Flat connections in three-manifolds and classical Chern-Simons invariant

Enore Guadagnini ${ }^{\text {a,b,* }}$, Philippe Mathieu ${ }^{c}$, Frank Thuillier ${ }^{c}$
${ }^{\text {a }}$ Dipartimento di Fisica "E. Fermi" dell'Università di Pisa, Italy
b INFN Sezione di Pisa, Largo B. Pontecorvo 2, 56127 Pisa, Italy
${ }^{\text {c }}$ LAPTh, Université de Savoie, CNRS, Chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux Cedex, France

Received 17 July 2017; received in revised form 25 October 2017; accepted 26 October 2017
Available online 31 October 2017
Editor: Hubert Saleur

Abstract

A general method for the construction of smooth flat connections on 3-manifolds is introduced. The procedure is strictly connected with the deduction of the fundamental group of a manifold M by means of a Heegaard splitting presentation of M. For any given matrix representation of the fundamental group of M, a corresponding flat connection A on M is specified. It is shown that the associated classical Chern-Simons invariant assumes then a canonical form which is given by the sum of two contributions: the first term is determined by the intersections of the curves in the Heegaard diagram, and the second term is the volume of a region in the representation group which is determined by the representation of $\pi_{1}(M)$ and by the Heegaard gluing homeomorphism. Examples of flat connections in topologically nontrivial manifolds are presented and the computations of the associated classical Chern-Simons invariants are illustrated. © 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP ${ }^{3}$.

1. Introduction

Each $S U(N)$-connection, with $N \geq 2$, in a closed and oriented 3-manifold M can be represented by a 1 -form $A=A_{\mu} d x^{\mu}$ which takes values in the Lie algebra of $S U(N)$. The ChernSimons function $S[A]$,

[^0]\[

$$
\begin{align*}
S[A] & =\int_{M} \mathcal{L}_{C S}(A)=\frac{1}{8 \pi^{2}} \int_{M} \operatorname{Tr}\left(A \wedge d A+i \frac{2}{3} A \wedge A \wedge A\right) \\
& =\frac{1}{8 \pi^{2}} \int_{M} d^{3} x \epsilon^{\mu \nu \lambda} \operatorname{Tr}\left(A_{\mu}(x) \partial_{\nu} A_{\lambda}(x)+i \frac{2}{3} A_{\mu}(x) A_{\nu}(x) A_{\lambda}(x)\right), \tag{1.1}
\end{align*}
$$
\]

can be understood as the Morse function of an infinite dimensional Morse theory, on which the instanton Floer homology [1] and the gauge theory interpretation [2] of the Casson invariant [3] are based. Under a local gauge transformation

$$
\begin{equation*}
A_{\mu}(x) \longrightarrow A_{\mu}^{\Omega}(x)=\Omega^{-1}(x) A_{\mu}(x) \Omega(x)-i \Omega^{-1}(x) \partial_{\mu} \Omega(x), \tag{1.2}
\end{equation*}
$$

where Ω is a map from M into $S U(N)$, the function $S[A]$ transforms as

$$
\begin{equation*}
S\left[A^{\Omega}\right]=S[A]+I_{\Omega}, \tag{1.3}
\end{equation*}
$$

where the integer $I_{\Omega} \in \mathbb{Z}$,

$$
\begin{equation*}
I_{\Omega}=\frac{1}{24 \pi^{2}} \int_{M} \operatorname{Tr}\left(\Omega^{-1} d \Omega \wedge \Omega^{-1} d \Omega \wedge \Omega^{-1} d \Omega\right) \tag{1.4}
\end{equation*}
$$

can be used to label the homotopy class of Ω. The stationary points of the function (1.1) correspond to flat connections, i.e. connections with vanishing curvature $F(A)=2 d A+i[A, A]=0$. We shall now concentrate on flat connections exclusively. Let A be a flat connection in M, and let $\gamma \subset M$ be an oriented path connecting the starting point x_{0} to the final point x_{1}. The associated holonomy $\gamma \rightarrow h_{\gamma}[A] \in S U(N)$ is given by the path-ordered integral

$$
\begin{equation*}
h_{\gamma}[A]=\mathrm{P} e^{i \int_{\gamma} A}, \tag{1.5}
\end{equation*}
$$

which is computed along γ. Under a gauge transformation $A \rightarrow A^{\Omega}$, one finds

$$
\begin{equation*}
h_{\gamma}\left[A^{\Omega}\right]=\Omega^{-1}\left(x_{0}\right) h_{\gamma}[A] \Omega\left(x_{1}\right) . \tag{1.6}
\end{equation*}
$$

Let us consider the set of holonomies which are associated with the closed oriented paths such that $x_{0}=x_{1}=x_{b}$, for a given base point x_{b}. Since the element $h_{\gamma}[A] \in S U(N)$ is invariant under homotopy transformations acting on γ, this set of holonomies specifies a matrix representation of the fundamental group $\pi_{1}(M)$ in the group $S U(N)$. Because of equation (1.3), the classical Chern-Simons invariant $c s[A]$,

$$
\begin{equation*}
c s[A]=S[A] \quad \bmod \mathbb{Z}, \tag{1.7}
\end{equation*}
$$

is well defined for the gauge orbits of flat $S U(N)$-connections on M, and it is well defined [4] for the $S U(N)$ representations of $\pi_{1}(M)$ modulo the action of group conjugation. If the orientation of M is modified, one gets $c s[A] \rightarrow-c s[A]$.

In the case of the structure group $S U(2)$, methods for the computation of $c s[A]$ have been presented in References [5-10], where a few non-unitary gauge groups have also been considered. In all the examples that have been examined, $c s[A]$ turns out to be a rational number. In the case of three dimensional hyperbolic geometry, the associated $\operatorname{PSL}(2, \mathbb{C})$ classical invariant [7,11-13] combines the real volume and imaginary Chern-Simons parts in a complex geometric invariant. The Baseilhac-Benedetti invariant [14] with group $\operatorname{PSL}(2, \mathbb{C})$ represents some kind of corresponding quantum invariant.

