk inclination, for a bright (1 Crab)

hard state (left panel), and a bright (3 Crab) soft-intermediate state (right panel). The lags are obtained by integrating over the 50-150 Hz range the Fourier

cross-spectrum obtained for each narrow energy bin (with respect to a broad 2–20 keV reference band, following the approach described in ref. [104]). Dif-

ferent inner disk radii can be easily distinguished. Thanks to the broad energy coverage of the SFA/LAD combination, the hard state lags can be accurately

determined for the broad Fe K emission and reflection hump as well as the disk blackbody emission, allowing multiple independent measures of the geometry

and relativistic effects on the innermost part of the accretion flow. In the disk-dominated soft-intermediate state, the lag at each energy can be used to determine

the disk emitting region size at that energy and hence provides a test of our understanding of the distribution and radial temperature profile of disk emission.

ure 14 (left panel). In the absence of a detailed understanding

of coronal geometry, we assume a central point-like corona

such that lags only include (for the different parts of the disk)

the combination of radial light-travel distance to the corona

plus the disk-to-observer distance. Thus the simulations are

not intended to be accurate predictions but rather illustrative

of the strength of the lag signals due to different components

and the relative lags between different energies, as well as the

precision of the lag measurements. Some of the remarkable

features are:

- The broad band-pass of the SFA/LAD combination

from 0.5 to 50 keV enables the reverberation lags of the

disk blackbody, Fe K and Compton reflection humps to be

measured simultaneously, so that each provides a separate

measure of the disk inner radius (but all can be modelled

simultaneously, for much higher accuracy as well as pro-

viding a powerful consistency-check).

- The CCD-quality energy resolution allows differ-

ences in line-shape to be easily measured in the light-travel

lags, so that line redshift and location can be simultane-

ously combined to test the effects of GR at small radii,

constrain the accretion disk dynamics and measure black

hole mass.

- eXTP can measure lags in response to much shorter-

time-scale variability than previously accessible (in our

simulated XRB examples, 50–150 Hz or ∼ 10 ms). This

capability prevents contamination of the lags by non-light-

travel-time effects, such as viscous propagation of accre-

tion fluctuations through the disk and corona [109].

- For a given coronal geometry, differences in disk in-

ner radius of less than 5 per cent can be easily measured.

Since the coronal geometry can itself be modelled using

the lags and many other diagnostics provided by eXTP, this

will allow an accurate and independent determination of

the black hole spin (in addition to that obtained from stan-

dard spectral fitting or QPO timing), if the disk extends

to the ISCO, which is likely as the source approaches the

soft state. If the disk is truncated to larger radii, the mea-

surements provide an accurate probe of the accretion ge-

ometry to understand how the accretion flow changes as

the source evolves through different accretion states with

different outflow type and power.

- In BH XRB soft states the power-law is weak and the

variability amplitude is small, making reverberation mea-

surements difficult even with eXTP. However, in the soft-

intermediate states just prior to the transition to the soft

state, eXTP will be sensitive enough to measure thermal

reverberation of the disk in response to variability of the

stronger power-law emission (see Figure 14, right panel).

The capability of eXTP to measure the the time-delays of

photons of different energies (corresponding to emission

regions of different temperatures) will enable us to not only

measure the disk inner radius but also compare the radial

temperature profile with our physical expectation for stan-

dard accretion disks. Thus, reverberation mapping of this

state, which is just ‘on the edge’ of the soft state, will pro-

vide an independent check on the assumptions used to ob-

tain disk inner radius (and hence spin) using the disk con-

tinuum fitting method. Furthermore, reverberation map-

ping of the disk thermal emission will allow us to trace the
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variations in the disk structure from the hard states, where

it is likely to be truncated, through to the soft state where

the continuum fitting approach may be applied.

Figure 15 Simulated lag-energy spectrum for a 100 ks observation of a

2 mCrab AGN with a 4 × 106 M⊙ SMBH, assuming a disk inclination of

30◦. The lags are obtained by integrating the cross-spectrum of each energy

(with respect to a broad 2–20 keV reference band) over the 0.3–3 mHz range.

Different radii can be easily distinguished and the broad SFA/LAD bandpass

allows the lags of soft photoionized reflection to be accurately measured, as

well as the broad iron line and Compton hump.

Although the improvements in AGN reverberation mapping

with eXTP will not be as dramatic as for the XRBs, they

will still be impressive compared to the current state-of-the-

art, especially for bright AGN where the full eXTP bandpass

(combining that SFA soft response with the LAD hard re-

sponse) can be brought into use. Figure 15 shows the re-

sults expected for a 100 ks eXTP observation of a 2 mCrab

AGN containing a 4 × 106 M⊙ black hole, showing eXTP’s

capability to simultaneously measure the lags associated with

the soft ionised reflection, Fe line and hard reflection hump

produced by reverberation close to the black hole. Different

inner radii can be easily distinguished, so that in combina-

tion with spectral-fitting the lags will provide a powerful tool

to constrain black hole mass and spin and study differences

in inner region structure between different classes of bright

AGN.

