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Abstract—Bipolar Disorder (BD) is characterized by an alter-
nation of mood states from depression to (hypo)mania. Mixed
states, i.e., a combination of depression and mania symptoms at
the same time, can also be present. The diagnosis of this disorder
in the current clinical practice is based only on subjective
interviews and questionnaires, while no reliable objective psycho-
physiological markers are available. Furthermore, there are
no biological markers predicting BD outcomes, or providing
information about the future clinical course of the phenomenon.
To overcome this limitation, here we propose a methodology
predicting mood changes in BD using heartbeat nonlinear dynam-
ics exclusively, derived from the ECG. Mood changes are here
intended as transitioning between two mental states: euthymic
state (EUT), i.e., the good affective balance, and non-euthymic
(non-EUT) states. Heart Rate Variability (HRV) series from 14
bipolar spectrum patients (age: 33.43±9.76, age range: 23-54; 6
females) involved in the European project PSYCHE, undergoing
whole night ECG monitoring were analyzed. Data were gathered
from a wearable system comprised of a comfortable t-shirt
with integrated fabric electrodes and sensors able to acquire
ECGs. Each patient was monitored twice a week, for 14 weeks,
being able to perform normal (unstructured) activities. From
each acquisition, the longest artifact-free segment of heartbeat
dynamics was selected for further analyses. Sub-segments of 5
minutes of this segment were used to estimate trends of HRV
linear and nonlinear dynamics. Considering data from a current
observation at day t0, and past observations at days (t−1, t−2,...,),
personalized prediction accuracies in forecasting a mood state
(EUT/non-EUT) at day t+1 were 69% on average, reaching
values as high as 83.3%. This approach opens to the possibility
of predicting mood states in bipolar patients through heartbeat
nonlinear dynamics exclusively.

Index Terms—Mood Recognition, Wearable Systems, Auto-
nomic Nervous System, Heart Rate Variability (HRV), Bipolar
Disorder, Pervasive Monitoring.

I. INTRODUCTION

Bipolar Disorder (BD) is a chronic mental illness character-
ized by alternating phases of depression and phases so-called
manic or hypomanic. During depressive states, patients experi-
ence symptoms ranging from sadness, hopelessness (including
suicidal ideation), loss of energy, anhedonia, and psychomotor
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retardation [1], [2]. When patients are in manic or hypomanic
states, they show symptoms related to pathological hyperac-
tivity, characterized by euphoria or irritability, excessive en-
ergy, hyperactivity, hypertrophic self-esteem, reduction in the
need of sleep, and psychomotor acceleration [1], [2]. Mixed
states, i.e., a combination of depressive and maniac symptoms,
can also be present [1], [2]. In the intervals between these
pathological episodes, patients typically experience periods of
relatively good affective balance, which are called euthymia
(EUT). The duration of each mood state and the interval
between them are extremely variable from patient to patient,
and can occur in different moments of life. Although these
mood episodes typically last for weeks, there are conditions
in which they happen more frequently. As a matter of fact,
in cyclothymia, fluctuations can be on a daily base, being
the cause of significant distress or impairment in social,
occupational, or other important areas of functioning [3]. Cy-
clothymic fluctuations are related to the bipolar mood disorder
spectrum, and usually occur in short intervals (days/months).

Bipolar disorder is very common in western population [4]–
[7]. A recent worldwide survey in 11 countries has found an
overall lifetime prevalence of 1% for the typical forms of
bipolar disorder and 1.4% for milder subthreshold disorders
[2]. BD is also a leading cause of premature mortality due
to suicide and associated medical conditions, such as diabetes
mellitus and cardiovascular disease [8]. Despite the fact that
the recurrent nature of manic and depressive episodes often
leads to high direct and indirect health care costs, the clinical
assessment and management of this condition is based only
on clinician-administered rating scales, clinical interviews
and/or subjective evaluations exclusively [9]. Although these
interviews are ‘structured’ (i.e. questions and question order
are established and defined in specific manuals) and high rates
of consensus can be achieved among specialists (psychiatrists
and clinical psychologists), the diagnosis is always based on
subjective clinician observation, on the patient’s subjective
description, and on the physician’s interpretation of such
description. The most important diagnostic system is based
on the criteria proposed by the Diagnostic Statistic Manual of
Mental Disorders (DSM) edited by the American Psychiatric
Association. The 5th edition of the DSM has been recently
released [3]. According to this classification, the diagnosis
of depressive episodes is made if the patient exhibits 5 out
of 9 possible symptoms. Similar cut-offs are applied for the
diagnosis of the other types of mood episode. In line with
this approach, a patient who has had only 4 symptoms of
depressive episodes is considered remitted (although partially
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remitted). These clearly can bring to biased interpretation and
inconsistency [10]–[12].