Precisely because flat connections represent stationary points of the function (1.1), flat connections and the corresponding value of $c s[A]$ play an important role in the quantum ChernSimons gauge field theory [15]. For instance, the path-integral solution of the abelian ChernSimons theory has recently been produced [16,17]. In this case, flat connections dominate the functional integration and the value of the partition function is given by the sum over the gauge orbits of flat connections of the exponential of the classical Chern-Simons invariant. The classical abelian Chern-Simons invariant is strictly related [16,17] with the intersection quadratic form on the torsion group of M, which also enters the abelian Reshetikhin-Turaev $[18,19]$ surgery invariant.

In general, the precise expression of the flat connections is an essential ingredient for the computation of the observables of the quantum Chern-Simons theory by means of the path-integral method. In this article we shall mainly be interested in nonabelian flat connections. We will show that, given a representation ρ of $\pi_{1}(M)$ and a Heegaard splitting presentation [20] of M (with the related Heegaard diagram), by means of a general construction one can define a corresponding smooth flat connection A on M. The method that we describe is related with the deduction [21] of a presentation of the fundamental group of a manifold M by means of a Heegaard splitting of M. Then the associated invariant $c s[A]$ assumes a canonical form, which can be written as the sum of two contributions. The first term is determined by the intersections of the curves in the Heegaard diagram and can be interpreted as a sort of "coloured intersection form". Whereas the second term is the Wess-Zumino volume of a region in the structure group $\operatorname{SU}(N)$ which is determined by the representation of $\pi_{1}(M)$ and by the Heegaard gluing homeomorphism.

The procedure that we present for the determination of the flat connections can find possible applications also in the description of the topological states of matter [22,23]. A discussion on the importance of topological configurations and of the holonomy operators in gauge theories can be found for instance in Ref. [24].

Our article is organised as follows. Section 2 contains a brief description of the main results of the present article. The general construction of flat connections in a generic 3-manifold M by means of a Heegaard splitting presentation of M is discussed in Section 3. The canonical form of the corresponding classical Chern-Simons invariant is derived in Section 4, where a two dimensional formula of the Wess-Zumino group volume is also produced. In the remaining sections, our method is illustrated by a few examples. Flat connections in lens spaces are discussed in Section 5 and a non-abelian representation of the fundamental group of a particular 3-manifold is considered in Section 6; computations of the corresponding classical Chern-Simons invariants are presented. The case of the Poincaré sphere is discussed in Section 7. One example of a general formula of the classic Chern-Simons invariant for a particular class of Seifert manifolds is given in Section 8. Finally, Section 9 contains the conclusions.

2. Outlook

The main steps of our construction can be summarised as follows. For any given $S U(N)$ representation ρ of $\pi_{1}(M)$,

$$
\begin{equation*}
\rho: \pi_{1}(M) \rightarrow S U(N), \tag{2.1}
\end{equation*}
$$

one can find a corresponding flat connection A on M whose structure is determined by a Heegaard splitting presentation $M=H_{L} \cup_{f} H_{R}$ of M. In this presentation, the manifold M is interpreted as the union of two handlebodies H_{L} and H_{R} which are glued by means of the homeomorphism $f: \partial H_{L} \rightarrow \partial H_{R}$ of their boundaries, as sketched in Fig. 1.

Fig. 1. Attaching homemorphism $f: \partial H_{L} \rightarrow \partial H_{R}$.

Fig. 2. Generators $\left\{\gamma_{1}, \gamma_{2}\right\}$ and meridinal discs $\left\{D_{1}, D_{2}\right\}$ in a handlebody of genus 2 .

Let the fundamental group of M be defined with respect to a base point x_{b} which belongs to the boundaries of the two handlebodies. Then the representation ρ of $\pi_{1}(M)$ canonically defines a representation of the fundamental group of each of the two handlebodies H_{L} and H_{R}. As shown in Fig. 2, in each handlebody the generators of its fundamental group can be related with a set of corresponding disjoint meridinal discs. To each meridinal disc is associated a matrix which is specified by the representation ρ; this matrix can be interpreted as a "colour" which is attached to each meridinal disc. With the help of these coloured meridinal discs, one can construct a smooth flat connection A_{L}^{0} in H_{L}-and similarly a smooth flat connection A_{R}^{0} in H_{R}-whose holonomies correspond to the elements of the representation ρ in the handlebody H_{L} (or H_{R}). The precise definition of A_{L}^{0} and A_{R}^{0} is given in Section 3.

In general, A_{L}^{0} and A_{R}^{0} do not coincide with the restrictions in H_{L} and H_{R} of a single connection A in M, because the images-under f-of the boundaries of the meridinal discs of H_{L} are not the boundaries of meridinal discs of H_{R}. So, in order to define a connection A which is globally defined in M, one needs to combine A_{L}^{0} with A_{R}^{0} in a suitable way. In facts, the exact matching of the gauge fields A_{L}^{0} and A_{R}^{0} in M is specified by the homeomorphism f through the Heegaard diagram, which shows precisely how the boundaries of the meridinal discs of H_{L} are pasted onto the surface ∂H_{R}, in which the boundaries of the meridinal discs of H_{R} are also placed. Let us denote by $f * A_{L}^{0}$ the image of A_{L}^{0} under f. The crucial point now is that, on the surface ∂H_{R}, the connections A_{R}^{0} and $f * A_{L}^{0}$ are gauge related

$$
\begin{equation*}
f * A_{L}^{0}=U_{0}^{-1} A_{R}^{0} U_{0}-i U_{0}^{-1} d U_{0}, \quad \text { on } \partial H_{R}, \tag{2.2}
\end{equation*}
$$

