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ABSTRACT 12 

An advanced hybrid lumped parameter code for the simulation of Pulsating Heat Pipes is 13 

developed. Being able to simulate transient operative conditions and removing common physical 14 

simplified assumptions, it represents a step forward with respect to the present models of passive 15 

two-phase systems. Mass, momentum and energy balances account for the thermal and fluid-16 

dynamics phenomena. Heterogeneous and homogeneous phase changes are directly integrated. In 17 

addition, a fitting correlation for the wall/vapor heat transfer coefficient is implemented and tuned 18 

against experimental data in order to evaluate the influence of the liquid film on  conjugate heat 19 

transfer. The resulting numerical tool have been validated against experimental data achieved 20 

testing a copper Pulsating Heat Pipe during the 58
th

 ESA Parabolic Flight Campaign in several 21 

operative conditions and transient gravity levels. The predicted results show very good matching 22 

with the actual thermo-physical behavior of the system. 23 

KEYWORDS 24 

Pulsating Heat Pipe, Two-phase systems, Transient simulations, Microgravity, Lumped parameter 25 

model, Slug flow. 26 

1. INTRODUCTION 27 

Life and technology on Earth has evolved with a single environmental constant: gravity. Only in the 28 

last century, the advent of aeronautics and space flights set the focus on the effects caused by the 29 

alteration of the acceleration field, from the hyper-gravity experienced during lift off, to the micro-30 

gravity perceived in orbit. Hyper-gravity conditions commonly arise in several ground applications 31 

too: cars and heavy vehicles may undergo hyper-gravity loads during sudden maneuvers. Any 32 

aircraft, civilian or military, can expose its components, payload and passengers to forces which 33 

excess 1g; this is especially true in military fighter jets and acrobatic aircrafts where the acceleration 34 

forces may be as high as 9g. In addition, enhanced gravity conditions may be encountered during 35 

centrifugal industrial processes, such as casting, material synthesis, even in chemical reactors. On 36 

the other hand, the so-called “microgravity condition” [1] exists in orbit, but it can also be 37 

reproduced on Earth: roller coaster on a dive, bungee jumpers and any objects in free fall can 38 

experience micro or reduced gravity conditions for few seconds. 39 

The physical phenomena related to heat and mass transfer are greatly affected by the gravitational 40 

conditions and, for this reason, the current challenge is to design heat transfer devices able to 41 

operate efficiently under any acceleration condition. Being somewhat ubiquitous, thermal 42 

management can be found in electronics, energy management, transportation and in households in 43 

general.  44 
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In the last decades, the industrial demand for higher performances, low cost and efficient thermal 45 

control has exponentially increased. Thus, a new generation of two-phase passive systems was born 46 

to satisfy the above general requirements. As a new and promising members of the heat pipes 47 

family, Pulsating Heat Pipes (PHPs) represent the last frontier of the two-phase passive heat transfer 48 

devices and could be an interesting alternative to standard cooling systems in the near future, having 49 

an extremely high potential in terms of simplicity and high heat transfer capability [2-3]. 50 

Essentially, a PHP consist of a tube, evacuated, partially filled with a working fluid and usually, but 51 

not necessarily, bended to arrange a closed serpentine [4-5]. Heat is provided in the so-called 52 

evaporator region and removed in the condenser zone. Since the channel is capillary, the main flow 53 

pattern recognizable in an operating PHP is the slug/plug flow even if this is not the only possible 54 

one [6]. In such conditions, an organized train of liquid slugs and vapor plugs surrounded by a thin 55 

liquid layer can be easily identified within the tube. The whole thermal-hydraulic behavior is 56 

complex. The fluidic batches can both circulate and oscillate driven by heterogeneous and 57 

homogeneous phase changes. Capillary forces and gravity may help or damp the fluid motion [7-58 

14]. Simultaneously, liquid slugs and vapor plugs may change dimensions due to evaporation and 59 

condensation phenomena. 60 

Since the late ‘90s researchers attempted to develop numerical tools in order to predict PHPs 61 

performance. Only few models are capable of providing complete thermal-hydraulic simulations 62 

and even fewer are partially validated against experimental data (see [15] and the recent review 63 

[16]). Existing models are usually very simple and contain many unrealistic assumptions (i.e. 64 

saturation conditions, constant liquid film). In addition, none is able to correctly represent the 65 

effects of transient states, start-up and dry out conditions. Nevertheless, validated numerical 66 

simulations can constitute useful tools to understand PHPs operational characteristics, and, in the 67 

future, to help the design of new and better performing ones.  68 

Existing numerical models range from the continuum wave propagation approach [17-18] to the 69 

linearized mass-spring-dampers theory [19-21], from complex Artificial Neural Networks [22-24] 70 

to Computational Fluid Dynamics techniques [25-26]. Nevertheless, the most commonly adopted 71 

strategy is based on a sort of mono-dimensional lumped parameter approach. In this framework, the 72 

code developed by Holley and Faghri in 2005 [27] and later improved by Mameli et al. [28-30] 73 

represents a milestone in the PHP modelling. The authors assumed a priori saturated slug and plug 74 

flow and used a lagrangian approach to simulate the motion of the elements. The dynamics of the 75 

liquid film is neglected. The energy equation is implemented for both the fluidic and the solid 76 

domains. Heterogeneous phase changes are not directly accounted for in the mass balance even if 77 

liquid elements coalescence and new vapor formation are considered. Homogeneous evaporation 78 

and condensation through the interface, on the other hand, are totally neglected. In the latest version 79 

of the model [28-30], the effects of tube bandings on liquid slugs dynamics and the calculation of 80 

the two-phase heat transfer coefficient for liquid and vapour as a function of the different heating 81 

regime are included.  82 

This paper proposes a revision of the above described models and aims to represent a step forward 83 

in the present PHPs modelling know-how. The common assumption of saturated vapor plugs has 84 

been removed; heterogeneous and homogeneous phase changes through the interface are directly 85 

integrated. In addition, since  in the literature there is no empirical correlation of HTC for an 86 

oscillating vapour plug – liquid slug regime in the conditions of a PHP, a fitting correlation for the 87 

estimation of the wall/vapor heat transfer coefficient has been implemented and tuned against 88 

experimental values to evaluate the influence of the liquid film on the conjugate heat transfer.  89 