While it is well known that several neurological disorders
such as epilepsy [?], [?] or parkinsonisms [?], [?] are asso-
ciated with Autonomic Nervous System (ANS) dysfunction,
this type of association has also been taken into account to
objectify the diagnosis of BD [13]–[16]. Specifically, fea-
tures of hormonal, immunologic, and ANS dysregulation [13],
[14] were significantly associated to BD, also estimated by
analyzing Heart Rate Variability (HRV) series [15], [16].
Specifically, Latalova et al. [15] found negative correlations
between level of dissociation measured by DES (Dissociative
Experience Scale) and most of parameters of ANS, and also
found negative correlations between the age of the patient and
activity of ANS, and between activity of ANS and duration
and onset of disorder, whereas Cohen et al. [16] found that
euthymic bipolar patients at rest are characterized by lower
HRV than healthy controls, independently from specific drug
treatments.

As a matter of fact, mood disorders have been previ-
ously associated with alterations in ANS functioning [17],
[18]. Depressed subjects frequently present clinical symptoms
related to autonomic dysfunction such as sleep pattern al-
terations, decreased appetite, gastrointestinal paresthesia and
increased sweating [19]. In addition, multiple studies have
reported decreased HRV and baroreflex sensitivity in these
subjects [20]. However, none of these studies have reached
an acceptable level of accuracy for clinical use in order to
forecast the clinical course in single patients. A possible
explanation for these negative results can be that mood disor-
ders are very heterogeneous, in terms of psychophysiological,
neuroendocrine and neurobiological correlates, with respect
to relatively simple clinical phenotypes usually adopted for
clinical and also for research purposes. This can also be
reflected by different alterations of the ANS dynamics which
may affect HRV in different ways. As a consequence, if only
one or few HRV metrics are considered, as performed in
previous studies, such dishomogeneity cannot be caught. This
might result in gathering subjects in groups that, although
homogeneous in a clinical descriptive point of view, are ex-
tremely dishomogeneous in terms of endophenotypes. Another
possible explanation may be found in the type of analysis used.
All the studies have used a group analysis approach being
able to find significant differences between bipolar patients
and healthy controls. However, for clinical purposes, analysis
should be performed on a subject-specific basis.

In a recent study [21], we presented a multi-parametric
approach that was successfully applied as a decision support
system for the clinical assessment of BD. We demonstrated
that a single-variable approach, as proposed by the previous lit-
erature, is not sufficient to robustly characterize mood episodes
[21]. Furthermore, we found remarkable information in the
temporal dynamics of a patient’s mood episodes [22]. In the
current clinical practice, in fact, no temporal and chronological
information about the fluctuations of mood are taken into
account. Conversely, we found that a given pathological mental
state of BD strictly depends on the previous mood state
[22]. From a signal processing point of view, patients’ mood

changes are modeled as a discrete-time stochastic process in
which each recording, associated to a specific mood state, also
depends on the previous state in agreement with the so-called
Markov property [22]. Of note, a congruent temporal trend in
nonlinear cardiovascular measures were found when passing
from severe states of BD to remission [23]. In other words, it
was found that the “current” mood state in BD is dependent on
the previous mood state, and it is likely to contain information
related to the subsequent state as well.

Although these approaches can be effective in supporting
clinical assessment and decision related to BD, none of them
have demonstrated any prediction capability among mood
states. The early knowledge of ANS signs able to predict the
onset of pathological states from euthymia can be an effective
tool of BD prevention against potential self-destructive acts
or excessive aggression towards others. To this extent, in this
study, we propose a methodology predicting mood changes
using heartbeat linear and nonlinear dynamics. Such changes
are intended as transitioning between euthymic state (EUT),
i.e., the good affective balance, and non-euthymic state (non-
EUT) - which means fulfilled the criteria for one of the mood
states defined above -, and vice-versa.