because their holonomies define the same representation of $\pi_{1}\left(\partial H_{R}\right)$. The value of the map U_{0} from the surface ∂H_{R} on the group $S U(N)$ is uniquely determined by equation (2.2) and by the condition $U_{0}\left(x_{b}\right)=1$. In facts, we will demonstrate that

$$
\begin{equation*}
U_{0}(x)=\Phi_{R}^{-1}(x) \Phi_{f * L}(x), \quad \text { for } \quad x \in \partial H_{R} \tag{2.3}
\end{equation*}
$$

where Φ_{R} and $\Phi_{f * L}$ denote the developing maps associated respectively with A_{R}^{0} and $f * A_{L}^{0}$ from the universal covering of ∂H_{R} into the group $\operatorname{SU}(N)$. The definition of the developing map will be briefly recalled in Section 3.3. Then the map U_{0} can smoothly be extended to the whole handlebody H_{R}; this extension will be denoted by U. The values of $U: H_{R} \rightarrow S U(N)$ inside H_{R} are not constrained and can be chosen without restrictions apart from smoothness. As far as
the computation of the classical Chern-Simons invariant is concerned, the particular choice of the extension U of U_{0} turns out to be irrelevant. To sum up, the connection A-which is well defined in M and whose holonomies determine the representation ρ-takes the form

$$
A= \begin{cases}A_{L}^{0} & \text { in } H_{L} \tag{2.4}\\ U^{-1} A_{R}^{0} U-i U^{-1} d U & \text { in } H_{R}\end{cases}
$$

the correct matching of these two components is ensured by equation (2.2). The expression (2.4) of the connection implies

Proposition 1. The classical Chern-Simons invariant (1.7), evaluated for the $\operatorname{SU}(N)$ flat connection (2.4), takes the form

$$
\begin{equation*}
c s[A]=\mathcal{X}[A]+\Gamma[U] \quad \bmod \mathbb{Z} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{X}[A]=\frac{1}{8 \pi^{2}} \int_{\partial H_{R}} \operatorname{Tr}\left[U_{0}^{-1} A_{R}^{0} U_{0} \wedge f * A_{L}^{0}\right] \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma[U]=\frac{1}{24 \pi^{2}} \int_{H_{R}} \operatorname{Tr}\left[U^{-1} d U \wedge U^{-1} d U \wedge U^{-1} d U\right] \tag{2.7}
\end{equation*}
$$

The function $\mathcal{X}[A]$ is defined on the surface ∂H_{R}, and similarly the value of the Wess-Zumino volume $\Gamma[U] \bmod \mathbb{Z}$ only depends [25-27] on the values of U in ∂H_{R} (i.e., it only depends on U_{0}). A canonical dependence of Γ on U_{0} will be produced in Section 4.4. Therefore both terms in expression (2.5) are determined by the data on the two-dimensional surface ∂H_{R} of the Heegaard splitting presentation $M=H_{L} \cup_{f} H_{R}$ exclusively. This is why the particular choice of the extension of U_{0} inside H_{R} is irrelevant. The remaining part of this article contains the proof of Proposition 1 and a detailed description of the construction of the flat connection A. Examples will also be given, which elucidate the general procedure and illustrate the computation of $\operatorname{cs}[A]$.

3. Flat connections

Given a matrix representation ρ of $\pi_{1}(M)$, we would like to determine a corresponding flat connection A on M whose holonomies agree with ρ; then we shall compute $S[A]$.

In order to present a canonical construction which is not necessarily related with the properties of the representation space, we shall use a Heegaard splitting presentation $M=H_{L} \cup_{f} H_{R}$ of M. The construction of A is made of two steps. First, in each of the two handlebodies H_{L} and H_{R} we define a flat connection, A_{L}^{0} and A_{R}^{0} respectively, whose holonomies coincide with the elements of the matrix representation of the fundamental group of the handlebody which is induced by ρ. Second, the components A_{L}^{0} and A_{R}^{0} are combined according to the Heegaard diagram to define A on M.

Fig. 3. Example of a genus 2 Heegaard diagram.

3.1. Heegaard splitting

Let us recall $[4,20]$ that the fundamental group of a three-dimensional oriented handlebody H of genus g is a free group with g generators $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{g}\right\}$. A disc D in H is called a meridinal disc if the boundary of D belongs to the boundary of $H, \partial D \subset \partial H$, and ∂D is homotopically trivial in H. Let $\left\{D_{1}, D_{2}, \ldots, D_{g}\right\}$ be a set of disjoint meridinal discs in H such that $H-\left\{D_{1}, D_{2}, \ldots, D_{g}\right\}$ is homeomorphic with a 3-ball with $2 g$ removed disjoint discs in its boundary. These meridinal discs $\left\{D_{1}, D_{2}, \ldots, D_{g}\right\}$ can be put in a one-to-one correspondence with the g handles of the handlebody H or, equivalently, with the generators of $\pi_{1}(H)$, and can be oriented in such a way that the intersection of γ_{j} with D_{k} is $\delta_{j k}$. For instance, in the case of a handlebody of genus 2 , a possible choice of the generators $\left\{\gamma_{1}, \gamma_{2}\right\}$ and of the discs $\left\{D_{1}, D_{2}\right\}$ is illustrated in Fig. 2, where the base point x_{b} is also shown.