An important effort has been devoted to correctly reproducing the effect of steady and transient 90 

gravity field on the PHP performances. Thus, the novel numerical tool has been validated in several 91 

operative conditions under various gravity levels. In the following, the comparison between 92 

simulated data and the experiments performed during the 58
th

 ESA Parabolic Flight Campaign is 93 

presented [12]. A copper PHP (              mm) filled with FC-72, equipped with 14 T 94 
thermocouples and a pressure transducer has been tested providing different heat inputs (from 50W 95 

to 100W) at the evaporator side. The code shows a very good potentiality, reproducing with high 96 

accuracy the device transient operations during the simulated parabolic manoeuvres. 97 
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2. NUMERICAL MODEL 98 

Since the slug flow is the primary flow pattern in PHPs, this mono-dimensional, hybrid lumped 99 

parameters model assumes it a priori. However, as widely demonstrated by experiments and 100 

visualization studies [6], slug flow may not be the only flow regime occurring inside PHPs. Indeed 101 

the flow pattern may change into semi-annular or complete annular flow by increasing the heat flux 102 

input level. Thus, the present model is actually suitable for simulating PHPs working under 103 

relatively low heat fluxes. 104 

In the following, three main sections describe respectively: the internal two-phase dynamics, the 105 

tube thermal behavior and, finally, the heat exchanged between the working fluid and the tube wall. 106 

2.1 Two-phase internal dynamics 107 

The PHP internal dynamics depends on the interplay between vapor and liquid. Since a confined 108 

flow is assumed, the fluidic elements are an alternation of    liquid slugs and    vapor plugs (Fig. 109 

1); in addition, liquid slugs are subdivided into smaller sub-domains (liquid slices with equal 110 

length), having the same velocity, but different temperatures accounting for the axial heat 111 

conduction within the liquid phase. The number and the dimensions of all these fluidic batches are 112 

allowed to vary during the simulation in such a way that the total mass and length of the system are 113 

conserved.  114 

 115 
Fig. 1: Schematic of the numerical domains. The liquid slugs sub-domains are not explicitly 116 

indicated. The wall is considered completely wettable.  117 

 118 
Mass, moment and energy balances are solved along the PHP axial direction under the following 119 

assumptions: 120 

a. Slug flow is assumed a priori. 121 

b. All the fluid thermo-physical properties, apart from vapor pressure and density, are function of 122 

the temperature only. Liquid is assumed incompressible. 123 

c. The momentum equation for each liquid slug is lumped and friction between vapor plugs and 124 

wall elements is neglected.  125 

d. Vapor is treated as a real gas (Van der Waals equation) except in case of phase changes. Density 126 

is calculated by its definition (mass over volume).  127 

e. Vapor may exist in saturated, super-heated and sub-cooled conditions.  128 

f. Heterogeneous phase changes are isothermal and isobaric; phase changes through the interface 129 

are isobaric but non-isothermal. Phase changes are always followed by isothermal compressions 130 

or expansions of vapor elements in order to re-adjust the total volume.  131 

g. The temperature jump through the interface is neglected.  132 

h. The momentum equation for each liquid slug is lumped; vapor/wall friction is neglected.  133 

i. Liquid menisci maintain hemi-spherical shape with zero contact angles at the wall. 134 

j. The thin liquid film around each vapor plug is neglected. It is only used to define the real volume 135 

occupied by each fluidic element within the tube inner channel, considering it constant in space 136 

and time. 137 

2.1.1  Mass balance and energy balance 138 

In PHPs, the local pressure disequilibrium, caused by phase change phenomena, represents one of 139 

the main driving forces at the base of the fluid motion. A fluidic element under condensation or 140 
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evaporation varies its mass and, accordingly, dimension. However, the total mass and length of the 141 

PHP are constrained and must be conserved. 142 

Both heterogeneous and homogenous phase changes through the interface may take place during 143 

PHP operation. Heterogeneous phase changes occur when a fluidic elements in saturated conditions 144 

comes into contact with a surface at different temperature involving heat transfer between the solid 145 

wall and the fluid. Thus a proper condition must be satisfied to allow heterogeneous phase changes, 146 

namely: 147 

 
                                                

                                      

                 
                  

                             (1) 

where p and T stand respectively for pressure and temperature; the subscripts v, l, w and sat refer to 148 

vapor, liquid, wall and saturated conditions respectively.           and                 are the 149 

temperature difference linked respectively to the nucleation onset and  boiling nucleation. 150 

Otherwise, if a fluidic element has a thermodynamic state deviating from saturation, homogeneous 151 

condensation or evaporation through the interface occurs in the fluidic bulk which represents the 152 

heat sink or source associated to this kind of transition.  153 

 
       

       

                 
                  

                             (2) 

These phenomena occur simultaneously; however, in order to compute them, mass, momentum and 154 

energy balances are solved for liquid and vapor through a hierarchical method: for each time step, 155 

first the heterogeneous phase changes are solved, then the homogenous evaporation/ condensation 156 

phenomena through the interface are accounted for, finally all the other phenomena (e.g. sensible 157 

heat exchange with the wall, axial conduction, etc.) are computed. For more details refer to the 158 

attached annex A.  159 
Note that 1

st
 order Adams–Bashforth integration scheme [31] has been adopted to integrate mass 160 

and energy balances if not differently indicated. 161 

 162 

Heterogeneous phase changes. 163 

Figure 2 shows in red the global control volume (CV) adopted to solve mass and energy balances 164 

during heterogeneous condensation (A) and evaporation (B): it is closed, isochoric and diabatic with 165 

respect to the pipe walls. In case of condensation, it contains three sub-systems, one vapor (VP) and 166 

two liquid elements (LS): the closed single vapor sub-domain allows a two-phase change and it is 167 

diabatic; the closed liquid sub-domains are mono-phase and adiabatic. The heterogeneous 168 

condensation will eventually occur in the vapor plug. In case of evaporation, CV contains two vapor 169 

plugs and one liquid slug. Vapor sub-domains are closed, mono-phase and adiabatic, while liquid is 170 

closed and diabatic and allows two-phase changes. Thus, the heterogeneous evaporation will occur, 171 

eventually, in each liquid slice. 172 

Accounting for the assumptions listed in the previous section (from d to g), the integration of the 173 

mass and the energy balances applied to CV and to each LS or VP (see the annex A) leads to the 174 

definition of the evaporated or condensed mass,        : 175 

         
      