Likewise the mentioned previous studies [21]–[23], data
used in this work were gathered in the framework of the
European project PSYCHE (Personalised monitoring SYstems
for Care in mental HEalth), which aimed to longitudinally
study BD patients through comfortable wearable systems [21]–
[27]. A brief overview of the PSYCHE system and the
experimental protocol, along with details on the methodology
of signal processing for mood prediction, and experimental
results follow below.

II. MATERIALS AND METHODS

A. The PSYCHE System

PSYCHE stands for Personalized monitoring SYstems for
Care in mental HEalth and identifies a personalized, per-
vasive, cost-effective, and multi-parametric system for the
long-term and short-term acquisition of data gathered from
patients affected by mood disorders [21]. The PSYCHE system
supports a novel approach for bipolar disease management
based on the paradigm that quasi-continuous monitoring in
a natural environment is able to provide parameters, indices
and trends for assessing the mood status as well as supporting
patients, predicting and anticipating treatment response in its
early phase, preventing relapse and alerting physicians in
case of a critical event. The system also includes a cen-
tralized server performing data-mining procedures for mood
evaluations, along with a user-friendly patient interface (e.g.,
on a smartphone), and a professional web-based interface
used by clinicians to administer evaluation questionnaires,
look at physiological variable variations, communicate with
patients, etc. (see the PSYCHE concept of decision support
system for bipolar disorder on Fig. 1). Several signals can be
taken into account for the patient’s physiological monitoring
such as voice [28], activity index, sleep pattern alteration
[29], electrodermal response [30], respiration activity, and
electrocardiogram (ECG) [21].
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Fig. 1. Overview of the PSYCHE system as global platform serving as
decision support system for bipolar disorder management.

In this study, we used the core sensing system of the
project, i.e. the PSYCHE wearable monitoring platform [21],
developed by Smartex s.r.l (Pisa, Italy) and consisting of a
comfortable sensorized t-shirt having dry textile-based elec-
trodes that acquire the patient’s ECG, a piezoresistive sensor to
acquire the respiration signal, and a three axial accelerometer
to track movement. The use of dry textile-based electrodes
makes the system easy to use, and allows to maximize comfort
and to locate the sensors automatically. The sensorized t-shirt
was designed following both a female and male model and is
made of elastic fibers that allow for tight adhesion to the user’s
body. In this work, a comfortable t-shirt having two textile
ECG electrodes integrated in the inner side of the front part,
below the pectoral muscles in men and the breasts in women
was used. The two ECG electrodes are finally connected to
the portable electronics, which is connected to the garment
through a simple plug that can be easily unplugged when
necessary.

We used ECG-derived HRV series coming from the PSY-
CHE wearable monitoring platform in order to extract the
inter-beat interval series (HRV series), i.e. the series consti-
tuted by the distance of two consecutive peaks of the ECG
in a patient as a non-invasive biomarker of ANS dynamics
[31]. Data acquisition is fully implemented in the embod-
ied electronic device of the PSYCHE wearable monitoring
platform and includes also part of the pre-processing step.
Specifically, the analog ECG is acquired and conditioned by
means of an instrumentation amplifier and filters. Then, the
ECG is digitalized with a sampling frequency of 250 Hz and
stored into the microSD card for further analysis.

B. Experimental Setup and Data Acquisition

This study was designed to test the ability of the pro-
posed methodology, using the PSYCHE system, to predict
mood changes in cyclothymic and rapid-cycling bipolar dis-
orders subjects. Specifically, we enrolled 14 patients (age:
33.43±9.76, age range:23-54; 6 females) including 6 rapid-

