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Abstract

We collect and present in a unified way several results in recent years about the elastic
flow of curves and networks, trying to draw the state of the art of the subject. In par-
ticular, we give a complete proof of global existence and smooth convergence to critical
points of the solution of the elastic flow of closed curves in R2. In the last section of the
paper we also discuss a list of open problems.

Mathematics Subject Classification (2020): 53E40 (primary); 35G31, 35A01, 35B40.

1 Introduction

The study of geometric flows is a very flourishing mathematical field and geometric evolution
equations have been applied to a variety of topological, analytical and physical problems,
giving in some cases very fruitful results. In particular, a great attention has been devoted to
the analysis of harmonic map flow, mean curvature flow and Ricci flow. With serious efforts
from the members of the mathematical community the understanding of these topics grad-
ually improved and it culminated with Perelman’s proof of the Poincaré conjecture making
use of the Ricci flow, completing Hamilton’s program. The enthusiasm for such a marvelous
result encouraged more and more researchers to investigate properties and applications of
general geometric flows and the field branched out in various different directions, including
higher order flows, among which we mention the Willmore flow.

In the last two decades a certain number of authors focused on the one dimensional
analog of the Willmore flow (see [26]): the elastic flow of curves and networks. The elastic
energy of a regular and sufficiently smooth curve γ is a linear combination of the L2-norm
of the curvature κ and the length, namely

E (γ) :=

∫
γ
|κ|2 + µds .

where µ ≥ 0. In the case of networks (connected sets composed ofN ∈ N curves that meet at
their endpoints in junctions of possibly different order) the functional is defined in a similar
manner: one sum the contribution of each curve (see Definition 2.1). Formally the elastic
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flow is the L2 gradient flow of the functional E (as we show in Section 2.3) and the solutions
of this flow are the object of our interest in the current paper.

To the best of our knowledge the problem was taken into account for the first time by
Polden. In his Doctoral Thesis [46, Theorem 3.2.3.1] he proved that, if we take as initial da-
tum a smooth immersion of the circle in the plane, then there exists a smooth solution to the
gradient flow problem for all positive times. Moreover, as times goes to infinity, it converges
along subsequences to a critical point of the functional (either a circle, or a symmetric figure
eight or a multiple cover of one of these). Polden was also able to prove that if the winding
number of the initial curve is ±1 (for example the curve is embedded), then it converges to
a unique circle [46, Corollary 3.2.3.3]. In the early 2000s Dziuk, Kuwert and Schätzle gener-
alize the global existence and subconvergence result to Rn and derive an algorithm to treat
the flow and compute several numerical examples. Later the analysis was extended to non
closed curve, both with fixed endpoint and with non–compact branches. The problem for
networks was first proposed in 2012 by Barrett, Garcke and Nürnberg [7].

Beyond the study of this specific problem there are quite a lot of catchy variants. For
instance, as for a regular C2 curve γ : I → R2 it holds k = ∂sτ , where τ is the unit tangent
vector and ∂s denotes derivative with respect to the arclength parameter s of the curve, we
can introduce the tangent indicatrix: a scalar map θ : I → R such that τ = (cos θ, sin θ).
Then we can write the elastic energy in terms of the angle spanned by the tangent vector.
By expressing the L2 corresponding gradient flow by means of θ one get another geometric
evolution equation. This is a second order gradient flow and it has been first considered
by [54] and then further investigated by [30, 31, 42, 45, 55].

Critical points of total squared curvature subject to fixed length are called elasticae, or
elastic curves. Notice that for any µ > 0 the elasticae are (up to homothety) exactly the critical
points of the energy E . Elasticae have been studied since Bernoulli and Euler as the elastic
energy was used as a model for the bending energy of an elastic rod [53] and more recently
Langer and Singer contributed to their classification [27, 28] (see also [20, 32]).
TheL2–gradient flow of

∫
|κ|2 dswhen the curve is subjected to fixed length is studied in [12,

13, 21, 49].
It is worth to mention also results about the Helfrich flow [17, 56], the elastic flow with

constraints [25, 43, 44] and other fourth (or higher) order flows [1, 2, 36, 37, 57].
In the following table we collect some contributions on the elastic flow of curves (closed

or open) and networks. The first column concerns papers containing detailed proofs of short
time existence results. The initial datum can be a function of a suitably chosen Sobolev space,
or Hölder space, or the curves are smooth. In the second column we place the articles that
show existence for all positive times or that describe obstructions to such a desired result.
When the flow globally exists, it is natural to wonder about the behavior of the solutions for
t → +∞. Papers that answer this question are in the third column. The ambient space may
vary from article to article: it can be R2, Rn, or a Riemannian manifold.

Short Time Existence Long time Behavior Asymptotic Analysis
closed curves [46] [21] [46] [21] [35] [46] [47]

open curves Navier b.c. [40] [40] [40] [41]
open curves, clamped b.c. [52] [29] [18] [41]

non compact curves [40] [40]
networks [15] [23] [22] [14] [22] [14]

We refer also to the two recent PhD theses [38, 48].

2



The aim of this expository paper is to arrange (most of) this material in a unitary form,
proving in full detail the results for the elastic flow of closed curves and underlying the
differences with the other cases.

For simplicity we restrict to the Euclidean plane as ambient space. In Section 2 we define
the flow, deriving the motion equation and the necessary boundary conditions for open
curves and networks. In the literature curves that meet at junctions of order at most three
are usually considered, while here the order of the junctions is arbitrary.

In Section 3 we show short time existence and uniqueness (up to reparametrizations) for
the elastic flow of closed curve, supposing that the initial datum is Hölder–regular (Theo-
rem 3.18). The notion of L2-gradient flow gives rise to a fourth order parabolic quasilinear
PDE, where the motion in tangential direction is not specified. To obtain a non–degenerate
equation we fix the tangential velocity, then getting first a special flow (Definition 2.12). We
find a unique solution of the special flow (Theorem 3.14) using a standard linearization pro-
cedure and a fixed point argument. Then a key point is to ensure that solving the special
flow is enough to obtain a solution to the original problem. How to overcome this issue is
explained in Section 2.4. The short time existence result can be easily adapted to open curves
(see Remark 3.15), but present some extra difficulties in the case of networks, that we explain
in Remark 3.16.

One interesting feature following from the parabolic structure of the elastic flow is that
solutions are smooth for any (strictly) positive times. We give the idea of two possible lines
of proof of this fact and we refer to [22] and [15] for the complete result.

Section 4 is devoted to the prove that the flow of either closed or open curves with fixed
endpoint exists globally in time (Theorem 4.15). The situation for network is more delicate
and it depends on the evolution of the length of the curves composing the network and on
the angles formed by the tangent vectors of the curves concurring at the junctions (Theo-
rem 4.18).

In Section 5 we first show that, as time goes to infinity, the solutions of the elastic flow of
closed curve convergence along subsequences to stationary points of the elastic energy, up to
translations and reparametrizations. We shall refer to this phenomenon as the subconvergence
of the flow. We then discuss how the subconvergence can be promoted to full convergence
of the flow, namely to the existence of the full asymptotic limit as t → +∞ of the evolving
flow, up to reparametrizations (Theorem 5.4). The proof is based on the derivation and the
application of a Łojasiewicz–Simon gradient inequality for the elastic energy.

We conclude the paper with a list of open problems.

2 The elastic flow

A regular curve γ is a continuous map γ : [a, b] → R2 which is differentiable on (a, b) and
such that |∂xγ| never vanishes on (a, b). Without loss of generality, from now on we consider
[a, b] = [0, 1].

In the sequel we will abuse the word “curve” to refer both to the parametrization of a
curve, the equivalence class of reparametrizations, or the support in R2.

We denote by s the arclength parameter and we will pass to the arclength parametriza-
tion of the curves when it is more convenient without further mentioning. We will also
extensively use the arclength measure ds when integrating with respect to the volume el-
ement µg on [0, 1] induced by a regular rectifiable curve γ, namely, given a µg-integrable
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function f on [0, 1] it holds∫
[0,1]

f dµg =

∫ 1

0
f(x)|∂xγ(x)| dx =

∫ `(γ)

0
f(x(s)) ds =:

∫
γ
f ds ,

where `(γ) is the length of the curve γ.

Definition 2.1. A planar networkN is a connected set in R2 given by a finite union of images
of regular curves γi : [0, 1] → R2 that may have endpoints of order one fixed in the plane
and curves that meet at junctions of different order m ∈ N≥2.
The order of a junction p ∈ R2 is the number

∑
i{0, 1} ∩ ](γi)−1(p).

As special cases of networks we find:

• a single curve (either closed or not);

• a network of three curves whose endpoints meet at two different triple junction (the
so-called Theta);

• a network of three curves with one common endpoint at a triple junction and the other
three endpoint of order one (the so called Triod).

Notice that when it is more convenient, we will parametrize a closed curve as a map
γ : S1 → R2.

In order to calculate the integral of an N -tuple f = (f1, . . . , fN ) of functions along the
network N composed of the N curves γi we adopt the notation∫

N
f ds :=

N∑
i=1

∫
γi
f|γi ds =

N∑
i=1

∫ 1

0
f i|∂xγi| dx .

If µ = (µ1, . . . , µN ) with µi ≥ 0, then the notation
∫
N µf ds stands for

∑N
i=1

∫ 1
0 µ

if i|∂xγi| dx.

Let γ : [0, 1]→ R2 be a regular curve and f : (0, 1)→ R a Lebesgue measurable function.
For p ∈ [1,∞) we define

‖f‖pLp(ds) :=

∫
γ
|f |p ds =

∫ 1

0
|f(x)|p|∂xγ(x)|dx

and
Lp(ds) :=

{
f : (0, 1)→ R Lebesgue measurable with ‖f‖pLp(ds) < +∞

}
.

We will also use the L∞–norm

‖f i‖L∞(ds) := ess supL∞(ds) |f i| .

Whenever we are considering continuous functions, we identify the supremum norm with
the L∞ norm and denote it by ‖·‖∞.

We remark here that for sake of notation we will simply write ‖ · ‖Lp instead of ‖·‖Lp( ds)
both for p ∈ [1,∞) and p =∞whenever there is no risk of confusion.
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We will analogously write

‖f‖Lp :=
N∑
i=1

‖f i‖Lp(ds) for all p ∈ [1,∞) and ‖f‖L∞ :=
N∑
i=1

‖f i‖L∞(ds) ,

for an N -tuple of functions f along a network N .
Assuming that γi is of class H2, we denote by κi := ∂2sγ

i the curvature vector to the
curve γi, which is defined at almost every point and the curvature is nothing but κi := |κi|.
We recall that in the plane we can write the curvature vector as κi = kiνi where νi is the
counterclockwise rotation of π

2 of the unit tangent vector τ i := |∂xγi|−1(∂xγi) to a curve γi

and then ki is the oriented curvature.

Definition 2.2. Let µi ≥ 0 be fixed for i ∈ {1, . . . , N}. The elastic energy functional Eµ of a
network N given by N curves γi of class H2 is defined by

Eµ (N ) :=

∫
N
|κ|2 ds+ µL(N ) :=

N∑
i=1

(∫
N i

(ki)2 ds+ µi `(γi)

)
, (2.1)

and µL(N ) is named weighted global length of the network N .

2.1 First variation of the elastic energy

The computation of the first variation has been carried several times in full details in the
literature, both in the setting of closed curves or networks. We refer for instance to [7, 35].

Let N ∈ N, i ∈ {1, . . . , N}. Consider a network N composed of N curves, parametrized
by γi : [0, 1] → R2 of class H4. In order to compute the first variation of the energy we can
suppose that the curves meet at one junction, which is of order N and γi(1) is some fixed
point in R2 for any i. That is

γ1(0) = . . . = γN (0) , γi(1) = P i ∈ R2 .

The case of networks with other possible topologies can be easily deduced from the pre-
sented one. We consider a variation γiε = γi + εψi of each curve γi of N with ε ∈ R and
ψi : [0, 1]→ R2 of class H2. We denote by Nε the network composed of the curves γiε, which
are regular whenever |ε| is small enough. We need to impose that the structure of the net-
work N is preserved in the variation: we want the network Nε to still have one junction of
order N and we want to preserve the position of the other endpoints γiε(1) = P i. To this aim
we require

ψ1(0) = . . . = ψN (0) , ψi(1) = 0 ∀ i ∈ {1, . . . , N} .

By definition of the elastic energy functional of networks, we have

Eµ(Nε) =

N∑
i=1

∫
γiε

(kiε)
2 + µi ds =

N∑
i=1

∫
γiε

|κiε|2 + µi ds .

We introduce the operator ∂⊥s (that acts on a vector field ϕ) defined as the normal component
of ∂sϕ along the curve γ, that is ∂⊥s ϕ = ∂sϕ−〈∂sϕ, ∂sγ〉 ∂sγ. Then a direct computation yields

5



the following identities:

∂ε dsε = 〈∂sψi, τ iε〉 dsε =
(
∂s〈ψi, τ iε〉 − 〈ψi,κiε〉

)
dsε,

∂ε∂s − ∂s∂ε =
(
〈κiε, ψi〉 − ∂s〈τ iε, ψi〉

)
∂s,

∂ετ
i
ε = ∂⊥s (ψi)⊥ + 〈τ iε, ψi〉κiε,

∂εκ
i
ε = (∂⊥s )2(ψi)⊥ − 〈∂⊥s (ψi)⊥,κiε〉τ iε + 〈τ iε, ψi〉∂sκiε + 〈κiε, ψi〉κiε,

(2.2)

for any i on (0, 1), where s is the arclength parameter of γε for any ε. Therefore, evaluating
at ε = 0, we obtain

d

dε
Eµ(Nε)

∣∣∣
ε=0

=

N∑
i=1

[∫
γi

2〈κi, ∂2sψi〉 ds+

∫
γi

(−3|κi|2 + µi)
〈
τ i, ∂sψ

i
〉

ds

]
. (2.3)

Moreover, denoting by ∂⊥s (·) := ∂s(·)− 〈∂s(·), τ〉τ , we have

∂sκ
i = ∂⊥s κ

i − |κi|2τ i ,
∂2sκ

i = (∂⊥s )2κi − 3〈∂sκi,κi〉∂sγi − |κi|2κi ,

then, using these identities and integrating (2.3) by parts twice, one gets

d

dε
Eµ(Nε)

∣∣∣
ε=0

=

N∑
i=1

∫
γi

〈
2(∂⊥s )2κi + |κi|2κi − µiκi, ψi

〉
ds

+
N∑
i=1

[
2 〈κi, ∂sψi〉

∣∣1
0

+ 〈−2∂⊥s κ
i − |κi|2τ i + µiτ i, ψi〉

∣∣∣1
0

]
(2.4)

=
N∑
i=1

∫
γi

〈
2(∂⊥s )2κi + |κi|2κi − µiκi, ψi

〉
ds

+

N∑
i=1

2〈κi(1), ∂sψ
i(1)〉 − 2〈κi(0), ∂sψ

i(0)〉

+

〈(
N∑
i=1

−2∂⊥s κ
i(0)− |κi(0)|2τ i(0) + µiτ i(0)

)
, ψ1(0)

〉
. (2.5)

As we chose arbitrary fields ψi, we can split ∂sψi into normal and tangential components as

∂sψ
i = ∂⊥s ψ

i + ∂‖sψ
i =

〈
∂sψ

i, νi
〉
νi +

〈
∂sψ

i, τ i
〉
τ i =:

(
ψis
)⊥
νi +

(
ψis
)‖
τ i .

This allows us to write〈
κi, ∂sψ

i
〉

=
〈
kiνi,

(
ψis
)⊥
νi +

(
ψis
)‖
τ i
〉

= ki
(
ψis
)⊥

,

and we can then partially reformulate the first variation in terms of the oriented curvature
and its derivatives:

d

dε
Eµ(Nε)

∣∣∣
ε=0

=

N∑
i=1

∫
γi

(
2∂2sk

i + (ki)3 − µiki
) (
ψi
)⊥

ds

+ 2
N∑
i=1

ki
(
ψis
)⊥∣∣∣1

0
+

〈(
N∑
i=1

−2∂⊥s κ
i(0)− |κi(0)|2τ i(0) + µiτ i(0)

)
, ψ1(0)

〉
. (2.6)
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2.2 Second variation of the elastic energy

In this part we compute the second variation of the elastic energy functional Eµ. We are in-
terested only in showing its structure and analyze some properties, instead of computing it
explicitly (for the full formula of the second variation we refer to [18] and [47]). In fact, we
will exploit the properties of the second variation only in the proof of the smooth conver-
gence of the elastic flow of closed curves in Section 5. In particular, we we will not need to
carry over boundary terms in the next computations.

Let γ : (0, 1) → R2 be a smooth curve and let ψ : (0, 1) → R2 be a vector field in
H4(0, 1) ∩ C0

c (0, 1), that is, ψ identically vanishes out of a compact set contained in (0, 1). In
this setting, we can think of γ as a parametrization of a part of an arc of a network or of a
closed curve. We are interested in the second variation

d2

dε2
Eµ(γ + εψ)

∣∣∣
ε=0

.

By (2.4) we have

d2

dε2
Eµ(γ + εψ)

∣∣∣
ε=0

=
d

dε

∣∣∣
ε=0

∫
γε

〈
2(∂⊥s )2κε + |κε|2κε − µκε, ψ

〉
dsε ,

where κε is the curvature vector of γε = γ + εψ, for any ε sufficiently small.
We further assume that γ is a critical point for Eµ and that ψ is normal along γ. Then

d2

dε2
Eµ(γ + εψ)

∣∣∣
ε=0

=

∫
γ

〈
∂ε
∣∣
ε=0

(
2(∂⊥s )2κε + |κε|2κε − µκε

)
, ψ
〉

ds .

Using (2.2), if φε is a normal vector field along γε for any ε and we denote φ := φ0, a direct
computation shows that

∂ε|ε=0∂
⊥
s φε − ∂⊥s ∂ε|ε=0φε = 〈ψ,κ〉∂⊥s φ− 〈∂⊥s φ, ∂⊥s ψ〉τ + 〈φ,κ〉∂⊥s ψ .

Hence ∂ε|ε=0(∂⊥s )2κε can be computed applying the above commutation rule twice, first with
φε = ∂⊥s κε and then with ψε = κε. One easily obtains

∂ε|ε=0(∂⊥s )2κε = (∂⊥s )4ψ + Ω(ψ) ,

where Ω(ψ) ∈ L2(ds) is a normal vector field along γ, depending only on k, ψ and their
“normal derivatives” ∂⊥s up to the third order. Moreover the dependence of Ω on ψ is linear.
For further details on these computations we refer to [35].

Using (2.2) it is immediate to check that ∂ε|ε=0

(
|κε|2κε − µκε

)
yields terms that can be

absorbed in Ω(ψ). Therefore we conclude that

d2

dε2
Eµ(γ + εψ)

∣∣∣
ε=0

=

∫
γ

〈
2(∂⊥s )4ψ + Ω(ψ), ψ

〉
ds .

By polarization, we see that the second variation of Eµ defines a bilinear form δ2Eµ(ϕ,ψ)
given by

δ2Eµ(ϕ,ψ) =

∫
γ

〈
2(∂⊥s )4ϕ+ Ω(ϕ), ψ

〉
ds ,

for any normal vector field ϕ,ψ of class H4 ∩ C0
c along γ, which is a smooth critical point of

Eµ.
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2.3 Definition of the flow

In this section we define the elastic flow for curves and networks. We formally derive it as
the L2–gradient flow of the elastic energy functional (2.1). We need to derive the normal
velocity defining the flow. The reasons why a gradient flow is defined in term of a normal
velocity are related to the invariance under reparametrization of the energy functional and
we will come back on this point more deeply in Section 2.4.

The analysis of the boundary terms appeared in the computation of the first variation
play an important role in the definition of the flow. Indeed, a correct definition of the flow
depends on the fact that the velocity defining the evolution should be the opposite of the
“gradient” of the energy. Hence we need to identify such a gradient from the formula of the
first variation and, in turn, analyze the boundary terms appearing.

Suppose first that the network is composed only of one closed curve γ ∈ C∞([0, 1],R2).
This means that for every k ∈ N we have ∂kxγ(0) = ∂kxγ(1) and γ can be seen as a smooth
periodic function on R. Then a variation field ψ is just a periodic function as well and no fur-
ther boundary constraints are needed and then the boundary terms in (2.4) are automatically
zero. Then (2.5) reduces to

d

dε
Eµ(γε)|ε=0 =

∫
γ

〈
2(∂⊥s )2κ+ |κ|2κ− µκ, ψ

〉
ds .

We have formally written the directional derivative of Eµ of each curve in the direction ψ as
the L2–scalar product of ψ and the vector 2(∂⊥s )2κ+ |κ|2κ− µκ. Hence we can understand
2(∂⊥s )2κ + |κ|2κ − µκ to be the gradient of Eµ. We then set the normal velocity driving the
flow to be the opposite of such a gradient, that is

(∂tγ)⊥ = −2(∂⊥s )2κ− |κ|2κ+ µκ , (2.7)

where, again, (·)⊥ denotes the normal component of the velocity ∂tγ of the curve γ:

(∂tγ)⊥ = ∂tγ − 〈∂tγ, τ〉 τ .

In R2 it is possible to express the evolution equation in terms of the scalar curvature:

〈∂tγ, ν〉 ν = (∂tγ)⊥ = 2(∂⊥s )2κ+ |κ|2κ− µκ =
(
2∂2sk + (k)2k − µk

)
ν .

This last equality can be directly deduced from (2.6). In this way we have derived an equa-
tion that describe the normal motion of each curve.

We pass now to consider, exactly as in Section 2.1, a network composed of N curves,
parametrized by γi : [0, 1]→ R2 with i ∈ {1, . . . , N}, that meet at one junction of order N at
x = 0 and have the endpoints at x = 1 fixed in R2. We denote by Nε the network composed
of the curves γiε = γi + εψi with ψi : [0, 1]→ R2 such that

ψ1(0) = . . . = ψN (0) , ψi(1) = 0 ∀ i ∈ {1, . . . , N} .

Since the energy of a network is defined as the sum of of the energy of each curve, it
is reasonable to define the gradient of Eµ as the sum of the gradient of the energy of each
curve composing the network, that we have identified with the vectors 2(∂⊥s )2κi + |κi|2κi −
µiκi. Hence, a network is a critical point of the energy when the the vectors 2(∂⊥s )2κi +
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|κi|2κi − µiκi vanish and the boundary terms in (2.5) are zero. Depending on the boundary
constraints imposed on the network, i.e., its topology or possible fixed endpoints, we aim
now to characterize the set of networks fulfilling boundary conditions that imply

N∑
i=1

[
2 〈κi, ∂sψi〉

∣∣1
0

+ 〈−2∂⊥s κ
i − |κi|2τ i + µiτ i, ψi〉

∣∣∣1
0

]
= 0 .