3.5 Constraining the geometry of the innermost flow and

outflow in XRBs and AGN

eXTP provides an entirely novel way to track the causal con-

nection between inflow of mass on to the black hole, and sub-

sequent outflow through a jet. X-rays are expected to be pro-

duced both from inflowing material close to the black hole,

and also from outflowing material at the base of a jet. Since

the spectrum from these two regions is likely to be similar,

with both regions producing broad continuum spectra, it is

difficult to disentangle their emission spectrally (e.g. [111]).

The causal connection between accretion flow and jet can be

probed using variability analysis, since fluctuations originat-

ing in the flow can propagate up the jet after some delay time.

For example, in BH XRBs a time lag can be detected between

X-rays, emitted mainly in the inflow or ‘corona’ but also par-

tially from the jet base, and infrared emission, thought to be

emitted either through cyclo-synchotron processes in the jet

[112] or - at least in some cases - by synchrotron emission

from the hot flow [113, 114]. This is not currently possi-

ble for the case of the jet base however, since both inflowing

and outflowing components radiate in X-rays. However, the

two emission components could be disentangled using X-ray

polarization measurements. The coronal X-ray emission is

expected to be only weakly polarized, whereas photons pro-

duced by Compton scattering or synchrotron emission from

the non-thermal electrons in a magnetized jet are expected to

be strongly polarized. With eXTP, even if the corona and jet

emit identical spectra, with the same polarization angle, we

will still be able to detect a time lag resulting from the propa-

gation time between corona and jet. To demonstrate this, we

simulate broadband variability originating from the corona,

assuming a zero-centered Lorentzian power spectrum with a

width of 1 Hz and a total rms variability amplitude of 20%.

We generate the jet light curve by applying a lag of τ = 0.1 s

to the corona light curve. We assume that the spectra emitted

from the jet and corona are identical in shape and also that

the polarization angle is the same (ψ0 = 0) for both regions.

We assume that 80% of the total X-ray flux comes from the

corona, with the remaining 20% from the jet. The jet has a

high polarization degree of 70%, whereas the corona has a

polarization degree of only 10%. We simulate eXTP observ-

ing such a system for 50 ks, assuming a flux and spectrum

typical of GRS 1915+105. Figure 16 (left) shows the total

counts detected by the SFA as a function of modulation angle

(i.e. the direction of the electron track caused by each photon

as it hits the GPD detector). We clearly see the sinusoidal

pattern expected for a polarized signal, peaking at ψ0 = 0 de-

grees. We split this plot up into ‘high polarization’ regions

close to the peaks (red) and ‘low polarization’ regions else-

where (blue). Since the jet emission is much more polarized

than the corona emission, the high polarization regions here

contain a greater fraction of jet photons than the low polar-

ization regions. Since the jet lags the corona, a light curve of

‘high polarization’ photons should therefore lag a light curve

of ‘low polarization’ photons. The lag of 0.1 s will be re-

duced by dilution however, since the high polarization region

does not contain exclusively jet photons.

We create high and low polarization light curves by select-
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Figure 16 Left: PFA counts as a function of modulation angle for a simulated 50 ks observation consisting of a weakly polarized component from the corona

and a strongly polarized component from the jet (see text for details). We define high polarization (red) and low polarization (blue) regions. Right: Time lag as

a function of frequency. Here, high polarization photons lag the LAD (red circles) and low polarization photons lead the LAD. The black lines (dashed line:

low polarization) show the input model, i.e. without Poisson statistics being included in the light curves.

ing photons only from these red and blue regions. We could

calculate the cross-spectrum between these two light curves

in order to measure a lag. However, since the effective area

of the LAD instrument is much larger than that of the PFA,

we can significantly increase signal to noise (by a factor > 7)

by correlating both polarization light curves with the LAD

light curve, which contains far more counts. We therefore

calculate the cross-spectrum between the high polarization

light curve and the LAD data, and also the cross-spectrum

between the low polarization light curve and the LAD data

and plot the two resulting lag-frequency spectra in Figure 16.

The high polarization light curve does indeed lag the LAD

light curve, which contains all jet and corona photons, and

the low polarization light curve leads the LAD light curve, as

expected. The difference in lag can then be weighted by the

polarization degree (which gives the approximate fraction of

jet photons) to yield the intrinsic lag of the jet emission rela-

tive to the coronal emission. Using the SFA alone, the errors

on the lags would be much larger and thus the lags would

not be detectable. Therefore, this simulation demonstrates

that eXTP’s combination of polarimetry and high-throughput

timing-capability can probe the causal connection between

corona and jet, even if the two have identical spectral shape.