cycling bipolar patients, 4 patients with cyclothymic disorders,
and 4 subjects with cyclothymic temperament. At inclusion,
8 subjects were not prescribed any psychotropic medication.
None of the subjects was known to suffer from cardiac
arrhythmia or significant cardiovascular disease needing drug
treatment. The following psychotropic medications were pre-
scribed at inclusion: Antidepressants (fluoxetine): 1 subject
(P1); mood stabilizers (lamotrigine 4; lithium 2; pregabaline
1): 5 subjects (P5, P6, P10, P12, P14); antipsychotics (quetiap-
ine 4; aripiprazole 2; cyamemazine 1): 5 subjects (P5, P6, P11,
P12, P14); benzodiazepine-like: 2 subjects (P5 and P11). See
patients details in the online Supplementary Material. Mood
states were defined during the clinical interview according to
the scores from two different rating scales: Quick Inventory
of Depressive Symptomatology Clinician Rating (QIDS-C16)
and Young Mania Rating Scale (YMRS). More specifically,
depression was diagnosed when QIDS-C16 score was greater
than or equal to 8, hypomania when YMRS score was greater
than or equal to 6, and mixed state when QIDS-C16 score
was greater than or equal to 8 and YMRS score was greater
than or equal to 6. The cut-off for the QIDS-C16 was set
at 8 as it is considered equivalent to an HDRS-17 (Hamilton
Depression Rating Scale 17 items) score of 10. Such a score
on the HDRS has been proposed as a threshold to define
recurrence or relapse [?]. For the YMRS, the score of 6 for
hypomania is quite a standard threshold to quantify the lack
of hypomanic symptoms. Such a value is in between the strict
threshold definition at 4 [?], and the less stringent definition
at 8 [?]. Euthymic state, i.e., clinical remission, was defined
by having a score below the thresholds above mentioned for
both the scales.

The study took place in the psychiatry department of the
University Hospital of Strasbourg and Geneva.

Inclusion/exclusion criteria adopted for patients recruitment
can be found in [21], [22]. Briefly, patient recruitment was
performed according to the following criteria:

• Age between 18-65
• Low risk of suicidality (as assessed as no thoughts of

death and no previous attempts)
• No somatic or neurologic disorders that might be

related to bipolar disorders (e.g. thyroid alterations,
cardiovascular-related diseases)

• Absence of cognitive impairment
• Absence of substance abuse disorders
• Willingness of all patients to sign the informed consent

for the PSYCHE project approved by the ethical commit-
tee of the University of Strasbourg and Geneva.

Individuals with cyclothymia and cyclothymic temperament,
or with rapid cycling bipolar disorder were recruited in the
general population via ads in newspapers and universities
and in clinical populations (patients followed by the clinical
investigators). Participants were interviewed at first by phone.
During this preliminary phone interview they were asked to fill
out the 12-item cyclothymic subscale from the short version
of the Temperamental Evaluation of Memphis, Pisa, Paris and
San Diego or TEMPS-A. If the screening outcome was positive
the patients were recruited. Cyclothymia had to be confirmed



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 4

by a clinical assessment based on the DSM-IV-TR criteria of
cylothymic disorder and the Akiskal criteria of cyclothymia.

Participants were asked to wear the sensorized shirt during
the evening and night twice a week for 14 weeks. They were
free to perform daily activities at home or elsewhere while
the aforementioned physiological signals were monitored and
stored in a microSD card. Participants used the system during
the night from 8 p.m. until morning, after wake-up time, until
the time the subject takes a shower and/or wants to get dressed.
Then, patients were asked to take the system back to their
physician, and the recorded data was manually sent to a central
database. Accordingly, each patient can be represented by a
series of consecutive mood states.

C. Methodology of Signal Processing

The ECG signal was pre-filtered through a tenth order band-
pass finite impulse response filter with cut-off frequencies
of 0.05-35 Hz approximated by the Butterworth polynomial.
Considering that the patients wearing the sensorized shirt
could move during the acquisition, and that textile electrodes
could lose contact with the skin during body movement, an
ad-hoc algorithm for the automatic removal of movement
artifacts was applied [21]. To this aim, the maximum and
minimum envelopes of the ECG filtered in the bandwidth
from 0.1 Hz to 4 Hz were calculated. Afterwards, movement
artifacts were detected by using simple statistical thresholds,
i.e. 95th percentile, on the average envelope above which
the signal is considered affected by artifacts. This automatic
artifact detection procedure was applied together with a visual
inspection check in order to confirm the actual presence of
artifacts in the automatically identified parts of signal, as well
as to identify missed parts of the signal actually including
artifacts.

In the RR series extraction, referring to the change of the
beat interval corresponding to the R-peak, the well-known
automatic algorithm developed by Pan-Tompkins [32] was
adopted for automatic R-wave detection. Checking for even-
tual ectopic beats was made in all of the recordings through
a previously proposed automatic algorithm based on point-
process models [?].