Let us discuss the main possible cases of boundary conditions separately.

Curve with constraints at the endpoints
As we have mentioned before, if the network is composed of one curve, but this curve is

not closed, then we fix its endpoint, namely γ(0) = P ∈ R2 and γ(1) = Q ∈ R2. As already
shown in in Section 2.1, to maintain the position of the endpoints, we require ψ(0) = ψ(1) =
0, that automatically implies

〈−2∂⊥s κ
i − |κi|2τ i + µiτ i, ψi〉

∣∣∣1
0

= 0 ,

in the computation of the first variation. On the other hand we are free to chose ∂sψ as test
fields in the first variation. Suppose for example that ∂sψ(0) = ν (where ν is the unit normal
vector to the curve γ) and ∂sψ(1) = 0, then from (2.5) we obtain k(0) = 0 and so k(0) = 0.
Interchanging the role of ∂sψ(0) and ∂sψ(1) we have k(1) = k(1) = 0.

Hence we end up with the following set of conditions
γ(0) = P

γ(1) = Q

κ(0) = κ(1) = 0 ,

known in the literature as natural or Navier boundary conditions.

However, since the elastic energy functional is a functional of the second order, it is le-
gitimate to impose also that the unit tangent vectors at the endpoint of the curve are fixed,
namely that the curve is clamped. Hence we now have γ(0) = P, γ(1) = Q, τ(0) = τ0, τ(1) =
τ1 as constraints. This time these boundary conditions affects the class of test function re-
quiring ∂sψ(0) = ∂sψ(1) = 0, that, together with ψ(0) = ψ(1) = 0, automatically set (2.5) to
zero.

Networks
We can consider without loss of generality that the structure of a network is as described

in Section 2.1. Indeed boundary conditions for a other possible topologies can be easily
deduces from this case.

The possible boundary condition at x = 1 are nothing but what we just described for a
single curve with constraints at the endpoints. Thus we focus on the junction O = γ1(0) =
. . . = γN (0). We can distinguish two sub cases

Neumann (so-called natural or Navier) boundary conditions
In this case we only require the network not to change its topology in a first variation.

Letting first ψi(0) = 0 for any i, it remains the boundary term

N∑
i=1

〈κi(0), ∂sψ
i(0)〉 = 0,

9



where the test functions ψi appear differentiated. We can choose ∂sψ
1(0) = ν1(0) and

∂sψ
i(0) = 0 for every i ∈ {2, . . . , N}. This implies κ1(0) = 0. Then, because of the arbi-

trariness of the choice of i we obtain:

κi(0) = 0 , (2.8)

for any i ∈ {1, . . . , N}.
It remains to consider the last term of (2.5). Taking into account the just obtained condi-

tion (2.8), by arbitrariness of ψ1(0) = ... = ψN (0) it reads

N∑
i=1

(
−2∂⊥s κ

i(0) + µτ i(0)
)

= 0 ,

Dirichlet (so-called clamped) boundary conditions
As discussed above, also in the case of a network we can impose a condition on the

tangent of the curves at their endpoints. As we saw in the clamped curve case, from the
variational point of this extra condition involves the unit tangent vectors. Then an extra
property on ∂sψi is expected.

At the junction we require the following (N − 1) conditions:〈
τ i1(0), τ i2(0)

〉
= c1,2 , . . . ,

〈
τ iN−1(0), τ iN (0)

〉
= cN−1,N ,

that is, the angles between tangent vectors are fixed. We need that also the variation Nε
satisfies the same〈

τ i1ε (0), τ i2ε (0)
〉

= c1,2 , . . . ,
〈
τ
iN−1
ε (0), τ iNε (yN )

〉
= cN−1,N ,

for any |ε| small enough. This means that for every i, j ∈ {1, . . . , N}we need that

d

dε

〈
τ iε(0), τ jε (0)

〉
= 0 ,

that implies

0 =
d

dε

〈
τ iε(0), τ jε (0)

〉 ∣∣∣
ε=0

=
〈
∂⊥s ψ

i(0), τ j(0)
〉

+
〈
τ i(0), ∂⊥s ψ

j(0)
〉

= (ψis)
⊥(0)

〈
νi(0), τ j(0)

〉
+ (ψjs)

⊥(0)
〈
τ i(0), νj(0)

〉
= (ψis)

⊥(0)
〈
νi(0), τ j(0)

〉
− (ψjs)

⊥(0)
〈
νi(0), τ j(0)

〉
.

where we used the notation
(
ψis
)⊥

:=
〈
∂sψ

i, νi
〉
. So we impose

(ψ1
s)
⊥(0) = . . . = (ψNs )⊥(0) . (2.9)

Then the first boundary term of (2.5) reduces to

2〈(ψ1
s)
⊥(0),

N∑
i=1

ki(0)〉 .
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Hence we find the following boundary conditions:

N∑
i=1

ki(0) = 0 ,
N∑
i=1

−2∂⊥s κ
i(0)− |κi(0)|2τ i(0) + µiτ i(0) = 0 .

In the end, whenever the network is composed of N curves we have a system of N
equations (not coupled) that are quasilinear and of fourth order in the parametrizations of
the curves with coupled boundary conditions.

We now need to briefly introduce the Hölder spaces that will appear in the definition of
the flow.

Let N ∈ N, consider a network N composed of N curves with endpoints of order one
fixed in the plane and the curves that meet at junctions of different order m ∈ N≥2. As we
have already said each curve of N is parametrized by γi : [0, 1] → R2. Let α ∈ (0, 1). We
denote γ := (γ1, . . . , γN ) ∈ (R2)N and

IN := C4+α
(
[0, 1]; (R2)N

)
.

We will make and extensive use of parabolic Hölder spaces (see also [51, §11, §13]). For
k ∈ {0, 1, 2, 3, 4}, α ∈ (0, 1) the parabolic Hölder space

C
k+α
4
,k+α([0, T ]× [0, 1])

is the space of all functions u : [0, T ] × [0, 1] → R that have continuous derivatives ∂it∂
j
xu

where i, j ∈ N are such that 4i+ j ≤ k for which the norm

‖u‖
C
k+α
4 ,k+α

:=

k∑
4i+j=0

∥∥∂it∂jxu∥∥∞ +
∑

4i+j=k

[
∂it∂

j
xu
]
0,α

+
∑

0<k+α−4i−j<4

[
∂it∂

j
xu
]
k+α−4i−j

4
,0

is finite. We recall that for a function u : [0, T ] × [0, 1] → R, for ρ ∈ (0, 1) the semi–norms
[u]ρ,0 and [u]0,ρ are defined as

[u]ρ,0 := sup
(t,x),(τ,x)

|u(t, x)− u(τ, x)|
|t− τ |ρ

,

and

[u]0,ρ := sup
(t,x),(t,y)

|u(t, x)− u(t, y)|
|x− y|ρ

.

Moreover the space C
α
4
,α ([0, T ]× [0, 1]) is equal to the space

C
α
4
(
[0, T ];C0([0, 1])

)
∩ C0 ([0, T ];Cα([0, 1])) ,

with equivalent norms.
We also define the spaces C

k+α
4
,k+α([0, T ] × {0, 1},Rm) to be C

k+α
4 ([0, T ],R2m) via the

isomorphism f 7→ (f(t, 0), f(t, 1))t.
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Definition 2.3 (Elastic flow). Let N ∈ N and let N0 be an initial network composed of N
curves parametrized by γ0 = (γ10 , . . . , γ

N
0 ) ∈ IN , (possibly) with endpoints of order one

and (possibly) with curves that meet at junctions of different order m ∈ N≥2. Then a time
dependent family of networks N (t)t∈[0,T ] is a solution to the elastic flow in the time interval
[0, T ] with T > 0 if there exists a parametrization

γ(t, x) =
(
γ1(t, x), . . . , γN (t, x)

)
∈ C

4+α
4
,4+α

(
[0, T ]× [0, 1]; (R2)N

)
,

with γi regular, and such that for every t ∈ [0, T ], x ∈ [0, 1] and i ∈ {1, . . . , N} the system{
(∂tγ

i)⊥ =
(
−2∂2sk

i − (ki)3 + ki
)
νi

γi(0, x) = γi0(x)
(2.10)

is satisfied. Moreover the system is coupled with suitable boundary conditions as follows,
corresponding to the possible cases of boundary conditions discussed in the formulation of
the first variation.

• If N = 1 and the curve γ0 is closed we require γ(t, x) to be closed and we impose
periodic boundary conditions.

• If N = 1 and the curve γ0 is not closed with γ0(0) = P ∈ R2, γ0(1) = Q ∈ R2 and we
want to impose natural boundary conditions we require

γ(t, 0) = P

γ(t, 1) = Q

κ(t, 0) = κ(t, 1) = 0 .

(2.11)

• If N = 1 and the curve γ0 is not closed with γ0(0) = P ∈ R2, γ0(1) = Q ∈ R2 and we
want to impose clamped boundary conditions, we require

γ(t, 0) = P

γ(t, 1) = Q

τ(t, 0) = τ0

τ(t, 1) = τ1 .

(2.12)

• If N is arbitrary and N0 has one multipoint

γi10 (y1) = . . . = γim0 (ym) ,

with (i1, y1), . . . , (im, ym) ∈ {1, . . . , N} × {0, 1} and we want to impose natural bound-
ary conditions, for every j ∈ {1, . . . ,m}we require{

κij (t, y) = 0∑m
j=1

(
−2∂⊥s κ

ij + µijτ ij
)

(t, yj) = 0 .
(2.13)
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• If N is arbitrary and N0 has one multipoint

γi10 (y1) = . . . = γim0 (ym) ,

with (i1, y1), . . . , (im, ym) ∈ {1, . . . , N} × {0, 1} where we want to impose clamped
boundary conditions, we require

〈
τ i1(y1), τ

i2(y2)
〉

= c1,2

. . .〈
τ im−1(ym−1), τ

im(ym)
〉

= cm−1,m∑m
j=1 k

ij = 0∑m
j=1

(
−2∂⊥s κ

ij − |κij (yi)|2τ ij (yi) + µijτ ij (yi)
)

= 0 .

(2.14)

Clearly in the case of network with several junctions and endpoints of order one fixed
in the plane, one has to impose different boundary conditions (chosen among (2.11), (2.12),
(2.13) and (2.14)) at each junctions and endpoint.

We give a name to the boundary conditions appearing in the definition of the flow. When
there is a multipoint

γi10 (y1) = . . . = γim0 (ym) ,

with (i1, y1), . . . , (im, ym) ∈ {1, . . . , N} × {0, 1}we shortly refer to:

• γi10 (t, y1) = . . . = γim0 (t, ym) as concurrency condition;

•
〈
τ i1(y1), τ

i2(y2)
〉

= c1,2 , . . . ,
〈
τ im−1(ym−1), τ

im(ym)
〉

= cm−1,m as angle conditions;

• either kij (t, y) = 0 for every j ∈ {1, . . . ,m} or
∑m

j=1 k
ij = 0 as curvature conditions;

•
∑m

j=1

(
−2∂⊥s κ

ij − |κij (yi)|2τ ij (yi) + µijτ ij (yi)
)

= 0 as third order condition.

When we have an endpoint of order one we refer to the condition involving the tangent
vector as angle condition and the curvature as curvature condition.

Remark 2.4. In system (2.10) only the normal component of the velocity is prescribed. This
does not mean that the tangential velocity is necessary zero. We can equivalently write the
motion equations as

∂tγ
i = V iνi + T iτ i ,

where V i = −2∂2sk
i − (ki)3 + ki and T i are some at least continuous functions. In the case

of a single closed curve or a single curve with fixed endpoint we can impose T ≡ 0 (see
Section 2.4).

Definition 2.5 (Admissible initial network). A networkN0 ofN regular curves parametrized
by γ = (γ1, . . . , γN ), γi : [0, 1] → R2 with i ∈ {1, . . . , N} possibly with ` endpoints of order
one {γj(yj)} for some (j, yj) ∈ {1, . . . , N} × {0, 1}, and possibly with curves that meet at
k different junctions {Op} of order m ∈ N≥2 at Op = γp1(y1) = . . . = γpm(pm) for some
(pi, yi) ∈ {1, . . . , N} × {0, 1}, p ∈ {1, . . . , k} forming angles αpi,pi+1 between νpi and νpi+1 is
an admissible initial network if

i) the parametrization γ belongs to IN ;
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ii) N0 satisfies all the boundary condition imposed in the system: concurrency, angle,
curvature and third order conditions;

iii) at each endpoint γj(yj) of order one it holds

2∂2sk
j(yj) + (kj)3(yj)− µikj(yj) = 0 ;

iv) the initial datum fulfills the non–degeneracy condition: at each junction

span{νp1 , . . . , νpm0 } = R2 ;

v) at each junction γp1(y1) = . . . = γpm(ym) where at least three curves concur, consider
two consecutive unit normal vectors νpi(yi) and νpk(yk) such that span{νpi(yi), νpk(yk)} =
R2. Then for every j ∈ {1, . . . ,m}, j 6= i, j 6= k we require

sin θiV i(yi) + sin θkV k(yk) + sin θjV j(yj) = 0 ,

where θi is the angle between νpk(yk) and νpj (yj), θk between νpj (yj) and νpi(yi) and
θj between νpi(yi) and νpk(yk).

Remark 2.6. The conditions ii)-iii)–v) on the initial network are the so–called compatibility con-
ditions. Together with the non–degeneracy condition, these conditions concern the boundary
of the network, and so they are not required in the case of one single closed curve.

Remark 2.7. We refer to the conditions iii) and v) as fourth order compatibility conditions.
We explain here how one derives condition v) in the case of a junction γ1(0) = . . . = γm(0).
Differentiating in time the concurrency condition we get ∂tγ1(0) = . . . = ∂tγ

m(0), or, in
terms of the normal and tangential velocities V 1(0)ν1(0)+T 1(0)τ1(0) = . . . = V m(0)νm(0)+
Tm(0)τm(0).

Without loss of generality we suppose that the concurring curves are labeled in a coun-
terclockwise sense and that span{ν1(0), ν2(0)} = R2. Then for every j ∈ {3, . . . ,m}we have

sin θ1ν1(0) + sin θ2ν2(0) + sin θjνj(0) = 0 ,

where θ1 is the angle between ν2(0) and νj(0), θ2 between νj(0) and ν1(0) and θj between
ν1(0) and ν2(0). Then

sin θ1V 1(0) =
〈
V 1(0)ν1(0) + T 1(0)τ1(0), sin θ1ν1(0)

〉
=
〈
V 2(0)ν2(0) + T 2(0)τ2(0),− sin θ2ν2(0)− sin θjνj(0)

〉
= − sin θ2V 2(0) +

〈
V 2(0)ν2(0) + T 2(0)τ2(0),− sin θjνj(0)

〉
= − sin θ2V 2(0) +

〈
V j(0)νj(0) + T j(0)τ j(0),− sin θjνj(0)

〉
= − sin θ2V 2(0)− sin θjV j(0) .

Hence for every j ∈ {3, . . . ,m}we obtained sin θ1V 1(0) + sin θ2V 2(0) + sin θjV j(0) = 0.

Remark 2.8. To prove existence of solutions of class C
4+α
4
,4+α to the elastic flow of networks

it is necessary to require the fourth order compatibility conditions for the initial datum. This
conditions may sound not very natural because it does not appear among the boundary
conditions imposed in the system. It is actually possible not to ask for it by defining the
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elastic flow of networks in a Sobolev setting. The price that we have to pay is that in such
a case a solution will be slightly less regular (see [22, 38] for details). On the opposite side,
if we want a smooth solution till t = 0 one has to impose many more conditions. These
properties, the compatibility conditions of any order, are derived repeatedly differentiating in
time the boundary conditions and using the motion equation to substitute time derivatives
with space derivatives (see [14, 15]).

2.4 Invariance under reparametrization

It is very important to remark the consequences of the invariance under reparametrization of
the energy functional on the resulting gradient flow. These effects actually occur whenever
the starting energy is geometric, i.e., invariant under reparamentrization. To be more precise,
let us say that the time dependent family of closed curves parametrized by γ : [0, T ]× S1 →
R2 is a smooth solution to the elastic flow{

∂tγ(t, x) = Vγ(t, x)νγ(t, x) ,

γ(0, ·) = γ0(·) ,
(2.15)

and the driving velocity ∂tγ is normal along γ. If χ : [0, T ] × S1 → S1 with χ(t, 0) = 0 and
χ(t, 1) = 1 is a smooth one–parameter family of diffeomorphism and σ(t, x) := γ(t, χ(t, x)),
then it is immediate to check that σ solves{

∂tσ(t, x) = Vσ(t, x)νσ(t, x) +W (t, x)τσ(t, x),

σ(0, ·) = γ0(χ(0, ·)) ,

and W can be computed explicitly in terms of χ and γ. More importantly, one has that
Vσ(t, x)νσ(t, x) = Vγ(t, χ(t, x))νγ(t, χ(t, x)). Since W (t, x)τσ(t, x) is a tangential term, σ itself
is a solution to the elastic flow. Indeed its normal driving velocity ∂⊥t σ is the one defining
the elastic flow on σ. This is the reason why the definition of the elastic flow is given in terms
of the normal velocity of the evolution only.

In complete analogy, if β : [0, T )× S1 → R2 is given, it is smooth and solves{
∂tβ(t, x) = Vβ(t, x)νβ(t, x) + w(t, x)τβ(t, x),

β(0, ·) = γ0(χ0(·)) ,

where χ0 : S1 → S1 is a diffeomorphism, then letting ψ : [0, T ] × S1 → S1 be the smooth
solution of {

∂tψ(t, x) = −|(∂xβ)(t, ψ(t, x))|−1w(t, ψ(t, x)),

ψ(0, ·) = χ−10 (·) ,

it immediately follows that γ(t, x) := β(t, ψ(t, x)) solves (2.15).

Something similar holds true also in the general case of networks. First of all it is easy
to check the all possible boundary conditions are invariant under reparametrizations (both
at the multiple junctions and at the endpoints of order one). Concerning the velocity, we
cannot impose the tangential velocity to be zero as in (2.15), but it remains true that if a time
dependent family of networks parametrized by γ = (γ1, . . . , γN ) with γi : [0, T ]× [0, 1]→ R2

is a solution to the elastic flow, then σ = (σ1, . . . , σN ) defined by σi(t, x) = γi(t, χi(t, x)) with
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χi : [0, T ] × [0, 1] → [0, 1] a time dependent family of diffeomorphisms such that σ(t, 0) = 0
and σ(t, 1) = 1 (together with suitable conditions on ∂xσ(t, 0), ∂2xσ(t, 0) and so on) is still a
solution to the elastic flow of networks. Indeed the velocity of γi and σi differs only by a
tangential component.

Remark 2.9. We want to stress that at the junctions the tangential is velocity determined by
the normal velocity.

Consider a junction of order m

γ1(t, 0) = . . . = γm(t, 0) .

Differentiating in time yields ∂tγ1(t, 0) = . . . = ∂tγ
m(t, 0) that, in terms of the normal and

tangential motion V and T reads as

V jνj + T jτ j = V j+1νj+1 + T j+1τ j+1 ,

where j ∈ {1, . . . ,m} with m + 1 := 1 and the argument (t, 0) is omitted from now on.
Testing these identities with the unit tangent vectors τ j leads to the system:

1 − cosα1,2 0 0 . . . 0
0 1 − cosα2,3 0 . . . 0
0 0 1 − cosα3,4 . . . 0
...

...
...

...
...

...
0 0 0 . . . 1 − cosαm−1,m

− cosαm,1 0 0 . . . 0 1





T 1

T 2

T 3

...
Tm−1

Tm


=



− sinα1,2V 2

− sinα2,3V 3

− sinα3,4V 4

...
− sinαm−1,mV m

− sinαm,1V 1


.

We call M the m×m–matrix of the coefficients and R1, . . . , Rm its rows.
It is easy to see that

det(M) = 1− cosαm,1 cosα1,2 . . . cosαm−2,m−1 cosαm−1,m ,

that is different from zero till the non–degeneracy condition is satisfied. Then the sys-
tem has a unique solution and so each T i(t) can be expressed as a linear combination of
V 1(t), . . . , V m(t).

Remark 2.10. The previous observations clarify the fact that the only meaningful notion of
uniqueness for a geometric flow like the elastic one is thus uniqueness up to reparametriza-
tion.

We can actually take advantage of the invariance by reparametrization of the problem
to reduce system (2.10) to a non–degenerate system of quasilinear PDEs. Consider the flow
of one curve γ. As we said before, the normal velocity is a geometric quantity, namely
∂tγ
⊥ = V ν = −2∂2skν− k3ν+µkν. Computing this quantity in terms of the parametrization

γ we get

− V ν = 2∂2skν + k3ν − µkν

= 2
∂4xγ

|∂xγ|4
− 12

∂3xγ
〈
∂2xγ, ∂xγ

〉
|∂xγ|6

− 5
∂2xγ

∣∣∂2xγ∣∣2
|∂xγ|6

− 8
∂2xγ

〈
∂3xγ, ∂xγ

〉
|∂xγ|6

+ 35
∂2xγ

〈
∂2xγ, ∂xγ

〉2
|∂xγ|8

+

〈
−2

∂4xγ

|∂xγ|4
+ 12

∂3xγ
〈
∂2xγ, ∂xγ

〉
|∂xγ|6

+ 5
∂2xγ

∣∣∂2xγ∣∣2
|∂xγ|6

+ 8
∂2xγ

〈
∂3xγ, ∂xγ

〉
|∂xγ|6

− 35
∂2xγ

〈
∂2xγ, ∂xγ

〉2
|∂xγ|8

, τ

〉
τ

− µ ∂2xγ

|∂xγ|2
+

〈
µ
∂2xγ

|∂xγ|2
, τ

〉
τ . (2.16)
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We define

T :=

〈
−2

∂4xγ

|∂xγ|4
+ 12

∂3xγ
〈
∂2xγ, ∂xγ

〉
|∂xγ|6

+ 5
∂2xγ

∣∣∂2xγ∣∣2
|∂xγ|6

+8
∂2xγ

〈
∂3xγ, ∂xγ

〉
|∂xγ|6

− 35
∂2xγ

〈
∂2xγ, ∂xγ

〉2
|∂xγ|8

+ µ
∂2xγ

|∂xγ|2
, τ

〉
. (2.17)

We can insert this choice of the tangential component of the velocity in the motion equa-
tion, which becomes

∂tγ = V ν + Tτ = − 2

|∂xγ|4
∂4xγ + f(∂xγ, ∂

2
xγ, ∂

3
xγ)

= −2
∂4xγ

|∂xγ|4
+ 12

∂3xγ
〈
∂2xγ, ∂xγ

〉
|∂xγ|6

+ 5
∂2xγ

∣∣∂2xγ∣∣2
|∂xγ|6

+ 8
∂2xγ

〈
∂3xγ, ∂xγ

〉
|∂xγ|6

− 35
∂2xγ

〈
∂2xγ, ∂xγ

〉2
|∂xγ|8

+ µ
∂2xγ

|∂xγ|2
.

