
 

Topological susceptibility of two-dimensional UðNÞ gauge theories

Claudio Bonati* and Paolo Rossi†

Dipartimento di Fisica, Università di Pisa and INFN,
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In this paper, we study the topological susceptibility of two-dimensional UðNÞ gauge theories. We
provide explicit expressions for the partition function and the topological susceptibility at finite lattice
spacing and finite volume. We then examine the particularly simple case of the Abelian Uð1Þ theory, the
continuum limit, and the infinite volume limit, and we finally discuss the large N limit of our results.
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I. INTRODUCTION

The study of θ dependence of QCD by means of lattice
simulations has been the subject of several recent studies,
mainly triggered by the possible implications for axion
physics [1–9]. It is, however, well known that Monte Carlo
algorithms typically used in numerical simulations suffer
from a severe critical slowing down as the continuum limit is
approached,with autocorrelation timesof topological observ-
ables that growabout exponentially in the inverse of the lattice
spacing [10–13]. This has led to the development of new
algorithms, specifically devised to improve the sampling of
topologically nontrivial configuration [7,8,14–23].
From a general point of view, it is very useful to have the

possibility of performing quantitative checks of the
Monte Carlo results against exact ones. This is obviously
not possible in the general case; however, simplified (toy)
models that are analytically soluble but still complicated
enough to be used as nontrivial test beds sometimes exist.
In statistical physics, the two-dimensional Ising model is
probably the most popular choice [24], while in field
theory, two-dimensional lattice gauge theories are the
natural playground for tests of numerical simulations; on
one side, they are computationally much cheaper than their
four-dimensional counterparts, and on the other side,
it is possible to determine many exact results that may
constitute precise benchmarks for numerical results and
extrapolations.
The present paper is devoted to the extension of known

analytic results concerning two-dimensional UðNÞ lattice

gauge theories in the absence of a θ term to the case in
which such a term is present, and more specifically to the
evaluation of the topological susceptibility, for finite
volumes V and for generic values of the coupling β.
Finite volume results at fixed coupling may be especially
useful because they allow direct comparison with simu-
lations without the need for extrapolating to infinite volume
and to the continuum limit.
The paper is organized as follows. Section II is devoted

to a summary of known results, with special emphasis on
finite lattices with spherical and toroidal geometries. In
Sec. III we fix our notation, trying to make correspondence
with previous literature as far as possible. We give our
definitions for the density of topological charge and for the
topological susceptibility in UðNÞ gauge theories, exploit-
ing the existence of the Uð1Þ subgroup. We present our
general formulas for the partition function in the presence
of a θ term and for the topological susceptibility; for
generic values of N, β, and V; and for any genus g of the
lattice manifold, showing explicitly that the periodicity of
the partition function for 2π shifts of the θ parameter is
preserved. In Sec. IV, we focus on the case N ¼ 1 where
many closed-form expressions can be explicitly found for
generic values of V and can be compared with partial
results already available in the literature. Strong evidence of
precocious scaling by using a renormalized coupling is also
exhibited. In Sec. V, we analyze the (finite volume)
continuum limit of the model β → ∞ in the presence of
a θ term. In Sec. VI, the infinite volume limit of the
topological susceptibility is discussed in detail. Section VII
is devoted to the study of the largeN limit in the infinite and
finite volume cases (with further evidence of precocious
scaling) and to numerical checks of our large N results.

II. SUMMARY OF KNOWN RESULTS

The finite volume lattice version of UðNÞ gauge theories
most widely studied in the literature is defined by the
following partition function [25],
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ZðN; β; PÞ ¼
Z

e−SðN;β;PÞYL
l¼1

dUl; ð1Þ

SðN; β; PÞ ¼ −Nβ
XP
p¼1

TrðUp þ U†
pÞ; ð2Þ

where unitaryN × N matricesUl are attached to the L links
of the lattice and Up ¼ Q

Ul are the ordered products of
the link matrices along any lattice plaquette. β is the lattice
’t Hooft coupling, the relationship with the standard
(dimensionful) coupling1 of which is Nβ ¼ 1=ðg2a2Þ,
where a is the lattice spacing and the volume is given
by V ¼ Pa2. The sum in Eq. (2) runs over all P plaquettes,
while the integration dUl involves all link variables and is
performed by using the Haar measure for the UðNÞ group.
Due to its crucial role, we recall that, when the integrand
involves only functions of the eigenvalues ϕi of the
integration variable, the UðNÞ Haar measure reduces to
(see, e.g., Ref. [26])

dμðϕÞ ¼ ΔðϕÞΔ̄ðϕÞ
YN
i¼1

dϕi

2π
; ð3Þ

where

ΔðϕÞ ¼ 1ffiffiffiffiffiffi
N!