A general block scheme of the signal processing chain for
mood prediction is shown in Figure 2. From each acquisition
the longest artifact-free segment of signal was selected through
the previously developed methodology for artifact detection
and removal described above [21], including visual inspection.
Sub-segments of 5 minutes of this segment were used to
calculate informative features, which were defined in the time
and frequency domains, as well as from nonlinear analysis
(see [31] for calculation details and related literature review).
Further analyses such as R peaks and feature extraction were

performed in all of the available artifact-free, non-overlapped
time windows of 5 minutes. Parts of the signals with artifacts
together with consecutive artifact-free ECG signals having
dynamics less than five minutes were discarded and not con-
sidered for further analysis. The window length of 5 minutes
was chosen in order to fulfill the stationarity requirements in
analyzing long-term RR series (see recommendations in [31]).
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Fig. 2. Block scheme of the proposed signal processing chain for mood
prediction between EUT/non-EUT class.

TABLE I
LIST OF HRV FEATURES USED TO ESTIMATE LINEAR AND NONLINEAR

ANS DYNAMICS IN PATIENTS BD, WITHIN A LONG-TERM ACQUISITION.

Time domain Frequency domain Nonlinear Analysis
Mean RR VLF peak Poincaré SD1
Std RR LF peak Poincaré SD2
RMSSD HF peak Approximate Entropy (ApEn)
pNN50 VLF power Sample Entropy (SampEn)

RR triangular index VLF power % DFA α1
LF power DFA α2

LF power % RPA Shannon Entropy
LF power n.u. RPA Lmin

HF power RPA Lmax
HF power % RPA Lmean

HF power n.u. RPA LAM
LF/HF power RPA REC

RPA DET

Concerning feature extraction, briefly, given the RR interval
series, the analysis is performed by extracting informative
features using the state of the art for assessing the autonomic
regulation of the heart rate [31]. In particular, standard pa-
rameters that are defined in the time and frequency domain
and are correlated to the sympatho-vagal balance as well as
nonlinear measures are taken into account. A detailed list of
these parameters is reported in Table I.

Time domain features include the average and standard
deviation of the RR intervals (Mean RR and Std RR, respec-
tively), the square root of the mean of the sum of the squares
of differences between subsequent RR intervals (RMSSD),
and the number of successive differences of intervals which
differ by more than 50 ms (expressed as a percentage of the
total number of heartbeats analyzed, pNN50). Moreover, the
triangular index was calculated as a triangular interpolation of
the HRV histogram. All extracted features in the frequency
domain were based on the Power Spectral Density (PSD) of
the HRV. An auto-regressive (AR) model was used to estimate
the PSD in order to provide better frequency resolution than
in non-parametric methods. The model order p was estimated
according to the Akaike information criterion. The Burg
method was used to obtain the AR model parameters. The
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standard frequency domain parameters were: VLF (very low
frequency), this spectral component in general below 0.04 Hz;
LF (low frequency), ranging between 0.04 and 0.15 Hz, and
HF (high frequency), which is up to 0.4 Hz. For each of
the three frequency bands, along with the band power, the
peak value corresponding to the frequency having maximum
magnitude was also evaluated. Moreover, the LF/HF ratio was
calculated in order to quantify sympathovagal balance and to
reflect sympathetic modulations [31].

Several nonlinear HRV measures were also extracted along
with the standard morphological and spectral features [31].
Even if the physiological meaning of these features is still
unclear, they resulted to be an important quantifier of car-
diovascular control dynamics mediated by the ANS [?], [?],
[?], [?], [31], [33]–[35]. Nonlinear measures are referred
to as features extracted by means of the phase space (or
state space). Once the phase space is estimated (by means
of the so-called embedding procedure), the parameters that
appear related to an ANS modulation were evaluated. More
specifically, sample entropy and approximate entropy (ApEn
and SampEn, respectively) [31], features from the recurrence
plot [31] by means of the recurrence quantification analysis
(RQA) [31], and the detrended fluctuation analysis (DFA) [31]
were evaluated. The calculation of the two entropy measures,
ApEn and SampEn, was performed considering the embedding
dimension m = 2 and the radius r = 0.2StdRR, as proposed
in [36]. The DFA method quantifies short-term and long-term
correlations in the series through the α1 and α2 features. While
α1 represents the fluctuation in range of 4-16 samples, α2
refers to the range of 16-64 samples [37]. RQA was chosen
to quantify the number and the duration of recurrences of the
considered cardiovascular dynamical system. The following
features were calculated [31]: recurrence rate (RPA REC),
determinism (RPA DET), laminarity (RPA LAM), average
diagonal line length (RPA Lmean), entropy (RPA Shannon
Entropy), and shortest and longest diagonal line (RPA Lmin
and RPA Lmax, respectively).