In radio quiet AGN, where the jet is probably absent, the

coronal emission is expected to be polarized, with the po-

larization percentage depending mainly on the geometry and

optical depth of the corona [41]. A slab-like and a sphere-like

disk-corona geometry produce quite similar spectral shapes

in the X-ray band, while the polarization is always higher

in the slab-like scenario. Time-averaged polarimetric mea-

surements will break the spectral degeneracy for a sizeable

sample of bright unobscured AGN. In practice, with 200 ks

exposure we will be able to reach a Minimum Detectable Po-

larization (MDP) of about 2 per cent in a mCrab AGN, which

is sufficient to break the geometry’s degeneracy.

4 Black hole astrophysics

It is now recognized that the radiative, as well as the kinetic,

output of accreting black holes can influence their surround-

ings. The close feedback between the formation and evolu-

tion of galaxies and of their central supermassive black hole

[35] involves a variety of physical phenomena. A currently

highly debated example is the plausible key role played by the

uncollimated winds from AGN in setting the rate at which

galaxies evolve [115]. In order to build a self-consistent

and comprehensive picture we need a deep understanding of

black hole accretion througth the interplay between accretion

and ouflowing components in both AGN and XRBs.

As widely discussed above, the X-ray spectra of black

holes are rich in emitting/absorbing features which vary on

a wide range of time-scales. In addition to answering fun-

damental questions related to matter flows under strong field

gravity conditions (see Sect. 2), eXTP will also play a sig-

nificant role in answering important astrophysical questions

related to black holes. eXTP will tackle the many open ques-

tions from multiple, complementary directions. In particular

we describe below the main advantages that eXTP will offer

by studying the surrounding emitting and absorbing gas of

accreting black holes in AGN and XRBs.
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Figure 17 Left panel: Typical broadband AGN spectral model (black line) used for eXTP simulations. The several emission/absorption components are

shown in different colors: Green: soft X-ray comptonized component; Blue: cold reflection component; Red primary absorbed power-law emission. Warm and

ionized outflows are also included in this model. Right panel: Simulated eXTP spectrum from a 100 ks observation of a typical radio-quiet AGN with 2-10 keV

flux of 2.5×10−12 erg cm−2 s−1. For the black and red points two different warm absorbers (log NH=22, and 21.5) and UFOs (v=0.1c and 0.15c) components

have been considered (see text for details).

4.1 The rich environment of supermassive black-holes in

AGN

As discussed in Sect. 1, the X-ray behaviour of radio-quiet

AGN is quite complex and rich with emitting and absorption

spectral features that must all be taken into account when

modelling the broadband energy spectrum. Often, multi-

ple absorbing components are present, associated with disk

winds (in the form of an outflowing gas) and other circum-

nuclear regions. While the geometry and composition of the

outflows can be revealed thanks to their polarimetric signa-

tures [116] the evolution of the accretion flow associated with

changes in the outflow can be probed with great precision in

spectroscopy, timing and polarization.

In the environment of AGN there is now strong evidence

for at least three absorption components on very different

scales: on scales of hundreds of parsecs, on the parsec scale,

and within the dust sublimation radius, on sub-parsec scale

[117,118]. The most effective way to estimate the distance of

the different absorbers is by means of the analysis of the vari-

ability of their column density along the line of sight (NH).

In particular, rapid (from a few hours to a few days) variabil-

ity of the absorbing column, in the form of X-ray eclipses,

has been observed in most bright AGN in the local Universe

[119], suggesting that obscuration in X-rays is due, at least

in part, to BLR clouds. Moreover, during the successive cov-

ering and uncovering of the inner part of the accretion flow

by X-ray eclipsing, a variation of the polarization degree by

a few percent and significant variation (above 10◦) of the po-

larization angle are expected [120]. Thanks to the PFA MDP

of a few per cent above 1 mCrab, such measurements will

be performed in a dedicated sample of bright AGN known to

show eclipses [121].

However, most of the astrophysical diagnostics available

with eXTP will be applicable to the weakest AGN with typ-

ical X-ray flux of 10−.12 erg cm−2s−1. To demonstrate the

power of eXTP for disentangling different components in the

spectra of AGN with only moderate flux, we show in Fig-

ure 17 the broadband model (left panel) and spectra (right

panel) of 100 ks eXTP observations of typical radio-quiet

AGN with 2–10 keV flux ∼ 2.5×10−12 erg cm−2s−1 (relativis-

tic signatures are not included in these simulations, see Sect.