By means of a Heegaard presentation $M=H_{L} \cup_{f} H_{R}$ of the 3-manifold M, which is specified by the homeomorphism

$$
\begin{equation*}
f: \partial H_{L} \rightarrow \partial H_{R} \tag{3.1}
\end{equation*}
$$

one can find a presentation of the fundamental group $\pi_{1}(M)$. Suppose that the two handlebodies H_{L} and H_{R} have genus g. Let $\left\{D_{1}, D_{2}, \ldots, D_{g}\right\}$ be a set of disjoint meridinal discs in H_{L} which are associated with the g handles of H_{L}. The homeomorphism $f: \partial H_{L} \rightarrow \partial H_{R}$ is specified-up to ambient isotopy-by the images $C_{j}^{\prime}=f\left(C_{j}\right)$ in ∂H_{R} of the boundaries $C_{j}=\partial D_{j}$, for $j=$ $1,2, \ldots, g$. Thus each Heegaard splitting can be described by a diagram which shows the set of the characteristic curves $\left\{C_{j}^{\prime}\right\}$ on the surface ∂H_{R}. One example of Heegaard diagram is shown in Fig. 3.

Let $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{g}\right\}$ be a complete set of generators for $\pi_{1}\left(H_{R}\right)$ which are associated to a complete set of meridinal discs of H_{R}. The fundamental group of M is specified by adding to the generators $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{g}\right\}$ the constraints which implement the homotopy triviality condition of the curves $\left\{C_{j}^{\prime}\right\}$. Indeed, since each curve C_{j} is homotopically trivial in M, the fundamental group of M admits [20,21] the presentation

$$
\begin{equation*}
\pi_{1}(M)=\left\langle\gamma_{1}, \gamma_{2}, \ldots, \gamma_{g} \mid\left[C_{1}^{\prime}\right]=1, \ldots,\left[C_{g}^{\prime}\right]=1\right\rangle \tag{3.2}
\end{equation*}
$$

where [C_{j}^{\prime}] denotes the $\pi_{1}\left(H_{R}\right)$ homotopy class of C_{j}^{\prime} expressed in terms of the generators $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{g}\right\}$. The classes $\left[C_{j}^{\prime}\right]$ are determined by the intersections of the boundaries of the meridinal discs of H_{L} and H_{R}, which can be inferred from the Heegaard diagram.

3.2. Flat connection in a handlebody

Let us consider the handlebody H_{L} of the Heegard splitting $M=H_{L} \cup_{f} H_{R}$ of genus g and a corresponding set $\left\{D_{1}, D_{2}, \ldots, D_{g}\right\}$ of disjoint meridinal discs in H_{L}. For each $j=1,2, \ldots, g$,

Fig. 4. Disc D_{j} and the neighbourhood N_{j} of D_{j}.
consider a collared neighbourhood N_{j} of D_{j} in H_{L}. As shown in Fig. 4, N_{j} is homeomorphic with a cylinder $D_{j} \times[0, \epsilon]$ parametrised as $(z \in \mathbb{C},|z| \leq 1) \times(0 \leq t \leq \epsilon)$.

The strip $(|z|=1) \times(0 \leq t \leq \epsilon)$ belongs to the surface ∂H_{L}. The flat $S U(N)$-connection on H_{L} we are interested in will be denoted by $A_{L}^{0} ; A_{L}^{0}$ is vanishing in $H_{L}-\left\{N_{1}, N_{2}, \ldots, N_{g}\right\}$ and, inside each region N_{j}, A_{L}^{0} is determined by $\rho\left(\gamma_{j}\right)$. More precisely, suppose that

$$
\begin{equation*}
\rho\left(\gamma_{j}\right)=e^{i b_{j}} \tag{3.3}
\end{equation*}
$$

where the hermitian traceless matrix b_{j} belongs to the Lie algebra of $S U(N)$. Let $\theta(t)$ be a \mathcal{C}^{∞} real function, with $\theta^{\prime}(t)=d \theta(t) / d t>0$, satisfying $\theta(0)=0$ and $\theta(\epsilon)=1$. Then the value of A_{L}^{0} in the region N_{j} is given by

$$
\begin{equation*}
\left.A_{L}^{0}\right|_{N_{j}}=b_{j} \theta^{\prime}(t) d t \tag{3.4}
\end{equation*}
$$

The orientation of the parametrisation (or the sign in equation (3.4)) is fixed so that the holonomy of the connection (3.4) coincides with expression (3.3). As a consequence of equation (3.4) one has $d A_{L}^{0}=0$ and also, since $N_{j} \cap N_{k}=\emptyset$ for $j \neq k$, one finds $A_{L}^{0} \wedge A_{L}^{0}=0$.

By construction, the smooth 1-form A_{L}^{0} represents a flat connection on H_{L} whose holonomies coincide with the matrices that represent the elements of the fundamental group of H_{L}. The restriction of A_{L}^{0} on the boundary ∂H_{L} has support on g ribbons and its values are determined by equation (3.4); the j-th ribbon represents a collared neighbourhood of the curve $C_{j}=\partial D_{j}$ in ∂H_{L}. The same construction can be applied to define a flat connection A_{R}^{0} on H_{R}.

3.3. Flat connection in a 3-manifold

Let us now construct a flat connection A in $M=H_{L} \cup_{f} H_{R}$ which is associated with the representation ρ of $\pi_{1}(M)$. As far as the value of A on H_{L} is concerned, one can put

$$
\begin{equation*}
\left.A\right|_{H_{L}}=A_{L}^{0} \tag{3.5}
\end{equation*}
$$

The image $f * A_{L}^{0}$ of A_{L}^{0} under the homeomorphism $f: \partial H_{L} \rightarrow \partial H_{R}$ does not coincide in general with A_{R}^{0} in ∂H_{R}. But since $f * A_{L}^{0}$ and A_{R}^{0} are associated with the same matrix representation of $\pi_{1}\left(\partial H_{R}\right)$, the values of $f * A_{L}^{0}$ and A_{R}^{0} on ∂H_{R} are related by a gauge transformation, $f * A_{L}^{0}=U_{0}^{-1} A_{R}^{0} U_{0}-i U_{0}^{-1} d U_{0}$, as shown in equation (2.2), in which U_{0} must assume the unit value at the base point x_{b}. Then the map U_{0} can smoothly be extended in H_{R}, let U denote this extension. The value of A on H_{R} is taken to be

$$
\begin{equation*}
\left.A\right|_{H_{R}}=U^{-1} A_{R}^{0} U-i U^{-1} d U \tag{3.6}
\end{equation*}
$$

The value of U_{0} on the surface ∂H_{R} represents a fundamental ingredient of our construction, so we now describe how it can be determined. To this end, we need to introduce the concept of developing map.