To this extent, for each acquisition of each patient, we
obtained a representative NxM matrix (N: number of windows
x M: number of features), describing the evolution over time
of the feature space. Principal component analysis was then
applied on this matrix, and the first two dimensions were
retained for further analyses. This choice was justified by the
fact that, in most cases, such first two dimensions explained
more than 90% of data variance. The time evolution of each
these dimensions was synthesized through DFA, taking the
α1 and α2 parameters as estimates for the short- and long-
term correlation, respectively. Along with the features coming
from DFA analysis, current mood state was also included as
an input feature. This choice is motivated by the fact that, in
a previous study [22], we demonstrated that mood changes in
bipolar patients can be represented as a stochastic process with
Markovian properties. In other words, considering data from
a current observation at day t0, and past observations at days
(t−1, t−2,...,), we aim to perform a personalized prediction of
a mood state between EUT/non-EUT at day t+1. A graphical
representation of this concept is shown in Figure 3.

Finally, the actual prediction of the future mood state relied
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Fig. 3. Graphical representation of mood state temporal dynamics of a given
patient with BD.

on Support Vector Machine (SVM) algorithms. Specifically,
we adopted common nu-SVM (nu = 0.5) having a radial
basis kernel function with γ = n−1, with n=5 equal to the
diminution of the feature space.

For each participant, we trained the SVM using a sufficient
number of the first few collected samples (for details see
Table III), and the remaining samples were used to test its
performance. Specifically, the training set included at least one
example of EUT, and non-EUT state. All of the algorithms
were implemented by using Matlab c© v7.3 endowed with an
additional toolbox for statistical mapping, i.e., LIBSVM [38].

III. EXPERIMENTAL RESULTS

In this study, results were achieved considering data gath-
ered from 14 patients. As mentioned in the previous section,
from each acquisition of each patient, the longest artifact-
free segment of signal was selected. Table II reports average
lengths, across all observations of each patients, of acquired
signals and longest artifact-free segments.

TABLE II
AVERAGE LENGTHS OF ACQUIRED AND LONGEST ARTIFACT-FREE

SIGNALS AN EXPRESSED IN SECONDS

Patient ID Acquired signal Longest Artifact-free segment
P1 26120.37± 7149.69 22350± 11400
P2 5889.30± 5990.24 5700± 6000
P3 22743.92± 19339.44 11400± 4800
P4 10990.78± 15108.46 10800± 5625
P5 9007.48± 4661.27 6150± 2400
P6 25492.20± 6865.27 16950± 14700
P7 28077.65± 4320.94 27600± 3900
P8 6957.64± 7864.32 5400± 3975
P9 25924.71± 12516.53 17400± 6600
P10 29916.71± 9192.53 22800± 11925
P11 30468.44± 5604.22 25200± 9675
P12 31165.16± 3654.47 12600± 3300
P13 20242.29± 5790.03 10500± 2250
P14 30400.33± 9032.32 14700± 4575
Ranges are expressed in seconds as median± interquartile− range

During the acquisitions in Strasbourg, P3 interrupted the
study for 5 weeks between acquisition number 21 and number
22 due to summer holidays. For three other patients, P1, P5

and P8, study duration has to be shortened respectively to
13, 12 and 11.5 weeks due to different factors (P1: leaving
for summer holidays; P5: delay in study inclusion due to
personal unavailability; P8: delay in enrolling the patient due
to the prolongation of the participation of P3 in the study).
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Personalized prediction accuracies in forecasting the mood
state (EUT/non-EUT) at time t+1 are shown in Table III.
In this table, the second column reports the total number
of acquisitions used for the accuracy estimation, whereas the
third column reports the number of acquisitions used for the
initial training set (x : y means that the initial training set was
considered from acquisition x to acquisition y).

TABLE III
EXPERIMENTAL RESULTS EXPRESSED AS PREDICTION ACCURACY FOR
EACH PATIENT. THE TOTAL NUMBER OF AVAILABLE ACQUISITIONS (‘N.
ACQ.’, SECOND COLUMN), AND THE NUMBER OF ACQUISITIONS TAKEN

AS INITIAL TRAINING SET (‘TRAINING ACQ.’, THIRD COLUMN) ARE ALSO
REPORTED.