3). The spectra include, in addition to the primary hot Comp-

tonization continuum (produced in the hot corona), a warm

ionized absorbing gas component (black points: log NH=22,

red points: log NH=21.5) an ultra-fast ionized outflow (black

points v/c=0.1 and red points: v/c=0.15) and a cold dis-

tant reflecting medium. From the eXTP spectra we will re-

cover key parameters of the primary continuum and the re-

processed/absorbed components with outstanding statistical

precision. We remark that more than 400 AGN with this flux

level or larger are expected from the well-known log N–log S

distributions [122], thus eXTP will allow us to build large

samples with different selection criteria and X-ray spectra at

CCD-quality resolution with extremely good S/N.

The large effective area available with eXTP will also al-

low for a complementary approach using variability. In addi-

tion to using spectra with long integrated exposures, multiple

shorter exposures of the same object will allow for variabil-

ity studies of key parameters of the primary and reprocessed

components on relevant time-scales (from tens of ks to years).
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Figure 18 Best fit values as obtained with 10 shots of 10 ks exposure observations of a weak AGN of flux 2.5×10−12 erg cm−2s−1. eXTP will allow us to

recover with great precision the primary emission and the physical and geometrical properties of the circumnuclear components, namely: velocity, column den-

sity and ionization parameter for both the fast outflows (UFO) and the warm absorber gases (NH , v/c and log ξ); primary emission (Γ), soft X-ray Comptonized

component (Γs, kT ), narrow Fe line (energy and flux).

For example, we show in Figure 18 the precision we will

have for short (10 ks) exposures of the same AGN simulated

in Figure 17. The possibility to follow the temporal behaviour

of all these parameters for a large number of objects will open

new avenues in the investigation of the properties of the cir-

cumnuclear matter in AGN. Time resolved spectroscopy will

allow us to address the systematic error due to models degen-

eracy when time average tecniques are used.

Another aspect of timing technique is rapresented by the

variability studies on long time scale (e.g. with multiple ob-

servations on the same target or monitoring programs), which

will provide important contraints on the so-called Unified

model for AGN [30]. These models invoke the presence of

a large-scale molecular “torus” (i.e. an axisymmetric, cir-

cumnuclear absorber), but although there is substantial evi-

dence for such circumnuclear gas, its physical and geomet-

rical structure is quite complex and largely unknown. X-ray

spectral polarimetric measurements are crucial in order to in-

vestigate this issue, since the geometry and composition of

the torus will directly impact the amount of polarized flux.

The degree and position angle of polarization are expected to

vary on different timescales compared to the inner regions,

leading to different variability profiles for repeated eXTP ob-

servations [123]. The 2– 10 keV polarization is thus expected

to range from a few per cent for unobscured sources (i.e. for

type 1 objects seen almost face-on, as envisaged by the uni-

fication model) up to several tens of per cent for obscured

objects (i.e. the type 2 AGN seen edge-on by the observer)

[116]. With ∼ 100 ks exposure eXTP will be able to perform

such polarization measurements for the brightest obscured
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AGN (flux above 10−11 erg cm −2 s−1) with an MDP of 4

per cent.

4.2 Disk winds in X-ray binaries

Accretion disk winds have received a great deal of attention

in the last few years, thanks to a number of results, both in

stellar-mass and in supermassive black holes [31-33]. Never-

theless, there are still many unknowns, which need to be stud-

ied and resolved, including: the launching mechanism(s) and

region, the wind power and structure, the outflowing mass

rate, the relation with their collimated “cousins” (the jets)

and the trigger of their appearance during the source evolu-

tion. Such winds can be extremely variable. When studying

stellar-mass black holes, the relevant physical quantities can

vary on very short time scales, sometimes even of the order

of a few seconds. Thus, time-resolved spectroscopy is the

crucial way forward to tackle the above unknowns.

Such winds are usually identified via their typical marker:

a strong (equivalent width of ∼35–40 eV) Fe xxvi absorption

line. For a typical source flux of 0.2 Crab, eXTP will detect

such strong lines at 3σ confidence in a little over 7 seconds, a

few hundred times faster than Chandra. For brighter sources,

around 1 Crab (for example in the case of a nearby binary, or

in the very luminous states observed in some sources), a sim-

ilar detection will be achieved in as little as 1–2 seconds, with

a huge improvement on variability studies. These outstand-

ing performances will allow a new type of study: the mea-

sure of the turbulence in the wind structure via the absorption

line variability, when compared with the observed X-ray lu-

minosity. Simulations show that, for typical wind parameters

(NH = 5 × 1022 cm−2 and logarithm of ionisation parame-

ter, log ξ = 4.25) the effects of an X-ray luminosity variation

by as little as 10% on the ionisation parameter could be de-

tected at well above 3σ (reducing to a ∼ 97% confidence for a

6% luminosity variation), allowing any further (anomalous or

even uncorrelated) ionisation variability to be used to map the

wind density structure, by disentangling the effects of photo-

ionisation from the clumpiness of the wind. Once again, the

combination of focussing X-ray telescopes and LAD detec-

tors will allow these lines to be tracked during the launching

and quenching of the winds down to source at low luminosi-

ties. Namely, eXTP will detect weaker lines (7.5 eV equiv-

alent width) at 3σ confidence in less than 200 seconds for a

0.2 Crab source and in 1 ks for 0.03–0.04 Crab. Even for a

source as faint as 10 mCrab, eXTP will need less than an hour

to detect such a weak line (see Figure 19). Finally, the good

spectral resolution of the SFA will allow detection of line ve-

locities as low as 300 km s−1, at 5σ significance, in as little

as 100 seconds. All in all, eXTP will enable a leap forward in

the study of accretion disk winds in stellar-mass black holes,

allowing monitoring of the evolution of such winds over a

large range of accretion rates, and pinpointing the epochs of

their appearance/disappearance.

5 eXTP science in the gravitational wave as-

tronomy era

The detections by the LIGO-Virgo experiment [125, 126] of

gravitational radiation from merging black holes and neutron

stars mark the dawn of the era of gravitational wave astron-

omy. Gravitational wave detectors are a new, powerful tool to

study the strong-field regime of gravity and to probe physics

beyond the standard model. In this context, eXTP can be

extremely useful to better understand the strong-gravity en-

vironment of black holes and neutron stars, and it is com-

plementary to gravitational wave detectors to test gravity and

fundamental physics under extreme conditions. Gravitational

wave interferometers target the inspiral, merger, and ring-

down of compact objects, where spacetime is being shaken by

closely orbiting masses and hence is dynamic [2]. In contrast,

eXTP probes the stationary spacetime metric of compact ob-

jects through the X-ray emitting plasma of the accretion disk,

essentially a luminous test fluid orbiting the black hole with

negligible self-gravity. eXTP uniquely covers not only super-

massive but also stellar-mass black holes, and does so in com-

pletely analogous settings, performing comparative studies of

black holes spanning a factor 108 in mass via well-established

diagnostics, using observables already clearly identified in

current observations. Spacetime curvatures are small near

SMBH event horizons but scale as 1/BH mass2, and hence

are a factor 1016 higher near stellar-mass black holes. X-

ray observations uniquely provide access to these very-high

curvature stationary metrics. GR predicts orbital dynamics

are not affected by curvature, and accretion flows across the

black-hole mass scale probe this prediction over 16 orders of

magnitude.

The X-ray diagnostics discussed in this paper provide a

unique test to confirm GR theory into the strong field regime,

by confirming that no systematic departures are found from

GR predictions of the motion of light and matter across 8

orders of magnitude of black hole mass. Conversely, if mod-

ification of dynamics is required over and above all of the

effects that might alter purely geodetic motion (due to the

complex astrophysical environment close to black holes, see

Sect. 4), this would violate the no-hair theorem and new the-

ories will need to be explored.

In this section we report the most compelling examples

of the information that eXTP will provide in the context of

the gravitational waves astrophysics. In particular, we outline

below the eXTP key role in the multi-messanger astrophysi-
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Figure 19 Simulated 1 ks LAD exposure of 4U 1630-47 (0.3 Crab, 2-10 keV absorbed flux, continuum and line parameters based on [124]). The Fe XXV

and Fe XXVI lines are clearly resolved into Kα and Kβ components. The great precision of the line measurements will allow monitoring of the evolution of

such winds over a large range of accretion rates.

cal domain, the fundamental physics study and the standard

model for particles physics.

5.1 Detecting electromagnetic counterparts of gravita-

tional wave events

eXTP has unique capabilities for the detection and study of

electromagnetic signals as the counterparts associated with

many sources of gravitational waves. The WFM, with its

large field of view and sensitivity down to the soft energies,

offers the potential to locate mergers of compact binary sys-

tems in the sky through the detection of an electromagnetic

counterpart, as recently observed in the landmark multimes-

senger observation of the binary neutron star coalescence

GW170817 [126] producing a kilonova, the short-and GRB

170817A [127]. Sky localization improves our understand-

ing of the gravitational wave data, because the parameters

of the merging system can be determined much more accu-

rately if the location of the source is known. Almost all short

GRBs are accompanied by an X-ray afterglow, and the recent

observations indicate that in a large fraction of events a long-

lived neutron star may be formed rather than a black hole.

LAD re-pointing in response to gravitational wave triggers

will allow the X-ray features of the afterglow to be sytudied

and characterized with great precision. Unambiguous elec-

tromagnetic signatures of the post merger event will allow us

to address the open questions concerning the nature of short

GRB central engines and put important constraints on models

[128, 129].