Let us recall that any flat $S U(N)$-connection A defined in a space X can be locally trivialized because, inside a simply connected neighbourhood of any given point of X, A can be written as $A=-i \Phi^{-1} d \Phi$. The value of Φ coincides with the holonomy of A. When the representation of $\pi_{1}(X)$ determined by A is not trivial, Φ cannot be extended to the whole space X. A global trivialisation of A can be found in the universal covering \widehat{X} of X; in this case, the map $\Phi: \widehat{X} \rightarrow$ $S U(N)$ represents the developing map. For any element γ of $\pi_{1}(X)$ acting on \widehat{X} by covering transformations, the developing map satisfies

$$
\begin{equation*}
\Phi(\gamma \cdot x)=h_{\gamma}[A] \cdot \Phi(x) \tag{3.7}
\end{equation*}
$$

in agreement with equations (1.6). Now, on the surface ∂H_{R} we have the two flat connections $f * A_{L}^{0}$ and A_{R}^{0} which are related by a gauge transformation, equation (2.2). Thus, for each oriented path $\gamma \subset \partial H_{R}$ connecting the starting point x_{0} with the final point x, the corresponding holonomies are related according to equation (1.6) which takes the form

$$
\begin{equation*}
U_{0}^{-1}\left(x_{0}\right) h_{\gamma}\left[A_{R}^{0}\right] U_{0}(x)=h_{\gamma}\left[f * A_{L}^{0}\right] \tag{3.8}
\end{equation*}
$$

From this equation one obtains $U_{0}(x)=h_{\gamma}^{-1}\left[A_{R}^{0}\right] U_{0}\left(x_{0}\right) h_{\gamma}\left[f * A_{L}^{0}\right]$. When the starting point x_{0} coincides with the base point x_{b} of the fundamental group, one has $U\left(x_{b}\right)=1$, and then

$$
\begin{equation*}
U_{0}(x)=h_{\gamma}^{-1}\left[A_{R}^{0}\right] h_{\gamma}\left[f * A_{L}^{0}\right] \quad, \quad \text { for } \quad x \in \partial H_{R} \tag{3.9}
\end{equation*}
$$

This equation is equivalent to the relation (2.3). Indeed, because of the transformation property (3.7), the combination $\Phi_{R}^{-1} \Phi_{f * L}$ is invariant under covering translations acting on the universal covering of ∂H_{R} (and then $\Phi_{R}^{-1} \Phi_{f * L}$ is really a map from ∂H_{R} into $S U(N)$), and locally coincides with the product $h_{\gamma}^{-1}\left[A_{R}^{0}\right] h_{\gamma}\left[f * A_{L}^{0}\right]$ appearing in equation (3.9).

4. The invariant

4.1. Proof of Proposition 1

The Chern-Simons function $S[A]$ of the connection (2.4)—whose components in H_{L} and H_{R} are shown in equations (3.5) and (3.6) -is given by

$$
\begin{equation*}
S[A]=\int_{M} \mathcal{L}_{C S}(A)=\int_{H_{L}} \mathcal{L}_{C S}(A)+\int_{H_{R}} \mathcal{L}_{C S}(A) . \tag{4.1}
\end{equation*}
$$

Since $d A_{L}^{0}=0$ and $A_{L}^{0} \wedge A_{L}^{0}=0$, one has

$$
\begin{equation*}
\int_{H_{L}} \mathcal{L}_{C S}(A)=\int_{H_{L}} \mathcal{L}_{C S}\left(A_{L}^{0}\right)=0 \tag{4.2}
\end{equation*}
$$

Moreover, a direct computation shows that

$$
\begin{align*}
\int_{H_{R}} \mathcal{L}_{C S}(A)= & \int_{H_{R}} \mathcal{L}_{C S}\left(A_{R}^{0}\right)-\frac{i}{8 \pi^{2}} \int_{H_{R}} d \operatorname{Tr}\left[A_{R}^{0} \wedge d U U^{-1}\right] \\
& +\frac{1}{24 \pi^{2}} \int_{H_{R}} \operatorname{Tr}\left[U^{-1} d U \wedge U^{-1} d U \wedge U^{-1} d U\right] \tag{4.3}
\end{align*}
$$

As before, the first term on the r.h.s of equation (4.3) is vanishing

$$
\begin{equation*}
\int_{H_{R}} \mathcal{L}_{C S}\left(A_{R}^{0}\right)=0 \tag{4.4}
\end{equation*}
$$

By using equation (2.2), the second term can be written as the surface integral

$$
\begin{equation*}
\mathcal{X}[A]=\frac{1}{8 \pi^{2}} \int_{\partial H_{R}} \operatorname{Tr}\left[U_{0}^{-1} A_{R}^{0} U_{0} \wedge f * A_{L}^{0}\right] . \tag{4.5}
\end{equation*}
$$