   
    (3) 

where        is the heat transferred to or from the wall (section 2.3),     the heat of vaporization 176 

and    the computational time step. 177 
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Fig. 2: Schematic of the fluidic control volumes CV (in red) adopted in case of heterogeneous 178 

condensation (A) or evaporation (B).  179 

 180 

Note that heterogeneous phase changes may induce the formation of new fluidic elements, as well 181 

as the dimension rescaling of already existing liquid slugs and vapor plugs. Specifically, a new 182 

element is produced only if the evaporated or condensed mass,        , respects the assumption of 183 

confined flow,              where the minimum value is computed as the mass of an equivalent 184 

sphere which fits perfectly within the tube (               
 

 
    

      ). In addition phase 185 

changes may cause the disappearance of small fluidic domains and the merging of adjacent 186 

slugs/plugs if         exceeds the mass of the corresponding element. 187 

 188 

Homogeneous phase changes. 189 

Heterogeneous phase changes are computed for all the fluidic elements. Only at this point, on the 190 

new fluidic path, evaporation and condensation through the interface can take place (2
nd

 phase of 191 

the hierarchical numerical procedure). The adopted control volume CV is shown in Fig. 2A; It is 192 

considered closed, adiabatic and isochoric. The two liquid slices and the vapor plug are open and 193 

adiabatic. However, if the control volume is adiabatic, it cannot be assumed that the phase changes 194 

are both isothermal and isobaric, thus only the assumption of      has been maintained 195 
(assumption f).  196 

Accounting for conservation of mass and volume (Fig. 3), a linear systems of equations (Eq. 4) 197 

allows estimating the evaporated and condensed mass,        , and the final dimension,       , of 198 

the involved vapor element (see Annex A). 199 

                         

 
                

        

            
       

  

   
                

                     

            
       

  
             

  (4) 

where V stands for volume and ρ for density.  200 

In addition, homogeneous phase changes through the interface occurs in the fluidic bulk which 201 

represents, indeed, the heat sink or source associated with this kind of transition: in particular a 202 

liquid which undergoes evaporation cools down, while vapor that is condensing undergoes a heating 203 

process: 204 

                          

     
       

    
                  

       

    
        

       

    
           

 (5) 

where u is the specific internal energy of the involved fluidic elements.  205 
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Fig. 3: Schematic of homogeneous condensation (A) and evaporation (B). Since the cross 206 

sectional area is constant,     . 207 
 208 

Closing procedure after the phase change intermediate step. 209 

In order to complete mass and energy balances for each time step, after having taken into account 210 

heterogeneous phase changes and homogeneous evaporation/condensation through the interface, all 211 

other physical phenomena (e.g. sensible heat exchange with the wall, axial conduction, etc.) should 212 

be considered. Note that the three steps of this procedure are occurring in sequence during the same 213 

time step   . The control volumes adopted this time consist of single vapor plugs or single liquid 214 

slices (see Fig. 4) representing closed domains. A Lagrangian approach has been adopted, thus one 215 

temperature is calculated for each fluidic element. Nevertheless, in order to account for the 216 

conduction within liquid slugs, increasing the resolution of the energy field, liquid slugs are equally 217 

subdivided into smaller sub-domains; conduction within vapor is, on the contrary, negligible 218 

because of the small conductivity.  219 

In a Lagrangian system, total time derivatives match ordinary time derivatives; thus, assuming 220 

constant specific heat   , the energy equation is: 221 

         
     

  
             

 
         

  
 
 

   

        

  
 
   

 

      
     

  
 (6) 

where the subscript f stands for fluidic, alternatively vapor or liquid; A is the cross sectional area 222 

(Fig. 4) while k is the thermal conductivity .  223 

The first term on the right hand side of Eq. 6 accounts for sensible heat transferred between the wall 224 

and the fluid when no phase changes have occurred previously; the second term is the axial 225 

conduction within the fluid (for the subscripts refer to Fig. 4); the last term is the compression work 226 

computed only for vapor plugs.  227 
 228 

 229 
Fig. 4: Schematic of the fluidic domains and sub-domains accounted for the energy balance 230 

computation. VP stands for vapor plug, LS stands for liquid slug. 231 
 232 

A 1
st
 ordr Adams–Bashforth scheme is applied for the integration of the energy equation if elements 233 

were born or disappeared in the time step; otherwise, the 2
nd

 order Adams–Bashforth scheme is 234 

used [31].  235 

 236 

 237 
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2.1.2 Momentum Equation 238 

Liquid slugs and vapor plugs move within the PHP channel. Their motion is simultaneously 239 

oscillatory and circulatory. A Lagrangian approach simplifies the traceability of all the fluidic 240 

elements; the Störmer-Verlet algorithm, in its velocity variant, is chosen for the computation of 241 

velocities and positions due to its well known ability to capture the long term system dynamics in an 242 

accurate and stable way [32]. The momentum equation has been solved directly for the global time 243 

step    without accounting separately for phase changes; thus      if evaporation or 244 
condensation has occurred; however it is a known quantity for all the liquid slugs. 245 

Vapor/wall friction is neglected (assumption h), thus the momentum equation can be evaluated only 246 

for liquid elements imposing that vapor is dragged, consequently, along the tube. A first integration 247 

of the momentum equation along the j-th liquid slug provides the velocity,   (Eq. 7); a second 248 

integration defines the position,   (Eq. 8).  249 

      

  
                           

  

   
   (7) 

            
 

 
    (8) 

    is the tube internal diameter; a is acceleration acting of the j-th liquid element defined as the 250 
ratio between the applied forces and mass. 251 

The first term on the right side of Eq. 7 represents the gravity force: g is the gravity acceleration and 252 

  is the local angle between the gravity vector and the flow direction. The second and the third 253 

terms are the forces respectively due to adjacent vapor expansion/compression (for the subscripts 254 

refer to Fig. 4) and friction (viscous shear and minor losses due to bends and turns), which is treated 255 

semi-empirically. The shear friction coefficient    is evaluated making use of the Hagen-Poiseuille 256 

equation [33] (fully developed laminar flow) or the Haaland equation [34] (turbulent flow). As 257 

suggested by Mameli et al. [29], local losses are computed only if the liquid slug passes through at 258 

least a turn or a bend; the corresponding friction coefficient is evaluated according to Darby 3K  259 

method [35]. Capillary forces are neglected because of the constant cross section along the tube 260 

length and because liquid menisci maintain spherical shape with zero contact angle at the wall 261 