Moreover, a knowledge of the redshift of the source can

be used to measure the Hubble constant [130,131] or to com-

pare the propagation properties of electromagnetic and gravi-

tational waves, thus constraining (say) Lorentz-violating the-

ories, that predict a different speed for electromagnetic and

gravitational waves [127, 132].

5.2 Testing general relativity and the nature of black

holes

General relativity has passed weak-field, binary-pulsar [133],

and even the most recent strong-field tests provided by the

observation of black hole mergers with flying colors [132,

134,135]. Nevertheless, relativistic theories that modify gen-

eral relativity only at the scales of compact objects are still

compatible with observations [135]. For instance, quadratic

gravity theories (such as Einstein-dilaton-Gauss-Bonnet and

Chern-Simons gravity) differ from general relativity only in

large-curvature regions, such as near the horizon of stellar-

mass black holes [132]. Current and future observations will

be instrumental to test general relativity in the strong-field

regime, and to rule out or detect exotic compact objects which

can compete with or coexist with black holes and neutron

stars [136].

One of the most subtle consequences of general relativ-

ity is the so-called “no-hair” theorem, stating that stationary

black holes can be fully characterized by their mass, spin and

charge [137]. If general relativity is modified in the strong-

field regime, or if black holes are replaced by more exotic

compact objects, the no-hair theorem is generally violated.

As discussed in Sect. 2, the two common approaches to test

the no-hair theorem from the X-ray emission of accreting

black holes are the profile of the iron Kα line [3] and the in-

tensity of the thermal component of the black hole disk [138].

These approaches allow the measurement of the location of
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the ISCO, from which it may be possible to extract not only

the mass and spin of the black hole, but also its quadrupole

moment (which depend only on the black hole spin and mass

because of the no-hair theorem, see e.g. ref. [139,140]), pro-

viding constraints on the departure of space-time from the

Kerr metric.

Nevertheless, as widely discussed in the previous sec-

tions, the central regions of compact objects consist of mul-

tiple variable emission structures and the spectrum may fur-

ther be subject to complex large scale emission and absorp-

tion. These astrophysical effects should be correctly mod-

eled when looking for tiny effects possible due to departures

from modified GR. eXTP is designed to be a very sensitive

probe of these emitting regions by using multiple, indepen-

dent approaches to determine the geometry and dynamics of

the central regions and disentangle the effects of the wider en-

vironment. By accounting for the astrophysical effects, eXTP

is therefore one of the most promising experimental tools to

constrain violations of the no-hair theorem in the near future,

by measuring the mass, spin and quadrupole of black holes

and enabling the detection of possible weak departures from

the non GR metric.

Another promising diagnostic is the measurement of QPOs

in the X-ray emission from accreting black holes (see

Sect. 2.3 and ref. [141]). For instance, the detection of two

QPO triplets (a pair of high frequency QPOs and a low fre-

quency QPO) by an X-ray instrument with the large effective

area provided by the LAD would give stringent constraints

on modified gravity theories such as Einstein-dilaton-Gauss-

Bonnet gravity, as long as the black hole spin is a & 0.5 [142].

5.3 Black-hole spin measurements and searches for fun-

damental fields beyond the standard model

In recent years it was realized that astrophysical black-hole

observations have surprising implications for dark matter

searches, allowing us to constrain or reveal new physics be-

yond the Standard Model. In particular, stellar and massive

black holes are unique laboratories to search for ultralight

bosonic fields such as QCD axions, dark photons, or those

emerging in fuzzy dark-matter models (for two recent reviews

in the context of astrophysics and cosmology see [143] and

[144]). The reason is that ultralight bosonic fields around

spinning black holes can trigger superradiant instabilities,

forming a long-lived condensate outside the horizon [145].

Superradiant instabilities spin black holes down and

they can dramatically affect the dynamics of astrophysi-

cal black holes, providing a portal for astrophysical tests

of bosonic dark matter in the poorly explored range below

10−10 eV [146]. The most striking consequence of this sce-

nario is that observations of fast-spinning black holes would

be disfavored if ultralight bosons in a certain mass range exist

in nature. Thus, black-hole mass and spin measurements can

be translated into bounds on (or indirect evidence for) ultra-

light fields. Given the wide range of boson masses still un-

constrained to date, it is crucial to gather a statistically signif-

icant number of mass and spin measurements, both for stel-

lar and for supermassive black holes (and possibly also for

intermediate-mass black-hole candidates).

In this context, eXTP will allow for measurements of the

spin of accreting black holes with great precision (which is

comparable or better than current gravitational-wave detec-

tors at design sensitivity) and accuracy [cf. Figure 3], thus

allowing to constrain the masses of ultralight bosons.

