
Journal of Spacecraft and Rockets, Vol. 57, No. 5, 2020, pp. 1098–1102. doi: http://doi.org/10.2514/1.A34709

Role of solar irradiance fluctuations on optimal solar sail trajectories
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Nomenclature

A = sail surface, m2

a = propulsive acceleration vector, mm/s2

ac = characteristic acceleration, mm/s2

{b1, b2, b3} = sail force coefficients
c = speed of light, km/s
m = total spacecraft mass, kg
n̂ = normal unit vector
P⊕ = solar radiation pressure at 1 au, Pa
r = position vector, au
r = Sun-spacecraft distance, au
r⊕ = reference distance, 1 au
t = time, days
v = velocity vector, km/s
W⊕ = total solar irradiance at r = r⊕, W/m2

Wmin
⊕ = value of W⊕ during minimum solar activity, W/m2

δr = final position error, km
δv = final velocity error, m/s
µ� = Sun’s gravitational parameter, km3/s2

µW = mean value of W⊕ as a function of time, W/m2

σW = standard deviation of W⊕, W/m2

Subscripts

0 = initial value
f = final value

Superscripts

· = time derivative
∧ = unit vector
− = reference value

Introduction
The analysis and optimization of a solar sail trajectory is usually conducted by assuming a constant value of the total solar

irradiance (TSI) and, therefore, of the solar radiation pressure (SRP) [1, 2]. Actually, the TSI (or the SRP) is subjected to
time-variations [3] caused by the well known 11-year solar cycle, and by non-negligible short-term random fluctuations [4–6].
A refined solar sail mission analysis should therefore take into account the effects of those temporal variations.

The original idea of studying the effects of TSI fluctuations on solar sail heliocentric trajectories is due to Vulpetti [7, 8],
who considered the actual values of the SRP (obtained through in-situ measurements) during the simulation of an Earth-Mars
transfer orbit of a solar sail-based spacecraft. However, such works are focused on medium- and high-performance solar sails
only, and rely on TSI data obtained for a limited time span (about two years). More recently, Niccolai et al. [9] have studied
the effects of TSI fluctuations and optical parameter uncertainties on the trajectory of a Sun-facing sail.

The aim of this work is to provide a systematic analysis for quantifying the impact of TSI fluctuations on minimum-time
solar sail trajectories, in order to investigate the actual need of a control law able to counteract the environmental uncertainties,
as is discussed in Refs. [10,11] for the case of an electric solar wind sail [12]. To that end, a procedure to evaluate the effects of
TSI (or SRP) fluctuations is here proposed, which consists of modelling the solar irradiance as the combination of a periodic
and a stochastic term. Such a method is based on a large amount of TSI data. Some possible heliocentric mission scenarios
for a high- or low-performance sail are analyzed, such as, for example, a simplified circle-to-circle orbit raising and a more
realistic three-dimensional transfer towards a near-Earth asteroid.

The Note is organized as follows. First, the mathematical model used to describe the propulsive acceleration and the
transfer orbit is introduced. Then, a procedure to evaluate the effects of environmental uncertainties on a solar sail-based
spacecraft trajectory is proposed assuming the TSI to be modelled as a random variable with a Gaussian distribution. Finally,
the proposed approach is used to analyze some exemplary mission cases, while the last section reviews the main outcomes of
this work.
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Effects of TSI fluctuations
Consider a solar sail-based spacecraft that performs an ephemeris-free heliocentric transfer between a given parking orbit