(assumption i). 262 

2.2 Wall energy balance 263 

The PHP tube thermal behavior can be deduced integrating the wall energy balance.    eulerian 264 
domains are defined and equally split the channel wall (Fig. 1). The associated masses and positions 265 

are fixed. 266 

Under the assumption of constant thermal properties, the variation of the k-th wall temperature in 267 

time is:  268 

      

   

  
      

    

  
 
 

   

     
    

  
 
   

 

                  (9) 

    is the external tube surface exposed to the environment;    is the tube cross section area.  269 
The first term on the right side of Eq. 9 accounts for the heat conduction within the wall; the second 270 

term is the heat exchanged between the wall and the fluidic elements; the last term represents the 271 

heat exchanged between the wall and the external environment. Constant heat input power     is 272 

supplied to the evaporator zone, forced convection is applied at the condenser, while no heat 273 

exchange occurs in the adiabatic region. Radiation has been neglected being less than 0.5% of the 274 

total dissipated heat in the worst case. 275 
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  (10) 

   is the external heat transfer coefficient;    the environmental temperature.  276 

The 1
st
 order Adams–Bashforth scheme is applied for the integration of the wall energy equation. 277 

2.3 Solid/Fluid Coupling 278 

The joining link between the wall and the fluidic domains is the heat exchanged in radial direction, 279 

   , which appears in the energy balances (sections 2.1.1 and 2.2. 280 

The wall domains are fixed in time, the fluidic elements are moving. Thus, a fluidic element may 281 

face different wall domains at each time step; in addition a wall element may face more than one 282 

fluidic element and vice versa (Fig. 5). Thus, accounting for an appropriate heat transfer coefficient 283 

 ,     is defined as: 284 

 
 
 

 
 

      
 

   
                

  

   

      
 

   
                

  

   

  (11) 

    is the total area between the wall and the fluidic domains;       and        represent the area 285 

in common between the k-th wall element and the n-th fluidic element.  286 

 287 

 288 
Fig. 5: Definition of     ,       and        from the wall point of view (A) and from the fluid 289 

point of view (B). 290 
 291 

The heat transfer coefficient should account for sensible or latent heat, depending on if phase 292 

changes are occurring or not during the time step lag. 293 

 294 

Sensible heat transfer coefficient. 295 

In the case of liquid slugs, sensible heat transfer is calculated with semi-empirical formula, even if 296 

these are not strictly applicable to oscillating flows in mini-channels. Shah and London [36] 297 

correlation, Gnielinski correlation [33] and Dittus-Boelter correlation [33] are implemented 298 

respectively for the laminar flow thermally developing region, for the transient/turbulent flow, and 299 

for the fully developed turbulent flow. 300 

The sensible heat exchanged between wall and vapor, on the other hand, cannot be estimated by 301 

means of the above reported classical correlations. The reason lies in the presence of the liquid film. 302 

First, the model considers its thickness constant in space and time (assumption j). Actually, the film 303 

dynamic may deeply influence the heat transferred by vapor plugs [37-38].Thus a fitting correlation 304 

has been proposed to fix the lack of modelling. Accounting for both forced and natural convection 305 

and making use of the Buckingham theorem, the vapor-wall sensible heat transfer coefficient is 306 
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derived as a function of both Reynolds (  ) and Rayleigh (Ra) numbers. The four fitting 307 
coefficients are estimated by comparison with experimental results in different operative conditions 308 

and under various gravity levels.  309 

            
       

 

   
      

     
 

   
            

 (12) 

a is defined at 293K for a conventional film thickness of 50μm [39]. 310 

 311 

Phase change heat transfer coefficients. 312 

Constant values are assumed, since experimental correlations are missing.  313 

   
     

 

   

     
 

   

             
  
              

  (13) 

A sensitivity analysis excluded a strong influence of the imposed values on the model results: the 314 

maximum steady state temperature deviation was less than 0.5K for evaporating/condensing heat 315 

transfer coefficients ranging from 4000/2000      [5], to 30000/15000     . This because 316 

most of the heat is transferred by sensible ways only, as underlined by Shafii et al. [40], the latent 317 

heat associated to phase change is prevalently the driving motors of the system inducing 318 
oscillation/circulation of the fluid within the channel.  319 

2.4 Numerical time step  320 

The computational time step is generally constant, but, when an element is generated or disappear, 321 

   is reduced by one order of magnitude in order to damp any possible numerical unstable 322 

oscillation; after 10 iterations, it is gradually restored following a slope increment. A sensitivity 323 

analysis emphasized that, once the time step is small enough to guarantee numerical stability, the 324 

results are independent on the chosen value. For the tested conditions (Section 3) a    of 0.4ms is 325 
the maximum allowable and, thus, it is chosen to minimize the total simulation time.  326 

3. PARABOLIC FLIGHT CAMPAIGN 327 

The thermal response of a PHP is strongly influenced by gravity [7-14], as can be easily inferred 328 

from the provided supplementary videos showing the numerical simulated motion of the fluidic 329 

elements within the PHP channel when different levels of gravitational field are applied (-1, 0, 1g). 330 

During the 58
th

 Parabolic Flight Campaign several experimental tests have been performed on a 331 

planar, bottom heated mode PHP partially filled with FC-72 under different operative conditions 332 

[12]; specifically, six different power levels have been analyzed, from 50W to 100W with step of 333 

10W. A parabolic flight allows to test a device under various gravity levels. During each flight, 334 

indeed, the plane performs thirty-one parabolic manoeuvres which are subdivided into three parts: 335 

20s at 1.8g (hyper-gravity) followed by 22s at 0.01g (micro-gravity) followed again by 20s at 1.8g. 336 