Considering now the boundary conditions: up to reparametrization the clamped condi-
tion τ(t, 0) = τ0 can be reformulated as ∂xγ(t, 0) = τ0 and the curvature condition k = κ = 0
as ∂2xγ(t, 0) = 0. We can then extend this discussion to the flow of general networks, in order
to define the so-called special flow.

Definition 2.11 (Admissible initial parametrization). We say that ϕ0 = (ϕ1
0, . . . , ϕ

N
0 ) is an

admissible parametrization for the special flow if

• the functions ϕi0 are of class C4+α([0, 1];R2);

• ϕ0 = (ϕ1
0, . . . , ϕ

N
0 ) satisfies all the boundary conditons imposed in the system;

• at each endpoint of order one it holds V i = 0 and T i = 0 for any i;

• at each junction it holds
V iνi + T

i
τ i = V jνj + T

j
τ j

for any i, j;

• at each junction the non–degeneracy condition is satisfied;

where T i is defined as in (2.17) for any i and j.

Definition 2.12 (Special flow). Let N ∈ N and let ϕ0 = (ϕ1
0, . . . , ϕ

N
0 ) be an admissible initial

parametrization in the sense of Definition 2.11 (possibly) with endpoints of order one and
(possibly) with junctions of different orders m ∈ N≥2. Then a time dependent family of
parametrizations ϕt∈[0,T ], ϕ = (ϕ1, . . . , ϕN ) is a solution to the special flow if and only if

for every i ∈ {1, . . . , N} the functions ϕi are of class C
4+α
4
,4+α([0, T ] × [0, 1];R2), for every

(t, x) ∈ [0, T ]× [0, 1] it holds ∂xϕ(x) 6= 0 and the system{
∂tϕ

i = V iνi + T
i
τ i

ϕi(0, x) = ϕ0(x)
(2.18)

is satisfied, where T i is defined as in (2.17) for any i. Moreover the following boundary
conditions are imposed:
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• if N = 1 and ϕ0 is a closed curve, then we impose periodic boundary conditions;

• if N = 1 and ϕ0(0) = P,ϕ0(1) = Q, we can require either
ϕ1(t, 0) = P

ϕ1(t, 1) = Q

∂2xϕ(t, 0) = ∂2xϕ
1(t, 1) = 0 ,

or 
ϕ1(t, 0) = P

ϕ1(t, 1) = Q

∂xϕ
1(t, 0) = τ0

∂xϕ
1(t, 1) = τ1 .

• if N is arbitrary and N0 has one multipoint

γi10 (y1) = . . . = γim0 (ym) ,

with (i1, y1), . . . , (im, ym) ∈ {1, . . . , N} × {0, 1}we can impose either{
∂2xϕ

ij (t, y) = 0 for every j ∈ {1, . . . ,m}∑m
j=1

(
−2∂⊥s κ

ij + µijτ ij
)

(t, yj) = 0 ,

or 

〈
τ i1(y1), τ

i2(y2)
〉

= c1,2

. . .〈
τ im−1(ym−1), τ

im(ym)
〉

= cm−1,m∑m
j=1 k

ij = 0〈
∂2xϕ

ij (t, y), ∂xϕ
ij (t, y)

〉
= 0 for every j ∈ {1, . . . ,m}∑m

j=1

(
−2∂⊥s κ

ij − |κij (yj)|2τ ij (yj) + µijτ ij (yij )
)

= 0 .

Lemma 2.13. Let ϕ0 = (ϕ1
0, . . . , ϕ

N
0 ) be an admissible initial parametrization and ϕt∈[0,T ], ϕ =

(ϕ1, . . . , ϕN ) be a solution to the special flow. Then Nt = ∪Ni=1ϕ
i(t, [0, 1]) is a solution of the elastic

flow of networks with initial datum N0 := ∪Ni=1ϕ
i
0([0, 1]).

Proof. We show that N0 is an admissible initial networks. Conditions i) and iv) are clearly
satisfied, together with condition ii) because at the endpoints of order one 0 = V i = 2∂2sk

i +
(ki)3 − µiki. Also condition iii) it is easy to get: ∂2xϕ(y) = 0 implies k(y) = 0, ∂xϕ(y) = τ∗

implies τ = τ∗ and all the other conditions are already satisfied by the special flow. At
each junction γ1(y1) = . . . = γm(ym) of order at least three we consider two consecutive
unit normal vectors νi(yi) and νk(yk) such that span{νi(yi), νk(yk)} = R2. For every j ∈
{1, . . . ,m}, j 6= i, j 6= k we call θi the angle between νk(0) and νj(0), θk between νj(0) and
νi(0) and θj between νi(0) and νk(0) and we recall that it holds

V iνi + T
i
τ i = V jνj + T

j
τ j , (2.19)

V iνi + T
i
τ i = V kνk + T

k
τk . (2.20)

18



By testing (2.19) by sin θjτk and by cos θjνk and summing, we get

V i = cos θkV j − sin θkT
j
. (2.21)

If instead we test (2.19) by cos θjτk and by sin θjνk and we subtract the second equality to
the first one, it holds

T
i

= cos θkT
j

+ sin θkV j . (2.22)

Similarly, by testing (2.20) by cos θkνj and by sin θkτ j and subtracting the second identity to
the first we have

V i = cos θjV k + sin θjT
k
. (2.23)

Finally we test (2.20) by cos θkτ j and by sin θkνj and sum, obtaining

T
i

= cos θjT
k − sin θjV k . (2.24)

With the help of the identities (2.21),(2.22), (2.23) and (2.24) and interchanging the roles of
i, j, k we can write

sin θiV i = cos θjT
j − cos θkT

k
,

sin θkV k = cos θiT
i − cos θjT

j
,

sin θjV j = cos θkT
k − cos θiT

i
.

and so for every j ∈ {1, . . . ,m}, j 6= i, j 6= k we have sin θiV i + sin θkV k + sin θjV j = 0, as
desired.

The solutionN admits a parametrization ϕwith the required regularity. As we have seen
for the initial datum, the boundary conditions in Definition 2.18 implies the boundary con-
ditions asked in Definition 2.3. By definition of solution of the special flow the parametriza-
tions ϕ = (ϕ1, . . . , ϕN ) solves ∂tϕi = V iνi + T

i
τ i. Then〈

∂tϕ
i, νi

〉
νi =

〈
V iνi + T

i
τ i, νi

〉
νi = V iνi = −2∂2sk

i − (ki)3 + µiki ,

and thus all the properties of solution to the elastic flow are satisfied.

Lemma 2.14. Suppose that a closed curve parametrized by

γ ∈ C
(
[0, T ];C5([0, 1];R2)

)
∩ C1

(
[0, T ];C4([0, 1];R2)

)
is a solution to the elastic flow with admissible initial datum γ0 ∈ C5([0, 1]). Then a reparametriza-
tion of γ is a solution to the special flow.

Proof. The proof easily follows arguing similarly as in the discussion at the beginning of
the section and, in particular, by recalling that reparametrizations only affect the tangential
velocity.

The above result can be generalized to flow of networks as stated below.

Lemma 2.15. Suppose that a networkN0 ofN regular curves parametrized by γ = (γ1, . . . γN ) with
γi : [0, 1] → R2, i ∈ {1, . . . , N} is an admissible initial network. Then there exist N smooth func-
tions θi : [0, 1]→ [0, 1] such that the reparametrisztion

(
γi ◦ θi

)
is an admissible initial parametriza-

tion for the special flow.
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For the proof see [23, Lemma 3.31]. Moreover by inspecting the proof of Theorem 3.32 in
[23] we see that the following holds.

Proposition 2.16. Let T > 0. Let N0 be an admissible initial network of N curves parametrized by
γ0 = (γ10 , . . . γ

N
0 ) with γi : [0, 1] → R2, i ∈ {1, . . . , N}. Suppose that N (t)t∈[0,T ] is a solution to

the elastic flow in the time interval [0, T ] with initial datum N0 and suppose that it is parametrized
by regular curves γ = (γ1, . . . γN ) with γi : [0, T ] × [0, 1] → R2. Then there exists T̃ ∈ (0, T ]

and a time dependent family of reparametrizations ψ : [0, T̃ ] × [0, 1] → [0, 1] such that ϕ(t, x) :=

(ϕ1(t, x), . . . , ϕN (t, x)) with ϕ(t, x) := γi(t, ψ(t, x)) is a solution to the special flow in [0, T̃ ].

Remark 2.17. In the case of a single open curve, reducing to the special flow is is particularly
advantageous. Indeed one passes from a the degenerate problem (2.10) couple either with
quasilinaer or fully nonlinear boundary conditions to a non–degenerate system of quasili-
naer PDEs with linear and affine boundary conditions.

2.5 Energy monotonicity

Let us name V i := −2∂2sk
i − (ki)2ki + µiki the normal velocity of a curve γi evolving by

elastic flow and denote the tangential motion by T i:

∂tγ
i = V iνi + T iτ i . (2.25)

Definition 2.18. We denote by phσ(k) a polynomial in k, . . . , ∂hs k with constant coefficients in
R such that every monomial it contains is of the form

C

h∏
l=0

(∂lsk)βl with
h∑
l=0

(l + 1)βl = σ ,

where βl ∈ N for l ∈ {0, . . . , h} and βl0 ≥ 1 for at least one index l0.

We notice that

∂s

(
phσ(k)

)
= ph+1

σ+1(k) ,

ph1σ1(k)ph2σ2(k) = p
max{h1,h2}
σ1+σ2 (k) , (2.26)

ph1σ (k) + ph2σ (k) = pmax{h1,h2}
σ (k). (2.27)

By (2.2) the following result holds.

Lemma 2.19. If γ satisfies (2.25), the commutation rule

∂t∂s = ∂s∂t + (kV − ∂sT ) ∂s

holds. The measure ds evolves as

∂t(ds) = (∂sT − kV ) ds .
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Moreover the unit tangent vector, unit normal vector and the j–th derivatives of scalar curvature of
a curve satisfy

∂tτ = (∂sV + Tk) ν ,

∂tν = − (∂sV + Tk) τ ,

∂tk = 〈∂tκ, ν〉 = ∂2sV + T∂sk + k2V

= −2∂4sk − 5k2∂2sk − 6k (∂sk)2 + T∂sk − k5 + µ
(
∂2sk + k3

)
, (2.28)

∂t∂
j
sk = −2∂j+4

s k − 5k2∂j+2
s k + µ∂j+2

s k + T∂j+1
s k + pj+1

j+5 (k) + µ pjj+3(k) (2.29)

= −2∂j+4
s k + T∂j+1

s k + pj+2
j+5 (k) + µ pj+2

j+3(k) . (2.30)

With the help of the previous lemma it is now possible to compute the derivative in time
of a general polynimial phσ(k). By definition every monomial composing phσ(k) is of the form
m(k) = C

∏h
l=0(∂

l
sk)βl with

∑h
l=0(l + 1)βl = σ. Then for every fixed j ∈ {1, . . . , h} the

monomial n(k) = Cβj(∂
j
sk)βj−1

∏h
l 6=j,l=0(∂

l
sk)βl can be written as n(k) = C̃

∏h
l=0(∂

l
sk)αl with∑h

l=0(l + 1)αl = σ − j − 1. Differentiating in time m(k) we have

∂t (m(k)) =
h∑
j=0

(Cβj∂jskβj−1∂t∂jsk) · h∏
l 6=j,l=0

(∂lsk)βl


=

h∑
j=0

(−2∂j+4
s k + T∂j+1

s k + pj+2
j+5 (k) + µ pj+2

j+3(k)
)(

Cβj∂
j
sk
βj−1

)
·

h∏
l 6=j,l=0

(∂lsk)βl


= ph+4

σ+4(k) + Tph+1
σ+1(k) + ph+2

σ+4(k) + µph+2
σ+2(k) ,

where we used the product rule (2.26) and the structure of the monomial n(k). Summing up
the contribution of each monomial composing phσ(k) we have

∂t

(
phσ(k)

)
= ph+4

σ+4(k) + Tph+1
σ+1(k) + µph+2

σ+2(k) . (2.31)

Proposition 2.20. Let Nt be a time dependent family of smooth networks composed of N curves,
possibly with junctions and fixed endpoint in the plane. Suppose that Nt is a solution of the elastic
flow. Then

∂tEµ(Nt) = −
∫
N
V 2 ds .

Proof. Using the evolution laws collected in Lemma 2.19, we get

∂t

∫
N
k2 + µ ds =

∫
N

2k∂tk +
(
k2 + µ

)
(∂sT − kV ) ds

=

∫
N

2k
(
∂2sV + Tks + k2V

)
+
(
k2 + µ

)
(∂sT − kV ) ds

=

∫
N

2k∂2sV + k3V − µkV + ∂s
(
T
(
k2 + µ

))
ds .

Integrating twice by parts the term
∫

2kVss we obtain

∂t

∫
N
Eµ ds = −

∫
N
V 2 ds+

N∑
i=1

2ki∂sV
i − 2∂sk

iV i + T i{
(
ki
)2

+ µi}
∣∣∣
bdry

. (2.32)
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It remains to show that the contribution of the boundary term in (2.32) equals zero, whatever
boundary condition we decide to impose at the endpoint among the ones listed in Defini-
tion 2.3. The case of the closed curve is trivial.

Let us start with the case of an endpoint γj(y) (with y ∈ {0, 1}, j ∈ {1, . . . , N}) subjected
to Navier boundary condition, namely kj(y) = 0. The point remains fixed, that implies
V j(y) = T j(y) = 0. The term 2kj(y)∂sV

j(y) vanishes because kj(y) = 0.
Suppose instead that the curve is clamped at γj(y) with τ j(y) = τ∗. Then using Lemma 2.19,

0 = ∂tτ
j(y) = (∂sV

j(y)− T j(y)kj(y))νj(y). Hence

2kj(y)
(
∂sV

j(y)− T j(y)kj(y)
)

= 0 ,

that combined with V j(y) = T j(y) = 0 implies that the boundary terms vanish in (2.32).
Consider now a junction of order m where natural boundary conditions have been im-

posed. Up to inverting the orientation of the parametrizations of the curves, we suppose
that all the curves concur at the junctions at x = 0. The curvature condition ki(0) = 0 with
i ∈ {1, . . . .m} gives

m∑
i=1

2ki(0)∂sV
i(0) + T i(0)

(
ki(0)

)2
= 0 .

Differentiating in time the concurrency condition γ1(0) = . . . γm(0) we obtain

V 1(0)ν1(0) + T 1(0)τ1(0) = . . . = V m(0)νm(0) + Tm(0)τm(0) ,

that combined with the third order condition 0 =
∑m

i=1 2∂sk
i(0)νi(0)− µiτ i(0) gives

0 =

〈
−∂tγ1(0),

m∑
i=1

2∂sk
i(0)νi(0)− µiτ i(0)

〉

=
m∑
i=1

〈
−V i(0)νi(0)− T i(0)τ i(0), 2∂sk

i(0)νi(0)− µiτ i(0)
〉

=
m∑
i=1

−2∂sk
i(0)V i(0) + µiT i(0) ,

hence the boundary terms vanish and we get the desired result.
To conclude, consider a junction of order m, where the curves concur at x = 0 and sup-

pose that we have imposed there clamped boundary conditions. In this case using the con-
currency condition differentiated in time and the third order condition we find

0 =
m∑
i=1

〈
−∂tγ1(0), 2∂sk

i(0)νi(0) +
(
(ki(0))2 − µi

)
τ i(0)

〉
=

m∑
i=i

−2∂sk
i(0)V i(0)−

(
(ki(0))2 − µi

)
T i(0) . (2.33)

Differentiating in time the angle condition〈
τ i(0), τ i+1(0)

〉
= ci,i+1 = cos(θi,i+1)

we have

0 =
〈
∂tτ

i(0), τ i+1(0)
〉

+
〈
τ i(0), ∂tτ

i+1(0)
〉

=
〈
(∂sV

i(0) + T i(0)ki(0))νi(0), τ i+1(0)
〉

+
〈
τ i(0), (∂sV

i+1(0) + T i+1(0)ki+1(0))νi+1(0)
〉

= (∂sV
i(0) + T i(0)ki(0)) sin(θi,i+1)− (∂sV

i+1(0) + T i+1(0)ki+1(0)) sin(θi,i+1) ,
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and hence ∂sV i(0) + T i(0)ki(0) = ∂sV
i+1(0) + T i+1(0)ki+1(0). Repeating the previous com-

putation for every i ∈ {2, . . . ,m− 1}we get

V 1
s (0) + T 1(0)k1(0) = . . . = V m

s (0) + Tm(0)km(0) ,

that together with the curvature condition
∑
ki = 0 at the junction gives

0 = 2
(
∂sV

1(0) + T 1(0)k1(0)
) m∑
i=1

ki(0) =
m∑
i=1

2∂sV
i(0)ki(0) + 2T i(0)(ki)2(0) .

Summing this last equality with (2.33) we have that the boundary terms vanishes also in this
case.

3 Short time existence

We prove a short time existence result for the elastic flow of closed curves. We then explain
how it can be generalized to other situations and which are the main difficulties that arises
when we pass from one curve to networks.

3.1 Short time existence of the special flow

First of all we aim to prove the existence of a solution to the special flow. Omitting the
dependence on (t, x) we can write the motion equation of a curve subjected to (2.18) as

∂tϕ = −2
∂4xϕ

|∂xϕ|4
+ f̃(∂3xϕ, ∂

2
xϕ, ∂xϕ) .

We linearize the highest order terms of the previous equation around the initial parametriza-
tion ϕ0 obtaining

∂tϕ+
2

|∂xϕ0|4
∂4xϕ =

(
2

|∂xϕ0|4
− 2

|∂xϕ|4

)
∂4xϕ+ f̃(∂3xϕ, ∂

2
xϕ, ∂xϕ)

=: f(∂4xϕ, ∂
3
xϕ, ∂

2
xϕ, ∂xϕ) . (3.1)

Definition 3.1. Given ϕ0 : S1 → R2 an admissible initial parametrization for (2.18), the
linearized system about ϕ0 associated to the special flow of a closed curve is given by{

∂tϕ(t, x) + 2 ∂4xϕ(t,x)
|∂xϕ0(x)|4 = f(t, x) on [0, T ]× S1

ϕ(0, x) = ψ(x) on S1 .
(3.2)

Here (f, ψ) is a generic couple to be specified later on.

Let α ∈ (0, 1) be fixed. Whenever a curve γ is regular, there exists a constant c > 0 such
that infx∈S1 |∂xγ| ≥ c. From now on we fix an admissible initial parametrization ϕ0 with

‖ϕ0‖C4+α(S1;R2) = R , and inf
x∈S1
|∂xϕ0(x)| ≥ c .

Then for every j ∈ N there holds∥∥∥∥ 1

|∂xϕ0|j

∥∥∥∥
Cα(S1;R2)

≤ C(R, c) .
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Definition 3.2. For T > 0 we consider the linear spaces

ET :=C
4+α
4
,4+α

(
[0, T ]× S1;R2

)
,

FT :=C
α
4
,α
(
[0, T ]× S1;R2

)
× C4+α

(
S1;R2

)
,

endowed with the norms

‖γ‖ET := ‖γ‖
C

4+α
4 ,4+α , ‖(f, ψ)‖FT := ‖f‖

C
α
4 ,
α + ‖ψ‖C4+α .

and we define the operator LT : ET → FT by

LT (ϕ) :=
(
L1T (ϕ),L2T (ϕ)

)
:=

(
∂tϕ+

2

|∂xϕ0|4
∂4xϕ,ϕ|t=0

)
.

Remark 3.3. For every T > 0 the operator LT : ET → FT is well–defined, linear and continu-
ous.

Theorem 3.4. Let α ∈ (0, 1), (f, ψ) ∈ FT . Then for every T > 0 the system (3.2) has a unique
solution ϕ ∈ ET . Moreover, for all T > 0 there exists C(T ) > 0 such that if ϕ ∈ ET is a solution,
then

‖ϕ‖ET ≤ C(T )‖(f, ψ)‖FT . (3.3)

Proof. See for instance [33, Theorem 4.3.1] and [51, Theorem 4.9].

From the above theorem we get the following consequence.

Corollary 3.5. The linear operator LT : ET → FT is a continuous isomorphism.

By the above corollary, we can denote by L−1T the inverse of LT .
Notice that till now we have considered fixed T > 0 and derived (3.3), where the constant

C depends on T . Now, once a certain interval of time (0, T̃ ] with T̃ > 0 is chosen, we show
that for every T ∈ (0, T̃ ] it possible to estimate the norm of L−1T with a constant independent
of T .

Lemma 3.6. For all T̃ > 0 there exists a constant c(T̃ ) such that

sup
T∈(0, 1

2
T̃ ]

‖L−1T ‖L(FT ,ET ) ≤ c(T̃ ) .

Proof. Fix T̃ > 0, for all T ∈ (0, T̃ ], for every (f, ψ) ∈ FT we define the extension operator
E(f, ψ) := (Ẽf, ψ) by

Ẽ : C
α
4
,α
(
[0, T ]× S1;R2

)
→ C

α
4
,α
(

[0, T̃ ]× S1;R2
)

Ẽf(t, x) :=

{
f(t, x) for t ∈ [0, T ],

f
(
T T̃−t
T̃−T

, x
)

for t ∈ (T, T̃ ],

It is clear that E(f, ψ) ∈ F
T̃

and that ‖E‖L(FT ,FT̃ ) ≤ 1.
Moreover L−1

T̃
(E(f, ψ))|[0,T ] = L−1T (f, ψ) by uniqueness and then

‖L−1T (f, ψ)‖ET ≤ ‖L
−1
T̃

(E(f, ψ))‖E
T̃

≤ ‖L−1
T̃
‖L(F

T̃
,E
T̃
)‖E(f, ψ)‖F

T̃
≤ c(T̃ )‖(f, ψ)‖FT .
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Definition 3.7. We define the affine spaces

E0
T = {γ ∈ ET such that γ|t=0 = ϕ0} ,

F0
T = C

α
4
,α
(
[0, T ]× S1;R2

)
× {ϕ0} .

