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ABSTRACT. 

This work aims at characterizing for the first time the 31P spin interactions determining 

the Nuclear Magnetic Resonance (NMR) properties of solid black phosphorus (bP) and 

of its few-layer exfoliated (fl-bP) form. Indeed, the knowledge of these properties is still 

very poor, in spite of the great interest received by this layered phosphorus allotrope 

and its exfoliated 2D form, phosphorene. By combining Density Functional Theory 

(DFT) calculations and Solid State NMR experiments on suspensions of fl-bP nanoflakes 

and on solid black phosphorus, it has been possible to characterize the 31P homonuclear 

dipolar and chemical shift interactions, identifying the network of 31P nuclei more 

strongly dipolarly coupled and highlighting two kinds of magnetically non-equivalent 

31P nuclei. These results add an important missing piece of information to the 

fundamental chemico-physical knowledge of bP and support future extensive 

applications of NMR spectroscopy to the characterization of phosphorene-based 

materials.
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The isolation of graphene in 20041 opened the way to the new fascinating world of 2D 

materials: from bi-dimensionality peculiar physical and chemical properties can arise, 

which make 2D materials extremely attractive for many different application fields, 

including electronics, photonics, spintronics, mechanics and medicine. In this scenario 

black phosphorus (bP), the most stable allotrope of elemental phosphorus, attracted in 

the last few years a great interest. Indeed, it is characterized by a layered crystal 

structure (Figure 1), in which the inter-layer bonding energy is sufficiently low to allow 

exfoliation by several methods.2 In every layer, each phosphorus atom covalently bonds 

with three phosphorus atoms and bears a lone pair.3,4 Thus the atomic structure of the 

single layer of bP, commonly named phosphorene, is not planar and a zig-zag and an 

armchair directions can be distinguished. From these structural features an in-plane 

anisotropy arises, which affects the chemico-physical properties and opens the field to 

important electronic and optical applications. Moreover bP has a direct and tunable 

band gap that goes from 0.3 eV in the bulk to 2 eV in the monolayer, thus covering a 

range between graphene and transition metal dichalcogenides, which makes it highly 

attractive as 2D semi-conductor.5,6,7,8,9 Many efforts have been devoted also to study the 

surface functionalization of phosphorene, aiming to widen its applications and to 

protect it against ambient degradation.5,6,10,11 Indeed phosphorene is prone to oxidation, 

which represents a serious practical limitation to its use. Recently important biomedical 

applications of exfoliated bP have also been reported.12
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Figure 1. Layered crystal structure of bP.

 

An accurate structural control of this material is clearly crucial and, to this aim, Nuclear 

Magnetic Resonance (NMR) spectroscopy is one of the most powerful techniques for 

shedding light onto chemical structural features. On the other hand, when exfoliated bP 

is dispersed in a solvent, commonly as few-layer bP (fl-bP), the relatively large size of 

the obtainable nanoflakes (lateral dimension of 100-400 nm and thickness of 10-50 nm) 

and their slow and anisotropic tumbling motions, make fl-bP undetectable with 

standard solution-state NMR techniques.13 We published the first 31P Magic Angle 

Spinning (MAS) NMR spectrum of fl-bP embedded in polymeric matrices:9 the use of 

solid state NMR techniques allowed the easy observation of the signals of embedded fl-

bP and of its oxidized species. Moreover, the variation of the degree of oxidation with 
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the preparation method was highlighted. Very recently the use of MAS also allowed us 

to record the first 31P NMR spectrum of fl-bP directly in solvent suspension, which was 

used for inspecting its possible functionalization with boronic acid derivatives.11 

In spite of the great interest paid in these years to phosphorene, a thorough report and 

comprehension of the fundamental 31P NMR properties of its best analogous fl-bP is not 

present in the literature. Also for bP, even if the application of Solid State NMR is 

rapidly increasing, only a few works are present in the literature, mainly reporting the 

bP isotropic signal and/or the signals of some degradation or functionalization products 

14,15,16,17,18,19,20,21, with only one work proposing a qualitative interpretation of the static 

31P spectrum.22 Thus, the aim of the present work is to identify and quantify the 31P 

nuclear spin interactions determining the NMR properties of fl-bP and bP, not only for 

adding a missing piece to the physico-chemical knowledge of bP, but also because NMR 

can add a great value to the future characterization of innovative phosphorene-based 

materials. We started from the analysis of 31P MAS NMR spectra of samples of fl-BP 

with different nanoflake size, suspended in different solvents (samples preparation is 

reported in the Supporting Information). Then, once assessed the similarity of these 

spectra with those of crystalline bP, a thorough analysis of the 31P spin interactions was 

carried out on bP by combining Solid State NMR techniques and DFT calculations.
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Figures 2a and 2b show the 31P static and MAS NMR spectra of tetrahydrofuran 

suspensions of large fl-bP nanoflakes with an average lateral dimension of 400-700 nm 