Patient ID N. Acq. Training Acq. Prediction Acc.
P1 22 1:5 70.6%
P2 18 1:3 75%
P3 14 1:3 60%
P4 15 1:3 83.3%
P5 8 1:3 60%
P6 19 1:4 73.33%
P7 22 1:4 77.78%
P8 10 1:2 42.85%
P9 18 1:5 70%
P10 12 1:3 80%
P11 18 1:3 66.67%
P12 8 1:3 66.67%
P13 16 1:9 71.43%
P14 8 1:3 66.67%

Fig. 4 shows exemplary feature trends from one representa-
tive patient among non-euthymic (N) and euthymic (E) mood
states.

In addition to accuracy, reported in Table III, the classifier
performance was evaluated also in terms of sensitivity, speci-
ficity, positive predictive value and negative predictive value.
Results are reported in Table 3.

TABLE IV
EXPERIMENTAL RESULTS EXPRESSED AS PERCENTAGE AMONG PATIENTS.

Accuracy 69%
Sensitivity 57%
Specificity 78%

Positive Predictive Value 60%
Negative Predictive Value 76%

Importantly, prediction accuracies reported in Table III
should be considered as a snapshot of all possible prediction
accuracies related to a given patient. As an example, we report
in Figure 5 trends of the prediction accuracy as a function
of different observations, considering data gathered from 4
patients. It is possible to recognize trends in which higher
accuracy is associated with the first predictions and, then,
the accuracy decreases, as well as trends in which the lower
recognition accuracy is associated with first the predictions.

In order to investigate which feature could provide a major
contribution in forecasting the next mood state, a further analy-
sis based on the circle of correlation of the PCA transformation
matrix was performed. Table IV shows the first 5 mostly
correlated features for each patient. An exemplary plot from
one subject of such analyses is reported below in Fig. 6.

This analysis was performed considering the PCA calcula-
tion on all the acquisitions of each patient, and suggests that
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Fig. 4. Exemplary feature trends from one patient among non-euthymic (N)
and euthymic (E) mood states.
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Fig. 5. Exemplary trends of prediction accuracy as a function of the
acquisition number in four patients.

the HRV features reported in Table V are the most informative
in forecasting the next mood state.
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TABLE V
FIRST 5 MOSTLY CORRELATED FEATURES AMONG PATIENTS, PREDICTING

MOOD CHANGES.

HRV Feature Frequency
Std RR 12/14
RMSSD 11/14

Poincaré SD1 11/14
Poincaré SD2 11/14

HF power 8/14

IV. DISCUSSION AND CONCLUSION

We reported promising results suggesting that it is possible
to forecast mood states in BD and in cyclothymic temperament
subjects using heartbeat dynamics exclusively, gathered from
ECG. Here, we reduced the problem predicting two possible
mental states: the euthymic state, i.e., the good affective
balance, and non-euthymic state, i.e., every mood state of BD
among depression, hypomania, and mixed state.

Results of this study are very encouraging and promising.
At a group-wise level, prediction accuracy was, on average
among all patients, of 69%. We are aware that such an average
accuracy is not so high but, as a preliminary and pioneering
achievement, we consider it as satisfactory and promising.
We also consider these results as a preliminary outcome due
to the fact that the class non-EUT actually includes three
mood states, making therefore the EUT class likely to be
underrepresented. This may justify an average sensitivity of the
system of 57%, and positive predictive value of 60%. However,
it is important to note that at a single patient level we reached
prediction accuracy as high as 83.3%, considering also that
such a prediction accuracy strongly depends on the number of
acquisitions and related mood states (see Figure 5).

Through a circle of correlation analysis, we found that
features related to the parasympathetic activity (Std RR,
RMSSD, and HF power), as well as HRV nonlinear dynamics
(Poincaré SD1 and SD2) are the most significant measures to
predict mood changes. This is in agreement with the previous
literature pointing out parasympathetic dysfunction in BD [39],
[40] (as a counter-proof, vagus nerve stimulation appears to be

a promising intervention for the treatment of BD [41]), and a
crucial role of ANS nonlinear dynamics [21], [25], [42], [43].
Importantly, these alterations are known to contribute to early
cardiovascular disease [44]. Our results can also be read in
the light of a current opinion proposing that the complexity of
mental illness can be studied under a general framework by
quantifying the order and randomness of dynamic macroscopic
human behavior and microscopic neuronal activity [43].