Similar synergies between astrophysical observations and

fundamental physics have recently been explored in the con-

text of gravitational-wave astronomy [147], but their connec-

tion to future X-ray observations deserves further study. Con-

straints become more stringent as the number of observations

increases, and therefore the large set of black-hole mass and

spin measurements provided by future gravitational-wave

and X-ray detectors will allow us to constrain the properties

of dark matter in a wide range of masses between 10−19 eV

and 10−11 eV.

6 Summary

We have described in this paper the unprecedented progress

that eXTP will make in the study of matter accreting in the

strong field gravity regime in the near-environment of black

holes. Thanks to the combination of the instruments on

board, eXTP will measure the same physical quantity us-

ing different diagnostics. In particular, the large eXTP area

will allow us to greatly improve the statistical photon count-

ing errors, and simultaneously to address the systematic error

generated from the degeneracy involved with time-averaged

spectral modelling. Observing how the spectrum evolves

with time or with QPO phase (for XRBs) provides many

more independent data points than the time-averaged spec-

trum, with different time bin or phase preferentially sampling

the relativistic distortions of different parts of the accretion

disk.

We summarize below the three independent diagnostics

provided by eXTP data, in order to investigate the behaviour

of matter in the strong-field gravity regime and the geometry

and accretion physics in the innermost region around accret-

ing black holes.

- Relativistically broadened disk reflection. The disk reflec-

tion components (namely the iron line and the Compton

bump) will be measured with great precision by eXTP in

spectra of XRBs and AGN (see Sect. 2.1) using the state-
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of-the-art models to measure black hole spin. In XRBs

the virtually pile-up free LAD data, will allow us to mea-

sure changes in the accretion flow around the black hole

on unprecedentedly short time-scales. In AGN Doppler to-

mography measurements (see Sect. 3.3) will break model

degeneracies due to possible complex absorption compo-

nents (alternative to the relativistic models). In fact, since

these measurements are based on variability in the residu-

als in the iron region, any contribution from a narrow line

in the profile (arising by necessity at larger radii and hence

varying much slower than the 10 ks inner disk orbital pe-

riod) will drop out automatically.

- Continuum fitting. By combining spectral and polarimet-

ric diagnostics, the use of disk thermal emission to map the

innermost regions and measure black hole spin will greatly

improve in accuracy (see sect. 2.2). The WFM will select

the soft states (dominated by the disk thermal component

with minimal contamination by power-law emission) best

suited for spin measurements. The disk parameters will be

determined thanks to the SFA and LAD broad energy cov-

erage, with absorption features in the soft state accurately

modelled (see Sect. 4.2). Measurement of the rotation with

energy of the polarization angle of the thermal emission in

XRBs will provide a futher independent method to mea-

sure the black hole spin. As a third consistency check, the

estimated spin can be compared with that obtained from

fitting the relativistically broadened disk reflection, which

should be significantly more accurate than current mea-

sures (see Sect. 2.1).

- QPOs. Another independent measurement of black hole

mass and spin will be provided by modelling the low

and high-frequency QPOs observed in the intermediate

states prior to or following the soft state in XRBs (see

Sect. 2.3). Low-frequency QPOs seen in the hard and hard-

intermediate states may be produced by Lense-Thirring

precession of the inner hot flow [23]. In this case, mod-

elling the geometry of the precessing flow using tomog-

raphy and timing-polarimetry (see Sect. 3.1 and 3.5), will

give a direct measure of the offset between the black hole

spin and disk angular momentum, allowing us to test the

effects of such an offset on the disk inner radius measured

in the soft state, when it extends to the ISCO.

We have also shown that eXTP will address many funda-

mental issues in the wider context related to astrophysics of

accreting black holes: the structure of the innermost regions

as they evolve through different accretion states, the associ-

ated production of jets and winds and their link with AGN

feedback and hence galaxy evolution:

- The innermost regions around accreting black holes. Re-

verberation lags for the broad Fe K emission and reflec-

tion hump in XRBs and AGN (see Sect. 3.4), allow a fur-

ther independent measure of the geometry of the innermost

part of the accretion flow (in particular the disc-corona re-

gions) down to few rg scale. eXTP will track the causal

connection between inflow of mass on to the black hole,

and subsequent outflow through a jet (see Sect. 3.5). The

spectrum from these two regions is likely similar, but the

causal connection between accretion flow and jet can be

probed using variability analysis, since fluctuations origi-

nating in the flow can propagate up the jet after some delay

time. The corona is expected to be only weakly polarized,

whereas the jet is expected to be strongly polarized. Even

if the corona and jet emit identical spectra, with the same

polarization angle, we will still be able to detect a time lag

resulting from the propagation time between corona and

jet.