(Figure S1) and a thickness of 10-50 nm (Figure S2). As already reported,11 the use of 

MAS allows the broad static signal of fl-bP to be partially resolved in a signal at the 

isotropic chemical shift of 18.5 ± 0.5 ppm, identified by recording spectra at different 

MAS frequencies (in the range 0.5-3 kHz, not shown), and a series of spinning 

sidebands, which arise from the anisotropic nuclear spin interactions of 31P nuclei, i.e., 

in principle, chemical shielding and homonuclear dipolar interactions. The degree of 

spectral resolution obtainable at a MAS frequency of 3 kHz and the isotropic peak of fl-

bP observed are similar for a suspension of smaller fl-bP nanoflakes (Figure 2c), having 

an average lateral dimension of 100-400 nm and a thickness less than 15 nm (Figures S3 

and S4, respectively). On the other hand, in the spectrum of the sample constituted by 

smaller nanoflakes (Figure 2c) signals at about 1÷2 ppm and -20 ppm are evident, even 

if superimposed to spinning sidebands, which can be ascribed to products of the 

oxidative degradation of fl-bP, likely favoured by the smaller size and thickness of the 

nanoflakes. From the analysis of the 31P spectra recorded with and without 1H high-

power decoupling (Figure S5), it was possible to assign the observed peaks to cyclic 

trimethaphosphate (δ = -20 ppm), variously protonated phosphate (PO4
3-) (δ = 1.33, 1.89 

and 2.50 ppm) and phosphite (HPO3
2-) anions (δ = 2.95 ppm).13,16,23 
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Figure 2. 31P NMR spectra of: large fl-bP nanoflakes suspended in tetrahydrofuran 
under (a) static and (b) MAS (3 kHz) conditions; (c) small fl-bP nanoflakes suspended in 

tetrahydrofuran under MAS conditions (3 kHz).

31P MAS spectra of fl-bP suspensions in dimethyl sulfoxide and methanol were also 

recorded, with the aim of highlighting possible effects of the solvent on 31P chemical 

shift, in analogy to what observed for molecular phosphorus compounds, such as 

phosphines and phosphates. The three chosen organic solvents have a different 

dielectric constant (ε = 7.58, 32.7 and 46.7 for tetrahydrofuran, methanol and dimethyl 

sulfoxide, respectively) and may show a different solvation effect and hydrogen-bond 

donating ability. As evident in Figure S6, no significant solvent effects were observed 
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from the spectra. This result, together with the substantial similarity of the 31P spectra of 

suspensions of larger and smaller fl-bP nanoflakes, indicates that possible edge effects 

are negligible. Moreover, it is evident that the possible differences in the tumbling 

motions of nanoflakes with different size do not substantially affect the NMR spectra 

(Figure 2b and 2c), likely being much slower than the static linewidth. Accordingly, the 

31P spin-lattice relaxation time (T1) of fl-bP measured in suspension was found to be 16 ± 

1 s. The scarce effects of nanoflakes tumbling on 31P NMR spectra in suspension are 

further confirmed by the observed similarity between the static and MAS spectra of the 

suspensions (Figure 2) and the corresponding spectra of solid bP (Figure 3a). 

On the basis of these results it is possible to infer that the extent of the main nuclear 

spin interactions (homonuclear dipolar coupling and chemical shielding) determining 

the 31P spectra of solid bP and fl-bP in suspension are substantially the same. The 

possibility of working on a solid sample increases both the sensitivity and, thanks to the 

exploitation of higher MAS frequencies (not achievable with samples suspended in a 

solvent), the spectral resolution. In Figure 3a the static and MAS spectra of bP recorded 

with MAS frequency up to 16 kHz are reported; all the spectra were recorded taking 

into account the measured value of 31P T1 of 40 s. For MAS frequencies up to 1 kHz the 

spectrum (not shown) is substantially superimposable to the static one, while at 2 kHz a 

separation in a central isotropic signal and spinning sidebands (placed at multiples of 

the MAS frequency with respect to the central peak) becomes visible. With increasing 
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the MAS frequency all peaks progressively narrow, the separation between the isotropic 

peak and the spinning sidebands increases and the intensity of the sidebands decreases. 

This behavior, revealing a certain inhomogeneous character of the spin interactions at 

relatively high MAS frequency, was observed and deeply analyzed by Spiess and co-

workers for 1H homonuclear dipolar-coupled multi-spin systems in organic solids.24,25 

At 16 kHz the spinning sidebands substantially disappear and only the isotropic peak at 

20.5 ± 0.5 ppm is observed. It is worth to notice that, as already reported,9 the lineshape 

is slightly asymmetric and a deconvolution procedure can reveal the presence of a 

minor signal at slightly higher chemical shift (≈ 23 ppm), which can be tentatively 

ascribed to a small fraction of slightly structurally different bP.