(subscript 0) and an assigned target orbit (subscript f). Assuming a flat sail with an optical force model [2], its propulsive
acceleration vector a may be written as

a =
W⊕A

cm

(r⊕
r

)2 (
n̂ · r̂

)[
b1r̂ + (b2n̂ · r̂ + b3)n̂

]
(1)

where r is the Sun-spacecraft distance (with r⊕ , 1 au), c is the speed of light, W⊕ is the total solar irradiance measured at
r = r⊕ (recall [2] that the SRP at r = r⊕ is P⊕ = W⊕/c), A is the sail reflective area, m is the total spacecraft mass, r̂ is
the Sun-spacecraft (radial) unit vector, n̂ is the unit vector normal to the sail plane in the direction opposite to the Sun, and
{b1, b2, b3} are the force coefficients that depend on the thermo-optical properties of the sail reflective film [13]. In particular,
when the sail degradation [14, 15] is neglected and the reflective film does not include electrochromic material panels [16, 17],
the force coefficients {b1, b2, b3} take constant values, given by [2] b1 = 0.1728, b2 = 1.6544 and b3 = −0.0109. The desired
thrust vector direction [18] is obtained by varying the sail plane orientation, that is, by suitably steering the normal unit vector
n̂. Note that the orientation of n̂ in an orbital (radial-tangential-normal) reference frame is described by the cone and clock
angles, which are usually the two controls of a flat solar sail. The time-orientation of the normal unit vector n̂ or, equivalently,
the time-variation of the sail cone and clock angles, is obtained by solving an optimization problem [13, 19, 20] in which the
flight time between the parking and the target orbit is to be minimized.

The solar sail heliocentric dynamics is described by the equations

ṙ = v , v̇ = −µ�
r3

r + a (2)

where the dot symbol denotes a derivative with respect to time t, r = r r̂ and v are the spacecraft position and velocity vector,
respectively, µ� is the Sun’s gravitational parameter, and a is given by Eq. (1).

In a preliminary mission analysis, the spacecraft optimal transfer trajectory is designed assuming constant solar properties,
which amounts to considering a fixed value of TSI in Eq. (1). In that case, once the minimum time problem is solved and the
control law n̂ = n̂(t) is obtained from the optimization problem, the equations of motion (2) may be numerically integrated to
get a reference transfer trajectory. However, because the value of TSI is not actually a constant [3], the effects of the variability
of W⊕ on the reference transfer trajectory require further investigation.

Indeed, it is known that the TSI undergoes fluctuations over time, mainly due to the 11-year solar cycles [4]. Recent in-situ
measurements, carried out by the SORCE spacecraft during a solar minimum activity period [5,21], have shown that the TSI

oscillates with a mean value W⊕ = 1360.8 ± 0.5 W/m2 and a peak-to-peak amplitude ∆W⊕ equal to about 0.1% its mean
value [4]. The TSI is also affected by short-term random variations (superimposed to the 11-year solar cycle), which can reach
values of 4.6 W/m2 within a few days up to weeks [5]. A fluctuation of W⊕ may also manifest itself on a time scale of minutes,
with an amplitude on the order of 0.003% its mean value and peaks of 0.015% during large solar flares [4]. However, TSI
fluctuations that occur on time scales smaller than 1 day will be neglected in the succeeding analysis.

The TSI is here assumed to be a Gaussian random variable, whose mean value µW is modelled as a sinusoidal fluctuation
due to the 11-year solar cycle, as is shown in Fig. 1. In particular, assuming a minimum solar activity at the initial time, the
time variation of µW is described as

µW = Wmin
⊕ +

∆W⊕
2

[
1− cos

(
2π t

∆tc

)]
(3)

where ∆tc = 11 years, and Wmin
⊕ ' 1360.5 W/m2 is the TSI at the minimum solar activity, of which the value is chosen such

as to fit the available SORCE [21] data in the time interval 2008-2009; see also Fig. 2. The standard deviation σW is affected
both by a measurement uncertainty in the mean value (±0.5 W/m2), and by short-term fluctuations (±2.3 W/m2), viz.

σW =
√

0.52 + 2.32 W/m2 ' 2.35 W/m2 (4)

Using the mathematical model given by Eqs. (3) and (4), it is possible to estimate the effects of the TSI (or SRP) fluctuations
on the solar sail optimal transfer trajectory. To that end, the reference optimal transfer trajectory and the corresponding
reference optimal control law are first obtained by solving the minimum-time problem (with an indirect approach [22]) assuming

a value of TSI equal to W⊕. In other terms, the reference trajectory is designed with a fixed value of SRP calculated at r = r⊕,
equal to W⊕/c ' 4.54× 10−6 Pa.