A 90s pause of normal gravity is kept before and after each parabola.  337 

The developed lumped parameter model has been applied to simulate these parabolic tests. The 338 

numerical results match with the experimental data, in term of steady state conditions as well as 339 

transient time. 340 

Table 1 lists both the geometrical characteristic of the tested PHP and the numerical input of the 341 

code.  342 

Basically, the PHP structure consists of a copper channel (D.I. 1.1mm/D.O. 2.0mm) folded so as to 343 

obtain 32 parallel branches. The tube is evacuated and partially filled of degassed FC-72 (0.50 344 

volumetric filling ratio). The PHP is heated up making use of electric resistors wrapped around the 345 
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 10 

evaporator bends, while the condenser section is embedded into a heat sink and cooled by forced 346 

convection. A pressure transducer is plugged outside the condenser section; an accelerometer tracks 347 

the gravity load during the flight maneuvers; in addition, the PHP is equipped with calibrated T 348 

thermocouples, nine located few millimetres above the evaporator zone, four in the condenser 349 

region and one is measuring the external temperature.  350 

Since the experimental evaporator thermocouples are not exactly located in the hot section, but just 351 

above it in the adiabatic zone because of the presence of the heating wire, in order to be coherent 352 

with the model described in the previous section, the temperatures recorded by these sensors will be 353 

compared with the ones computed in the numerical adiabatic region. Therefore, experimental 354 

evaporator temperatures are referred in the following as adiabatic temperatures.  355 

The results are presented mainly in terms of local spatial average temperature evolutions plotted 356 

together with the gravity level (as fraction of conventional g on Earth) on the secondary y-axis. 357 

Since the experimental results are repeatable, only one parabola for each condition is shown. The 358 

graph on the left represents the experimental data, while the diagrams on the right report the 359 

numerical results. The grey solid line marks the temperature in the adiabatic zone, the blue line 360 

characterizes the condenser region and the green line indicates the temperature of the external 361 

environment. The numerical graphs report also a red line for the mean temperature in the evaporator 362 

region. The light colored regions on the experimental temperatures represent the standard deviation.  363 

An additional dynamic comparison for the 50W parabola is provided as supplementary material.  364 

 365 

  
Fig. 6: Experimental and numerical evolution of the local spatial average temperatures for a 366 

bottom heated mode PHP at 50W. Solid lines represent mean temperatures; colored regions 367 

indicate the standard deviation on the recorder data. 368 
 369 

  
Fig. 7: Experimental and numerical evolution of the local spatial average temperatures for a 370 

bottom heated mode PHP at 60W. Solid lines represent mean temperatures; colored regions 371 

indicate the standard deviation on the recorder data. 372 
 373 
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 11 

  
Fig. 8: Experimental and numerical evolution of the local spatial average temperatures for a 374 

bottom heated mode PHP at 70W. Solid lines represent mean temperatures; colored regions 375 

indicate the standard deviation on the recorder data. 376 
 377 

  
Fig. 9: Experimental and numerical evolution of the local spatial average temperatures for a 378 

bottom heated mode PHP at 80W. Solid lines represent mean temperatures; colored regions 379 

indicate the standard deviation on the recorder data. 380 
 381 

  
Fig. 10: Experimental and numerical evolution of the local spatial average temperatures for a 382 

bottom heated mode PHP at 90W. Solid lines represent mean temperatures; colored regions 383 

indicate the standard deviation on the recorder data. 384 
 385 
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 12 

  
Fig. 11: Experimental and numerical evolution of the local spatial average temperatures for a 386 

bottom heated mode PHP at 100W. Solid lines represent mean temperatures; colored regions 387 

indicate the standard deviation on the recorder data.  388 
 389 

The reported comparisons (Fig. 6-9) show the high accuracy of the numerical model both in steady 390 

and in transient conditions. The temperatures in all the PHP regions are correctly evaluated in terms 391 

of mean values, as well as in terms of temporal evolution for all the gravity levels and powers tested 392 

(from 50W to 80W).  393 

At 90W and 100W (Fig. 10 and Fig. 11), on the other hand, the error on the mean temperature is 394 

increased, even if the temporal evolution is followed. The reason of that lies in the liquid film 395 

dynamics. Experimentally, at high power levels, some PHP branches undergo dry-out, worsening 396 

the whole device performances. Figure 12 shows an example of this unstable condition reporting all 397 

the recorded temperatures for the 100W parabola: dry-out is clearly visible in the most part of the 398 

PHP branches.  399 

 
Fig. 12: Experimental wall temperatures for a bottom heated mode PHP at 100W. Greyish 400 

colours represent the adiabatic zone, bluish indicate the condenser section.  401 
 402 

This sudden thermal crisis is originated by local complete evaporation of the liquid film and 403 

consequently reduction of the vapor/wall heat transfer coefficient in the corresponding regions. This 404 

instability reduces at high g-levels, since the boosted gravity force slightly improves the whole PHP 405 

performances when a bottom heated mode configuration is accounted for [11]. The circulation of 406 

the fluid within the channel, indeed, is promoted because liquid slugs are energetically pushed down 407 

from the condenser back to the evaporator section; in addition the enhanced gravity induce a 408 

downwards motion of the liquid film, creating a sort of small pool in the hotter region and, thus, 409 

reducing the possibility of local dry-out. Since, the model assumes constant film thickness 410 

(assumption j), this kind of behaviour cannot be detected and, therefore, for this reason, the 411 

simulated temperature may be lower than the experimental data (e.g. 1g at 100W); at the same time, 412 

the numerical temperature lowering at 1.8g may be smaller than the real ones (e.g. 1.8g at 90W). In 413 
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 13 

addition, since slug flow is assumed a priori, the code is not able to model the flow pattern 414 

transition in case of high heat flux levels. 415 

 416 

  
Fig. 13: Experimental (A) and numerical (B) pressure signal for the 50W parabola. 417 
  418 

The experimental results show that both the occurring of the hyper and the micro-gravity conditions 419 

affect the PHP thermal response. Since the gravity vector is parallel to the flow path and oriented 420 

from the condenser to the evaporator zone, it gives a net contribution to the fluid momentum. The 421 

effect of micro-gravity is evident for all the heat input levels: temperatures in the evaporator 422 

increase because the fluid motion is no more assisted by gravity, pressure oscillations are less 423 

frequent (see, for example, Fig. 13a for the PHP at 50W) and consequently the heat transfer rate is 424 

less efficient. The occurring of the second hyper-gravity period assists the fluid motion bringing 425 

back the device to the previous thermal regime.  426 

This explanation is also confirmed by the numerical results. Figure 13b shows the fluid pressure for 427 

the PHP simulated at 50W. Similar results have been achieved for the other power levels. 428 

Differently from the experimental data recorded in one point outside the condenser section, the 429 

reported pressure is a mean value over the fluid elements in the whole condenser region (because of 430 

the Lagrangian approach). Although the pressure signal is damped with respect to the experimental 431 

one, in both cases the oscillations of the signal reduce when micro-gravity conditions are 432 

established; then they are restored with a high isolated pick when 1.8g are applied on the PHP 433 

again. It is worth to note that the internal motion does not stop during these 20s: Fig. 14 shows the 434 

velocity of the liquid elements within the channel. During the micro-gravity phase, the velocity 435 

suddenly decreases but small oscillations are still present.  436 

 437 

 

 

 
Fig. 14: Numerical computed liquid slugs 

velocities for the 50W parabola. Different 

colours indicate different elements.  