p ϵj1···jNe
iϕ1ðN−j1Þ · · · eiϕNðN−jNÞ: ð4Þ

The peculiarity of two-dimensional models consists in
the possibility of performing a change of integration
variables (exploiting the invariance of the Haar measure)
in such a way that most nontrivial integrations involve
directly the plaquette matrices. That this is a feasible
strategy can be understood, for a two-dimensional compact
orientable manifold without boundary, by using the Euler
characteristic 2 − 2g ¼ S − Lþ P, where S is the number
of sites (vertices) of the lattice and g is the genus of the
lattice manifold. The maximal number of links that can be
gauged away (maximal tree) is simply S − 1, and therefore
the number of nontrivial integration variables I
is I ¼ L − Sþ 1 ¼ P − 1þ 2g.
Two cases particularly useful for applications are the

manifolds with the topology of the sphere (g ¼ 0) and
the manifolds with the topology of the torus (g ¼ 1). For
the case g ¼ 0, we have I ¼ P − 1, implying that one of the
plaquette variables may be expressed as a function (actually
the product) of all other matrices; in this case, one can
easily prove the equivalence of these models to the chiral
chains of length P (see also later in this section), in order
to use the results available for these systems [27,28]. For

g ¼ 1 (the manifolds typically adopted in simulations), we
get I ¼ Pþ 1, and the independent variables may be
chosen to be P − 1 plaquettes and two other degrees of
freedom (“torons”). Integration over the torons may be
explicitly carried out [29], and the result leads again to the
possibility of expressing the last plaquette as the product of
all other variables. This procedure can be generalized
without difficulties also to the case of generic topology.
Without belaboring the details, we only quote the final

result, due to Rusakov [30] (see also Ref. [29] for the case
of the torus): the θ ¼ 0 partition function ZðgÞðN; β; PÞ
corresponding to a compact orientable lattice manifold of
genus g without boundary is

ZðgÞðN; β; PÞ ¼
X
r

d2−2gr

�
β̃rðN; βÞ

dr

�
P
; ð5Þ

where P > 1, the sum runs over all representations r of
UðNÞ, dr is the dimension of the representation, and [26]

β̃rðN; βÞ ¼
Z

χrðUÞeNβðTrUþTrU†ÞdU; ð6Þ

with χrðUÞ the character of r. If the manifold is non-
orientable, the partition function is always equal to 1; if
fixed boundaries are present, the result depends on the
holonomies associated to the boundaries [30]. When the
boundary holonomies are fixed to be trivial, one obtains
again Eq. (5), and this is a possible way to prove the
equivalence of the spherical topology with chiral chains.
We explicitly note that, when writing expressions like
Eq. (5), we must keep in mind that the number of links
belonging to each plaquette is not a priori fixed, and for
small values of P, it must be large enough to ensure the
possibility of imposing boundary conditions compatible
with the genus g of the lattice manifold. In particular, for
P ¼ 2, the plaquettes must be polygons with at least
4g sides.
It is worth noticing that, due to the invariance properties

of the measure, a simple result may be obtained in the case
g ¼ 0, P ¼ 2:

Zð0ÞðN; β; 2Þ ¼ β̃0ðN; 2βÞ: ð7Þ

We also recall that the continuum partition function in
the case of a finite (dimensionless) area A ¼ V=a2 can be
obtained starting from the heat kernel action, corresponding
to the replacement2 [26]

β̃rðN; βÞ → dre
− Cr
4Nβ; ð8Þ

1In the following, we will denote by g also the genus of the
manifold on which the theory is defined; the meaning of g should,
however, be clear from the context.

2There is sometimes confusion in the literature on the
numerical factor appearing in the exponent, which depends on
the conventions adopted in the action. We checked that Eq. (8) is
the correct large β limit of Eq. (13).
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where Cr is the quadratic Casimir in the r representation
and the result is

ZðgÞðN; β; AÞ ¼
X
r

d2−2gr e−
1

4NβCrA: ð9Þ

The infinite volume limit of Eq. (5) can be easily
recovered in different ways. For instance, one may observe
that when P → ∞ it is consistent to choose an axial gauge
condition, amounting to setting Ul ¼ 1 for all the links in
the “time” direction of the lattice. Factorization of the
integrals in Eq. (2) follows trivially, implying a direct
relationship with the single plaquette model,

ZðN; β; PÞ !P→∞
ZðN; β; 1ÞP; ð10Þ

where

ZðN; β; 1Þ≡
Z

dUeNβðTrUþTrU†Þ ¼ β̃0ðN; βÞ ð11Þ

and the properties of the trivial representation [d0 ¼ 1 and
χ0ðUÞ ¼ 1] have been exploited. It is important to stress
that the same result might have been obtained by observing
that the quantities β̃rðN; βÞ can be explicitly computed for
all values of N. Indeed, by recalling the definition of the
modified Bessel functions of integer order

Inð2NβÞ ¼ 1

2π

Z
π

−π
e2Nβ cosϕ�inϕdϕ; ð12Þ

it is possible to obtain the result [26]

β̃fljgðN; βÞ ¼ detðIljþi−jð2NβÞÞ; ð13Þ

where the indices l1 ≥ · · · ≥ lN (li ∈ Z) parametrize the
UðNÞ representation; in particular [25],

β̃0ðN; βÞ ¼ detðIi−jð2NβÞÞ: ð14Þ

Noticing that InðxÞ < I0ðxÞ for all n ≠ 0 and for all finite
real values of x, it is easy to be convinced that

β̃rðN; βÞ
drβ̃0ðN; βÞ < 1 ð15Þ

for all r ≠ 0 and for all finite values of β. This observation
implies Eq. (10) and also that the convergence to the
infinite volume limit is exponentially fast for large values
of P.
As we mentioned in the Introduction, many exact results

have been obtained in the past with regard to the large N
limit of many matrix models. For a general review we refer
to Ref. [31], quoting here only some results that will be
relevant in the following: the existence of a third order
phase transition at N ¼ ∞, first identified by Gross and

Witten [32] andWadia [33], the computation of the first few
1=N corrections of the free energy [34], and the exact
expression for the large N eigenvalue distribution of the
plaquette variable for the single plaquette model [32] and
for the chiral chains with P ¼ 3; 4 [27,28,35]. The solution
of the external field problem for all N [27,28,36,37] and the
expectation value of detUp for the single plaquette
model [38].