The flight time is then partitioned into a certain number of arcs of length ∆t = 1 day each. Then, the daily variation of
W⊕ is randomly generated according to the previous Gaussian distribution, and a linear interpolation is used to evaluate the
TSI along each arc. At this point, the equations of motion (2) are numerically integrated along each arc using the reference
control law. The spacecraft position rf = r(tf ) and velocity vf = v(tf ) vectors at the final time tf are compared to those
obtained in the reference trajectory (i.e., r̄f and v̄f ). Finally, the position δr and velocity δv errors are calculated as

δr = ‖rf − r̄f‖ , δv = ‖vf − v̄f‖ (5)

The main results of the above procedure are discussed in the next section for different transfer scenarios and solar sail
performance, using the Gaussian distribution with a mean value given by Eq. (3) and a standard deviation given by Eq. (4)
to estimate the local value of TSI.

Numerical simulations
The effects of TSI fluctuations on the spacecraft transfer trajectory are now studied, as a function of the solar sail

performance, for some typical mission scenarios. Three different values of the ratio m/A are considered in the numerical
simulations, that is, m/A = {8.2, 16.5, 82.4} g/m2, which are representative of high-, medium- and low-performance sails,
respectively. In the reference case, such values of m/A correspond to solar sails with a reference characteristic acceleration
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Figure 1 Model of TSI with a Gaussian distribution and a mean value described by a sinusoidal fluctuation due to the 11-year solar cycle.
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Figure 2 Variation of µW due to the 11-year solar cycle modelled as a sinusoidal function and its comparison with real data from SORCE
mission.

ac = {0.1, 0.5, 1}mm/s2, the latter being defined as the maximum magnitude of the sail propulsive acceleration at a distance
r = r⊕ from the Sun, or

ac =
W⊕A

mc
(b1 + b2 + b3) (6)
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Consider a circle-to-circle orbit transfer, in which the parking orbit radius is r0 = 1 au and the target orbit radius is
rf = {0.387, 0.5, 0.723, 1.2, 1.524} au. Note that the cases of rf = {0.387, 0.723, 1.524} au are representative of a simplified
(heliocentric) interplanetary transfer towards {Mercury, Venus, Mars}, when the planet orbital eccentricity and inclination are
both neglected. In the reference case, the minimum flight time [23] is reported in Tab. 1.

Table 1 Minimum flight time (days) as a function of rf and ac, for a circle-to-circle transfers with r0 = 1au.

ac (mm/s2)
rf (au) 0.1 0.5 1
0.387 2536.4 550.0 310.6
0.5 2164.7 463.3 256.4
0.723 1310.1 284.5 217.0
1.2 1104.4 312.9 248.3
1.524 2963.4 653.6 432.5

For each transfer case, that is, for each pair {rf , ac}, 100 numerical simulations have been performed by numerically
integrating the equations of motion (2) using a variable-step Adams-Bashforth-Moulton solver scheme [24, 25], with absolute
and relative errors of 10−12. The mean and maximum values of {δr, δv} obtained with Eqs. (5), are reported in Tabs. 2 and
3.

Table 2 Mean/maximum values of δr (km) as a function of rf and ac, for a circle-to-circle orbit transfers (100 runs).

ac (mm/s2)
rf (au) 0.1 0.5 1
0.387 1.476/1.991 ×106 1.890/4.052 ×105 1.083/2.296 ×105

0.5 5.652/8.460 ×105 1.183/2.613 ×105 4.710/11.790 ×104

0.723 6.030/15.990 ×104 2.410/6.270 ×104 1.860/5.220 ×104

1.2 4.530/8.810 ×104 3.830/12.050 ×104 3.710/11.680 ×104

1.524 4.409/6.776 ×105 1.242/2.912 ×105 1.220/2.962 ×105

Table 3 Mean/maximum values of δv (m/s) as a function of rf and ac, for a circle-to-circle orbit transfers (100 runs).