 Fig. 15: 50W parabola; number of fluidic 

laps. Red dotted lines report the linear 

interpolation curves.  

 438 
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Liquid elements move within the micro-channel. The total velocities reported in Fig. 14 account for 439 

both oscillation and circulation. During the micro-gravity phase, only the circulating velocity 440 

reduces to zero, while the oscillating one is still present even if it is strongly reduced. This can be 441 

easily inferred from Fig. 15. It shows the number of laps performed, on average, by the fluidic 442 

elements during the simulation time. The slope associated to each interpolating red curve represents 443 

the mean circulation frequency of the fluid in the analyzed conditions. The fluctuations on the gray 444 

curve underline that the fluid is strongly oscillating when gravity is acting. As expected the 445 

circulation frequency, and thus the circulation velocity, increases when passing from 1g to 1.8g and 446 

from 0.01g to 1.8g. This enhances the PHP performances. During the micro-gravity period, instead, 447 

the circulation of the fluid stops, being the red curve horizontal. 448 

3.1 Ground tilting tests 449 

Mameli et al. [12] reported that the dynamic response of the PHP during a parabola test is 450 

comparable with the behavior of the PHP on ground during the a "Vertical to Horizontal to 451 

Vertical" maneuver. The maximum temperatures reached during micro-gravity and during the 452 

horizontal period on ground were, indeed, comparable for all the heat input levels. The same 453 

happens when this tilting "Vertical to Horizontal to Vertical" maneuver is numerically simulated, 454 

see, for example, Fig. 16 corresponding to the 50W test.  455 

 456 

  
Fig. 16: Numerical evolution of the local spatial average temperatures for the 50W parabola 457 

(on the left) and the 50W tilting manoeuvre (on the right).  458 
 459 

The numerical simulations, as well as the experimental test, observe a small temperature increment 460 

during the micro-gravity phase for the ground tests with respect to the flight trials. In the reported 461 

case of 50W this deviation is less than 4%. However this temperature gap is easily explainable: the 462 

lack of the first hyper-gravity phase fastens the degradation of the PHP performance during the 20s 463 

of micro-gravity.  464 

In addition, as experimentally observed, due to the lack of the second hyper-gravity phase, the 465 

device is not able to reach the previous thermal regime as fast as during the flight. This happen at all 466 

the power levels, however it is more evident for high heat input values. The comparison of the 467 

results achieved at 70W is reported here as an example to support this last statement (Fig. 17). 468 

 469 
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Fig. 17: Numerical evolution of the local spatial average temperatures for the 70W parabola 470 

(A) and the 70W tilting manoeuvre (B). On the right, zoom of the adiabatic temperature in the 471 

transition zone. 472 

4. CONCLUSIONS 473 

The thermal performances of a bottom heated mode PHP tested during the 58
th

 ESA Parabolic 474 

Flight Campaign have been simulated with a novel one dimensional hybrid lumped parameter code. 475 

The comparison between experimental and numerical results highlights the high prediction 476 

capability of the model.  477 

The numerical code is able to reproduce with high accuracy both the stationary values and the 478 

transient evolution of the local spatial average temperature that a PHP experiences during a 479 

parabolic flight. In addition, the internal dynamic is qualitatively predicted.  480 

During the reduced gravity period, as experimentally proved, the simulated temperatures in the 481 

evaporator region increase because the fluid motion is no more assisted in its flowing back from the 482 

condenser to the evaporator region. The pressure oscillations are less frequent, the fluid stops its 483 

circulation even if oscillations are still present; the heat transfer is, therefore, less efficient. On the 484 

other hand, the hyper-gravity phases, slightly improve the device thermal performance: the 485 

numerical simulations, indeed, record higher circulation frequency. In addition the second hyper-486 

gravity phase speed up the recovery of the thermal performances after the 20s at 0.01g. This is 487 

confirmed by ground tests achieved with a "Vertical to Horizontal to Vertical" operation. Such kind 488 

of experiments, indeed, are totally comparable with the flight trials except the lack of the hyper-489 

gravity phases. 490 

Unfortunately, the model is not able to account for the liquid film dynamic. Dry-out appears when 491 

strong evaporation phenomena locally generates disappearance of the liquid layer. This generally 492 

happens at high power levels, over 90W for the analysed case. The assumption of constant film 493 

thickness, therefore, prevents the model from predicting such kind of thermal crises: the simulated 494 
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steady conditions and the hyper-gravity improvements, consequently, may differ from the 495 

experimental data. 496 
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ANNEX A: MASS AND ENERGY BALANCES DURING PHASE CHANGES 510 

A.1 Heterogeneous phase changes 511 

Condensation. 512 

Figure 2A shows in red the global control volume CV adopted to solve mass and energy balances 513 

during heterogeneous condensation: it is closed, isochoric and diabatic with respect to the pipe 514 

walls. It contains three closed sub-systems, the i-th vapor plug (VP) and two liquid slices (LS), 515 

respectively the last and first of the j-th and of the j+1-th liquid slug. The closed single vapor sub-516 

domain allows a two-phase change and it is diabatic; the closed liquid sub-domains are mono-phase 517 

and adiabatic. The heterogeneous condensation will eventually occur in the vapor plug.   518 

The mass and the energy balances written for the global control volume     are:  519 

 

                                                                                             
                                                                                

                                                                                              

  (14) 

where V stands for volume. 520 

Since it has been assumed that condensation is isothermal and isobaric (assumption f), it cannot be 521 

isochoric at the same time. Thus, in order to satisfy Eq. 14, after condensation the vapor element 522 

will follow an isothermal expansion to occupy the volume freed by the part of vapor that has 523 

become liquid. 524 

The mass and energy balance written for the vapor plug only, considering it a two-phase system are: 525 