By combining equations (4.1)-(4.5) one finally gets

$$
\begin{align*}
S[A]= & \frac{1}{8 \pi^{2}} \int_{\partial H_{R}} \operatorname{Tr}\left[U_{0}^{-1} A_{R}^{0} U_{0} \wedge f * A_{L}^{0}\right] \\
& +\frac{1}{24 \pi^{2}} \int_{H_{R}} \operatorname{Tr}\left[U^{-1} d U \wedge U^{-1} d U \wedge U^{-1} d U\right] \tag{4.6}
\end{align*}
$$

which implies equation (2.5). This concludes the proof of Proposition 1.
The term $\mathcal{X}[A]$ can be understood as a sort of coloured intersection form, because its value is determined by the trace of the representation matrices-belonging to the Lie algebra of the group-which are associated with the boundaries of the meridinal discs of the two handlebodies which intersect each other in the Heegaard diagram. Indeed, on the surface $\partial H_{R}, A_{R}^{0}$ is different from zero inside collar neighbourhoods of the boundaries of the meridinal discs of H_{R}, whereas $f * A_{L}^{0}$ is different from zero inside collar neighbourhoods of the images-under f-of the boundaries of the meridinal discs of H_{L}. Thus, in the computation of \mathcal{X} [A], only the intersection regions of the curves of the Heegaard diagram give nonvanishing contributions. But since the intersections of the boundaries of the meridinal discs of H_{L} and H_{R} determine the relations entering the presentation (3.2) of $\pi_{1}(M)$, an important part of the input, which is involved in the computation of $\mathcal{X}[A]$, is given by the fundamental group presentation (3.2). It turns out that the computation of $\mathcal{X}[A]$ can also be accomplished by means of intersection theory techniques by colouring the de Rham-Federer currents $[28,29]$ of the disks $\left\{D_{j}\right\}$.

When the representation ρ is abelian, $\Gamma[U]$ vanishes and the classical Chern-Simons invariant is completely specified by $\mathcal{X}[A]$ which assumes the simplified form

$$
\begin{equation*}
\left.c s[A]\right|_{\text {abelian }}=\left.\mathcal{X}[A]\right|_{\text {abelian }}=\frac{1}{8 \pi^{2}} \int_{\partial H_{R}} \operatorname{Tr}\left[A_{R}^{0} \wedge f * A_{L}^{0}\right] \quad \bmod \mathbb{Z} \tag{4.7}
\end{equation*}
$$

4.2. Group volume

The term $\Gamma[U]$ can be interpreted as the 3 -volume of the region of the structure group which is bounded by the image of the surface ∂H_{R} under the map $\Phi_{R}^{-1} \Phi_{f * L}: \partial H_{R} \rightarrow S U(N)$. In this case also, the combination $\Phi_{R}^{-1} \Phi_{f * L}$ of the two developing maps, which are associated with $f * A_{L}^{0}$ and A_{R}^{0}, is characterized by the homeomorphism $f: \partial H_{L} \rightarrow \partial H_{R}$ which topologically identifies M.

In general, the direct computation of $\Gamma[U]$ is not trivial, and the following properties of $\Gamma[U]$ turn out to be useful. When $U(x)$ can be written as

$$
\begin{equation*}
U(x)=W(x) Z(x), \tag{4.8}
\end{equation*}
$$

where $W(x) \in S U(N)$ and $Z(x) \in S U(N)$, one obtains

$$
\begin{equation*}
\Gamma[U=W Z]=\Gamma[W]+\Gamma[Z]+\frac{1}{8 \pi^{2}} \int_{\partial H_{R}} \operatorname{Tr}\left[d Z Z^{-1} \wedge W^{-1} d W\right] \tag{4.9}
\end{equation*}
$$

By means of equation (4.9) one can easily derive the relation

$$
\begin{align*}
\Gamma\left[U=V H V^{-1}\right]= & \Gamma[H]-\frac{1}{8 \pi^{2}} \int_{\partial H_{R}} \operatorname{Tr}\left[V^{-1} d V \wedge\left(H^{-1} d H+d H H^{-1}\right)\right] \\
& +\frac{1}{8 \pi^{2}} \int_{\partial H_{R}} \operatorname{Tr}\left[V^{-1} d V H \wedge V^{-1} d V H^{-1}\right] \tag{4.10}
\end{align*}
$$

With a clever choice of the matrices $V(x)$ and $H(x)$, equation (4.10) assumes a simplified form. Indeed any generic map $U(x) \in S U(N)$ can locally be written in the form $U(x)=$ $V(x) H(x) V^{-1}(x)$ where

$$
\begin{equation*}
H(x)=\exp (i C(x)), \tag{4.11}
\end{equation*}
$$

and $C(x)$ belongs to the $(N-1)$-dimensional abelian Cartan subalgebra of the Lie algebra of $S U(N)$. In this case, one has $\Gamma[H]=0$ and

$$
\begin{equation*}
H^{-1}(x) d H(x)=d H(x) H^{-1}(x)=i d C(x) . \tag{4.12}
\end{equation*}
$$

Therefore relation (4.10) becomes

$$
\begin{equation*}
\Gamma\left[V H V^{-1}\right]=\frac{1}{8 \pi^{2}} \int_{\partial H_{R}}\left\{2 i \operatorname{Tr}\left[d C \wedge V^{-1} d V\right]+\operatorname{Tr}\left[e^{-i C} V^{-1} d V e^{i C} \wedge V^{-1} d V\right]\right\} \tag{4.13}
\end{equation*}
$$

where it is understood that one possibly needs to decompose the integral into a sum of integrals computed in different regions of ∂H_{R} where $V(x)$ and $H(x)$ are well defined [30]. Expression (4.13) explicitly shows that the value of $\Gamma[U]$ (modulo integers) is completely specified by the value of U on the surface ∂H_{R}.

In the case of the structure group $S U(2) \sim S^{3}$, the computation of $\Gamma[U]$ can be reduced to the computation of the volume of a given polyhedron in a space of constant curvature. Discussions on this last problem can be found, for instance, in the articles [31-38].

4.3. Canonical extension

The reduction of the Wess-Zumino volume $\Gamma[U]$ into a surface integral on ∂H_{R} can be done in several inequivalent ways, which also depend on the choice of the extension of U_{0} from the surface ∂H_{R} in H_{R}. Let us now describe the result which is obtained by means of a canonical extension of U_{0}. We shall concentrate on the structure group $S U(2)$, the generalisation to a generic group $S U(N)$ is quite simple.