III. TOPOLOGICAL CHARGE AND
SUSCEPTIBILITY

The existence of a topological charge in two-
dimensionalUðNÞ gauge theories is related to the existence
of a Uð1Þ Abelian subgroup, that can be parametrized by a
phase Φ, related to the determinant of the UðNÞ matrix by
the relationship

detU ¼ eiΦ: ð16Þ

It is easy to be convinced that on a compact orientable
lattice manifold without boundaries the following property
holds,

XP
p¼1

Φp ¼ 0ðmod 2πÞ; ð17Þ

where Φp is the phase associated with the determinant of
each plaquette variable. Hence, a simple definition for
the topological charge density qp associated with each
plaquette is

qp ≡ −
i
2π

ln detUp ¼ −
i
2π

Tr lnUp; ð18Þ

the total topological charge is QðN;PÞ ¼ P
qp, and,

because of the above property of
P

pΦp, Q can only take
integer values. Note that the second equality in Eq. (18)
holds only for an appropriate and Up-dependent choice of
the branch cuts. If, however, the standard ½−π; π� branch is
used (as will always be done in the following), the two
expressions for the topological charge are generically
different, but nevertheless, the corresponding θ-dependent
partition functions are the same.
By definition, the (dimensionless) topological suscep-

tibility χtðN; β; VÞ is

χtðN; β; VÞ ¼ a2

V
½hQ2i − hQi2�; ð19Þ

where the expectation values are to be computed at θ ¼ 0.
The lattice representation of χt follows trivially from the
above results, recalling that V ¼ a2P, and simple parity
arguments imply that hQi ¼ 0; therefore, in practice, we
just have to compute hQ2i=P.
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The θ-dependent partition function can be defined as

ZθðN; β; PÞ≡
Z

eiθQðN;PÞe−SðN;β;PÞYL
l¼1

dUl; ð20Þ

and in order to compute ZθðN; β; PÞ, we can repeat and
adapt Rusakov’s procedure. Let us define the quantities

γ̃rðN; β; θÞ≡
Z

χrðUÞe θ
2πTr lnUþNβðTrUþTrU†ÞdU; ð21Þ

with the property that

γ̃rðN; β; 0Þ ¼ β̃rðN; βÞ: ð22Þ

By choosing an appropriate gauge condition and perform-
ing the residual nontrivial integrations, we then obtain our
general result for the θ-dependent partition function:

ZðgÞ
θ ðN; β; PÞ ¼

X
r

d2−2gr

�
γ̃rðN; β; θÞ

dr

�
P
: ð23Þ

Noticing that Tr lnU ¼ i
P

jϕj, where eiϕj are the eigen-
values of U, and defining the functions

IνðxÞ≡ 1

2π

Z
π

−π
eiνϕex cosϕdϕ; ð24Þ

which for integer indices reduces to modified Bessel
functions [see Eq. (12)], we obtain the closed form
expression

γ̃fljgðN; β; θÞ ¼ det

�
I ljþi−jþ θ

2π
ð2NβÞ

�
ð25Þ

using arguments identical to those needed to prove
Eqs. (13) and (14) [25,26,32].
From this expression, it follows that θ → θ þ 2π is

equivalent to fljg → fl0jg, where l0j ¼ lj þ 1; as a conse-
quence, when performing the summation over all repre-

sentations, each contribution appearing in ZðgÞ
θþ2πðN; β; PÞ

has an identical counterpart in the expression of

ZðgÞ
θ ðN; β; PÞ, implying exact 2π periodicity in θ for all

values of g, N, β, and P. We consider this to be quite
nontrivial evidence for the correct normalization of the
topological charge in the two-dimensional UðNÞ gauge
theories.
In order to simplify the notation, it is convenient to

introduce the weights

wðgÞ
r ðN; β; PÞ ¼ d2−2gr

�
β̃rðN; βÞ

dr

�
Ph
Z0ðN; β; PÞ

i
−1
; ð26Þ

with the property that
P

rw
ðgÞ
r ðN; β; PÞ ¼ 1. Starting from

the formal expression for the topological susceptibility,

χðgÞt ðN; β; PÞ ¼ −
1

P
∂2 lnZðgÞ

θ ðN; β; PÞ
∂θ2

����
θ¼0

; ð27Þ

it is then possible to represent χðgÞt ðN; β; PÞ in the form

χðgÞt ðN; β; PÞ ¼ −
X
r

wðgÞ
r ðN; β; PÞ γ̃00r ðN; βÞ

drβ̃rðN; βÞ

þ −ðP − 1Þ
X
r

wðgÞ
r ðN; β; PÞ

�
γ̃0rðN; βÞ
drβ̃rðN; βÞ

�
2

;

ð28Þ

where we have defined

γ̃0rðN; βÞ≡ ∂ γ̃rðN; β; θÞ
∂θ

����
θ¼0

¼
Z

χrðUÞ
�
1

2π
Tr lnU

�
eNβðTrUþTrU†ÞdU; ð29Þ

and

γ̃00rðN; βÞ≡ ∂2γ̃rðN; β; θÞ
∂θ2

����
θ¼0

¼
Z

χrðUÞ
�
1

2π
Tr lnU

�
2

eNβðTrUþTrU†ÞdU; ð30Þ

which can be rewritten as sums of determinants involving
modified Bessel functions and related functions (see
Sec. VI for more details on the simplest case). In the
derivation of Eq. (28), we have also exploited the fact that
hQi vanishes at θ ¼ 0, which is equivalent to