In the following we denote by BM the closed ball of radius M and center 0 in ET .

Lemma 3.8. Let T̃ > 0, M > 0, c > 0 and ϕ0 an admissible initial parametrization with
infx∈S1 |∂xϕ0| ≥ c. Then there exists T̂ = T̂ (c,M) ∈ (0, T̃ ] such that for all T ∈ (0, T̂ ] every
curve ϕ ∈ E0

T ∩BM is regular with

inf
x∈S1
|∂xϕ(t, x)| ≥ c

2
. (3.4)

Moreover for every j ∈ N ∥∥∥∥ 1

|∂xϕ(t, x)|j

∥∥∥∥
C
α
4 ,α([0,T ]×[0,1])

≤ C(c,M, j) .

Proof. We have
|∂xϕ(t, x)| ≥ |∂xϕ0(x)| − |∂xϕ(t, x)− ∂xϕ0(x)| ,

with |∂xϕ(t, x) − ∂xϕ0(x)| ≤ [ϕ]β,0 t
β ≤ Mtβ with β = 3

4 + α
4 . Taking T̂ sufficiently small,

passing to the infimum we get the first claim. As a consequence

sup
x∈[0,1]

1

|∂xϕ(t, x)|
≤ 2

c
. (3.5)

Then for j = 1 the second estimate follows directly combining the estimate (3.5) with the
definition of the norm ‖ · ‖

C
α
4 ,α([0,T ]×S1). The case j ≥ 2 follows from multiplicativity of the

norm.

Form now on we fix T̃ = 1 and we denote by T̂ = T̂ (c,M) the time given by Lemma 3.8
for given c and M .

Definition 3.9. For every T ∈ (0, T̂ ] we define the map

NT :

{
E0
T → C

α
4
,α([0, T ]× S1;R2)

ϕ 7→ f(ϕ),

where the functions f(ϕ) := f(∂4xϕ, ∂
3
xϕ, ∂

2
xϕ, ∂xϕ) is defined in (3.1). Moreover we introduce

the map NT given by E0
T 3 γ 7→ (NT (γ), γ|t=0).

Remark 3.10. We remind that f is given by

f(ϕ) =

(
2

|∂xϕ0|4
− 2

|∂xϕ|4

)
∂4xϕ+ 12

∂3xϕ
〈
∂2xϕ, ∂xϕ

〉
|∂xϕ|6

+ 5
∂2xϕ

∣∣∂2xϕ∣∣2
|∂xϕ|6

+ 8
∂2xϕ

〈
∂3xϕ, ∂xϕ

〉
|∂xϕ|6

− 35
∂2xϕ

〈
∂2xϕ, ∂xϕ

〉2
|∂xϕ|8

+ µ
∂2xϕ

|∂xϕ|2
.

By Lemma 3.8, for ϕ ∈ E0
T , we have that for all t ∈ [0, T ] the map ϕ(t) is a regular curve.

Hence NT is well–defined. Furthermore we notice that the map Nt is a mapping from E0
T to

F0
T .
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The following lemma is a classical result on parabolic Hölder spaces. For a proof see for
instance [33].

Lemma 3.11. Let k ∈ {1, 2, 3}, T ∈ [0, 1] and ϕ, ϕ̃ ∈ E0
T . We denote by ϕ(4−k), ϕ̃(4−k) the (4−k)–

th space derivative of ϕ and ϕ̃, respectively. Then there exist ε > 0 and a constant C̃ independent of
T such that∥∥∥ϕ(4−k) − ϕ̃(4−k)

∥∥∥
C
α
4 ,α
≤ C̃T ε

∥∥∥ϕ(4−k) − ϕ̃(4−k)
∥∥∥
C
k+α
4 ,k+α

≤ C̃T ε ‖ϕ− ϕ̃‖ET .

Definition 3.12. Let ϕ0 be an admissible initial parametrization, c := infx∈S1 |∂xϕ0|. For a
positive M and a time T ∈ (0, T̂ (c,M)] we define KT : E0

T ∩BM → E0
T by

KT := L−1T ◦ NT .

Proposition 3.13. Let ϕ0 be an admissible initial parametrization, c := infx∈S1 |∂xϕ0|. Then there
exists a positive radius M(ϕ0) > ‖ϕ0‖C4+α and a time T (c,M) such that for all T ∈ (0, T ] the map
KT : E0

T ∩BM → E0
T takes values in E0

T ∩BM and it is a contraction.

In the following proof constants may vary from line to line and depend on c, M and
‖ϕ0‖C4+α .

Proof. LetM > 0 and T̃ > 0 be arbitrary positive numbers. Let T̂ (c,M) be given by Lemma 3.8
and assume without loss of generality that T̂ (c,M) < 1

2 T̃ . Let T ∈ (0, T̂ (c,M)] be a generic
time.

Clearly L−1T (F0
T ) ⊆ E0

T and the KT is well defined on E0
T ∩BM .

First we show that there exists a time T ′ ∈ (0, T̂ (c,M)) such that for all T ∈ (0, T ′], for
every ϕ, ϕ̃ ∈ E0

T ∩BM , it holds

‖KT (ϕ)−KT (ϕ̃)‖ET ≤
1

2
‖ϕ− ϕ̃‖ET . (3.6)

We begin by estimating

‖NT (ϕ)−NT (ϕ̃)‖
C
α
4 ,α

= ‖f(ϕ)− f(ϕ̃)‖
C
α
4 ,α

.

The highest order term in the above norm is(
2

|∂xϕ0|4
− 2

|∂xϕ|4

)
∂4xϕ+

(
2

|∂xϕ̃|4
− 2

|∂xϕ0|4

)
∂4xϕ̃

=

(
2

|∂xϕ0|4
− 2

|∂xϕ|4

)(
∂4xϕ− ∂4xϕ̃

)
+

(
2

|∂xϕ̃|4
− 2

|∂xϕ|4

)
∂4xϕ̃

(3.7)

We can rewrite the above expression using the identity

1

|a|4
− 1

|b|4
= (|b| − |a|)

(
1

|a|2|b|
+

1

|a||b|2

)(
1

|a|2
+

1

|b|2

)
. (3.8)

We get(
2

|∂xϕ0|4
− 2

|∂xϕ|4

)
=
(
|∂xϕ| − |∂xϕ0|

)( 1

|∂xϕ0|2|∂xϕ|
+

1

|∂xϕ0||∂xϕ|2

)(
1

|∂xϕ0|2
+

1

|∂xϕ|2

)
.
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In order to control
(

1
|∂xϕ0|2|∂xϕ| + 1

|∂xϕ0||∂xϕ|2

)(
1

|∂xϕ0|2 + 1
|∂xϕ|2

)
we use Lemma 3.8. Now we

identify ϕ0 with its constant in time extension ψ0(t, x) := ϕ0(x), which belongs to E0
T for

arbitrary T . Observe that ‖ψ0‖ET = ‖ψ0‖
C

4+α
4 ,4+α = ‖ϕ0‖C4+α is independent of T . Then

making use of Lemma 3.11 we obtain∥∥|∂xϕ| − |∂xψ0|
∥∥
Cα,

α
4
≤
∥∥∂xϕ− ∂xψ0

∥∥
Cα,

α
4
≤ CT ε‖ϕ− ψ0‖ET ≤ CMT ε .

Then ∥∥∥∥( 2

|∂xϕ0|4
− 2

|∂xϕ|4

)(
∂4xϕ− ∂4xϕ̃

)∥∥∥∥
Cα,

α
4

≤ CMT ε‖ϕ− ϕ̃‖ET .

Similarly we obtain allows us to write∥∥∥∥( 2

|∂xϕ̃|4
− 2

|∂xϕ|4

)
∂4xϕ̃

∥∥∥∥
Cα,

α
4

≤ CMT ε‖ϕ− ϕ̃‖ET . (3.9)

The lower order terms of f(ϕ)− f(ϕ̃) are of the form

a 〈b, c〉
|d|j

− ã〈b̃, c̃〉
|d̃|j

, (3.10)

with j ∈ {2, 6, 8} and with a, b, c, d, ã, b̃, c̃, d̃ space derivatives up to order three of ϕ and ϕ̃,
respectively. Adding and subtracting the expression

ã 〈b, c〉
|d|j

+
ã〈b̃, c〉
|d|j

+
ã〈b̃, c̃〉
|d|j

to (3.10), we get

(a− ã) 〈b, c〉
|d|j

+
ã
〈

(b− b̃), c
〉

|d|j
+
ã
〈
b̃, (c− c̃)

〉
|d|j

+

(
1

|d|j
− 1

|d̃|j

)
ã
〈
b̃, c̃
〉
. (3.11)

With the help of Lemma 3.11 we can estimate the first term of (3.11) in the following way:∥∥∥∥(a− ã) 〈b, c〉
|d|j

∥∥∥∥
C
α
4 ,α
≤ C‖a− ã‖

C
α
4 ,α
≤ CT ε‖ϕ− ϕ̃‖ET .

The second and the third term of (3.11) can be estimated similarly by Cauchy-Schwarz in-
equality. To obtain the desired estimate for the last term of (3.11) we proceed in a similar
way as for the second term of (3.7). We use the identities

1

|d|2
− 1

|d̃|2
=
(
|d̃| − |d|

)( 1

|d|2|d̃|
+

1

|d||d̃|2

)
,

1

|d|j
− 1

|d̃|j
=
(
|d̃| − |d|

)( 1

|d|2|d̃|
+

1

|d||d̃|2

)(
1

|d|2
+

1

|d̃|2

)(
1

|d|j−4
+

1

|d̃|j−4

)
,

for j ∈ {6, 8} and Lemma 3.8 and 3.11 and we finally get∥∥∥∥( 1

|d|j
− 1

|d̃|j

)
ã
〈
b̃, c̃
〉∥∥∥∥

C
α
4 ,α

≤ CT ε‖d− d̃‖
C
α
4 ,α
≤ CT ε‖ϕ− ϕ̃‖ET .
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Putting the above inequalities together we have

‖f(ϕ)− f(ϕ̃)‖
C
α
4 ,α
≤ CT ε‖ϕ− ϕ̃‖ET .

By Lemma 3.6, this implies that for all T ∈ (0, T̂ (M, c)]

‖KT (ϕ)−KT (ϕ̃)‖ET = ‖L−1T (NT (ϕ))− L−1(NT (ϕ̃))‖ET
≤ sup

T∈[0,T̂ ]
‖L−1T ‖L(FT ,ET )‖NT (ϕ)−NT (ϕ̃)‖FT

≤ C(M, c, T̃ )T ε‖ϕ− ϕ̃‖ET ,

(3.12)

with 0 < ε < 1. Choosing T ′ small enough we can conclude that for every T ∈ (0, T ′] the
inequality (3.6) holds.

In order to conclude the proof it remains to show that we can choose M sufficiently big
so that KT maps E0

T ∩BM into itself.
As before we identify ϕ0(x) with its constant in time extension ψ0(t, x). Notice that the

expressions KT (ψ0) and NT (ψ0) are then well defined.
As M is an arbitrary positive constant, let us choose M at the beginning, depending on

ϕ0 and T̃ only, so that

‖ψ0‖ET = ‖ϕ0‖C4+α <
M

2
∀T > 0 ,

and

‖KT (ψ0)‖ET ≤ sup
T∈[0,T̃ /2−δ]

‖L−1T ‖L(FT ,ET )‖NT (ψ0)‖FT

= sup
T∈[0,T̃ /2−δ]

‖L−1T ‖L(FT ,ET )‖(f(ϕ0), ϕ0))‖FT

≤ c(T̃ )C(ϕ0)

<
M

2
∀ δ > 0 ,

where we used that ‖(f(ϕ0), ϕ0))‖FT is time independent and then estimated by a constant
C(ϕ0) depending only on ϕ0 and we also used Lemma 3.6. For T ∈ (0, T ′], as T ′ ≤ T̂ (c,M) ≤
1
2 T̃ − δ for some positive δ, we also have

‖KT (ϕ)‖ET ≤ ‖KT (ψ0)‖ET + ‖KT (ϕ)−KT (ψ0)‖ET

<
M

2
+ C(M, c, T̃ )T ε2M ,

for any ϕ ∈ E0
T ∩ BM , where we used (3.12). It follows that by taking T ≤ T ′ sufficiently

small, we have that KT : E0
T ∩BM → E0

T ∩BM and it is a contraction.

Theorem 3.14. Let ϕ0 be an admissible initial parametrization. There exists a positive radius M
and a positive time T such that the special flow (2.18) of closed curves has a unique solution in
C

4+α
4
,4+α

(
[0, T ]× S1

)
∩BM .
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Proof. Choosing M and T as in Proposition 3.13, for every T ∈ (0, T ] the map KT : E0
T ∩

BM → E0
T ∩ BM is a contraction of the complete metric space E0

T ∩ BM . Thanks to Banach–
Cacciopoli contraction theorem KT has a unique fixed point in E0

T ∩ BM . By definition of
KT , an element of E0

T ∩BM is a fixed point for KT if and only if it is a solution to the special
flow (2.18) of closed curves in C

4+α
4
,4+α

(
[0, T ]× S1

)
∩BM .

Remark 3.15. In order to prove an existence and uniqueness theorem for the special flow
of curves with fixed endpoints subjected to natural or clamped boundary conditions, it is
enough to repeat the previous arguments with some small adjustments.

In the case of Navier boundary condition we replace ET , E0
T , FT and F0

T by

E1
T :=

{
ϕ ∈ C

4+α
4
,4+α

(
[0, T ]× [0, 1];R2

)
: ∂2xϕ(0) = ∂2xϕ(1) = 0, ϕ|t=0 = ϕ0

}
,

E0,1
T :=

{
ϕ ∈ E1

T : ϕ(t, 0) = P,ϕ(t, 1) = Q,
}
,

F1
T := C

α
4
,α
(
[0, T ]× [0, 1];R2

)
× (C

4+α
4
(
[0, T ];R2

)
)2 × C4+α([0, 1];R2) ,

F0,1
T := C

α
4
,α
(
[0, T ]× [0, 1];R2

)
× {P} × {Q} × {ϕ0} ,

where by P,Q ∈ R2. In this case we introduce the linear operator

LT (ϕ) :=

(
∂tϕ+

2

|∂xϕ0|4
∂4xϕ,ϕ|x=0, ϕ|x=1, ϕ|t=0

)
.

This modification allows us to treat the linear boundary conditions ∂2xϕ(0) = ∂xϕ(1) = 0 and
the affine ones ϕ(t, 0) = P , ϕ(t, 1) = Q.

In the case of clamped boundary conditions instead we have to take into account four
vectorial affine boundary conditions. We modify the affine space E0

T into

E0,2
T :=

{
ϕ ∈ ET : ϕ(t, 0) = P,ϕ(t, 1) = Q, ∂xϕ(t, 0) = τ0, ∂xϕ(t, 1) = τ1, ϕ|t=0 = ϕ0

}
,

and

F2
T := C

α
4
,α
(
[0, T ]× [0, 1];R2

)
×
(
C

4+α
4
(
[0, T ];R2

))2
×
(
C

3+α
4
(
[0, T ];R2

))2
× C4+α([0, 1];R2) ,

F0,2
T := C

α
4
,α
(
[0, T ]× [0, 1];R2

)
× {P} × {Q} × {τ0} × {τ1} × {ϕ0} .

Finally the operator LT in this case is

LT (ϕ) :=

(
∂tϕ+

2

|∂xϕ0|4
∂4xϕ,ϕ|x=0, ϕ|x=1, ∂xϕ|x=0, ∂xϕ|x=1, ϕ|t=0

)
.

Remark 3.16. Differently from the case of endpoints of order one, at the multipoints of higher
order we impose also non linear boundary conditions (quasilinear or even fully non linear).
Treating these terms is then harder: it is necesssary to linearize both the main equation and
the boundary operator.

Consider for instance the case of the elastic flow of a network composed of N curves that
meet at two junction, both of order N and subjected to natural boundary conditions. The
concurrency condition and the second order condition are already linear. Instead the third
order condition is of the form

N∑
i=1

1

|∂xϕi|3
〈
∂3xϕ, ν

i
〉
νi + hi(∂xϕ

i) = 0 ,
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where we omit the dependence on (t, y) with y ∈ {0, 1}. The linearized version of the highest
order term in the third order condition is:

−
N∑
i=1

1

|∂xϕ0,i|3
〈
∂3xϕ, ν

i
0

〉
νi0

=−
N∑
i=1

1

|∂xϕ0,i|3
〈
∂3xϕ, ν

i
0

〉
νi0 +

N∑
i=1

1

|∂xϕi|3
〈
∂3xϕ, ν

i
〉
νi + hi(∂xϕ

i) =: b(ϕ) , (3.13)

where we denoted by ν0 the unit normal vector of the initial datum ϕ0. Then, instead of (3.2),
the linearized system associated to the special flow is

∂tϕ
i(t, x) + 2

|∂xϕ0,i(x)|4∂
4
xϕ

i(t, x) = f i(t, x)

ϕi(t, y)− ϕj(t, y) = 0

∂2xϕ
i(t, y) = 0

−
∑N

i=1
1

|∂xϕ0,i(y)|3
〈
∂3xϕ(t, y), νi0

〉
νi0(y) = b(t, y)

ϕi(0, x) = ψi(x)

, (3.14)

for i, j ∈ {1, . . . , N}, j 6= i, t ∈ [0, T ], x ∈ [0, 1], y{0, 1}.
The spaces introduced in Definition 3.2 and 3.7 are replaced by

ET =
{
ϕ ∈ C

4+α
4
,4+α

(
[0, T ]× [0, 1]; (R2)N

)
such that for i, j ∈ {1, . . . , N}, t ∈ [0, T ],

y ∈ {0, 1} it holds ϕi(t, y) = ϕj(t, y), ∂2xϕ
i(t, y) = 0

}
,

FT = C
α
4
,α
(
[0, T ]× [0, 1]; (R2)N

)
×
(
C1+α

(
[0, T ];R2

))2 × C4+α
(
[0, 1]; (R2)N

)
,

E0
T = {ϕ ∈ ET such thatϕ|t=0 = ϕ0} ,

F0
T = C

α
4
,α
(
[0, T ]× [0, 1]; (R2)N

)
×
(
C1+α

(
[0, T ];R2

))2 × {ϕ0} .

The operator LT : ET → FT becomes

LT (ϕ) :=

(
∂tϕ+

2

|∂xϕ0|4
∂4xϕ,−

N∑
i=1

1

|∂xϕ0,i(y)|3
〈
∂3xϕ(t, y), νi0

〉
νi0(y), ϕ|t=0

)
,

and the operator that encodes the non–linearities of the problem isNT : E0
T → F0

T that maps
ϕ into the triple (N1

T (γ), N2
T (γ), γ|t=0) with

N1
T :

{
E0
T → C

α
4
,α([0, T ]× [0, 1];R2)

ϕ 7→ f(ϕ) ,

N2
T :

{
E0
T → C1+α([0, T ]× [0, 1];R2)

ϕ 7→ b(ϕ) ,

where the functions f(ϕ) := f(∂4xϕ, ∂
3
xϕ, ∂

2
xϕ, ∂xϕ) and b(ϕ) := b(∂3xϕ, ∂

2
xϕ, ∂xϕ) are defined

in (3.1) and in (3.13). The map K will be defined accordingly. We do not here describe the
details concerning the solvability of the linear system, as well as the proof of the contraction
property of K and we refer to [23, Section 3.4.1].
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3.2 Parabolic smoothing

When dealing with parabolic problems, it is natural to investigate the regularization of the
solutions of the flow. More precisely, we claim that the following holds.

Proposition 3.17. Let T > 0 and ϕ0 = (ϕ1
0, . . . , ϕ

N
0 ) be an admissible initial parametrization

(possibly) with endpoints of order one and (possibly) with junctions of different orders m ∈ N≥2.
Suppose that ϕt∈[0,T ], ϕ = (ϕ1, . . . , ϕN ) is a solution in ET to the special flow in the time interval
[0, T ] with initial datum ϕ0. Then the solution ϕ is smooth for positive times in the sense that

ϕ ∈ C∞
(
[ε, T ]× [0, 1]; (R2)N

)
for every ε ∈ (0, T ).

We give now a sketch of proof of this fact in the case of closed curves. Basically, it is
possible to prove the result in two different ways: with the so–called Angenent’s parameter
trick [4, 5, 11] or making use of the classical theory of linear parabolic equations [51].

Sketch of the proof. For the sake of notation let

A(γ) = −2
∂4xγ

|∂xγ|4
+ 12

∂3xγ
〈
∂2xγ, ∂xγ

〉
|∂xγ|6

+ 5
∂2xγ

∣∣∂2xγ∣∣2
|∂xγ|6

+ 8
∂2xγ

〈
∂3xγ, ∂xγ

〉
|∂xγ|6

− 35
∂2xγ

〈
∂2xγ, ∂xγ

〉2
|∂xγ|8

+ µ
∂2xγ

|∂xγ|2
.

Then the motion equation reads ∂tγ = A(γ). We consider the map

G :

{
(0,∞)× ET → C4+α(S1;R2)× C

α
4
,α([0, T ]× S1;R2)

(λ, γ)→
(
γ|t=0 − γ0, ∂tγ − λA(γ)

)
We notice that if we take λ = 1 and γ = ϕ the solution of the special flow we get G(1, ϕ) = 0.
The Fréchet derivative δG(1, ϕ)(0, ·) : ET → C4+α(S1;R2)×C

α
4
,α([0, T ]× S1;R2) is given by

δG(1, ϕ)(0, γ) =

(
γ|t=0, ∂tγ +

2

|∂x∂ϕ|4
∂4xγ + Fϕ(γ)

)
where Fϕ is linear in γ, where ∂3xγ, ∂2xγ and ∂xγ appears and the coefficients are depending
of ∂xϕ, ∂2xϕ, ∂3xϕ and ∂4xϕ. The computation to write in details the Fréchet derivative is rather
long and we do not write it here. Since the time derivative appears only as ∂tγ and it is not
present in A(γ), formally one can follow the computations of Section 2.2.