ac (mm/s2)
rf (au) 0.1 0.5 1
0.387 16.5/22.6 11.1/27.0 10.0/26.2
0.5 6.0/9.1 5.3/14.1 5.2/13.5
0.723 0.8/2.1 1.7/3.9 2.5/6.1
1.2 0.3/0.8 1.0/2.8 1.4/3.7
1.524 1.9/2.9 1.5/4.2 2.9/6.3

According to Tabs. 2 and 3, a considerable position error δr is obtained when orbit transfers with long flight times are
considered. This is due, as expected, to the non-negligible impact of the variation of µW related to the 11-year solar cycle.
Note that a high value of δr is obtained in an orbit lowering (i.e., when rf < r0), because the propulsive acceleration magnitude
undergoes a large deviation from the reference case when the solar sail approaches the Sun. These results are compatible with
those obtained by using actual in-situ measurements only to model the TSI, but are more conservative. Indeed, the statistical
model discussed in this work is based on many years of solar observation, and accounts for a significant stochastic term to
model the chaotic and unpredictable TSI fluctuations.

The results obtained in a two-dimensional case are confirmed by a more realistic three-dimensional mission scenario. In
this case, the procedure has been applied to a three-dimensional transfer towards Mars and to the near-Earth asteroid 1620
Geographos [26–28], by considering the actual heliocentric orbits of the celestial bodies. The optimal transfer times are shown
in Tab. 4 as a function of the sail characteristic acceleration ac = {0.1, 0.5, 1}mm/s2.

Table 4 Minimum flight time (days) as a function of ac, for a three-dimensional Earth-Mars and Earth-Geographos transfer.

ac (mm/s2)
Scenario 0.1 0.5 1
Earth-Mars 3138.0 817.4 381.8
Earth-Geographos 4282.7 806.4 391.7

When the TSI fluctuations are taken into account, the errors δr and δv obtained through 100 runs are shown in Fig. 3,
whereas their mean and maximum values are summarized in Tabs. 5 and 6.

Table 5 Mean/maximum values of δr (km) as a function of ac, for an Earth-Mars and an Earth-Geographos transfer (100 runs).

āc (mm/s2)
Scenario 0.1 0.5 1
Earth-Mars 555 300/742 800 125 600/335 700 97 000/230 000
Earth-Geographos 797 500/1 126 600 37 600/93 300 27 600/76 000

Table 6 Mean/maximum values of δv (m/s) as a function of ac, for an Earth-Mars and an Earth-Geographos transfer (100 runs).

āc (mm/s2)
Scenario 0.1 0.5 1
Earth-Mars 3.2/4.6 2.5/5.6 2.0/4.9
Earth-Geographos 99.3/139.8 5.2/13.6 2.6/5.9
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Figure 3 Values of errors {δr, δv} in a three-dimensional orbit transfer (100 runs).

Conclusions
This Note has analyzed the effects of fluctuations of the total solar irradiance (equivalently, the fluctuations of the solar

radiation pressure) on optimal solar sail heliocentric transfers. Both two-dimensional circle-to-circle and more realistic three-
dimensional transfer scenarios have been investigated, by considering a low-, medium-, and high-performance solar sail. A
procedure has been proposed to evaluate the deviation of the solar sail spacecraft from its reference trajectory (i.e., the
trajectory obtained without any solar irradiance fluctuation) when the total solar irradiance is modelled as a random variable
with a Gaussian distribution.

The numerical simulations have shown that this deviation is small for a high-performance sail. However, in the case of
transfers requiring long flight times, the final error in position and velocity is well outside the typical mission requirements
for targeting accuracy. A natural extension of this work is therefore to introduce a suitable control law that is able to
counteract the irradiance fluctuations and to allow the spacecraft to reach the desired target state. Such a control system
could exploit the properties of electrochromic materials to adjust the propulsive acceleration magnitude and direction, in
response to environmental fluctuations.
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