X
r

wðgÞ
r ðN; β; PÞ γ̃0rðN; βÞ

drβ̃rðN; βÞ ¼ 0: ð31Þ

The proof of this identity rests on the cancellation of the
contributions coming from each representation r (associ-
ated to fljg) and its conjugate representation r� (associated
to f−lNþ1−jg); indeed,

dr� ¼ dr; β̃r�ðN; βÞ ¼ β̃rðN; βÞ;
γ̃r� ðN; β; θÞ ¼ γ̃rðN; β;−θÞ; ð32Þ

from which it follows that γ̃0r� ðN; βÞ ¼ −γ̃0rðN; βÞ.
By the same arguments applied in the previous section,

and observing that γ̃00ðN; βÞ ¼ 0 for obvious symmetry
reasons, we may conclude that also the convergence of the
topological susceptibility to its infinite volume limit is
exponentially fast. An example of the finite volume
behavior of the topological susceptibility is shown in
Fig. 1 for the Uð2Þ case.
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A peculiar property of the case g ¼ 0, P ¼ 2 (the two-
link chiral chain) is

χð0Þt ðN; β; 2Þ ¼ 0; ð33Þ

implied by the trivial relationship Tr lnU þ Tr lnU† ¼ 0.
It is also quite interesting to study the limit g → ∞ of the

theory. Since g appears in the exponent of 1=dr in the

weights wðgÞ
r (see Eq. (26)), all representations with dr > 1

disappear as g → ∞, and only the representations labeled
with l1 ¼ l2 � � � ¼ lN give a finite contribution in this limit.
The relevant representations are therefore identified by a
single index l, running from −∞ to þ∞, and the partition
function is simply

Zð∞Þ
θ ðN; β; PÞ ¼

X
l

½γ̃lðN; β; θÞ�P; ð34Þ

where the explicit form of the UðNÞ characters has been
used (see Ref. [26]) and

γ̃lðN; β; θÞ ¼ β̃0ðN; βÞhðdetUÞlþ θ
2πi; ð35Þ

where the average hi stands for the average in the single
plaquette model at θ ¼ 0. The topological susceptibility of
the g ¼ ∞ theory is shown in Fig. 1 for the Uð2Þ case.
Further aspects of the large g behavior will be discussed in
Secs. V and VII.
To better understand the form of Eq. (28), it is convenient

to further generalize the problem, by introducing plaquette-
dependent lattice coupling and the θ angle. It is immediate
to verify that the Rusakov result can be generalized to this
case and the partition function becomes

ZðgÞ
θ⃗
ðN; β⃗; PÞ ¼

X
r

d2−2gr

YP
p¼1

γ̃rðN; βp; θpÞ
dr

: ð36Þ

We can now write a formal expression for the two-point
correlation function of the topological charge by using

hqiqjiðgÞðN; β; PÞ ¼ −
∂2

∂θi∂θj lnZ
ðgÞ
θ⃗
ðN; β⃗; PÞ

���
θp¼0

βp¼β

; ð37Þ

and it is simple to verify that hqiqjiðgÞðN; β; PÞ has the form

hqiqjiðgÞðN; β; PÞ ¼ cðgÞ1 ðN; β; PÞδij
þ cðgÞ2 ðN; β; PÞð1 − δijÞ; ð38Þ

which expresses the fact that in two dimensions the
correlator hqiqjiðgÞ takes just two values. These values
are obviously related to the expressions appearing in
Eq. (28), that can indeed be rewritten in the form

χðgÞt ðN; β; PÞ ¼ cðgÞ1 ðN; β; PÞ þ ðP − 1ÞcðgÞ2 ðN; β; PÞ: ð39Þ

This is nothing but the general relation between the
susceptibility and the two-point function, written in the
case in which hqiqjiðgÞ assumes only two values. Since
γ̃00ðN; βÞ ¼ 0, it is simple to show that c2 goes to zero
exponentially in P (the dimensionless volume) as the
thermodynamic limit is approached; in this limit, the
two-point function of the topological charge reduces to a
δ function.

IV. CASE N = 1

In the purely Abelian case N ¼ 1, many simplifications
occur, due to the commutativity of the matrices. In
particular, there is no dependence on the genus of the
manifold, as one can easily see by noticing that all the
representations have dimension 1.
The topological charge density is simply qp ¼ ϕp

2π (where
ϕp is the Abelian phase of the plaquette), and the character
of the nth representation of Up is just einϕp . As a
consequence, one may compute directly the θ-dependent
partition function on a finite lattice, obtaining

Zθð1; β; PÞ ¼
Xþ∞

n¼−∞
½Inþ θ

2π
�P: ð40Þ

The Uð1Þ weights are simply

wnð1; β; PÞ ¼
½Inð2βÞ�PP
n½Inð2βÞ�P

: ð41Þ

The resulting expression for the finite volume topological
susceptibility is then