It is possible to prove that δG(1, ϕ)(0, ·) is an isomorphism. This is equivalent to show
that given any ψ ∈ C4+αS1;R2) and f ∈ C

α
4
,α([0, T ]× S1;R2) the system{

∂tγ(t, x) + 2
|∂xϕ(t,x)|4∂

4
xγ(t, x) + F (γ) = f(t, x)

γ(0, x) = ψ(x)

has a unique solution.
Then the implicit function theorem implies the existence of a neighbourhood (1 + ε, 1 −

ε) ⊆ (0,∞), a neighbourhood U of ϕ in ET and a function Φ : (1+ε, 1−ε)→ U with Φ(1) = 0
and

{(λ, γ) ∈ (1 + ε, 1− ε)× U : G(λ, γ) = 0} = {(λ,Φ(λ)) : λ ∈ (1 + ε, 1− ε)} .
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Given λ close to 1 consider
ϕλ(t, x) := ϕ(λt, x) ,

where ϕ, as before, is a solution to the special flow. This satisfies G(λ, ϕλ) = 0. Moreover by
uniqueness ϕλ = Φ(λ). Since Φ is smooth, this shows that ϕλ is a smooth function of λ with
values in ET . This implies

t∂tϕ = ∂λ(ϕλ)|λ=1 ∈ ET
from which we gain regularity in time of the solution ϕ.

Then using the fact that ϕ is a solution to the special flow and the structure of the motion
equation of the special flow it is possible to increase regularity also in space.

We can then start a bootstrap to obtain that the solution is smooth for every positive time.

Alternatively we can show inductively that there exists α ∈ (0, 1) such that for all k ∈ N
and ε ∈ (0, T ),

ϕ ∈ C
2k+2+α

4
,2k+2+α

(
[ε, T ]× S1;R2

)
.

The case k = 1 is true because ϕ ∈ C
4+α
4
,4+α

(
[0, T ]× S1;R2

)
by Theorem 3.14.

Now assume that the assertion holds true for some k ∈ N and consider any ε ∈ (0, T ).
Let η ∈ C∞0

(
( ε2 ,∞);R

)
be a cut–off function with η ≡ 1 on [ε, T ]. By assumption,

ϕ ∈ C
2k+2+α

4
,2k+2+α

(
[ε, T ]× S1;R2

)
,

and thus it is straightforward to check that the function g defined by

(t, x) 7→ g(t, x) := η(t)ϕ(t, x)

lies in C
2k+2+α

4
,2k+2+α

(
[0, T ]× S1;R2

)
. Moreover g satisfies a parabolic problem of the fol-

lowing form: for all t ∈ (0, T ), x ∈ S1:{
∂tg(t, x) + 2

|∂xϕ(t,x)|4∂
4
xg(t, x) + f

(
∂xϕ, ∂

2
xϕ, ∂xg, ∂

2
xg, ∂

3
xg
)

(t, x) = η′(t)ϕ(t, x) ,

g(0, x) = 0 .

(3.15)
The lower order terms in the motion equation are given by

f
(
∂xϕ, ∂

2
xϕ, ∂xg, ∂

2
xg, ∂

3
xg
)

(t, x) =− 12

〈
∂2xϕ, ∂xϕ

〉
|∂xϕ|6

∂3xg − 8
∂2xϕ

|∂xϕ|6
〈
∂3xg, ∂xϕ

〉
−

(
5
|∂2xϕ|2

|∂xϕ|6
− 35

〈
∂2xϕ, ∂xϕ

〉2
|∂xϕ|8

+ µ
1

|∂xϕ|2

)
∂2xg .

The problem is linear in the components of g and in the highest order term of exactly the
same structure as the linear system (3.2) with time dependent coefficients in the motion
equation. The coefficients and the right hand side fulfil the regularity requirements of [51,
Theorem 4.9] in the case l = 2(k + 1) + 2 + α. As η(j)(0) = 0 for all j ∈ N, the initial value
0 satisfies the compatibility conditions of order 2(k + 1) + 2 with respect to the given right
hand side. Thus [51, Theorem 4.9] yields that there exists a unique solution to (3.15) g with
the regularity

g ∈ C
2(k+1)+2+α

4
,2(k+1)+2+α

(
[0, T ]× S1;R2

)
.

This completes the induction as g = ϕ on [ε, T ].
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3.3 Short time existence and uniqueness

We conclude this section by proving the local (in time) existence and uniqueness result for
the elastic flow.

As before, we give the proof of this theorem in the case of closed curves and then we
explain how to adapt it in all the other situations.

We remind that a solution of the elastic flow is unique if it is unique up to reparametriza-
tions.

Theorem 3.18 (Existence and uniqueness). Let N0 be an admissible initial network. Then there
exists a positive time T such that within the time interval [0, T ] the elastic flow of networks admits a
unique solution N (t).

Proof. We write a proof for the case of the elastic flow of closed curves.
Existence. Let γ0 be an admissible initial closed curve of class C4+α([0, 1];R2). Then γ0 is

also an admissible initial parametrization for the special flow. By Theorem 3.14 there exists
a solution of the special flow, that is also a solution of the elastic flow.

Uniqueness. Consider a solution γt of the elastic flow. Then we can reparametrize the γt
into a solution to the special flow using Proposition 2.16. Hence uniqueness follows from
Theorem 3.14.

We now explain how to prove existence of solution to the elastic flow of networks. Differ-
ently from the situation of closed curves, an admissible initial networkN0 admits a parametriza-
tion γ = (γ1, . . . , γN ) of class C4+α([0, 1];R2) that, in general, is not an admissible initial
parametrization in the sense of Definition 2.11. However it is always possible to reparametrize
each curve γi by ψi : [0, 1] → [0, 1] in such a way that ϕ = (ϕ1, . . . , ϕN ) with ϕi := γi ◦ ψi is
an admissible initial parametrization for the special flow. Then by the suitable modification
of Theorem 3.14 there exists a solution to the special flow, that is also a solution of the elastic
flow.

Thus all the difficulties lie is proving the existence of the reparametrizations ψi.
In all cases we look for ψi : [0, 1] → [0, 1] with ψi(0) = 0, ψi(1) = 1 and ∂xψ

i(x) 6= 0 for
every x ∈ [0, 1]. We now list all possible further conditions a certain ψi has to fulfill at y = 0
or y = 1 in the different possible situations. It will then be clear that such reparametrizations
ψi exist.

• If γ(y) is an endpoint of order one with Navier boundary conditions (namely γ(y) = P ,
κ(y) = 0), then ψ(y) needs to satisfy the following conditions:
∂xψ(y) = 1

∂2xψ(y) = −
〈
∂xγ(y)
|∂xγ(y)| ,

∂2xγ(y)
|∂xγ(y)|

〉
=: a(y)

∂3xψ(y) = 0

∂4xψ(y) = − 1
|∂xγ(y)|5

〈
∂xγ(y)
|∂xγ(y)| ,

∂4xγ(y)
|∂xγ(y)| + 6a(y) ∂3xγ(y)

|∂xγ(y)| + 3a2(y) ∂2xγ(y)
|∂xγ(y)|

〉
=: − 1

|∂xγ(y)|5 b(y) .

Indeed, with such a request, we have ϕ(y) = γ(ψ(y)) = γ(y) = P and

∂2xϕ(y) = ∂2xγ(ψ(y))(∂xψ(y))2 + ∂xγ(ψ(y))∂2xψ(y)

= ∂2xγ(y) + ∂xγ(y)

(
−
〈
∂xγ(y)

|∂xγ(y)|
,
∂2xγ(y)

|∂xγ(y)|

〉)
= |∂xγ|2κ(y) = 0 .
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Moreover T (y) = 0. Indeed

T = −2

〈
∂4xϕ(y)

|∂xϕ(y)|4
,
∂xϕ(y)

|∂xϕ(y)|

〉
= −2

〈
∂4xγ(y) + 6∂3xγ(y)a(y) + 3∂2xγ(y)a2(y) + ∂xγ(y)∂4xψ(y)

|∂xγ(y)|4
,
∂xγ(y)

|∂xγ(y)|

〉
= −2

1

|∂xγ(y)|4
b(y) + 2

1

|∂xγ(y)|5

〈
b(y)∂xγ(y),

∂xγ(y)

|∂xγ(y)|

〉
= −2

1

|∂xγ(y)|4
b(y) + 2

1

|∂xγ(y)|5
b(y)

〈
∂xγ(y)

|∂xγ(y)
,
∂xγ(y)

|∂xγ(y)|

〉
|∂xγ(y)| = 0 .

• If γ(y) is an endpoint order one where clamped boundary conditions are imposed
(γ(y) = P , ∂xγ(y)

|∂xγ(y)| = τ∗ with τ∗ a unit vector) we require ψ(y) to fulfill
∂xψ(y) = 1

|∂xγ(y)|
∂2xψ(y) = 0

∂3xψ(y) = 0

∂4xψ(y) = b(y) .

with b(y) =

〈
∂4xγ(y)
|∂xγ(y)|4 − 6 ∂3xγ(y)

|∂xγ(y)|3

〈
∂2xγ(y)
|∂xγ(y)|2 , τ

∗
〉
− 5

2

∂2xγ(y)|∂2xγ(y)|2
|∂xγ(y)|6

− 4 ∂2xγ(y)
|∂xγ(y)|2

〈
∂3xγ(y)
|∂xγ(y)|3 , τ

∗
〉

+35
2

∂2xγ(y)
|∂xγ(y)|2

〈
∂2xγ(y)
|∂xγ(y)|2 , τ

∗
〉2
− µ

2
∂2xγ(y)
|∂xγ(y)|2 ,

∂xγ(y)
|∂xγ(y)|

〉
. So that ϕ(y) = γ(ψ(y)) = γ(y) = P ,

∂xϕ(y) = ∂xγ(ψ(y))∂xψ(y) = (∂xγ(y))( 1
|∂xγ|) = τ∗, and T (y) = 0.

• Suppose instead that γp1(y1) = . . . = γpm(ym) is a multipoint of order m with natural
boundary conditions. Then each curve is paramatrized by γpi ∈ C4+α([0, 1];R2) and
the network N0 satisfies the conditions ii), iv) and v) of Definition 2.5.

The non–degeneracy condition is satisfied because of iv).

By requiring 
∂xψ

pi(yi) = 1

∂2xψ
pi(yi) = api(yi)

∂3xψ
pi(yi) = 0 ,

where api(yi) := −
〈
∂xγpi (yi)
|∂xγpi (yi)| ,

∂2xγ
pi (yi)

|∂xγpi (yi)|

〉
all the conditions imposed by the system are

satisfied. We have to choose ∂4xψpi(yi) in a manner that implies the fourth order com-
patibility condition

V p1
ϕ (y1)ν

p1
ϕ (y1) + T

p1
ϕ (y1)τ

p1
ϕ (y1) = . . . = V pm

ϕ (ym)νpmϕ (ym) + T
pm
ϕ (ym)τpmϕ (ym) , (3.16)

where the subscript ϕ we mean that all the quantities in (3.16) are computed with
respect on the parametrizationϕpi := γpi◦ψpi . Notice that the geometric quantities V , ν
and τ are invariant under reparametrization, they coincide for ϕpi and γpi and so from
now on we omit the subscript. Condition iv) allows us to consider two consecutive
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unit normal vectors νpi(yi) and νpk(yk) such that span{νpi(yi), νpk(yk)} = R2. Then, by
condition v), for every j ∈ {1, . . . ,m}, j 6= i, j 6= k we have

sin θiV pi(yi) + sin θkV pk(yk) + sin θjV pj (yj) = 0 , (3.17)

where θi is the angle between νpk(yk) and νpj (yj), θk between νpj (yj) and νpi(yi) and
θj between νpi(yi), and νpk(yk) and at most one between sin θi and sin θk is equal to
zero. Consider first every curve γpj with j ∈ {1, . . . ,m}, j 6= i, j 6= k for which both
sin θi and sin θk are different from zero, then the conditions

sin θiT
pi
ϕ (yi) = cos θkV pk(yk)− cos θjV pj (yj)

sin θkT
pk
ϕ (yk) = cos θjV pj (yj)− cos θiV pi(yi)

sin θjT
pj
ϕ (yj) = cos θiV pi(yi)− cos θkV pk(yk) (3.18)

combined together with (3.17) imply (3.16) (see [38] for details). Instead for all the
curves γpj with j ∈ {1, . . . ,m}, j 6= i, j 6= k for which, for example, sin θi = 0 it is
possible to prove (see again [38]) that

sin θkV pk(yk) + sin θjV pj (yj) = 0

sin θkT
pi
ϕ (yi) = V pj (yj)− cos θkV pi(yi)

sin θjT
pk
ϕ (yk) = V pi(yi)− cos θjV pk(yk)

sin θkT
pj
ϕ (yj) = cos θkV pj (yj)− V pi(yi) (3.19)

yielding (3.16). One can show that for every i ∈ {1, . . . ,m}, imposing such require-
ments (i.e., either (3.17), (3.18) or (3.19)) implies that ∂4xψpi(yi) is uniquely determined.

• Also the case of a multipoint with clamped boundary conditions can be treated follow-
ing the arguments of the just considered cases of natural boundary conditions.

To summarise, for every i ∈ {1, . . . , N} we must prove the existence of ψi : [0, 1]→ [0, 1]
with ∂xψi(x) 6= 0 for every x ∈ [0, 1] satisfying

ψi(0) = 0

∂xψ
i(0) = c1

∂2xψ
i(0) = c2

∂3xψ
i(0) = 0

∂4xψ
i(0) = c3

and



ψi(1) = 1

∂xψ
i(1) = c4

∂2xψ
i(1) = c5

∂3xψ
i(1) = 0

∂4xψ
i(1) = c6

(3.20)

with c1, c2, c3 and c4, c5, c6 depending on the type of the endpoint γi(0) and γi(1). The ψi can
be (roughly) constructed by choosing ψi to be, near the points 0 and 1, the respective fourth
Taylor polynomial that is determined by the values of the derivatives appearing in (3.20).
Then one connects the two polynomial graphs by a suitable increasing smooth function.

To get uniqueness when we let evolve an open curve or a network, one has to use Propo-
sition 2.16. We refer to [15, 23, 38, 52] for a complete proof.
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Remark 3.19. The previous theorem gives a solution of classC
4+α
4
,4+α([0, T ]×[0, 1];R2) when-

ever the initial datum is of class C4+α([0, 1];R2) and satisfies all the conditions listed in Defi-
nition 2.5. We can remove the fourth order conditions iii)–iv) setting the problem in Sobolev
spaces, with the initial datum inW 4−4/p,p([0, 1];R2) with p ∈ (5,∞). Even in this lower regu-
larity class it is possible to prove uniqueness of solutions (see [22]), but we pay in regularity
of the solution, that is merely in W 1,p

(
(0, T );Lp

(
(0, 1);R2

))
∩ Lp

(
(0, T );W 4,p

(
(0, 1);R2

))
.

With the strategy we presented in this paper it is possible to get a smooth solution in
[0, T ] if in addition the initial datum admits a smooth parametrization and satisfies the com-
patibility conditions of any order (for a complete proof of this result we refer to [15]). Since
the solution of class C

4+α
4
,4+α is unique, a fortiori the smooth solution is unique. Although

a smooth solution is desiderable, asking for compatibility conditions of any order is a very
strong request.

4 Long time existence

Definition 4.1. A time–dependent family of networksNt parametrized by γt = (γ1, . . . , γN )
is a maximal solution to the elastic flow with initial datum N0 in [0, T ) if it is a solution in
the sense of Definition 2.3 in (0, T̂ ] for all T̂ < T , γ ∈ C∞

(
[ε, T )× [0, 1]; (R2)N

)
for all ε > 0

and if there does not exist a smooth solution Ñt in (0, T̃ ] with T̃ ≥ T and such that N = Ñ
in (0, T ).

If T = ∞ in the above definition, T̃ ≥ T is supposed to mean T̃ = ∞. The maximal
time interval of existence of a solution to the elastic flow will be denoted by [0, Tmax), for
Tmax ∈ (0,+∞].

Notice that the existence of a maximal solution is granted by Theorem 3.14, Theorem 3.18
and Proposition 3.17.

4.1 Evolution of geometric quantities

In this section we use the following version of the Gagliardo–Nirenberg Inequality which
follows from [39, Theorem 1] and a scaling argument.

Let η be a smooth regular curve in R2 with finite length ` and let u be a smooth function
defined on η. Then for every j ≥ 1, p ∈ [2,∞] and n ∈ {0, . . . , j − 1}we have the estimates

‖∂ns u‖Lp ≤ C̃n,j,p‖∂jsu‖σL2‖u‖1−σL2 +
Bn,j,p
`jσ
‖u‖L2

where

σ =
n+ 1/2− 1/p

j

and the constants C̃n,j,p and Bn,j,p are independent of η. In particular, if p = +∞,

‖∂ns u‖L∞ ≤ C̃n,j‖∂
j
su‖

σ
L2‖u‖1−σL2 +

Bn,j
`jσ
‖u‖L2 with σ =

n+ 1/2

j
. (4.1)

We notice that in the case of a time–dependent family of curves with length equibounded
from below by some positive value, the Gagliardo–Nirenberg inequality holds with uniform
constants.
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By the monotonicity of the elastic energy along the flow (Section 2.5), the following result
holds.

Corollary 4.2. Let Nt =
⋃N
i=1 γ

i
t be a maximal solution to the elastic flow with initial datum N0 in

the maximal time interval [0, Tmax) and let Eµ(N0) be the elastic energy of the initial datum. Then
for all t ∈ (0, Tmax) it holds ∫

γit

|ki|2 ds ≤
∫
Nt
|k|2 ds ≤ Eµ(N0) . (4.2)

Now we consider the evolution in time of the length of the curves of the network.

Lemma 4.3. Let Nt =
⋃N
i=1 γ

i
t be a maximal solution to the elastic flow in the maximal time in-

terval [0, Tmax) with initial datum N0 and let Eµ(N0) be the elastic energy of the initial datum. Let
µ1, . . . , µN > 0 and µ∗ := mini=1,...,N µ

i. Then for all t ∈ (0, Tmax) it holds

`(γit) ≤ L(Nt) ≤
1

µ∗
Eµ(N0) . (4.3)

Furthermore ifNt is composed of a time dependent family of closed curves γt, then for all t ∈ (0, Tmax)

`(γt) ≥
4π2

Eµ(γ0)
. (4.4)

Suppose instead that γt is a time dependent family of curves subjected either to Navier boundary
conditions or to clamped boundary conditions with γ(t, 0) = P and γ(t, 1) = Q for every t ∈
[0, Tmax). Then for all t ∈ (0, Tmax)

`(γt) ≥ |P −Q| > 0 if P 6= Q and `(γt) ≥
π2

Eµ(γ0)
> 0 if P = Q . (4.5)

Proof. Formula (4.3) is a direct consequence of Proposition 2.20. Suppose γt is a one–parameter
family of single closed curves. Then by Gauss–Bonnet theorem we have

2π ≤
∫
γt

|k|ds ≤
(∫

γt

|k|2 ds

)1/2(∫
γt

1 ds

)1/2

= `(γt)
1/2

(∫
γt

|k|2 ds

)1/2

, (4.6)

that combined with (4.2) gives (4.4). Clearly if γt is composed of a curve with fixed endpoints
γ(t, 0) = P and γ(t, 1) = Q with P 6= Q, then `(γt) ≥ |P − Q| > 0. Suppose now that
P = Q. Then by a generalization of the Gauss–Bonnet Theorem (see [16, Corollary A.2]) to
not necessarily embedded curves with coinciding endpoints it holds

∫
γt
|k|ds ≥ π and so

repeating the chain of inequalities (4.6) one gets (4.5).

Remark 4.4. In many situations it seems not possible to generalize the above computations
in the case of networks to control the lengths of the curves neither individually nor globally.
At the moment there are no explicit examples of networks whose curves disappear during
the evolution, but we believe in this possible scenario.

Consider for example a sequence of networks composed of three curves that meet only at
their endpoints in two triple junctions. In particular, suppose that the networks is composed
of two arcs of circle of radius 1 and length ε that meet with a segment (of length 2 sin ε

2 ∼ ε)
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with angles of amplitude ε
2 . The energy (with µi = 1 for any i) of this network is Eµ(Nε) =

4ε+ 2 sin ε
2 and it converges to zero when ε→ 0.

A similar behavior has been shown by Nürnberg in the following numerical examples
based on the methods developed in [8] (see [38, Section 5.5] for more details). The initial
datum is the standard double bubble.

196 5 Long time behaviour of the elastic flow of networks

In the case of Theta networks it is suspected that all evolutions develop a singularity. This
conjecture is supported by recent results on the minimisation problem naturally associated to the
flow. In [38, Chapter 3] it is shown that

inf {Eµ(“) : “ is a Theta network} = 0 ,

where the infimum is not attained. This result is illustrated in Figure 5.4 which is discussed below.
However, if one enlarges the admissible class allowing for modified Theta networks consisting of two
curves that meet in one quadruple junction, the “figure eight”, the unique closed planar elastica
with self-intersection as shown in [87, Theorem 0.1 (a)], is a stationary point of the energy Eµ.
Figure 5.3 shows a simulation of an evolving Theta network that converges to the figure eight. It
is remarkable that according to the simulation the singularity occurs in finite time. The starting
network is a drawn-out rotated double bubble with a relatively short straight curve in the middle.
As the time approaches the maximal time of existence, the short curve in the middle eventually
shrinks to a point which corresponds to the singularity described in case (i) of Theorem 5.15. We
note that the angles at the junction remain bounded away from 0, fi and 2fi.

Figure 5.3: An evolving Theta network converging to the figure eight in finite time.

Figure 5.4 shows an example of an evolving Theta network where both singular behaviours (i) and
(ii) occur simultaneously. According to the simulation we presume that the singularities develop
in finite time. Starting with a symmetric double bubble the network first flattens and expands.
At some point it stops expanding and starts shrinking faster and faster in a possibly self-similar
way. The simulation suggests that the network eventually shrinks to a point with parallel tangent
vectors.

Figure 5.4: An evolving double bubble shrinking to a point in finite time.
Figure 1: A numerical example of a shrinking network. The weighs µi are all equal to 0.2.

First the symmetric double bubble expand and then it starts flattening. The length of all
the curves becomes smaller and smaller and the same happen to the amplitude of the angles.
The simulation suggest that the networks shrink to a point in finite time.

In this other example instead only the length of one curve goes to zero and the network
composed of three curve becomes a “figure eight”.