In giving the theoretical framework to analyze the spectral evolution of homonuclear 

dipolar-coupled spin systems under MAS, Spiess and coauthors24 demonstrated that in 

the “fast spinning regime” the integral intensities of the central line and of the first 

order sidebands are mainly determined by two-spin contributions to the dipolar 

interactions, while contributions from the correlation of three or more spins can be 

safely neglected. In particular, the signal intensities In of the different peaks can be 

theoretically obtained as a function of the MAS frequency ωR as:

In  I (0) n ,0 
An

 R
2  D

ij 
i , j

N


2











(1)
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where δn,0 is the Kronecker delta, n is the sideband order, I(0) is the overall integral 

signal intensity,  is the dipolar coupling frequency of a given i,j spin pair, 

A0 = -0.3375, and A1 = 0.15.24 In Figure 3b theoretical and experimental values of the 

intensity of the central line (I0) and of the first-order sideband (I1) have been plotted as a 

function of D
eff  R 2

, where:

(2) D
eff  D

ij 
ij

N


2

is an effective dipolar coupling. Different cases have been considered by running the 

sums in equations (1) and (2) on a different number of pairs of 31P nuclei. In particular, 

the pairs considered in the sums were those between a chosen 31P nucleus and all the 

31P nuclei within a given distance (threshold) from it (taken from the optimized bP 

crystal structure, vide infra). In Figure 3b, three cases have been reported, with threshold 

values of 2.30, 3.55, and 4.00 Å, corresponding to  values of 3016.5, 3318.9,  D
eff / 2

3410.2 Hz, respectively. In particular, only the 3 31P nuclei closest to the chosen P (all 

belonging to the same layer) are considered in the first case, while the threshold of 3.55 

Å includes the 11 closest 31P nuclei of the same layer. At last, increasing the threshold 

up to 4 Å also the couplings with the closest 4 31P nuclei in the adjacent layer are 

considered. The 31P nuclei considered in the three calculations are highlighted in Figure 

3c. It is possible to observe that the experimental trends are very well reproduced in the 
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last case (threshold = 4 Å): this demonstrates that the homonuclear 31P-31P dipolar 

interactions determining the MAS NMR spectra of bP are those of one P nucleus with 

its 15 closest crystallographic neighbors, 11 in the same layer and 4 in the adjacent layer. 

By further extending the set of 31P nuclei considered in the calculation, we could 

observe that the sum of the squared residues and the value of  reach an horizontal  D
eff

asymptote for slightly higher threshold values (see Figure S7). It is worth noticing that 

this is the first time that the method proposed by Spiess24 for correlating the extent of 

the 1H-1H homonuclear dipolar interaction to the structural features of an organic solid 

has been applied to 31P nuclei in an inorganic material.
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Figure 3. (a) 31P NMR spectra of bP recorded under static (0 kHz) and MAS (from bottom to top 
at a frequency of 2, 3, 6, 9, 13, 16 kHz) conditions; (b-c) trends of the experimental integral 
intensities of the isotropic peak (blue circles) and of the first order sidebands (red circles) as a 
function of . The blue and red lines represent the corresponding theoretical values (D

eff / R )2

calculated following equations 1 and 2. The three graphs have been obtained including in the 
calculation of  and of the theoretical intensities the dipolar couplings of a given 31P nucleus  D

eff

(coloured in grey in c) with the 31P nuclei within a distance of 2.30, 3.55, and 4.00 Å (coloured in 
red in c); 3, 11, and 15 pairs of nuclei were included in the calculations in the three cases, 
respectively. 
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Once established the strength of the effective dipolar coupling, it is interesting to 

characterize the chemical shielding interaction of 31P nuclei in bP. This has been done by 

exploiting an anisotropic – isotropic correlation experiment based on the symmetry 

sequence R101
3.26,27 In particular, the sequence R101

3 selectively recouples the second-

rank spatial component of the chemical shielding tensor, while completely suppressing 

the homonuclear dipole-dipole interaction.28 In Figure 4 the 2D 31P anisotropic – 

isotropic chemical shift correlation spectrum of bP is shown together with the 

experimental and simulated 31P line shapes obtained for the 31P isotropic peak at 20 

ppm. From the simulation it has been possible to determine a chemical shift anisotropy 

δaniso = 13 ppm and an asimmetry η = 0 (defined following the Haeberlen-Mehring-

Spiess convention29), corresponding to the following values of the chemical shift tensor 

components in its principal axis frame (PAF) δzz
PAF = 29 ppm, δxx

PAF
 = δyy

PAF = 16 ppm. It 

can be noticed that the chemical shift anisotropy, at the 31P Larmor frequency of the 

experiments, is about 2100 Hz, thus smaller than the effective main 31P-31P homonuclear 

dipolar interaction (about 3400 Hz).
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Figure 4. (a) 2D 31P anisotropic – isotropic correlation spectrum of bP obtained by the symmetry 
sequence R101