0 5 10 15 20 25 30

P

0

0.005

0.01

0.015

0.02
χ t(g

) (2
,1

,P
)

g=∞
g=2
g=1
g=0

FIG. 1. Behavior of the Uð2Þ topological susceptibility as a
function of the dimensionless volume P for the value β ¼ 1 of the
coupling. Results are shown for three different topologies,
corresponding to g ¼ 0, 1 and 2; the horizontal line denotes
the asymptotic P → ∞ value computed by using Eq. (63).
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χtð1; β; PÞ ¼ −
X
n

wnð1; β; PÞ
I 00
nð2βÞ

Inð2βÞ

þ −ðP − 1Þ
X
n

wnð1; β; PÞ
�
I 0
nð2βÞ

Inð2βÞ
�
2

; ð42Þ

where we introduced the auxiliary functions

I 0
nðxÞ≡ 1

2π

∂
∂ν IνðxÞ

���
ν¼n

¼ i
2π

Z
π

−π

ϕ

2π
einϕþx cosϕdϕ ð43Þ

I 00
nðxÞ≡ 1

ð2πÞ2
∂2

∂ν2 IνðxÞ
���
ν¼n

¼ −
1

2π

Z
π

−π

�
ϕ

2π

�
2

einϕþx cosϕdϕ: ð44Þ

The typical behavior of χtð1; β; PÞ as a function of β and P
is shown in Fig. 2(a). In Fig. 2(b), one may observe the
precocious scaling exhibited by the ratio χtð1; β; PÞ=
χtð1; β; 1Þ, when we parametrize the dependence on the
coupling by means of the combination 4π2Pχtð1; β; 1Þ,
corresponding to a physical dimensionless quantity in the
continuum limit (where it takes the asymptotic value P

2β).
Precocious scaling by use of renormalized couplings was
observed in a different context in Refs. [39,40].
The finite volume continuum limit of the θ-dependent

partition function in the Uð1Þ case is

Zθ

�
1;

A
2β

�
¼

X
n

e−
A
4βðnþ θ

2πÞ2 ; ð45Þ

where we dropped the θ-independent multiplicative factor
I0ð2βÞP. A corresponding expression for the topological
susceptibility can easily be obtained and can be written in
the form

χtð1; β; AÞ
χtð1; β; 1Þ

¼ 1þ 2X
∂
∂X lnZ0ð1; XÞ; ð46Þ

where X ¼ A
2β. In order to compare with continuum results

(see, e.g., Ref. [41]), it must be kept in mind that g2 ¼ 2e2

in the Uð1Þ case to preserve the canonical normalization of
the fields (see also the note at the end of Sec. II).
In the infinite volume limit, the dominant term of the sum

in Eq. (40) is the one corresponding to the minimum value
of nþ θ

2π, and we thus see the emergence of a multi-
branched structure,

Zθð1; β; PÞ !P→∞ ½I θ mod 2π
2π

ð2βÞ�P; ð47Þ

with the partition function being nonanalytic at the odd
multiples of π. This phenomenon persists also when

considering the infinite volume limit of the continuum
version of the model discussed above. The presence of
these first order transition points prevents a simple factori-
zation of the form Eq. (10) from being applicable for
generic θ values, indeed a naive application of factorization
would give

Zθð1; β; PÞ !P→∞ ½I θ
2π
ð2βÞ�P; ð48Þ

which is nonperiodic in θ. It is, however, important to stress
that, as far as we consider −π ≤ θ ≤ π, all the expressions
obtained by using the single plaquette model correctly
describe the P → ∞ limit of the P plaquette model. In
particular, the infinite volume topological susceptibility is
given by

χtð1; β;∞Þ ¼ −
I 00
0ð2βÞ

I0ð2βÞ
: ð49Þ
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FIG. 2. (a) Behavior of the Uð1Þ topological susceptibility as a
function of the coupling β and of the dimensionless volume P.
For comparison, points obtained by using numerical lattice
simulations are also shown in the case β ¼ 2.5 (error bars are
smaller than symbols). (b) Same data as in the upper panel but
with quantities normalized by using χtð1; β; 1Þ.
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V. CONTINUUM LIMIT

The continuum limit of two-dimensional UðNÞ gauge
theories is simply the limit β → ∞ because the coupling g2

is dimensionful, and therefore the above limit is the same as
the limit a2 → 0. By generalizing the arguments that lead to
Eq. (13), we may obtain the following representation for
the functions γ̃rðN; β; θÞ appearing in ZθðN; β; PÞ:

γ̃fljgðN; β; θÞ ¼
Z

det½eiϕjðljþi−jÞ�

× ei
θ
2π

P
j
ϕje2Nβ

P
j
cosϕj

Y
j

dϕj

2π
: ð50Þ

In the β → ∞ limit, one may replace cosϕj with 1 − 1
2
ϕ2
j

and perform the resulting Gaussian integration, thus
obtaining

γ̃fljgðN; β; θÞ → AðN; βÞ det½e− 1
4Nβðljþi−jþ θ

2πÞ2 �; ð51Þ

where the common factor AðN; βÞ does not depend on θ.
A few straightforward manipulations allow one to

represent the above result in the form

γ̃fljgðN; β; θÞ → AðN; βÞ det½e− 1
4Nβðljþi−jÞ2 �

× e−
1

4Nβ½θπ
P

j
ljþNð θ

2πÞ2�. ð52Þ

The determinant can be computed in the limit β → ∞,
obtaining the result

det½e− 1
4Nβðljþi−jÞ2 � → BðN; βÞdfljge−

1
4NβCfljg ; ð53Þ

where BðN; βÞ is another common factor independent of θ,
and it is possible to verify that the product AðN; βÞBðN; βÞ
is nothing but the asymptotic form of β̃0ðN; βÞ in the large β
limit; hence, it is a lattice artifact that can be ignored when
analyzing the continuum properties of the model.
We recall that Cfljg is the quadratic Casimir of the

representation, as expected from the θ ¼ 0 result (8). We
report here, for the convenience of the reader, the known
explicit form of Cfljg and dfljg:

Cfljg ¼
XN
i¼1

liðli − 2iþ N þ 1Þ

dfljg ¼
Y
i>j

�
1 −

li − lj
i − j

�
: ð54Þ

The continuum limit of the partition function on a
manifold with (dimensionless) area A=ðNβÞ ¼ g2V is
therefore

ZðgÞ
θ

�
N;

A
2β

�
¼

X
fljg

d2−2gfljg e−
A

4Nβ½Cfljgþθ
π

P
j
ljþ N

4π2
θ2�; ð55Þ

and the continuum limit of the weights defined in
Eq. (26) is

wðgÞ
fljg

�
N;

A
2β

�
¼ d2−2gfljg e−

A
4NβCfljg

�
ZðgÞ
0

�
N;

A
2β

��
−1
: ð56Þ

An immediate consequence of the above results is the
possibility of evaluating the finite volume continuum limit
of the topological susceptibility,

χðgÞt ðN; β; AÞ ¼ 1

8π2β

�
1 −

A
2β

X
fljg

wðgÞ
fljg

�X
j

lj
N

�
2
�
; ð57Þ

which in the infinite volume limit does not depend on the
genus and becomes simply

χðgÞt ðN; β;∞Þ ¼ 1

8π2β
; ð58Þ

for all N, because wðgÞ
r ðN; β; AÞ → δr;0 when A → ∞.

It is important to note that the continuum expression for
the partition function is consistent with the previously
proven periodicity in θ with period 2π of the partition
function. Let us focus on the exponents appearing in
Eq. (55) and notice that they can be rewritten in the form

Cfljg þ
θ

π

X
j

lj þ
N
4π2

θ2

¼
X
j

��
lj þ

θ

2π

�
2

þ ðN þ 1 − 2jÞ
�
lj þ

θ

2π

��
; ð59Þ

also in the continuum, θ → θ þ 2π is thus equivalent to
fljg → fl0jg, where l0j ¼ lj þ 1. Since dfl0jg ¼ dfljg, the

periodicity of the continuum partition function (55) follows
as in Sec. III.
The continuum version of the g → ∞ limit is simply

Zð∞Þ
θ

�
N;

A
2β

�
¼

X
l

e−
A
4βðlþ θ

2πÞ2 ; ð60Þ

and one may appreciate that it turns out to be independent
of N and therefore coincident with the continuum version
of the Uð1Þ model. However, we notice that, contrary to
naive expectations, the finite volume continuum limit will
not in general coincide with its Uð1Þ value and will depend
on N and g, with the notable exception of the large N limit,
to be discussed in Sec. VII.
The properties of the finite volume continuum limit will

be discussed in detail in a forthcoming publication.
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VI. INFINITE VOLUME LIMIT

We assume in this section −π ≤ θ ≤ π (see the discus-
sion in Sec. IV), in order to exploit the large volume
factorization also at θ ≠ 0, obtaining for all genuses

ZðgÞ
θ ðN; β; PÞ !P→∞

ZθðN; β; 1ÞP; ð61Þ
where

ZθðN; β; 1Þ≡
Z

e
θ
2πTr lnUþNβðTrUþTrU†ÞdU

¼ γ̃0ðN; β; θÞ: ð62Þ

Computing the infinite volume topological susceptibility
thus amounts to evaluating the quantity

χtðN; β; 1Þ ¼ −
γ̃000ðN; βÞ
β̃0ðN; βÞ ; ð63Þ

where we exploited the fact that γ̃00ðN; βÞ ¼ 0 and the
property

wðgÞ
r ðN; β; PÞ → δr;0 ð64Þ

in the limit P → ∞. γ̃000 may be evaluated starting from

γ̃000 ¼ −
Z

dμðϕÞ
�X

i

ϕi

2π

�
2

e2Nβ
P

i
cosϕi ; ð65Þ

and it can be seen (using again arguments analogous to
those of Refs. [25,26,32]) that γ̃000 may be expressed as the
sum of the N2 determinants obtained from det Ii−jð2NβÞ by
replacing one of the lines with I 00

i−jð2NβÞ and two different
lines with I 0

i−jð2NβÞ. Using these expressions, it is
straightforward to numerically compute χtðN; β; 1Þ, and
in Fig. 3, we show the results obtained for N < 10 and

0 ≤ β ≤ 2; two different regimes are clearly visible in this
figure, which will be discussed in depth in Sec. VII.

VII. LARGE N LIMIT

In the large N limit, analytic calculations are made
possible by the fact that the functional integral is dominated
by the saddle-point configuration of the fields, which in turn
can be found by solving the appropriate (saddle-point)
equations for the eigenvalues ϕi of a matrix variable. In
practice, one must replace the summations over the index “i”
with an integration in the variable ϕ, weighted by an
eigenvalue density ρðϕÞ¼ 1

N
di
dϕ, normalized to

R
dϕρðϕÞ ¼ 1.