- The complex environment of AGN. Time resolved spectral

study of AGN (see Sect. 4.1) will allow us to measure

the variability of the key parameters of the primary and

reprocessed components (ionized and cold absorbers, dis-

tant reflection, fast outflows) on relevant time-scales (from

tens of ks to years). The possibility to follow the tempo-

ral behaviour of all spectral parameters for a large number

of objects will open new avenues in the investigation of

the physical properties and geometry of the circumnuclear

matter in AGN. Moreover, time average polarimetric mea-

surements avilable with eXTP will be crucial in order to

investigate the geometry of the molecular ‘torus’ and the

corona invoked in AGN unification models.

- Disk winds in XRBs. The combination of SFA and LAD

detectors will allow us to track the rapidly-varying absorb-

tion lines in XRBs (see Sect. 4.2) during the launching and

quenching of the winds, down to the low luminosities. This

capability will open up a new type of study: the measure-

ment of the turbulence and density structure in the wind

via absorption line variability, when compared with the ob-

served X-ray luminosity.

Within the context of the new gravitational wave astro-

physics, and in a fully complementary view with respect to

gravitational wave interferometers, eXTP will address the sta-

tionary spacetime metrics of compact objects (see Sect. 5),

probed by a luminous test fluid orbiting the black hole with

completely negligible self-gravity. eXTP uniquely will per-

form comparative studies of black holes spanning a factor

108 in mass (thus 1016 in curvature) via well-established di-

agnostics. Accretion flows across the black-hole mass scale

will allow us to probe the GR predictions over 16 orders of

magnitude.
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73 M.A. Abramowicz, W. Kluzńiak , Astron. Astrophys. 374, L19 (2001)

74 Wijnands R., Homan J., van der Klis M., 1999, Astrophys. J. 526, L33

(1999)

75 R.A. Remillard, G.J. Sobczak, M.P. Muno, J.E. McClintock, Astro-

phys. J. 564, 962 (2002)

76 P. Casella, T. Belloni, L. Stella, Astrophys. J. 629, 403 (2005)

77 A. Ingram, C. Done, P.C. Fragile, Mon.Not.R.Astron. Soc. 397, L101

(2009)

78 A. Ingram, C. Done, Mon.Not.R.Astron. Soc. 415, 2323 (2012)

79 R.P. Fender, J. Homan, T.M. Belloni, Mon.Not.R.Astron. Soc. 396,

1370 (2009)

80 S.E. Motta, P. Casella, M. Henze, et al., Mon.Not.R.Astron. Soc. 447,

2059 (2015)

81 P.C. Fragile, O.M. Blaes, P. Anninos, J.D. Salmonson, Astrophys. J.,

668, 417 (2007)

82 P.C. Fragile, O.M. Blaes, Astrophys. J. 687, 757 (2008)

83 M. Liska, C. Hesp, A. Tchekhovskoy, et al., Mon.Not.R.Astron. Soc.

in press (arXiv:1707.06619)

84 J. van den Eijnden, A. Ingram, P. Uttley, et al., Mon.Not.R.Astron. Soc.

464, 2643 (2017)

85 A. Ingram, C. Done, Mon.Not.R.Astron.Soc. 427, 934 (2012)

86 A. Ingram, M. van der Klis, M. Middleton, et al.,

Mon.Not.R.Astron.Soc.,461, 1967 (2016)

87 A. Ingram, M. van der Klis, M. Middleton, D. Altamirano, P. Uttley,

Mon.Not.R.Astron. Soc. 464, 2979 (2017)

88 A. Ingram, M. van der Klis, Mon.Not.R.Astron. Soc. 446, 3516 (2015)

89 H.M. Antia, J.S. Yadav, P.C. Agrawal, J. Verdhan Chauhan, et al., As-

trophys. J. Suppl. 231, 10 (2017)

90 K.C. Gendreau, Z. Arzoumanian, P.W. Adkins, C.L. Albert, et al., SPIE

9905, 99051H (2016)

91 A. Ingram, T.J. Maccarone, J. Poutanen, H. Krawczynski, Astrophys.

J., 807, 53 (2015)

92 E.H. Morgan, R.A. Remillard, J. Greiner, Astrophys. J. 482, 993

(1997)

93 J. van den Eijnden, A. Ingram, P. Uttley, Mon.Not.R.Astron. Soc. 458,

3655 (2016)

94 J.D. Schnittman, Astrophys. J. 621, 940 (2005)

95 B. Beheshtipour, J.K. Hoormann, H. Krawczynski, Astrophys. J. 826,

203 (2016)

96 A.R. Ingram, T.J. Maccarone, Mon.Not.R.Astron. Soc. 471, 4206

(2017)
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