Suppose that the value of U_{0} on the surface ∂H_{R} can be written as

$$
\begin{align*}
U_{0}(x, y) & =e^{i \boldsymbol{n}(x, y) \boldsymbol{\sigma}}=e^{i \sum_{a=1}^{3} n^{a}(x, y) \sigma^{a}} \\
& =\cos n(x, y)+i \widehat{\boldsymbol{n}}(x, y) \boldsymbol{\sigma} \sin n(x, y), \tag{4.14}
\end{align*}
$$

where (x, y) designate coordinates of $\partial H_{R}, n=\left[\sum_{b=1}^{3} n^{b} n^{b}\right]^{1 / 2}$, the components of the unit vector $\widehat{\boldsymbol{n}}$ are given by $\widehat{\boldsymbol{n}}^{a}=n^{a} / n$, and $\left\{\sigma^{a}\right\}$ (with $a=1,2,3$) denote the Pauli sigma matrices. The canonical extension of U_{0} is defined by

$$
\begin{equation*}
U(\tau, x, y)=e^{i \tau \boldsymbol{n}(x, y) \boldsymbol{\sigma}}, \tag{4.15}
\end{equation*}
$$

where the homotopy parameter τ takes values in the range $0 \leq \tau \leq 1$. When $\tau=1$ one recovers the expression (4.14), whereas in the $\tau \rightarrow 0$ limit one finds $U=1$. A direct computation gives

$$
\begin{equation*}
\operatorname{Tr}\left(U^{-1} \partial_{\tau} U\left[U^{-1} \partial_{x} U, U^{-1} \partial_{y} U\right]\right)=\frac{2 i}{n^{2}} \sin ^{2}(\tau n) \operatorname{Tr}\left(\Sigma\left[\partial_{y} \Sigma, \partial_{x} \Sigma\right]\right) \tag{4.16}
\end{equation*}
$$

in which $\Sigma(x, y)=\sum_{a=1}^{3} n^{a}(x, y) \sigma^{a}$. Therefore, by using the identity

$$
\begin{equation*}
\int_{0}^{1} d \tau \sin ^{2}(\tau n)=\frac{1}{2}\left[1-\frac{\sin (2 n)}{2 n}\right] \tag{4.17}
\end{equation*}
$$

one gets

$$
\begin{equation*}
\Gamma[U]=\frac{-i}{8 \pi^{2}} \int_{\partial H_{R}} \frac{1}{n^{2}}\left[1-\frac{\sin (2 n)}{2 n}\right] \operatorname{Tr}(\Sigma d \Sigma \wedge d \Sigma) . \tag{4.18}
\end{equation*}
$$

This equation will be used in Section 6, Section 7 and Section 8.

4.4. Rationality

As it has already been mentioned, in all the considered examples the value of the $S U(N)$ classical Chern-Simons invariant is given by a rational number. Let us now present a proof of this property for a particular class of 3-manifolds. Suppose that the universal covering \widetilde{M} of the three-manifold M is homeomorphic with S^{3}, so that M can be identified with the orbit space [39] which is obtained by means of covering translations (acting on S^{3}) which correspond to the elements of the fundamental group $\pi_{1}(M)$. Given a flat connection A on M, let us denote by \widetilde{A} the flat connection on $\widetilde{M} \sim S^{3}$ which is the upstairs preimage of A. By construction, one has

$$
\begin{equation*}
\left.S[A]\right|_{M}=\left.\frac{1}{\left|\pi_{1}(M)\right|} S[\widetilde{A}]\right|_{S^{3}} \tag{4.19}
\end{equation*}
$$

where $\left|\pi_{1}(M)\right|$ denotes the order of $\pi_{1}(M)$. On the other hand, since S^{3} is simply connected, one can find a map $\Omega: S^{3} \rightarrow S U(N)$ such that

$$
\begin{equation*}
\widetilde{A}=-i \Omega^{-1} d \Omega \tag{4.20}
\end{equation*}
$$

and then

$$
\begin{equation*}
\left.S[\tilde{A}]\right|_{S^{3}}=\frac{1}{24 \pi^{2}} \int_{S^{3}} \operatorname{Tr}\left(\Omega^{-1} d \Omega \wedge \Omega^{-1} d \Omega \wedge \Omega^{-1} d \Omega\right)=n \tag{4.21}
\end{equation*}
$$

where n is an integer. Equations (4.19) and (4.21) imply

$$
\begin{equation*}
\left.c s[A]\right|_{M}=\frac{n}{\left|\pi_{1}(M)\right|} \quad \bmod \mathbb{Z} \tag{4.22}
\end{equation*}
$$

which shows that, for this type of manifolds, the value of $c s[A]$ is indeed a rational number.

Fig. 5. Heegaard diagram for the lens space $L(5,2)$, with base point x_{b} displayed.
Let us now present a few examples of computations of $c s[A]$; in the first instance, the representation of the fundamental group of the 3-manifold is abelian, whereas nonabelian representations are considered in the remaining examples.

5. First example

In order to illustrate how to compute $\mathcal{X}[A]$, let us consider the lens spaces $L(p, q)$, where the coprime integers p and q verify $p>1$ and $1 \leq q<p$. The manifolds $L(p, q)$ admit $[4,20]$ a genus 1 Heegaard splitting presentation, $L(p, q)=H_{L} \cup_{f} H_{R}$ where H_{L} and H_{R} are solid tori. The fundamental group of $L(p, q)$ is the abelian group $\pi_{1}(L(p, q))=\mathbb{Z}_{p}$.