Explicit eigenvalue densities have been found for the
infinite volume case (equivalent to the single plaquette)
[32] and for the chiral chains with P ¼ 2, 3, 4 [27,28], and
the corresponding free energies have been computed. In all
cases, a third order phase transition is present, and therefore
one needs to know the separate expressions for the strong
and weak coupling eigenvalue distributions. As we saw in
the previous sections, as far as we are interested in the
topological susceptibility (or in other properties related to
the behavior of the free energy close to θ ¼ 0), we can use
the single plaquette model to compute values in the
thermodynamic limit.
In the single plaquette model, the transition occurs at

βc ¼ 1
2
, and the eigenvalue density is [32]

ρðϕ; βÞ ¼
�
ρsðϕ; βÞ if β ≤ βc; jϕj ≤ π

ρwðϕ; βÞ if β > βc; jϕj ≤ ϕc;
ð66Þ

where ϕc ¼ 2 arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2βÞp

and

ρsðϕ; βÞ ¼
1

2π
ð1þ 2β cosϕÞ ð67Þ

ρwðϕ; βÞ ¼
2β

π
cos

ϕ

2

�
1

2β
− sin2

ϕ

2

�1
2

: ð68Þ

In order to extend these results to the evaluation of the large
N limit of the topological susceptibility at infinite volume,
we must replace the saddle-point equation introduced in
Ref. [32] with

P
Z þϕc

−ϕc

ρðϕ0;βÞcotϕ−ϕ0

2
dϕ0−2β sinϕþ i

θ̂

2π
¼ 0; ð69Þ

where we introduced the scaling variable θ̂ ¼ θ=N in order
to obtain a consistent large N limit, in analogy with the
procedure adopted in Refs. [42,43] following the original
proposal by Witten [44]. We may introduce in the saddle-
point equation the ansatz

ρðϕ; βÞ ¼ ρ0ðϕ; βÞ þ i
θ̂

2π
ρ1ðϕ; βÞ; ð70Þ
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FIG. 3. Behavior of the infinite volume topological suscep-
tibility for UðNÞ with N < 10 and 0 ≤ β ≤ 2, computed using
Eq. (63).
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where ρ0ðϕ; βÞ is the eigenvalue density in Eq. (66) (found
in Ref. [32]), while ρ1ðϕ; βÞ must be an odd function of ϕ
satisfying the equation

P
Z þϕc

−ϕc

ρ1ðϕ0; βÞ cotϕ − ϕ0

2
dϕ0 þ 1 ¼ 0: ð71Þ

If we denote by F ðβ; θÞ the free energy of the system, its θ-
dependent part Fðβ; θÞ≡ F ðβ; θÞ − F ðβ; 0Þ is therefore3

Fðβ; θÞ ¼ −
1

2

�
θ

2π

�
2
Z

ϕc

−ϕc

ρ1ðϕ; βÞϕdϕ; ð72Þ

with the factor 1=2 coming from the partial cancellation of
the two terms in the free energy that are quadratic in θ, i.e.,
the θ-term and the term coming from the Haar measure. In
the large N limit, the above expression is finite, while all
contributions of higher order in θ are depressed by powers
of 1=N. Hence, we immediately obtain the large N
relationship

χtðN; β; 1Þ → 1

4π2

Z
ϕc

−ϕc

ρ1ðϕ; βÞϕdϕ: ð73Þ

Notice that the equation defining ρ1ðϕ; βÞ may depend
on β only through the limits of the integration domain,
which in turn should not change with respect to the domain
of ρ0, because all change in ϕc would be depressed by a
power of 1=N. This observation implies that special
care will be needed in the strong coupling region because
ϕc ¼ π with no apparent dependence on β, but the formal
solution for ρ1;s is

ρ1;sðϕ; βÞ ¼
1

2π
tan

ϕ

2
; β <

1

2
; ð74Þ

implying a nonintegrable singularity around �π. It is easy
to be convinced that the resulting singular behavior may be
parametrized by

χt;sðN; β; 1Þ → χt;sðN; 0; 1Þ þ fðβÞ; ð75Þ

where

χt;sðN; 0; 1Þ ¼ N
12

−
1

2π2
XN
k¼1

N − k
k2

→
1

2π2
ðlnN þ γE þ 1Þ þOðN−1Þ ð76Þ

and fðβÞ is a regular function connected to the β-dependent
cutoff scale, which is in turn related to the behavior of the
density ρ0;s in the proximity of�π. On these grounds, since
ρ0;s ∼ ð1 − 2βÞ when ϕ → �π, we find

fðβÞ ¼ 1

2π2
lnð1 − 2βÞ; ð77Þ

which shows the correct β → 0 limit and exhibits a
divergence in the limit β → 1=2, as required in order to
match the weak coupling behavior.
In the weak coupling regime β > 1=2, the solution of

Eq. (71) is

ρ1;wðϕ; βÞ ¼
1

2π

sinðϕ=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2β − sin2ðϕ=2Þ

q ; ð78Þ

the integral in Eq. (73) is convergent, and we get (using
Eq. (3.842.2) of Ref. [45])

χt;wðN; β; 1Þ → −
1

4π2
ln

�
1 −

1

2β

�
: ð79Þ

This result can be easily obtained also without explicitly
solving the saddle-point equation because from the defi-
nition of the topological charge we have

Fðβ; 2πlÞ ¼ lnhdetUl
pi ð80Þ

and in Ref. [38] it has been proven that, at N ¼ ∞ in the
weak coupling phase of the single plaquette model, we
have

hdetUpi ¼
�
1 −

1

2β

�1
2

; ð81Þ

this was further strengthened in Ref. [46] by showing that

hdetUl
pi ¼

�
1 −

1

2β

�
l2=2

: ð82Þ

Hence, we may establish the relationship, holding for all l
and β > 1=2,

Fðβ; 2πlÞ ¼ −
l2

2

Z
ϕc

−ϕc

ρ1ðϕ; βÞϕdϕ ¼ l2

2
ln

�
1 −

1

2β

�
;