Although previous studies suggested possible biomarkers to
support the diagnosis of BD [13]–[16], none of these studies
have shown predictive capability as well as an acceptable level
of accuracy for clinical use. We focused on intra-subject anal-
ysis also to allow finding possible personalized correlations
between the pattern of physiological signals and mood fluc-
tuations, which are much more interesting for the psychiatric
community. The recruitment of cyclothymic subjects offered
a good opportunity to test the ability of the PSYCHE system
and proposed methodology of signal processing to predict
more subtle mood fluctuations and to test prospectively the
prediction performance, given the possibility of collecting data
about several similar mood sequences in a relatively short time
interval.

From a clinical point of view, outcomes of this mood predic-
tion study are very relevant. Knowing in advance whether the
patient is getting better or not could effectively help clinicians
to optimize the therapy and make changes in time, if necessary.
On the other hand, understanding if the patient is going to have
a relapse is very important and informative to perform a more
accurate clinical monitoring, and plan a treatment at very early
stage.

As mentioned above, data of long-term cardiovascular dy-
namics used in this study were gathered through the PSYCHE
platform, developed in the framework of the European project
PSYCHE [21]–[26]. The PSYCHE platform consists of a
wearable sensorized t-shirt, integrating fabric-based electrodes,
able to acquires ECG, respiration signals, and body activity,
and a smartphone collecting data from the wearable system
via Bluetooth technology. Next developments of this platform
will include such capability of predicting the mood. Of note,
the platform can also be used to record voice parameters and
subjective data (e.g., mood agenda, sleep agenda) as well.

In agreement with the aims of the PSYCHE project, the
proposed forecasting methodology is fully personalized, and
is based on long monitoring acquisitions regardless of specific
activity performed by patients. Each patient observation, in
fact, was represented by time-varying HRV linear and non-
linear estimates. Then, further multivariate signal processing
synthesized the patient mood state in a 5-dimension feature
space. Of note, this approach relies on our previous study [22],
which demonstrated that mood changes in bipolar patients
can be represented as a stochastic process with Markovian
properties, i.e., current mood state depends on the previous
one. This is in line also with clinical observations: for instance,
a cycle in which mania follows depression and precedes
euthymia is associated with a longer depressive status and
a lesser intense response to mood stabilizers as compared
to a cycle in which depression follows mania and precedes
euthymia [45].
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We are aware that more acquisitions, possibly with
more frequent transitions, can remarkably improve pre-
diction performance and may help to generalize our re-
sults to the wider clinical presentation and phenotypes
of BD. An ideal mood switch predictor, in fact, would
require all possible transitions among mood states, i.e.
16 combinations of mood labels included in the feature
space-feature label of the training set: depression-euthymia,
depression-depression, depression-mania, depression-mixed
state, euthymia-depression, euthymia-euthymia, euthymia-
mania, etc. Machine learning systems able to discriminate a so
high number of classes are very challenging and require a large
volume of data. Such a larger sample would also allow investi-
gating a parameter optimization procedure for SVM classifiers,
as well as will focus on a rigorous comparison with other auto-
matic classification methods. Another limitation of this study
is a potentially confounding effect of the psychotropic medica-
tion in 6 subjects including antidepressants, mood stabilizers,
antipsychotics and benzodiazepine-like medication prescribed
regularly. Common side effects of psychotropic drugs include
anticholinergic and autonomic effects. These effects might
have diminished the predictive power of our study. However,
in psychiatric practice, patients with mood disorders are very
frequently treated with psychotropic medications. Therefore,
our results are very encouraging regarding the clinical usability
of the PSYCHE system. Additional studies are needed to
assess the impact of psychotropic drugs on its predictive
power.

In conclusion, we state that the proposed methodology is
able to predict the next mood state with acceptable reliability.
This system feature is very useful to clinicians because phar-
macological treatments are often administered on a trial and
error base, i.e., the clinician could know whether a treatment
is going to be effective or not looking at clinical course of the
patient. Forecasting relapses might reduce negative outcomes
in bipolar disorders (e.g., suicide attempts) and provide a
more rapid onset of effective treatments. Moreover, predicting
whether a patient is getting better could let the hospital
facilities to better organize the hospitalizations.
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