196 5 Long time behaviour of the elastic flow of networks

In the case of Theta networks it is suspected that all evolutions develop a singularity. This
conjecture is supported by recent results on the minimisation problem naturally associated to the
flow. In [38, Chapter 3] it is shown that

inf {Eµ(“) : “ is a Theta network} = 0 ,

where the infimum is not attained. This result is illustrated in Figure 5.4 which is discussed below.
However, if one enlarges the admissible class allowing for modified Theta networks consisting of two
curves that meet in one quadruple junction, the “figure eight”, the unique closed planar elastica
with self-intersection as shown in [87, Theorem 0.1 (a)], is a stationary point of the energy Eµ.
Figure 5.3 shows a simulation of an evolving Theta network that converges to the figure eight. It
is remarkable that according to the simulation the singularity occurs in finite time. The starting
network is a drawn-out rotated double bubble with a relatively short straight curve in the middle.
As the time approaches the maximal time of existence, the short curve in the middle eventually
shrinks to a point which corresponds to the singularity described in case (i) of Theorem 5.15. We
note that the angles at the junction remain bounded away from 0, fi and 2fi.

Figure 5.3: An evolving Theta network converging to the figure eight in finite time.

Figure 5.4 shows an example of an evolving Theta network where both singular behaviours (i) and
(ii) occur simultaneously. According to the simulation we presume that the singularities develop
in finite time. Starting with a symmetric double bubble the network first flattens and expands.
At some point it stops expanding and starts shrinking faster and faster in a possibly self-similar
way. The simulation suggests that the network eventually shrinks to a point with parallel tangent
vectors.

Figure 5.4: An evolving double bubble shrinking to a point in finite time.

Figure 2: A numerical example of a disappearance of one curve. The weighs µi are all equal
to 2.

Remark 4.5. If some of the weights µi of the definition of the elastic flow are equal to zero,
then the L2–norm of the curvature remains bounded, but the lengths of the network can go
to infinity. However, during the flow of either a single closed curve or a curve with Navier
boundary conditions, the length of the curve can go to infinity, but not in finite time. Suppose
µ = 0, in this case we call the functional E0. It holds

d

dt
`(γt) =

d

dt

∫
γt

1 ds =

∫
γt

∂sT − kV ds = T (1)− T (0) +

∫
γt

2k∂2sk + k4 ds

=

∫
γt

−2|∂sk|2 + k4 ds+ k(1)∂sk(1)− k(0)∂sk(0)

=

∫
γt

−2|∂sk|2 + k4 ds ,
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indeed, in the case of a closed curve T (1) = T (0) and k(1)∂sk(1) = k(0)∂sk(0), while natural
boundary conditions implies T (1) = T (0) = k(1) = k(0) = 0. The Gagliardo-Nirenberg
inequality gives

‖k‖4 ≤ C̃‖∂sk‖
1
4
2 ‖k‖

3
4
2 +

B

`
1
4

‖k‖2 ≤ c‖k‖
3
4
2

(
‖∂sk‖

1
4
2 + ‖k‖

1
4
2

)
≤ 2

3
4 c‖k‖

3
4
2 (‖∂sk‖2 + ‖k‖2)

1
4 ,

where c = max
{
C̃, B/`

1
4

}
. Thanks to (4.4) and (4.5), we know that ` is uniformly bounded

from below away from zero and thus that constants are independent of the length. Also, as
‖k‖2 ≤ C(E0(γ0)), using Young inequality we obtain

‖k‖44 ≤ C‖k‖32 (‖∂sk‖2 + ‖k‖2) ≤ εC‖∂sk‖22 + C(E0(γ0), ε).

By taking ε small enough we then conclude

d

dt
`(γt) ≤

∫
γt

−2|∂sk|2 + k4 ds ≤
∫
γt

−|∂sk|2 ds+ C(E0(γ0)),

thus in both cases d
dt`(γt) ≤ C(E0(γ0)) and hence the length grows at most linearly.

Unfortunately in the case of clamped curves we are not able to reproduce the same compu-
tation because we cannot get rid of the boundary terms k(1)∂sk(1) and k(0)∂sk(0). However
we are not aware of examples in which the length of a clamped curve subjected to the L2–
gradient flow of E0 blows up in finite time.

Lemma 4.6. Let γ : [0, 1]→ R2 be a smooth regular curve. Then the following estimates hold:∫
γ
|pj+1

2j+6 (k) | ds ≤ ε‖∂j+2
s k‖2L2 + C(ε, `(γ))

(
‖k‖2L2 + ‖k‖2(2j+5)

L2

)
,∫

γ
|pj2j+4 (k) | ds ≤ ε‖∂j+1

s k‖2L2 + C(ε, `(γ))
(
‖k‖2L2 + C‖k‖2(2j+3)

L2

)
, (4.7)

for any ε > 0.

Proof. Every monomial of pj+1
2j+6 (k) is of the formC

∏j+1
l=0

(
∂lsk
)αl withαl ∈ N and

∑j+1
l=0 αl(l+

1) = 2j + 6. We define J := {l ∈ {0, . . . , j + 1} : αl 6= 0} and for every l ∈ J we set

βl :=
2j + 6

(l + 1)αl
.

We observe that
∑

l∈J
1
βl

= 1 and αlβl > 2 for every l ∈ J . Thus the Hölder inequality
implies

C

∫
γ

∏
l∈J

(∂lsk)αl ds ≤ C
∏
l∈J

(∫
γ
|∂lsk|αlβl ds

) 1
βl

= C
∏
l∈J
‖∂lsk‖

αl
Lαlβl

.

Applying the Gagliardo–Nirenberg inequality for every l ∈ J yields for every i ∈ {1, . . . , j+
1}

‖∂lski‖Lαlβl ≤ Cl,j,αl,βl‖∂
j+2
s ki‖σl

L2‖ki‖1−σlL2 +
Bl,j,αl,βl
`(γ)(j+2)σl

‖ki‖L2
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where for all l ∈ J the coefficient σl is given by

σl =
l + 1/2− 1/(αlβl)

j + 2
.

We may choose

C = max

{
Cl,j,αl,βl ,

Bl,j,αl,βl
`(γ)(j+2)σl

: l ∈ J
}
.

Since the polynomial pj+1
2j+6 (k) consists of finitely many monomials of the above type, we

can write

C

∫
γ

∏
l∈J
|∂lsk|αl ds ≤ C

∏
l∈J
‖∂lsk‖

αl
Lαlβl

≤ C
∏
l∈J
‖k‖(1−σl)αl

L2

(
‖∂j+2

s k‖L2 + ‖k‖L2

)σlαl
L2

= C‖k‖
∑
l∈J (1−σl)αl

L2

(
‖∂j+2

s k‖L2 + ‖k‖L2

)∑
l∈J σlαl

L2 .

Moreover we have ∑
l∈J

σlαl ≤ 2− 1

(j + 2)2
< 2 .

Applying Young’s inequality with p := 2∑
l∈J σlαl

and q := 2
2−

∑
l∈J σlαl

we obtain

C

∫
γ

∏
l∈J
|∂lsk|αl ds ≤ C

ε
‖k‖

2
∑
l∈J (1−σl)αl

2−
∑
l∈J σlαl

L2 + εC
(
‖∂j+2

s k‖L2 + ‖k‖L2

)2
L2

where

2

∑
l∈J(1− σl)αl

2−
∑

l∈J σlαl
= 2(2j + 5) .

As C depends only on j and the length of the curve, we get choosing ε small enough∫
γ
|pj+1

2j+6| (k) ds ≤ ε
(
‖∂j+2

s k‖L2 + ‖k‖L2

)2
L2 +

C

ε
‖k‖2(2j+5)

L2 .

To conclude it is enough to take choose a suitable ε > 0. The second inequality in (4.7) can
be proved in the very same way.

Lemma 4.7. Let γ : [0, 1] → R2 be a smooth regular curve. Suppose that γ has a fixed endpoint of
order one γ(y) with y ∈ {0, 1}. Then the following estimates hold:

|pj+1
2j+5(k)(y)| ≤ ε‖∂j+2

s k‖2L2 + C(ε, `(γ))
(
‖k‖2L2 + ‖k‖2(2j+5)

L2

)
,

|pj+1
2j+3(k)(y)| ≤ ε‖∂j+2

s k‖2L2 + C(ε, `(γ))
(
‖k‖2L2 + C‖k‖(2j+3)2

L2

)
, (4.8)

for any ε > 0.
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Proof. The term |pj+1
2j+5(k)(y)| can be controlled by a sum of terms like C

∏j+1
l=0 ‖∂

l
sk‖

αl
L∞ with∑j+1

l=0 (l + 1)αl = 2j + 5. Then, for every l ∈ {0, . . . , j + 1} we use interpolation inequalities
with p = +∞ to obtain

‖∂lsk‖L∞ ≤ Cl
(
‖∂j+2

s k‖σlL2‖k‖1−σlL2 + ‖k‖L2

)
,

with σl = l+1/2
j+2 . Thus

j+1∏
l=0

‖∂lsk‖
αl
L∞ ≤C

j+1∏
l=0

(
‖∂j+2

s k‖L2 + ‖k‖L2

)σlαl ‖k‖(1−σl)αl
L2

≤C
(
‖∂j+2

s k‖L2 + ‖k‖L2

)∑j+1
l=0 σlαl ‖k‖

∑j
l=0(1−σl)αl

L2

with
j+1∑
l=0

σlαl =

j+1∑
l=0

αl
l + 1/2

j + 2
=

2j + 5− 1/2
∑j

l=0 αl
j + 2

≤
2j + 5− 1/2

∑j+1
l=0 αl(l + 1)/(j + 2)

j + 2

=
2j + 5− 1− 1/2(j + 2)

j + 2
= 2− 1

2(j + 2)2
< 2 .

Then by Young inequality,(
‖∂j+2

s k‖L2 + ‖k‖L2

)∑j+1
l=0 σlαl ‖k‖

∑j+1
l=0 (1−σl)αl

L2 ≤ ε
(
‖∂j+2

s k‖L2 + ‖k‖L2

)2
+ C‖k‖a

∗

L2

and the last exponent a∗ = 2
∑j
l=0(1−σl)αl

2−
∑j
l=0 σlαl

is equal to 2(2j + 5). Choosing a value ε > 0 small

enough, we get the desired estimate.
Similarly pj+1

2j+3(k)(y) can be controlled by a sum of terms like C
∏j+1
l=0 ‖∂

l
sk‖

αl
L∞ with∑j+1

l=0 (l + 1)αl = 2j + 3. We can repeat the same proof. Also in this case
∑j+1

l=0 σlαl < 2:
indeed

j+1∑
l=0

σlαl =
2j + 3− 1/2

∑j+1
l=0 αl

j + 2

≤
2j + 3− 1/2

∑j+1
l=0 αl(l + 1)/(j + 2)

j + 2

=
2j + 3 + 1− 1− 2j+3

2j+4

j + 2
= 2− 1

j + 2
− 2j + 3

2(j + 2)2
< 2 .

This time we get that the exponent a∗ ∈ ( 2
j+5 ,

(2j+3)2

2 ). We have a∗ =
(j+ 5

2
)(
∑j+1
l=0 αl)−2j−3

1+ 1
2

∑j+1
l=0 αl

.

Because of the properties of the polynomial pj+1
2j+3(k) we have that 2 ≤

∑j+1
l=0 αl < 2j + 3.

Then a∗ <
(j+ 5

2
)(2j+3)−(2j+3)

1+ 1
2

∑j+1
l=0 αl

< (2j+3)2

2 . Moreover a∗ ≥ 2(j+ 5
2
)−2j−3

1+ 1
2
(2j+3)

= 2
j+5 . Now that

we have ensured that a∗ is bounded from below away from zero we can conclude that the
desired estimate hold true.
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Lemma 4.8. Let γt be a maximal solution in [0, Tmax) to the elastic flow of a curve with Navier
boundary conditions. The for all t ∈ [0, Tmax) and for all n ∈ N

∂2ns k(t, 0) = ∂2ns k(t, 1) = 0 .

Proof. We prove the result by induction. Since we required Navier boundary conditions,
apart from the fixed endpoints γ(t, 0) = P and γ(t, 1) = Q, we also have k(0) = k(1) = 0.
Differentiating in time the first condition we get for y ∈ {0, 1}

0 = ∂tγ(t, y) = V (t, y)ν(t, y) + T (t, y)τ(t, y)

= (−2∂2sk(t, y)− k3(t, y) + µk(t, y))ν(t, y) + T (t, y)τ(t, y) ,

that implies T (t, y) = 0 and ∂2sk(t, y) = 0, and this gives the first step of the induction. Let
n ∈ N and suppose that ∂2ns k(0) = ∂2ns k(1) = 0 holds for any natural number m ≤ n. Then
making use of (2.30) we have

0 = ∂t∂
2(n−1)
s k(t, y) = −2∂2(n+1)

s k(t, y)− 5k2∂2ns k(t, y) + µ∂2ns k(t, y)− T∂2n−1s k(t, y)

+ p2n−12n+3(k)(t, y) + µp2n−22n+1(k)(t, y) = −2∂2(n+1)
s k(t, y) ,

where we use the induction hypothesis, T (t, y) = 0 and the fact that each monomial of
p2n−12n+3(k), µp2n−22n+1(k) contains at least one term of the form ∂2ms k.

Lemma 4.9. Let γt be a maximal solution in [0, Tmax) to the elastic flow of a curve with clamped
boundary conditions. The for all t ∈ [0, Tmax), y ∈ {0, 1} and n ∈ N

∂4n+2
s k(t, y) = p4n4n+3(k)(t, y) + µp4n4n+1(k)(t, y) , (4.9)

∂4n+3
s k(t, y) = p4n+1

4n+4(k)(t, y) + µp4n+1
4n+2(k)(t, y) . (4.10)

Proof. Consider first the fixed endpoints condition γ(t, 0) = P and γ(t, 1) = Q. Differentiat-
ing in time we have, for y ∈ {0, 1}

0 = ∂tγ(t, y) = V (t, y)ν(t, y) + T (t, y)τ(t, y)

= (−2∂2sk(t, y)− k3(t, y) + µk(t, y))ν(t, y) + T (t, y)τ(t, y) .

Since both normal and tangential velocity have to be zero, we get T (t, y) = 0 and ∂2sk(t, y) =
µ
2k(t, y)− 1

2k
3(t, y): the case n = 0 of (4.9) holds true. Fix a certain n ∈ N, suppose that (4.9)

is true for any natural number m ≤ n. Then

0 = ∂t
(
∂4n+2
s k(t, y) + p4n4n+3(k(t, y)) + µp4n4n+1(k(t, y))

)
= −2∂4n+6

s k(t, y)− T (t, y)∂4n+3
s k(t, y) + p4n+4

4n+7 (k(t, y)) + µ p4n+4
4n+5(k(t, y))

+ p4n+4
4n+7(k(t, y)) + T (t, y)p4n+1

4n+4(k(t, y)) + µp4n+4
4n+5(k(t, y)) + µT (t, y)p4n+1

4n+2(k(t, y))

= −2∂4n+6
s k(t, y) + p4n+4

4n+7 (k(t, y)) + µ p4n+4
4n+5(k(t, y)) .

We prove also (4.10) by induction. We consider the clamped boundary condition τ(t, 0) =
τ0 and τ(t, 1) = τ1. In this case differentiating in time we obtain

0 = ∂tτ(t, y) = (∂sV (t, y) + T (t, y)k(t, y))ν(t, y) ,

that implies 0 = ∂sV (t, y) = 2∂3sk(t, y) + 3k2(t, y)∂sk(t, y) + µ∂sk(t, y). The induction step
follows as in the previous situation.
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Remark 4.10. It is not possible to generalize (4.9) and (4.10) to ∂ns k = pn−2n+1(k) + µpn−2n−1(k),
where n ∈ N is arbitrary. Indeed we do not have any particular request on k and ∂sk at the
boundary, we cannot produce the step n = 0 of the induction.

Lemma 4.11. Let γt be a maximal solution to the elastic flow either of closed curves or of an open
curve subjected to Navier boundary conditions with initial datum γ0 in the maximal time interval
[0, Tmax). Let Eµ(γ0) be the elastic energy of the initial curve γ0. Then for all t ∈ (0, Tmax) and
j ∈ N, j ≥ 1 it holds

d

dt

∫
1

2
|∂jsk|2 ds ≤ C(j, Eµ(γ0)) . (4.11)

Proof. Using (2.30) we obtain

d

dt

∫
γt

1

2
|∂jsk|2 ds =

∫
γt

∂jsk∂t∂
j
sk +

1

2
|∂jsk|2(∂sT − kV ) ds

=

∫
γt

∂jsk
{
−2∂j+4

s k − 5k2∂j+2
s k + µ∂j+2

s k + pj+1
j+5 (k) + µ pjj+3(k) + T∂j+1

s k
}

ds

+

∫
γt

1

2
|∂jsk|2(∂sT − kV ) ds . (4.12)

We begin by considering the terms involving the tangential velocity: we have∫
γt

T∂jsk∂
j+1
s k +

1

2
∂sT (∂jsk)2 ds =

1

2

(
T (t, 1)(∂jsk(t, 1))2 − T (t, 0)(∂jsk(t, 0))2

)
= 0 , (4.13)

since for a closed curve T (t, 1)(∂jsk(t, 1))2 = T (t, 0)(∂jsk(t, 0))2 and in the case of Navier
boundary conditions T (t, 1) = T (t, 0) = 0.

Integrating twice by parts the term
∫
−2∂jsk∂

j+4
s k ds and once

∫
µ∂jsk∂

j+2
s k−5k2∂jsk∂

j+2
s k ds

we have

d

dt

∫
1

2
|∂jsk|2 ds =

∫
−2|∂j+2

s k|2 − µ|∂j+1
s k|2 + pj+1

2j+6 (k) + µpj2j+4 (k) ds . (4.14)

Also in the case of open curves with Navier boundary conditions there is no boundary con-
tribution thanks to Lemma 4.8. Combing (4.14) together with (4.7) one has

d

dt

∫
1

2
|∂jsk|2 ds ≤

∫
−|∂j+2

s k|2−µ
2
|∂j+1
s k|2 ds+C‖k‖2(2j+5)

2 +C‖k‖2L2 ≤ C(j, Eµ(γ0)) , (4.15)

where in the last inequality we used (4.2).

The case of clamped boundary conditions is more tricky.

Lemma 4.12. Let γt be a maximal solution to the elastic flow subjected to clamped boundary condi-
tions with initial datum γ0 in the maximal time interval [0, Tmax). Let Eµ(γ0) be the elastic energy of
the initial curve γ0. Then for all t ∈ (0, Tmax) and n ∈ N, n ≥ 0 it holds

d

dt

∫
1

2
|∂4ns k|2 ds ≤ C(n, Eµ(γ0)) .
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Proof. Consider the equality (4.12). As in the case of Navier boundary conditions, also in the
case of clamped boundary conditions T (t, 1) = T (t, 0) = 0 and thus we have (4.13). Then
integrating by parts the terms

∫
−2∂jsk∂

j+4
s k ds and

∫
µ∂jsk∂

j+2
s k−5k2∂jsk∂

j+2
s k ds appearing

in (4.12) we obtain

d

dt

∫
1

2
|∂jsk|2 ds =

∫
−2|∂j+2

s k|2 − µ|∂j+1
s k|2 + pj+1

2j+6 (k) + µpj2j+4 (k) ds

− 2∂jsk∂
j+3
s k + 2∂j+1

s k∂j+2
s k + µ∂jsk∂

j+1
s k − 5k2∂jsk∂

j+1
s k

∣∣∣1
0

=

∫
−2|∂j+2

s k|2 − µ|∂j+1
s k|2 + pj+1

2j+6 (k) + µpj2j+4 (k) ds

− 2∂jsk∂
j+3
s k + 2∂j+1

s k∂j+2
s k + pj+1

2j+5(k) + µpj+1
2j+3(k)

∣∣∣1
0
.

Suppose j = 4n with n ∈ N. Then, using (4.9) and (4.10)

∂jsk∂
j+3
s k = ∂4ns k∂4n+3

s k = ∂4ns kp4n+1
4n+4(k) + µ∂4ns kp4n+1

4n+2(k) = pj+1
2j+5(k) + µpj+1

2j+3(k) ,

∂j+1
s k∂j+2

s k = ∂4n+1
s k∂4n+2

s k = ∂4n+1
s kp4n4n+3(k) + µ∂4n+1

s kp4n4n+1(k) = pj+1
2j+5(k) + µpj+1

2j+3(k) .

So, for j = 4n with n ∈ N, combing (4.14) together with (4.7) and (4.8) one has

d

dt

∫
1

2
|∂jsk|2 ds ≤

∫
−1

2
|∂j+2
s k|2 − µ

4
|∂j+1
s k|2 ds+ C‖k‖2(2j+5)

2 + C‖k‖(2j+3)2

L2
+ C‖k‖2L2

≤ C(j, Eµ(γ0)) .

We pass now to networks. In the case of clamped boundary conditions, apart from the
monotonicity of the energy, geometric estimates on the derivative of the curvature are not
know (see also Section 6).

To describe the results contained in [14, 22] for networks with junctions subjected to
natural boundary conditions we need a preliminary definition.

Definition 4.13. We say that at a junction of order m ∈ N≥2 the uniform non–degeneracy
condition is satisfied if there exists ρ > 0 such that

inf
t∈[0,Tmax)

max
i=1,...,m

{∣∣sinαi(t)∣∣} ≥ ρ , (4.16)

where with αi we denote the angles between two consecutive tangent vectors of the curves
concurring at the junction.

Then [22, Proposition 6.15] reads as follow:

Lemma 4.14. LetN (t) be a maximal solution to the elastic flow with initial datumN0 in the maximal
time interval [0, Tmax) and let Eµ(N0) be the elastic energy of the initial network. Suppose that at
all the junctions (of any order m ∈ N≥2) we impose natural boundary conditions, for t ∈ (0, Tmax)
the lengths of all the curves of the network N (t) are uniformly bounded away from zero and that the
uniform non–degeneracy condition is satisfied. Then for all t ∈ (0, Tmax) it holds

d

dt

∫
Nt

∣∣∂2sk∣∣2 ds ≤ C(Eµ(N0)) . (4.17)
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This lemma is proved in the case of network with triple junctions, but with an accurate
inspection of the proof one notices that it can be adapted to junctions of any order m ∈
N≥2. The structure of the proof of [22, Proposition 6.15] is the same of Lemma 4.11 and
Lemma 4.12. The main difference is the treatment of the boundary terms, which is more
intricate. The uniform bound from below on the length of each curve is needed in Lemma 4.6
and Lemma 4.7, that are both used in the proof. The uniform non–degeneracy conditions
allows us to express the tangential velocity at the boundary in function of the normal velocity
(see Remark 2.9). As in Lemma 4.11 and Lemma 4.12, in [22, Proposition 6.15] the tangential
velocity is arbitrary.