ð83Þ

implying immediately

χt;wðN; β; 1Þ → −
1

4π2
ln

�
1 −

1

2β

�
: ð84Þ

This result reproduces the correct large β behavior of the
susceptibility and shows a divergence for β → 1=2, needed
in order to match the strong coupling behavior. Notice that,
due to the singularity in N, this argument could not be
applied to the strong coupling phase, where it is known that

3This expression is clearly non-2π-periodic in θ, as a conse-
quence of the use of the single plaquette model.
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lnhdetUpi is proportional to N and behaves like ln β when
β → 0 [38,47,48].
The numerical evaluation of χt, even for quite small

values of N, shows surprisingly good agreement with the
above predictions, as shown in Fig. 4.
The above results are restricted to the infinite volume

version of the models, but they may be employed in the
g → ∞ limit in order to obtain for this case expressions
holding also in the finite volume largeN limit, at least in the
weak coupling regime. Indeed, by trivially extending
Eq. (82) to include the dependence on θ and substituting
the results in Eqs. (34) and (35), one easily obtains for
large N

Zð∞Þ
θ ðN; β; PÞ → ½β̃0ðN; βÞ�P

X
l

�
1 −

1

2β

�P
2
ðlþ θ

2πÞ2
: ð85Þ

This expression can be rewritten in the form

Zð∞Þ
θ ðN; β; PÞ → ½β̃0ðN; βÞ�PZθð1; XÞ; ð86Þ

where Zθð1; XÞ is the Uð1Þ partition function of the single
plaquette model (see Sec. IV) and therefore

χt;wð∞; β; PÞ
χt;wð∞; β; 1Þ ¼ 1þ 2X

∂
∂X Z0ð1; XÞ; ð87Þ

where now

X ¼ 4π2Pχt;wð∞; β; 1Þ: ð88Þ
Here, χt;wð∞; β; 1Þ is the value (79) of the largeN limit of the
topological susceptibility in the weak coupling regime, from
whichwemay appreciate that in the continuum limitX → P

2β.
It is worth noticing that very precocious large N scaling is

obtained when studying χð∞Þ
t;w ðN; β; PÞ=χð∞Þ

t;w ðN; β; 1Þ as a
function of the dimensionless variable 4π2Pχt;wðN; β; 1Þ,
which is the finite N analogous of X; see Fig. 5. This is
analogous to what was previously observed in the case of
Uð1Þ, shown in Fig. 2.
Another important comment concerns the dependence of

the large N finite volume susceptibility on g. It is possible
to show that the same results hold true not only for g → ∞
but also for all g > 1 values because representations with
dr > 1 get suppressed as N → ∞ [see Eq. (26)]. On the
other hand, it cannot hold in the case g ¼ 0, since we know

that χð0Þt ðN; β; 2Þ ¼ 0 for all N and, as a consequence, it
vanishes also in the N → ∞ limit.
By generalizing to general g the arguments put forward

by Douglas and Kazakov [49], one may argue that the finite
area transition they found is present only in the g ¼ 0 case,
and it would be interesting to investigate whether this
transition may affect the topological susceptibility.

VIII. CONCLUSIONS

In this paper, we studied the θ dependence of two-
dimensional gauge theories, providing explicit expressions
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FIG. 4. (a) Comparison of numerical data obtained by using
Eq. (63) (solid lines) and the leading order large N theoretical
predictions, which is given by Eqs. (75)–(77) for β < 1=2
(dashed lines) and by Eq. (79) for β > 1=2 (dotted-dashed line).
(b) Deviations of numerical data from their expected asymptotic
behavior.
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FIG. 5. Large N scaling of the topological susceptibility at g ¼
∞ for several values of P at coupling β ¼ 1.
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for the topological susceptibility in the most general
setting, i.e., at finite volume, finite lattice spacing, and
for a generic topology of the space-time manifold.
These expressions can be simplified in several different

ways by restricting to more specific cases. In particular, we
analyzed the thermodynamic limit at fixed (’t Hooft)
coupling and the continuum limit at fixed dimensionless
volume, the case of the Abelian Uð1Þ theory being
particularly simple. We finally addressed the large N limit
of the results obtained at infinite volume, showing that the
large N behavior of the topological susceptibility is
completely different for β < 1=2 and for β > 1=2. These
two regions correspond to the strong and weak coupling
phases of the N ¼ ∞ theory, separated by the Gross-
Witten-Wadia transition.
From the practical point of view, our results can be useful

to benchmark, in two-dimensional gauge theories, new
Monte Carlo algorithms specifically targeted at improving
the decorrelation of topological modes in lattice gauge
theories. From the theoretical side, the most significant
results obtained are probably the determination of the
continuum θ-dependent partition function on a manifold

of arbitrary genus and the large N limit (at infinite volume)
of the topological susceptibility for arbitrary coupling.
A remarkable aspect of our large N computation is the

fact that the θ term is subleading in the action, but
nevertheless, we have been able to compute the topological
susceptibility at large N using the saddle-point approxi-
mation method, the range of applicability of which is
typically restricted to leading order computations. This is
analogous to what has been done in Ref. [42] for two-
dimensional CPN−1 models, but the present case is prob-
ably more surprising since the topological susceptibility
does not vanish in the large N limit.
Putting together the two arguments presented in Sec. VII

to justify Eq. (79) we obtain a new and completely inde-
pendent proof of Eq. (81), suggested in Refs. [47,48] and
proven in Ref. [38], and of Eq. (82), proven in Ref. [46]. A
natural question is whether the new proof can be extended to
other cases that were not tractablewith the previously known
methods.
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