 
                                                                                 

                                                    
  (15) 

where    
             . 526 

The integration of the first row of Eq. 15 in time defined the mass         that will change phase in 527 

the time step; since vapor undergoes condensation         will be negative:   528 

     

     

   

        
      

         (16) 

Page 16 of 42

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

 

 17 

On the other hand, assuming that liquid is incompressible and accounting for the definition of 529 

enthalpy         , the second row of Eq. 15 can be explicated as: 530 

                             
   

  
    (17) 

where    and    represent the specific enthalpy links to liquid and vapor respectively. 531 

Introducing           in Eq. 17, it yields to: 532 

                        
   

  
    (18) 

By integrating between the status in    and in     , and assuming that the phase change is isothermal 533 
and isobaric (assumption f), Eq. 18 yields to Eq. 19 which exactly corresponds to Eq. 3: 534 

          
 

  

   
   

            

   
     (19) 

Since          is negative        will exit the domain which is expected during condensation. 535 

At this stage, the vapor sub-domain is containing both liquid and vapor. However, the numerical 536 

procedure adopted does not allow the existence of fluidic elements with such characteristic, since 537 

the starting thermodynamic state of the vapor plug needs to be always with quality equal to one. 538 

Thus the condensed mass will be merged with the adjacent liquid slices paying attention to conserve 539 

energy and mass in CV. In addition, in order to be consistent with the Eq. 14, the remaining vapor 540 

will undergo an isothermal expansion (        ).  541 
By solving the mass and the energy balances during the merging operation: 542 

         

        
       

                        

         
        

                                   

         
        

                                   

  (20) 

         

        
       

                                                                                                

         
             

        
           

                      
           

         
             

        
           

                      
           

  (21) 

          is the mass that will merge with      , while           is the mass that will merge with 543 

     . 544 

Finally, imposing an isothermal expansion on the remaining vapor (considered ideal) Eq. 14 is 545 

completely satisfied: 546 

        
        

         
          

 (22) 

where    is the gas constant.         
 should be chosen to satisfy        and thus: 547 

        
       

 
         

  
 

         

  
 (23) 

After this procedure for all the fluidic elements thermodynamic properties are updated to withstand 548 

the new thermodynamic status of the liquid and vapor elements at          . 549 

 550 
Evaporation. 551 

The solution adopted to solve heterogeneous evaporation follows the same modeling strategy used 552 

for condensation but it is applied to the control volumes of Fig 2B described in section 2.1.1. 553 

 554 
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Creation or disappearance of fluidic elements. 555 

Heterogeneous evaporation and condensation processes are solved consecutively moving along the 556 

fluidic path. The procedure described above showed mass exchange with the adjacent elements. 557 

However, it can occur that a new element is generated if         is higher than a minimum value 558 

     computed as the mass of an equivalent sphere which fits perfectly within the tube 559 

(               
 

 
    

      ); on the other hand, if         exceeds the mass of the corresponding 560 

element, this one vanishes and the adjacent slugs/plugs merge. The above procedure can be 561 

followed even in these cases, but to guarantee the length conservation, the control volume CV 562 

should be chosen adequately (Fig. 18) to assure that its global dimension does not change during the 563 

entire process.  564 

 565 

  

  

Fig. 18: Schematic of the fluidic control volumes CV (in red) adopted in case of heterogeneous 566 

evaporation with generation of new a vapor plug (A), heterogeneous condensation with vapor 567 

plug disappearance (B), heterogeneous condensation with generation of new a liquid slug (C) 568 

and heterogeneous evaporation with liquid slug disappearance (D).  569 

A.2 Homogeneous phase changes through the interface 570 

For both evaporation and condensation, the adopted control volume CV is shown in Fig. 2A. CV is 571 

considered closed, adiabatic and isochoric. The two liquid slices (LS) and the vapor plug (VP) are 572 

open and adiabatic. However, if the control volume is adiabatic, it cannot be assumed that the phase 573 

changes are both isothermal and isobaric, thus only the assumption      has been maintained 574 
(assumption f). As done before for the heterogeneous phase changes, in order to assure that 575 

      , the homogeneous phase changes at the interface must be followed by isothermal 576 

expansions or compressions of the vapor sub-domain. 577 

Condensation. 578 

The mass and the energy balances written on the global control volume     are:  579 

 
                                                                                              
                                                                                               
                                                                                               

  (24) 

Condensation will take place in the vapor phase, thus VP is considered two-phase. The mass and 580 

energy balances written for this sub-domain are: 581 
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  (25) 

where        is the condensed mass outgoing VP.  582 

Assuming incompressible liquid and accounting for the definition of enthalpy         , Eq. 583 
25 yields to: 584 

                         
   

  
                (26) 

Introducing                      in Eq. 26 and accounting for isobaric condensation: 585 

                            (27) 

By integrating between the status in    and     , Eq. 27 yields to Eq. 28: 586 

     
       

    
        

       

    
     

       

    
 (28) 

Since     
       

    
  , the vapor that is condensing undergoes a heating process.       

    

  
  587 

     
       

    
   since VP does not contain any liquid at   . If the quality of the vapor plug at the 588 

end of the process is one,        

    
 represent the mass of the condensed vapor        , which is 589 

still unknown:      
       

    
        

       

    
             . 590 

The condensed mass, then, flows inside the two LSs. This allows        since 591 

       
 
    

  

    
                        

   . In order to conserve the internal energy on each 592 

LS, and thus on CV, one should account for: 593 

                                              (29) 

Assuming the process isobaric and integrating between the initial and final status, for each LS: 594 

      

     

   

                           

    
                (30) 

In addition, in order to make Eq. 24 true, the vapor element will undergo an isothermal expansion: 595 

        
        

         
          

 (31) 

Differently from heterogeneous phase changes, this time the unknown is         since         
 596 

    ;         
 is chosen, on the other hand, to satisfy        (Fig. 3A): 597 

        
       

 
         

  
 (32) 

After this procedure for all the fluidic elements thermodynamic properties are updated to withstand 598 

the new thermodynamic status of the liquid and vapor elements at          . 599 
 600 