To generalize [22, Proposition 6.15] from ∂2sk to ∂2+4j
s k with j ∈ N we must also require

that the tangential velocity in the interior of the curves is a linear interpolation between
the tangential velocity at the junction (given in terms of the normal velocity) and zero (for
further details we refer the reader to [14]).

4.2 Long time existence

Theorem 4.15 (Global Existence). Let µ > 0 and let

γ ∈ C
4+α
4
,4+α([0, Tmax)× [0, 1])) ∩ C∞([ε, Tmax)× [0, 1])

be a maximal solution to the elastic flow of a single curve (either closed, or with fixed endpoints in
R2) in the maximal time interval [0, Tmax) with admissible initial datum γ0 ∈ C4+α([0, 1]). Then
Tmax = +∞. In other words, the solution exists globally in time.

Proof. Suppose by contradiction that Tmax is finite. In the whole time interval [0, Tmax) the
length of the curves γt is uniformly bounded from above and from below away from zero
and the L2–norm of the curvature is uniformly bounded.

If the curve is closed or subjected to Navier boundary conditions, then (4.11) tells us that
for every t1, t2 ∈ (ε, Tmax), t1 < t2∫

γt2

|∂jsk|2 ds−
∫
γt1

|∂jsk|2 ds ≤ CEµ(γ0) (t2 − t1) ≤ CEµ(γ0) (Tmax − ε) .

The estimate implies ∂jsk ∈ L∞
(
(ε, Tmax);L2

)
. Instead in the case of clamped boundary

condition we get∫
γt2

|∂4sk|2 ds−
∫
γt1

|∂4sk|2 ds ≤ CEµ(γ0) (t2 − t1) ≤ CEµ(γ0) (Tmax − ε) ,

because Lemma 4.12 holds true only when j is a multiple of 4. Again this estimate gives
∂4sk ∈ L∞

(
(ε, Tmax);L2

)
. Using Gagliardo–Nirenberg inequality for all t ∈ [0, Tmax) we get

‖∂sk(t)‖L2 ≤ C1‖∂4sk(t)‖σL2‖k(t)‖1−σ
L2 + C2‖k(t)‖L2 ≤ C(Eµ(γ0)) ,

‖∂2sk(t)‖L2 ≤ C1‖∂4sk(t)‖σL2‖k(t)‖1−σ
L2 + C2‖k(t)‖L2 ≤ C(Eµ(γ0)) ,

‖∂3sk(t)‖L2 ≤ C1‖∂4sk(t)‖σL2‖k(t)‖1−σ
L2 + C2‖k(t)‖L2 ≤ C(Eµ(γ0)) ,

with constants independent on t.
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Hence in all cases (closed curves, either Navier of clamped boundary conditions), since
τ ∈ L∞ ((ε, Tmax);L∞), by interpolation we obtain

k, ∂sk, ∂
2
sk ∈ L∞ ((ε, Tmax);L∞) .

Putting this observation together with the formulas

κ = kν ,

∂sκ = ∂skν − k2τ ,
∂2sκ = (∂2sk − k3)ν − 3k∂skτ ,

∂3sκ = (∂3sk − 6k2∂sk)ν − (4k∂2sk + 3∂sk
2)τ ,

we get κ, ∂sκ, ∂2sκ ∈ L∞ ((ε, Tmax);L∞) and ∂3sκ ∈ L∞
(
(ε, Tmax);L2

)
. We also get (∂tγ)⊥ ∈

L∞ ((ε, Tmax);L∞).
We reparametrize γ(t) into γ̃(t) with the property |∂xγ̃(t, x)| = `(γ̃(t)) for every x ∈ [0, 1]

and for all t ∈ [0, Tmax). This choice in particular implies

0 < c ≤ sup
t∈[0,Tmax),x∈[0,1]

|∂xγ̃(t, x)| ≤ C <∞ .

We make use of the relations

κ(t, x) =
∂2xγ̃(t, x)

`(γ̃(t))2
, ∂sκ(t, x) =

∂3xγ̃(t, x)

`(γ̃(t))3
, ∂2sκ(t, x) =

∂4xγ̃(t, x)

`(γ̃(t))4
, ∂3sκ(t, x) =

∂5xγ̃(t, x)

`(γ̃(t))5

to get ∫ 1

0

|∂2xγ̃(t, x)|2

`(γ̃(t))3
dx =

∫
γ̃t

|k|2 ds =

∫
γ̃t

|k|2 ds ≤ Eµ(γ0) ,

and ∫ 1

0

|∂5xγ̃(t, x)|2

`(γ̃(t))9
dx =

∫
γ̃t

|∂3sk|2 ds ≤ C(Eµ(γ0)) .

These estimates allows us to conclude that ∂2xγ̃, ∂3xγ̃, ∂4xγ̃ ∈ L∞ ((ε, Tmax);L∞((0, 1))) and
∂5xγ̃ ∈ L∞

(
(ε, Tmax);L2((0, 1))

)
. Moreover (∂tγ̃)⊥ = (∂tγ)⊥ ∈ L∞ ((ε, Tmax);L∞((0, 1)))

implies γ̃ ∈ L∞ ((ε, Tmax);L∞((0, 1))). Then there exists γ∞(·) limit as t → Tmax of γ̃(t, ·)
together with the limit of its derivatives till 5-th order.

The curve γ∞ is an admissible initial curve, indeed it belongs to C4+α([0, 1]) and in the
case fixed endpoint are present, by continuity of k and ∂2sk it holds

2∂2sk∞(0) + k3∞(0)− µk∞(0) = 2∂2sk∞(1) + k3∞(1)− µk∞(1) = 0 .

Then there exists an elastic flow γ ∈ C
4+α
4
,4+α([Tmax, Tmax+δ]× [0, 1])) with initial datum γ∞

in the time interval [Tmax, Tmax + δ] with δ > 0. We reparametrize γ in γ̂ with the property
|∂xγ̂(t, x)| = `(γ̂(t)) for every x ∈ [0, 1] and t ∈ [Tmax, Tmax + δ]. Then for every x ∈ [0, 1]

lim
t↗Tmax

γ̃(t, x) = γ∞(x) = lim
t↘Tmax

γ̂(t, x)

and also for j ∈ {1, 2, 3, 4, 5}

lim
t↗Tmax

∂jxγ̃(t, x) = ∂jxγ∞(x) = lim
t↘Tmax

∂jxγ̂(t, x) .
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Then
lim

t↗Tmax

∂tγ̃(t, x) = lim
t↘Tmax

∂tγ̂(t, x) .

Thus we can define

g : [0, Tmax + δ]→ R2, g(t, [0, 1]) :=

{
γ̃ for t ∈ [0, Tmax)

γ̂ for t ∈ [Tmax, Tmax + δ] .

solution of the elastic flow in [0, Tmax + δ]. This contradicts the maximality of γ.

Remark 4.16. In the case of the elastic flow either of closed curve or of curves with Navier
boundary conditions with the help of Remark 4.5 it is possible to generalize the above result
to the case µ ≥ 0 (see [46, 21]).

Remark 4.17. In Lemma 4.11 and Lemma 4.12 we derive estimates for every derivative of k.
The above proof shows that it is enough to get the estimate of Lemma 4.11 for j = 1, 2, 3 and
of Lemma 4.12 for n = 1.

At the moment for general networks we are able to get the following partial result:

Theorem 4.18 (Long time behavior, [14, 22]). LetN0 be a geometrically admissible initial network.
Suppose that (N (t)) is a maximal solution to the elastic flow with initial datum N0 in the maximal
time interval [0, Tmax) with Tmax ∈ (0,∞) ∪ {∞}. Suppose that at each junction we impose Navier
boundary conditions. Then

Tmax = +∞ ,

or at least one of the following happens:

(i) the inferior limit as t↗ Tmax of the length of at least one curve of N (t) is zero;

(ii) at one of the junctions it occurs that lim inft↗Tmax maxi
{∣∣sinαi(t)∣∣} = 0, where αi(t) are the

angles formed by the unit tangent vectors of the curves concurring at a junction.

5 Asymptotic behavior

In this section we collect results on the asymptotic convergence of the elastic flow, that is,
we analyze the possibility that the solutions have a limit as times goes to +∞ and such limit
is an elastica, i.e., a critical point of the energy. The first step in this direction is the proof
of the subconvergence of the flow, that consists in the fact that the solution converges to an
elastica along an increasing sequence of times, up to reparametrization and translation in
the ambient space. We present such a result for the flow of closed curves and for a single
curve with Navier or clamped boundary conditions.

Proposition 5.1 (Subconvergence). Let µ > 0 and let γt be a solution of the elastic flow of closed
curves in [0,+∞) with initial datum γ0. Then, up to subsequences, reparametrization, and transla-
tions, the curve γt converges to an elastica as t→∞.

Proof. We remind that thanks to (4.2) and (4.4) for every t ∈ [0,+∞) the length `(γt) is
uniformly bounded from above and from below away from zero by constants that depends
only on the energy of the initial datum Eµ(γ0) and on µ. We can rewrite inequality (4.15) as

d

dt

∫
γ(t)

1

2
|∂jsk|2 ds+

∫
γ(t)
|∂j+2
s k|2 ds ≤ C(Eµ(γ0)) .
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Using interpolation inequalities (with constants c1, c2 independent of time) for every j ∈ N
we get

d

dt

∫
γ(t)
|∂jsk|2 ds+

∫
γ(t)
|∂jsk|2 ds ≤ d

dt

∫
γ(t)
|∂jsk|2 ds+ c1

∫
γ(t)
|∂j+2
s k|2 ds+ c2

∫
γ(t)
|k|2 ds

≤ C(Eµ(γ0)) .

By comparison we obtain∫
γ(t)
|∂jsk|2 ds ≤

∫
γ0

|∂jsk|2 ds+ C(Eµ(γ0)). (5.1)

Hence by Sobolev embedding we get that ‖∂jsk‖L∞ is uniformly bounded in time, for any
j ∈ N. By Ascoli–Arzelá Theorem, up to subsequences and reparametrizations, there exists
the limit limi→∞ ∂

j
skti =: ∂jsk∞ uniformly on [0, 1], for some sequence of times ti → +∞.

Thus, for a suitable choice of a sequence of points pi ∈ R2 such that γ(ti, 0)− pti is the origin
O of R2, the sequence of curves γ(ti, ·) − pi converges (up to reparametrizations) smoothly
to a limit curve γ∞ with γ(0) = O and 0 < c ≤ `(γ∞) ≤ C <∞.

It remains to show that the limit curve is a stationary point for the energy Eµ. Let V :=
∂tγ
⊥ = −2(∂⊥s )2κ − |κ|2κ + µκ and v(t) :=

∫
γ(t) |V |

2 ds. By Proposition 2.20 we know that
∂tE(γ(t, ·)) = −v(t), thus∫ ∞

0
v(t) dt = Eµ(γ(0, ·))− lim

t→∞
Eµ(γ(t, ·)) ≤ Eµ(γ0), (5.2)

and then v ∈ L1(0,∞). By (5.1) we can estimate

|∂tv(t)| ≤ C(µ, γ0) .

Therefore v(t)→ 0 as t→ +∞ and then the limit curve is a critical point.

Notice that in the previous proof we cannot hope for a (uniform in time) bound on the
supremum norm of γ itself. In fact all the parabolic estimates are obtained on the curvature
vector of the evolving curve. This means that we are not yet able to exclude that the flow
leaves any compact set as t→∞.

Proposition 5.2 (Subconvergence). Let µ > 0 and let (γt be a solution in [0,+∞) of the elastic flow
of open curves subjected either to Navier or clamped boundary conditions. Then, up to subsequences
and reparametrization, the curve γt converges to an elastica as t→∞.

Proof. Whatever boundary condition we consider the length of γt is bounded from above
by (4.3) and from below away from zero by (4.5). Furthermore, since the endpoints are fixed,
the evolving curve will remain in a ball of center γ(t, 0) = P and radius 2Eµ(γ0) and so for
every t ∈ [0, Tmax) it holds supx∈[0,1] |γ(t, x)| < C with C independent of time.

Consider the case of Navier boundary conditions: as in the proof of Proposition 5.1 we
obtain that ‖∂jsk‖L∞ is uniformly bounded in time, for every j ∈ N. In the clamped case
instead we have that ∂jsk ∈ L2(0,∞);L∞) only when j is a multiple of 4. However, by
interpolation, we get that ‖∂jsk‖L∞ is uniformly bounded in time, for every j ∈ N. Therefore,
up to subsequences and reparametrization, the curves γ(ti, ·) converges smoothly to a limit
curve γ∞ for some sequence of times ti → +∞. One can show that γ∞ is a critical point
exactly as in Proposition 5.1.
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By the same methods, it is also possible to prove the following subconvergence result.

Proposition 5.3 ([14]). LetN0 be a geometrically admissible initial network composed of three curves
that meet at a triple junction. Suppose that Nt is a maximal solution to the elastic flow with initial
datum N0 in the maximal time interval [0,+∞). Suppose that along the flow the length of the three
curves is uniformly bounded from below, at the junction Navier boundary condition is imposed and
the uniform non–degeneracy conditions is fulfilled. Then it is possible to find a sequence of time
ti → ∞, such that the networks Nti converge, after an appropriate reparametrization, to a critical
point for the energy Eµ with Navier boundary conditions.

From now on we restrict ourselves to the case of closed curves and we want to improve
the subconvergence result of Proposition 5.1 into full convergence of the flow. More pre-
cisely, we want to prove that the solution of the elastic flow of closed curves admits a full
limit as time increases and such a limit is a critical point.

Recall that when we say that γ : [0, 1]→ R2 is a smooth closed curve, periodic conditions
at the endpoints are understood. More precisely, it holds that ∂kxγ(0) = ∂kxγ(1) for any k ∈ N.
Therefore we can write that a closed smooth curve is just a smooth immersion γ : S1 → R2

of the unit circle S1 ' [0, 2π]/∼. In this section we shall adopt this notation as a shortcut for
recalling that periodic boundary conditions are assumed. Moreover, for sake of simplicity,
we assume that the constant weight on the length in the functional Eµ is µ = 1 and we write
E .

Now we can state the result about the full convergence of the flow.

Theorem 5.4 (Full convergence [35, 47]). Let γ : [0,+∞) × S1 → R2 be the smooth solution of
the elastic flow with initial datum γ(0, ·) = γ0(·), that is a smooth closed curve.

Then there exists a smooth critical point γ∞ of E such that γ(t, ·) → γ∞(·) in Cm(S1) for any
m ∈ N, up to reparametrization. In particular, the support γ(t,S1) stays in a compact set of R2 for
any time.

Let us remark again that sub-convergence of a flow is a consequence of the parabolic
estimates that one can prove. However this fact is not sufficient for proving the existence of
a full limit as t → +∞ of γ(t, ·) in any reasonable notion of convergence. We observe that
sub-convergence does not even prevent from the possibility that for different sequences of
times tj , τj ↗ +∞ and points pj , qj ∈ R2, the curves γ(tj , ·)− pj and γ(τj , ·)− qj converge to
different critical points. The sub-convergence clearly does not imply that the flow remains
in a compact set for all times either. This last fact, that is, uniform boundedness of the flow
in R2, is not a trivial property for fourth order equation like the elastic flow. Indeed, such
evolution equation lacks of maximum principle and therefore uniform boundedness of the
flow in R2 cannot be deduced by comparison with other solutions.

However, all these properties will follow at once as the proof of Theorem 5.4 will be
completed, that is, as we prove the full convergence of the flow.

The proof of Theorem 5.4 is based on several intermediate results. The strategy is rather
general and the main steps can be sum up as follows. First we need to set up a suitable func-
tional analytic framework in which the energy functional and its first and second variations
are considered in a neighborhood of an arbitrary critical point. In this setting we prove some
variational properties that are needed in order to produce a Łojasiewicz–Simon gradient in-
equality. Such an inequality estimates the difference in energy between the critical point and
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points in a neighborhood of it in terms of the operator norm of the first variation. As the
first variation functional coincide with the driving velocity of the flow, this furnishes an ad-
ditional estimate. Such an estimate will be finally applied to the flow as follows. Since we
know that the flow subconverges, it passes arbitrarily close to critical points of the energy
at large times. The application of the Łojasiewicz–Simon inequality will then imply that,
once the flow passes sufficiently close to a critical point, it will be no longer able to “escape”
from a neighborhood of such critical point. This will eventually imply the convergence of
the flow.

The use of this kind of inequality for proving convergence of solutions to parabolic equa-
tions goes back to the semimal work of Simon [50]. The Łojasiewicz–Simon inequality we
shall employ follows from the abstract results of [9] and the method is inspired by the strat-
egy used in [10], where the authors study the Willmore flow of closed surfaces. We mention
that another successful application of this strategy is contained in [18], where the authors
study open curves with clamped boundary conditions. Finally, a recent application of this
strategy to the flow of generalized elastic energies on Riemannian manifolds is contained
in [47]. We remark that this strategy is rather general and it can be applied to many different
geometric flows. We refer to [35] for a more detailed exposition of the method, in which the
authors stress on the crucial general ingredients needed to run the argument.

Now we introduce the above mentioned framework. Observe that for any fixed smooth
curve γ : S1 → R2 there exists ρ(γ) > 0 such that if ψ : S1 → R2 is a field of class H4 with
‖ψ‖H4 ≤ ρ, then γ + ψ is a regular curve of class H4. Whenever γ is fixed, we will always
assume that ρ = ρ(γ) > 0 is sufficiently small so that γ + ψ is a regular curve for any field ψ
with ‖ψ‖H4 ≤ ρ. Hence the following definition is well posed.

Definition 5.5. Let γ : S1 → R2 be a regular smooth closed curve and ρ = ρ(γ) > 0 suffi-
ciently small. We define

Hm,⊥
γ :=

{
ψ ∈ Hm(S1,R2) | 〈ψ(x), τ(x)〉 = 0 a.e. on S1

}
,

for any m ∈ N and we denote L2,⊥
γ ≡ H0,⊥

γ . Moreover we define

E : Bρ(0) ⊆ H4,⊥
γ → R E(ψ) := E(γ + ψ).

For a fixed smooth curve γ : S1 → R2, the functional E is defined on an open subset of
an Hilbert spaces. Therefore, we can treat the first and second variations of E as functionals
over such Hilbert spaces. More precisely, we know that in classical functional analysis if
F : Bρ ⊆ V → R is a twice Gateaux differentiable functional defined on a ballBρ in a Banach
space V , then δF : Bρ → V ? and δ2F : Bρ → L(V, V ?), where

δF (v)[w] :=
d

dε
F (v + εw)

∣∣∣
ε=0

,

δ2F (v)[w][z] := δ2F (v)[w, z] :=
d

dη

d

dε
F (v + εw + ηz)

∣∣∣
ε=0

∣∣∣
η=0

,

where (·)? denotes the dual space of (·) and L(V, V ?) is the space of bounded linear function-
als from V to V ?. We adopted the notation δ2F (v)[w, z] by the fact that the second variation
can be also seen as a bilinear symmetric form on V , indeed δ2F (v)[w][z] = δ2F (v)[z][w]. In
such a setting we have

δE : Bρ(0) ⊆ H4,⊥
γ → (H4,⊥

γ )? δE(ψ)[ϕ] :=
d

dε
E(ψ + εϕ)

∣∣∣
ε=0

,

50



and the second variation functional

δ2E : Bρ(0) ⊆ H4,⊥
γ → L(H4,⊥

γ , (H4,⊥
γ )?)

δ2E(ψ)[ϕ, ζ] :=
d

dη

d

dε
E(ψ + εϕ+ ηζ)

∣∣∣
ε=0

∣∣∣
η=0

.

We will actually only need to consider δ2E evaluated at ψ = 0, that is, the second variation
of E at the given curve γ.

The study carried out in Section 2.1 shows that the functional E is Fréchet differentiable
with

δE(ψ)[ϕ] =

∫
S1
〈2(∂⊥s )2κγ+ψ + |κγ+ψ|2κγ+ψ − κγ+ψ, ϕ〉 ds,

where κγ+ψ is the curvature vector of the curve γ + ψ and both arclength derivative ∂s
and measure ds are understood with respect to the curve γ + ψ. The explicit formula for
such first variation functionals shows that actually δE(ψ) belongs to the smaller dual space
(L2,⊥

γ )?. Indeed δE(ψ) is represented in L2-duality as

δE(ψ)[ϕ] =
〈
|γ′ + ψ′|

(
2(∂⊥s )2κγ+ψ + |κγ+ψ|2κγ+ψ − κγ+ψ

)
, ϕ
〉
L2(dx)

, (5.3)

for any ϕ ∈ L2,⊥
γ , where the derivative ∂⊥s is understood with respect to the curve γ + ψ.

Moreover, the results in Section 2.2 similarly imply that the second variation δ2E(0)[ϕ, ·]
evaluated at some ϕ ∈ H4,⊥

γ belongs to the smaller dual space (L2,⊥
γ )? via the pairing

δ2E(0)[ϕ, ζ] =
〈
|γ′|
(

(∂⊥s )4ϕ+ Ω(ϕ)
)
, ζ
〉
L2(dx)

, (5.4)

for any ζ ∈ L2,⊥
γ , where Ω : H4,⊥

γ → L2,⊥
γ is a compact operator and the derivative ∂⊥s is

understood with respect to the curve γ.
In this setting, we can prove the following properties on the first and second variations.

Proposition 5.6. Let γ : S1 → R2 be a regular smooth closed curve and ρ = ρ(γ) > 0 sufficiently
small. Then the following holds true.

1. The functions E : Bρ ⊆ H4,⊥
γ → R and δE : Bρ ⊆ H4,⊥

γ → (L2,⊥
γ )? are analytic.

2. The second variation operator δ2E(0) : H4,⊥
γ → (L2,⊥

γ )?, which is defined by

δ2E(0)[ϕ][ζ] := δ2E(0)[ϕ, ζ] ∀ϕ ∈ H4,⊥
γ , ∀ ζ ∈ L2,⊥(γ),

is a Fredholm operator of index zero, i.e., dim ker δ2E(0) = codim (Imm δ2E(0)) is finite.