3 and, on the top, experimental (black line) and simulated (red line) 31P CSA line 
shapes corresponding to the 31P isotropic peak at 20 ppm. The values of chemical shift 
anisotropy, δaniso, and asimmetry, η, used in the simulation are reported in the figure. δaniso and η 
are defined according to the Haeberlen-Mehring-Spiess convention as δ aniso = δ zz

PAF-( δ xx
PAF+ δ

yy
PAF)/2 and η = (δyy

PAF-δxx
PAF)/(δzz

PAF- δiso) where |δzz
PAF-δiso| ≥ |δxx

PAF-δiso| ≥ |δyy
PAF-δiso| and δiso = 

(δxx
PAF+δyy

PAF+δzz
PAF)/3.

Thus, in order to fully characterize the 31P spin interactions in bP, we also determined 

the orientation of the 31P chemical shift tensors by Density Functional Theory 

calculations (computational details are reported in the Supporting Information).30,31 The 

optimized cell parameters correspond to a tetragonal box with sides 3.33 x 4.42 x 10.48 

Å (in very good agreement with the experimental values4 3.31 x 4.38 x 10.48 Å). Within 

the unit cell, the structure of bP is determined by using 8 atoms, organized in two 

separate layers (4 P atoms per layer) held together by weaker (dispersive) interactions. 
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Focusing on the structure of the single layer (shown in Figure 4b), as already 

mentioned, each P atom is surrounded by three first-neighbors, at a distance of 2.23-2.26 

Å; the atoms are organized according to an armchair configuration and can be grouped 

in stripes at two different heights. According to the results of the simulation, the 4 

atoms of the layer are not magnetically equivalent, but can be divided in two groups 

(coloured in grey and yellow in Figure 4b), having the same principal values of the 

chemical shift tensors but a different orientation of their principal axes frames (xPAF,i, 

yPAF,i, zPAF,i, with i =1, 2) with respect to a common reference frame (xREF, yREF, zREF) in 

which the xREF axis is aligned along the stripe direction (Figure 4b). The principal axes 

frames of the chemical shift tensors of the two magnetically inequivalent phosphorus 

nuclei have the xPAF,i axes coincident with xREF, while the yPAF,i and zPAF,i axes can be 

obtained from yREF and zREF by a rotation of +α or –α about xREF, with α ≈ 26°. By 

considering the experimental values previously determined for the principal 

components of the chemical shift tensor, it can be observed that the most shielded axis 

zPAF,i is approximately aligned with the P lone pair.

The isotropic chemical shift of bP is predicted by DFT to be 49 ppm. Although this 

value is quite different from the experimental one (about 20 ppm), it can be considered 

satisfactory taking into account the wide range of shifts characterizing P atoms in 

different chemical environments,32 and the inherent difficulties in achieving a full 

reproduction of the experimental values in each chemical environment. In addition to 
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the isotropic shift, DFT also predicts that each atom is characterized by an anisotropy of 

25 ppm and η of 0.06-0.07, in good agreement with the experimental results.

In conclusion, by exploiting Solid State NMR techniques we could record and analyze 

31P NMR spectra of fl-bP nanoflakes suspended in solvent, observing negligible effects 

of both the size of the nanoflakes and the nature of the solvent and identifying the main 

oxidized species formed. The main nuclear spin interactions occurring in solid bP, 

substantially similar to those of its exfoliated form fl-bP, were characterized by 

combining Solid State NMR experiments and DFT calculations. It emerged that a 

prominent role is played by the 31P-31P homonuclear dipolar interaction, which, by 

applying for the first time to 31P nuclei in an inorganic material a method proposed for 

1H nuclei in organic solids,24 has been quantified and correlated to the network of 31P 

nuclei more strongly dipolar coupled. This network is constituted by one 31P nucleus 

and its 15 closest neighbors (within 4 Å), 11 in the same layer and 4 in the adjacent 

layer. Moreover the 31P chemical shift tensors were experimentally and computationally 

determined, highlighting the existence of two kinds of magnetically non-equivalent 

phosphorus nuclei, differing for the orientation of the chemical shift principal axes 

frame. 

This is the first study reporting a complete characterization of the nuclear spin 

interactions determining the 31P NMR spectra of bP and of its exfoliated form fl-bP, 

which adds an important piece of information to the fundamental chemico-physical 
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knowledge of this “rediscovered” allotrope of phosphorus and supports increasing 

future applications of NMR to phosphorene-based materials. 
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