Evaporation. 601 

The solution adopted to solve homogeneous evaporation through the interface follows the same 602 

modeling strategy used for condensation. However, in this case evaporation will take place in the 603 

liquid phase, thus Eq. 25 should be explicated for each LS, while Eq. 29 for the vapor plug.  604 

 605 
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NOMENCLATURE 606 

Latin symbols     

  Cross flow area, [m
2
]    Internal energy, [J] 

    External lateral area, [m
2
]    Specific internal energy, [Jkg

-1
] 

    Internal lateral area, [m
2
]    Volume, [m

3
] 

  Acceleration, [ms
-2

]    Velocity, [ms
-1

] 

   Specific heat constant volume, [Jkg
-1

K
-1

]    Axial coordinates, [m] 

    Diameter, [m]    Axial coordinates, [m] 

   Friction coefficient, []  Greek symbols 

  Gravity acceleration, [ms
-2

]     Time step, [s] 

  Enthalpy, [J]    Inclination to horizontal, [rad] 

  Convection coefficient, [Wm
-2

K
-1

]    Density, [kg/m
3
] 

   Liquid specific enthalpy, [Jkg
-1

]  Subscripts 

   Vapor specific enthalpy, [Jkg
-1

]    Fluidic 

    Latent heat of vaporization, [Jkg
-1

]      Homogenous phase change 

  Thermal conductivity, [Wm
-1

K
-1

]      Heterogeneous phase change 

  Length, [m]    Liquid 

  Mass, [kg]      Saturated conditions 

    Evaporated/Condensed mass, [kg]    Vapor 

  Number of elements, []    Wall 

  Pressure, [Pa]    Environmental 

  
 

Heat power, [W]  Acronyms 

    External heat flux, [Wm
-2

]  CV Control Volume 

    Heat flux between wall and fluid, [Wm
-2

]  ID Internal Diameter 

   Gas constant, [Jkg
-1

K
-1

]  LS Liquid Slug 

   Rayleigh number, []  ESA European Space Agency 

   Reynolds number, []  OD Outer Diameter 

  Temperature, [K]  PHP Pulsating Heat Pipe 

  
 

Time, [s]  VP Vapor Plug 
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 692 

 

 Input parameter Value 

 Working fluid FC-72 

 Volumetric filling ratio 0.50 

 Tube material Copper 

 Internal diameter 1.1 mm 

 External diameter 2.0 mm 

 Surface roughness 50 μ  

 Total length 6.62 m 

 N° of evaporator bends 16 

 *External heat transfer coefficient 400 W/m
2
K 

 *Film Thickness 50 μ  

 *   superheat 2.5 °C 

 *   cooling 0.01 °C 

 *N° of slugs/plugs at       20 

 *N° of wall grids 400 

* Values are guessed in feasible ranges. Sensitivity analyses shown independency of the model 

results in the tested ranges.  

Tab. 1: Features of the tested PHP. Geometrical, physical and numerical input parameters 693 

are given. 694 
 695 
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Fig. 1: Schematic of the numerical domains. The liquid slugs sub-domains are not explicitly indicated. The 
wall is considered completely wettable.  
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Fig. 2: Schematic of the fluidic control volumes CV (in red) adopted in case of heterogeneous condensation 
(A) or evaporation (B).  
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Fig. 3: Schematic of homogeneous condensation (A) and evaporation (B). Since the cross sectional area is 
constant, V=AL.  
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Fig. 4: Schematic of the fluidic domains and sub-domains accounted for the energy balance computation. VP 
stands for vapor plug, LS stands for liquid slug.  
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Fig. 5: Definition of  Awf, Awf,n and  Awf,k from the wall point of view (A) and from the fluid point of view (B).  
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Fig. 6: Experimental and numerical evolution of the local spatial average temperatures for a bottom heated 
mode PHP at 50W. Solid lines represent mean temperatures; colored regions indicate the standard deviation 

on the recorder data.  
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Fig. 7: Experimental and numerical evolution of the local spatial average temperatures for a bottom heated 
mode PHP at 60W. Solid lines represent mean temperatures; colored regions indicate the standard deviation 

on the recorder data.  
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Fig. 8: Experimental and numerical evolution of the local spatial average temperatures for a bottom heated 
mode PHP at 70W. Solid lines represent mean temperatures; colored regions indicate the standard deviation 

on the recorder data.  
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Fig. 9: Experimental and numerical evolution of the local spatial average temperatures for a bottom heated 
mode PHP at 80W. Solid lines represent mean temperatures; colored regions indicate the standard deviation 

on the recorder data.  
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Fig. 10: Experimental and numerical evolution of the local spatial average temperatures for a bottom heated 
mode PHP at 90W. Solid lines represent mean temperatures; colored regions indicate the standard deviation 

on the recorder data.  
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Fig. 11: Experimental and numerical evolution of the local spatial average temperatures for a bottom heated 
mode PHP at 100W. Solid lines represent mean temperatures; colored regions indicate the standard 

deviation on the recorder data.  
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Fig. 12: Experimental wall temperatures for a bottom heated mode PHP at 100W. Greyish colours represent 
the adiabatic zone, bluish indicate the condenser section.  

101x76mm (600 x 600 DPI)  

 

 

Page 35 of 42

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

  

 

 

Fig. 13: Experimental (A) and numerical (B) pressure signal for the 50W parabola.  
80x29mm (600 x 600 DPI)  

 

 

Page 36 of 42

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

  

 

 

Fig. 14: Numerical computed liquid slugs velocities for the 50W parabola. Different colours indicate different 
elements.  
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Fig. 15: 50W parabola; number of fluidic laps. Red dotted lines report the linear interpolation curves.  
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Fig. 16: Numerical evolution of the local spatial average temperatures for the 50W parabola (on the left) and 
the 50W tilting manoeuvre (on the right).  
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Fig. 17: Numerical evolution of the local spatial average temperatures for the 70W parabola (A) and the 
70W tilting manoeuvre (B). On the right, zoom of the adiabatic temperature in the transition zone.  
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Fig. 18: Schematic of the fluidic control volumes CV (in red) adopted in case of heterogeneous evaporation 
with generation of new a vapor plug (A), heterogeneous condensation with vapor plug disappearance (B), 
heterogeneous condensation with generation of new a liquid slug (C) and heterogeneous evaporation with 

liquid slug disappearance (D).  
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