Proof. The fact that bothE and δE are analytic maps follows from the fact that such operators
are compositions and sums of analytic functions. For a detailed proof of this fact we refer
to [18, Lemma 3.4].

Now we prove the second statement. Consider the operator L : H4,⊥
γ → L2,⊥

γ defined by

L(ϕ) = |γ′|(∂⊥s )4ϕ+ |γ′|Ω(ϕ),

where Ω is as in (5.4). We clearly have that δ2E(0) : H4,⊥
γ → (L2,⊥

γ )? is Fredholm of index
zero if and only if L is. Since |γ′|Ω(·) is compact, the thesis is then equivalent to say that
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H4,⊥
γ 3 ϕ 7→ |γ′|(∂⊥s )4ϕ ∈ L2,⊥

γ is Fredholm of index zero (see [24, Section 19.1, Corollary
19.1.8]). Since |γ′| is uniformly bounded away from zero, the thesis is equivalent to prove
that the operator

(∂⊥s )4 : H4,⊥
γ → L2,⊥

γ

is Fredholm of index zero. By [24, Corollary 19.1.8], as id : H4,⊥
γ → L2,⊥

γ is compact, this is
equivalent to show that the operator

id + (∂⊥s )4 : H4,⊥
γ → L2,⊥

γ

is Fredholm of index zero. We can prove, in fact, that id + (∂⊥s )4 is even invertible.
Injectivity follows as if ϕ+ (∂⊥s )4ϕ = 0, then multiplication by ϕ and integration by parts

give ∫
|(∂⊥s )2ϕ|2 + |ϕ|2 ds = 0,

and then ϕ = 0.
Let now X ∈ L2,⊥

γ be any field and consider the continuous functional F : H2,⊥
γ → R

defined by

F (ϕ) :=

∫
S1

1

2
|(∂⊥s )2ϕ|2 +

1

2
|ϕ|2 − 〈ϕ,X〉ds.

The explicit computation shows that

(∂⊥s )2ϕ = ∂2sϕ+ (2〈∂sϕ,κ〉+ 〈ϕ, ∂sκ〉) τ − 〈∂sϕ, τ〉κ. (5.5)

Since
∫
|∂sϕ|2 ds = −

∫
〈ϕ, ∂sϕ〉 ds ≤ ε

∫
|∂sϕ|2 + C(ε)

∫
|ϕ|2, computing |∂sϕ|2 using (5.5),

Young’s inequality yields that∫
S1
|ϕ|2 + |∂sϕ|2 + |∂2sϕ|2 ds ≤ C(γ)

∫
S1

1

2
|(∂⊥s )2ϕ|2 +

1

2
|ϕ|2 ds.

Therefore, by direct methods in Calculus of Variations, it follows that there exists a mini-
mizer φ of F in H2,⊥

γ . In particular φ solves∫
S1
〈(∂⊥s )2φ, (∂⊥s )2ϕ〉+ 〈φ, ϕ〉 ds =

∫
S1
〈X,ϕ〉 ds, (5.6)

for any ϕ ∈ H2,⊥
γ . If we show that φ ∈ H4,⊥

γ , then φ + (∂⊥s )4φ = X and surjectivity will be
proved. However, this follows by very standard arguments, simply noticing that once writ-
ing the integrand of the functional F in terms of ∂2sϕ, ∂sϕ and ϕ, by means of equation (5.5),
its dependence on the highest order term ∂2sϕ is quadratic and the “coefficients” are given
by the geometric quantities of γ, which is smooth.

We remark that it is essential to employ normal fields in the proof of the Fredholmness
properties of δ2E(0) in Proposition 5.6 in order to rule out the tangential degeneracy related
to the geometric nature of the energy functional.

The above analysis of the second variation is exactly what is needed in order to derive a
Łojasiewicz–Simon gradient inequality. More precisely, we can rely on the following func-
tional analytic result, which is a corollary of the results in [9]. We recall the result here
without proof.
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Proposition 5.7 ([47, Corollary 2.6]). Let E : Bρ0(0) ⊆ V → R be an analytic map, where V is a
Banach space and 0 is a critical point of E. Suppose that we have a Banach space W = Z? ↪→ V ?,
where V ↪→ Z, for some Banach space Z, that Imm δE ⊆ W and the map δE : U → W is analytic.
Assume also that δ2E(0) ∈ L(V,W ) and it is Fredholm of index zero.
Then there exist constants C, ρ > 0 and θ ∈ (0, 1/2] such that

|E(ψ)− E(0)|1−θ ≤ C‖δE(ψ)‖W ,

for any ψ ∈ Bρ(0) ⊆ U .

We can use Proposition 5.7 in order to derive a Łojasiewic–Simon inequality on our elastic
functional E .

Corollary 5.8 (Łojasiewicz–Simon gradient inequality). Let γ : S1 → R2 be a smooth critical
point of E . Then there exists C, σ > 0 and θ ∈ (0, 12 ] such that

|E(γ + ψ)− E(γ)|1−θ ≤ C‖δE(ψ)‖
(L2,⊥
γ )?

,

for any ψ ∈ Bσ(0) ⊆ H4,⊥
γ (S1,R2).

Proof. By Proposition 5.6 we can apply Proposition 5.7 on the functional E : Bρ0(0) ⊆
H4,⊥
γ → R with the spaces V = H4,⊥

γ and W = (L2,⊥
γ )?. This immediately implies the

thesis.

Let γ : S1 → R2 be an embedded smooth curve. Choosing such ρ small enough, the open
set U = {p ∈ R2 : dγ(p) := d(p, γ) < ρ} is a tubular neighborhood of γ with the property of
unique orthogonal projection. The “projection” map π : U → γ(S1) turns out to be C2 in U and
given by p 7→ p−∇d2γ(p)/2, moreover the vector∇d2γ(p) is orthogonal to γ at the point π(p),
see [34, Section 4] for instance. Then, given ϕ ∈ Bρ(0) ⊆ H4(S1,R2), we can define a map
χ : S1 → S1 by

χ(x) = γ−1
[
π
(
γ(x) + ϕ(x)

)]
,

that is C2 and invertible if γ′(x) +ϕ′(x) is never parallel to the unit vector∇dγ(γ(x) +ϕ(x)),
which is true if we have (possibly) chosen a smaller ρ (so that |ϕ| and |∂xϕ| are small and the
claim follows as 〈γ′(x),∇dγ(p)〉 → 0 as p→ γ(x)).

We consider the vector field along γ defined by

ψ(χ(x)) :=
1

2
∇d2γ(γ(x) + ϕ(x))

which is orthogonal to γ at the point π(γ(x)+ϕ(x)) = γ(χ(x)), for every x ∈ S1, by construc-
tion. Hence ψ is a normal vector field along the reparametrized curve x 7→ γ(χ(x)). Thus,
we have

γ(χ(x)) + ψ(χ(x)) =π
(
γ(x) + ϕ(x)

)
+∇d2γ(γ(x) + ϕ(x))/2

= γ(x) + ϕ(x)−∇d2γ(γ(x) + ϕ(x))/2 +∇d2γ(γ(x) + ϕ(x))/2

= γ(x) + ϕ(x).

and we conclude that the curve γ+ϕ can be described by the (reparametrized) regular curve
(γ + ψ) ◦ χ, with ψ ◦ χ normal vector field along γ ◦ χ. Moreover, by construction it follows
that ψ ◦ χ ∈ H4,⊥

γ◦χ. Moreover, it is clear that if ϕ→ 0 in H4 then also ψ → 0 in H4.
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All this can be done also for a regular curve γ : S1 → R2 which is only immersed (that is,
it can have self–intersections), recalling that locally every immersion is an embedding and
repeating the above argument a piece at a time along γ, getting also in this case a normal
field ψ describing a curve γ + ϕ for ϕ ∈ Bρ(0) ⊆ H4(S1,R2).

Now, if γ = γ(t, x) is the smooth solution of the elastic flow wih datum γ0, by Propo-
sition 5.1 there exist a smooth critical point γ∞, a sequence tj → +∞, a sequence of points
pj ∈ R2 and γtj = γ(tj , ·) reparametrization of γ(tj , ·) such that

γtj − pj −−−−→j→+∞
γ∞ (5.7)

in Cm(S1,Rn) for any m ∈ N. Moreover, we know there are positive constants CL = CL(γ0)
and C(m, γ0), for any m ∈ N, such that

1

CL
≤ `(γt) ≤ CL

and
‖(∂⊥s )mκ(t, ·)‖L2(ds) ≤ C(m, γ0) (5.8)

for every t ≥ 0.
If for suitable times t ∈ J we can write γ = γ∞ + ϕt with ‖ϕt‖H4 < ρ = ργ∞ small

enough, then it is an immediate computation to see that, if we describe γ as a “normal graph”
reparametrization along γ∞ by γ∞ + ψt as in the above discussion, then

‖ψt‖Hm ≤ C(m, γ0, γ∞) , (5.9)

for every m ∈ N for any t ∈ J .
We are finally ready for proving the desired smooth convergence of the flow.

Proof of Theorem 5.4. Let us set γt := γ(t, ·) and we let γ∞, tj , pj and γtj = γ(tj , ·) be as in (5.7).
Since the energy is non-increasing along the flow, we can assume that E(γt) ↘ E(γ∞), as
t→ +∞ and E(γt) > E(γ∞) for any t. Thus, it is well defined the positive function

H(t) = [E(γt)− E(γ∞)]θ ,

where θ ∈ (0, 1/2] is given by Corollary 5.8 applied on the curve γ∞. The function H is
monotone decreasing and converging to zero as t → +∞ (hence it is bounded above by
H(0) = [E(γ0)− E(γ∞)]θ).

Now let m ≥ 6 be a fixed integer. By Proposition 5.1, for any ε > 0 there exists jε ∈ N
such that

‖γtjε − pjε − γ∞‖Cm(S1,Rn) ≤ ε and H(tjε) ≤ ε.

Choosing ε > 0 small enough, in order that

(γtjε − pjε − γ∞) ∈ Bργ∞ (0) ⊆ H4(S1,Rn),

for every t in some interval [tjε , tjε+δ) there exists ψt ∈ H4,⊥
γ∞ such that the curve γ̃t = γ∞+ψt

is the “normal graph” reparametrization of γt − pjε . Hence

(∂tγ̃)⊥ = −(2(∂⊥s )2κγ̃t − |κγ̃t |
2κγ̃t + κγ̃t),

54



as the flow is invariant by translation and changing the parametrization of the evolving
curves only affects the tangential part of the velocity. Since γ̃tε is such reparametrization
of γtjε − pjε and this latter is close in Cm(S1,Rn) to γ∞, possibly choosing smaller ε, δ > 0
above, it easily follows that for every t ∈ [tjε , tjε + δ) there holds

‖ψt‖H4 < σ,

where σ > 0 is as in Corollary 5.8 applied on γ∞ and we possibly choose it smaller than the
constant ρ∞.

We want now to prove that if ε > 0 is sufficiently small, then actually we can choose
δ = +∞ and ‖ψt‖H4 < σ for every time.

For E as in Corollary 5.8, we have

[E(γt)− E(γ∞)]1−θ = [E(γ̃t)− E(γ∞)]1−θ

= [E(ψt)− E(0)]1−θ

≤C1(γ∞, σ)‖δE(ψt)‖(L2,⊥
γ∞ )?

=C1(γ∞, σ) sup
‖S‖

L
2,⊥
γ∞=1

∫
S1

〈
|γ̃′t|
(
2(∂⊥s )2κγ̃t + |κγ̃t |

2κγ̃t − κγ̃t
)
, S
〉

dx

≤C1(γ∞, σ) sup
‖S‖L2(S1,Rn)=1

∫
S1

〈
|γ̃′t|
(
2(∂⊥s )2κγ̃t + |κγ̃t |

2κγ̃t − κγ̃t
)
, S
〉

dx

=C1(γ∞, σ)

(∫
S1
|γ̃′t|2

∣∣2(∂⊥s )2κγ̃t + |κγ̃t |
2κγ̃t − κγ̃t

∣∣2 dx

)1/2

(5.10)

where we can assume that C1(γ∞, σ) ≥ 1.
Now, 〈γ̃t, τγ∞〉 = 〈γ∞, τγ∞〉 is time independent, then 〈∂tγ̃, τγ∞〉 = 0 and possibly taking a
smaller σ > 0, we can suppose that |τγ∞ − τγ̃ | ≤ 1

2 for any t ≥ tjε such that ‖ψt‖H4 < σ.
Hence,

|(∂tγ̃)⊥| = |∂tγ̃ − 〈∂tγ̃, τγ̃〉τγ̃ | = |∂tγ̃ + 〈∂tγ̃, τγ∞ − τγ̃〉τγ̃ | ≥ |∂tγ̃| − |∂tγ̃||τγ∞ − τγ̃ | ≥
1

2
|∂tγ̃|.

Differentiating H , we then get

d

dt
H(t) =

d

dt
[E(γ̃t)− E(γ∞)]θ

= − θH
θ−1
θ

∫
S1
|γ̃′t|
∣∣2(∂⊥s )2κγ̃t + |κγ̃t |

2κγ̃t − κγ̃t
∣∣2 dx

≤ − θH
θ−1
θ C2(γ∞, σ)

(∫
S1

∣∣(∂tγ̃)⊥
∣∣2 dx

)1/2(∫
S1
|γ̃′t|2

∣∣2(∂⊥s )2κγ̃t + |κγ̃t |
2κγ̃t − κγ̃t

∣∣2 dx

)1/2

≤ −H
θ−1
θ C(γ∞, σ)‖∂tγ̃‖L2(dx)[E(γ̃t)− E(γ̃∞)]1−θ

= − C(γ∞, σ)‖∂tγ̃‖L2(dx),

where C(γ∞, σ) = θC2(γ∞, σ)/2C1(γ∞, σ). This inequality clearly implies the estimate

C(γ∞, σ)

∫ ξ2

ξ1

‖∂tγ̃‖L2(dx) dt ≤ H(ξ1)−H(ξ2) ≤ H(ξ1) (5.11)
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for every tjε ≤ ξ1 < ξ2 < tjε + δ such that ‖ψt‖H4 < σ. Hence, for such ξ1, ξ2 we have

‖γ̃ξ2 − γ̃ξ1‖L2(dx) =

(∫
S1
|γ̃ξ2(x)− γ̃ξ1(x)|2 dx

)1/2

≤
(∫

S1

(∫ ξ2

ξ1

∂tγ̃(t, x) dt

)2

dx

)1/2

=

∥∥∥∥∫ ξ2

ξ1

∂tγ̃ dt

∥∥∥∥
L2(dx)

≤
∫ ξ2

ξ1

‖∂tγ̃‖L2(dx) dt

≤ H(ξ1)

C(γ∞, σ)

≤ ε

C(γ∞, σ)
,

(5.12)

where we used that H(ξ1) ≤ H(tjε) ≤ ε and the fact that
∥∥∫ ξ2

ξ1
v dt

∥∥
L2(dx)

≤
∫ ξ2
ξ1
‖v‖L2(dx) dt,

which easily follows from Holder inequality.
Therefore, for t ≥ tjε such that ‖ψt‖H4 < σ, we have

‖ψt‖L2(dx) = ‖γ̃t − γ∞‖L2(dx) ≤ ‖γ̃t − γ̃tjε‖L2(dx) + ‖γ̃tjε − γ∞‖L2(dx) ≤
ε

C(γ∞, σ)
+ ε
√

2π.

Then, by means of Gagliardo–Nirenberg interpolation inequalities (see [3] or [6], for in-
stance) and estimates (5.9), for every l ≥ 4, we have

‖ψt‖Hl ≤ C‖ψt‖aHl+1‖ψt‖1−aL2(dx)
≤ C(l, γ0, γ∞, σ)ε1−a,

for some a ∈ (0, 1) and any t ≥ tjε such that ‖ψt‖H4 < σ.
In particular setting l + 1 = m ≥ 6, if ε > 0 was chosen sufficiently small depending only
on γ0, γ∞ and σ, then ‖ψt‖H4 < σ/2 for any time t ≥ tjε , which means that we could have
chosen δ = +∞ in the previous discussion.

Then, from estimate (5.12) it follows that γ̃t is a Cauchy sequence in L2(dx) as t → +∞,
therefore γ̃t converges in L2(dx) as t → +∞ to some limit curve γ̃∞ (not necessarily coin-
cident with γ∞). Moreover, by means of the above interpolation inequalities, repeating the
argument for higher m we see that such convergence is actually in Hm for every m ∈ N,
hence in Cm(S1,Rn) for every m ∈ N, by Sobolev embedding theorem. This implies that
γ̃∞ is a smooth critical point of E . As the original flow γt is a fixed translation of γ̃t, up to
reparametrization, this completes the proof.

Collecting the results we proved about the elastic flow of closed curves, we can state the
following comprehensive theorem.

Theorem 5.9. Let γ0 : S1 → R2 be a smooth closed curve. Then there exists a unique solution
γ : [0,+∞)× S1 → R2 to the elastic flow{

∂tγ = −
(
2(∂⊥s )2κ+ |κ|2κ− κ

)
on [0,+∞)× S1,

γ(0, x) = γ0(x) on S1.

Moreover there exists a smooth critical point γ∞ of E such that γ(t, ·) → γ∞(·) in Cm(S1) for any
m ∈ N, up to reparametrization.
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Remark 5.10. We remark that Theorem 5.9 is true exactly as stated for the analogously defined
flow in the Euclidean spaces Rn for any n ≥ 2 (see [35]). Indeed, it is immediate to see that
the proof above generalizes to higher codimension. We observe that the very same statement
holds for the suitably defined elastic flow defined in the hyperbolic plane and in the two-
sphere by [47, Corollary 1.2]. It is likely that smooth convergence of the elastic flow still
holds true in hyperbolic spaces and spheres of any dimension ≥ 2 and, more generally, in
homogeneous Riemannian manifolds, that is, complete Riemannian manifolds such that the
group of isometries acts transitively on them. For further results and comments about the
convergence of the elastic flow in Riemannian manifolds we refer to [47].

Let us conclude by stating the analogous full convergence result proved for the elastic
flow of open curves with clamped boundary conditions.

Theorem 5.11 ([29, 18]). Let γ0 : [0, 1]→ Rn be a smooth curve. Then there exists a unique solution
γ : [0,+∞)× [0, 1]→ Rn to the elastic flow satisfying the clamped boundary conditions

γ(t, 0) = γ0(0), γ(t, 1) = γ0(1), ∂sγ(t, 0) = τγ0(0), ∂sγ(t, 1) = τγ0(1),

with initial datum γ0. Moreover there exists a smooth critical point γ∞ of E subjected to the above
clamped boundary conditions such that γ(t, ·) → γ∞(·) in Cm([0, 1]) for any m ∈ N, up to
reparametrization.

6 Open questions

We conclude the paper by mentioning some related open problems.

• In Theorem 4.18 a description of the possible behaviors as t→ Tmax is given for evolv-
ing networks subjected to Navier boundary conditions. When instead clamped bound-
ary conditions are imposed, only short time existence is known [23]. One would like
to investigate further this flow of networks as time approaches the maximal time of ex-
istence. Recent results [19] on the minimization of Eµ among networks whose curves
meet with fixed angles suggest that an analogous of Theorem 4.18 is expected: either
Tmax = ∞ or as t → Tmax the length of at least one curve of the network could go to
zero.

• In Section 4 we described a couple of numerical examples by Robert Nürnberg in which
some curves vanish or the amplitude of the angles at the junctions goes to zero. It is an
open problem to explicitly find an example of an evolving network developing such
phenomena. More generally, one wants to give a more accurate description of the onset
of singularities during the flow.

• In the case of the flow of networks with Navier boundary conditions estimates of the
type

d

dt

∫
Nt
|∂ns k|

2 ds ≤ C(Eµ(N0)) ,

are shown for n = 2 + 4j with j ∈ N only for a special choice of the tangential velocity
(see [14]). One could ask whether the same holds true for a general tangential velocity.
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• In the last section we show that if γt is a solution of the elastic flow of closed curves in
[0,∞), then its support stays in a compact sets of R2 for any time. The same is true for
open curves and networks with some endpoint fixed in the plane. What about compact
networks? At the moment we are not able to exclude that if the initial network N0 has
no fixed endpoints (as in the case of a Theta) as t → Tmax the entire configuration Nt
“escapes” to infinity.

• Another related question asked by G. Huisken is the following: suppose that the sup-
port of an initial closed curve γ0 lies in the upper halfplane, is it possible to prove that
there is no time τ such that the support of the solution at time τ lies completely in the
lower halfplane?

• Are there self–similar (for instance translating or rotating) solutions of the elastic flow?

• Several variants of the elastic flow have been investigated, but an analysis of the elastic
flow of closed curves that encloses a fixed (signed) area is missing.

• At the moment no stability results are shown for the elastic flow of networks. More
generally, one would understand whether an elastic flow of a general network defined
for all times converges smoothly to a critical point, just as in the case of closed curves.
Similarly, proving the stability of the flow would mean to understand whether an elas-
tic flow of networks starting “close to” a critical point exists for all times and smoothly
converges.

• Is it possible to introduce a definition of weak solution (for instance by variational
schemes such as minimizing movements) that is also capable to provide global exis-
tence in the case of networks? We remark that all notions based on the maximum prin-
ciple, such as viscosity solutions, cannot work in this context, due to the high order of
the evolution equation in the spatial variable.
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Math. France, Paris, 1996.

[26] E. Kuwert and R. Schätzle. Gradient flow for the Willmore functional. Comm. Anal.
Geom., 10:307–339, 2002.

[27] J. Langer and D. A. Singer. The total squared curvature of closed curves. J. Differential
Geom., 20(1):1–22, 1984.

[28] J. Langer and D. A. Singer. Curve straightening and a minimax argument for closed
elastic curves. Topology, 24(1):75–88, 1985.

[29] C.-C. Lin. L2-flow of elastic curves with clamped boundary conditions. J. Differential
Equations, 252(12):6414–6428, 2012.

[30] C.-C. Lin and Y.-K. Lue. Evolving inextensible and elastic curves with clamped ends
under the second–order evolution equation in R2. Geom. Flows, 3(1):14–18, 2018.

[31] C.-C. Lin, Y.-K. Lue, and H. R. Schwetlick. The second–order L2–flow of inextensible
elastic curves with hinged ends in the plane. J. Elasticity, 119(1-2):263–291, 2015.

[32] A. Linnér. Some properties of the curve straightening flow in the plane. Trans. Amer.
Math. Soc., 314(2):605–618, 1989.

[33] A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems. Modern
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