5.1. The representation

Let us concentrate, for example, on $L(5,2)$ whose Heegaard diagram is shown in Fig. 5, where the image C^{\prime} of a meridian C of the solid torus H_{L} is displayed on the surface ∂H_{R}. The torus ∂H_{R} is represented by the surface of a 2 -sphere with two removed discs $+F$ and $-F$. The boundaries of $+F$ and $-F$ must be identified (the points with the same label coincide). A possible choice of the base point x_{b} of the fundamental group is also depicted.

In the solid torus H_{L}, let the meridian C be the boundary of the meridinal disc $D_{L} \subset H_{L}$, which is oriented so that the intersection of D_{L} with the generator $\gamma_{L} \subset H_{L}$ of $\pi_{1}\left(H_{L}\right)$ is +1 . Suppose that the representation $\rho: \pi_{1}(L(5,2))=\mathbb{Z}_{5} \rightarrow S U(4)$ is specified by

$$
\begin{equation*}
\rho\left(\gamma_{L}\right)=\exp \left[i \frac{2 \pi}{5} Y\right], \tag{5.1}
\end{equation*}
$$

where Y is given by

$$
Y=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{5.2}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right)
$$

Let $N_{L} \subset H_{L}$ be a collared neighbourhood of D_{L} parametrised by $(z \in \mathbb{C},|z| \leq 1) \times(0 \leq t \leq \epsilon)$. The flat connection A_{L}^{0} on H_{L} is vanishing in $H_{L}-N_{L}$, whereas the value of A_{L}^{0} in N_{L} is given by

$$
\begin{equation*}
\left.A_{L}^{0}\right|_{N_{L}}=\frac{2 \pi}{5} Y \theta^{\prime}(t) d t \tag{5.3}
\end{equation*}
$$

The restriction of A_{L}^{0} on the boundary ∂H_{L} is nonvanishing inside a strip which is a collared neighbourhood of C. Therefore the image $f * A_{L}^{0}$ of A_{L}^{0} on ∂H_{R} is different from zero in a collared neighbourhood of C^{\prime}.

Fig. 6. Values of the connections inside one intersection region.
Let us now consider H_{R}. The meridinal disc $D_{R} \subset H_{R}$ can be chosen in such a way that the boundary of D_{R} coincides with the boundaries of $+F$ (and $-F$) of Fig. 5. The image on ∂H_{R} of the corresponding generator γ_{R} of $\pi_{1}\left(H_{R}\right)$ is associated to $+F$, and it can be represented by an arrow intersecting the boundary of the disc $+F$ and oriented in the outward direction. As in the previous case, we introduce a collared neighbourhood $N_{R} \subset H_{R}$ of D_{R} parametrised by $\left(z^{\prime} \in \mathbb{C},\left|z^{\prime}\right| \leq 1\right) \times(0 \leq u \leq \epsilon)$. The flat connection A_{R}^{0} is vanishing in $H_{R}-N_{R}$ and, inside N_{R}, one has

$$
\begin{equation*}
\left.A_{R}^{0}\right|_{N_{R}}=\tilde{Y} \theta^{\prime}(u) d u \tag{5.4}
\end{equation*}
$$

where \widetilde{Y} represents an element of the Lie algebra of $S U(N)$. The restriction of A_{R}^{0} on the boundary ∂H_{R} is nonvanishing inside a collared neighbourhood of $\partial(+F)$. The value taken by A_{R}^{0} must be consistent with the given representation $\rho: \pi_{1}(L(5,2)) \rightarrow S U(4)$ which is specified by equation (5.1). In order to determine A_{R}^{0}, one can consider a closed path $\gamma \subset \partial H_{R}$ with base point x_{b}. One needs to impose that the holonomy of A_{R}^{0} along γ must coincide with the holonomy of $f * A_{L}^{0}$ along γ. One then finds $\widetilde{Y}=(4 \pi / 5) Y$, and consequently

$$
\begin{equation*}
\left.A_{R}^{0}\right|_{N_{R}}=\frac{4 \pi}{5} Y \theta^{\prime}(u) d u \tag{5.5}
\end{equation*}
$$

As shown in the Heegaard diagram of Fig. 5, the collar neighbourhood of C^{\prime} and the collar neighbourhood of $\partial(+F)$ —where the connections $f * A_{L}^{0}$ and A_{R}^{0} are nonvanishing-intersect in five (rectangular) regions of ∂H_{R}. Only inside these rectangular regions is the 2-form $A_{R}^{0} \wedge f *$ A_{L}^{0} different from zero. As far as the computation of the Chern-Simons invariant is concerned, these five regions are equivalent and give the same contribution to $\mathcal{X}[A]$. The values of the connections inside one of the five rectangular intersection regions are shown in Fig. 6.

In the intersection region shown in Fig. 6, one then finds

$$
\begin{equation*}
\int_{\text {one region }} \operatorname{Tr}\left[A_{R}^{0} \wedge f * A_{L}^{0}\right]=-\frac{8 \pi^{2}}{25} \int_{0}^{\epsilon} d t \theta^{\prime}(t) \int_{0}^{\epsilon} d u \theta^{\prime}(u) \operatorname{Tr}\left[Y^{2}\right]=-\frac{96 \pi^{2}}{25} \tag{5.6}
\end{equation*}
$$

Therefore the value of the classical Chern-Simons invariant which, in this abelian case, takes the form

$$
\begin{equation*}
c s[A]=\frac{1}{8 \pi^{2}} \int_{\partial H_{R}} \operatorname{Tr}\left[A_{R}^{0} \wedge f * A_{L}^{0}\right] \quad \bmod \mathbb{Z} \tag{5.7}
\end{equation*}
$$

is given by

$$
\begin{equation*}
c s[A]=\frac{5 \times\left(-96 \pi^{2} / 25\right)}{8 \pi^{2}} \quad \bmod \mathbb{Z}=\frac{3}{5} \quad \bmod \mathbb{Z} \tag{5.8}
\end{equation*}
$$

5.2. Lens spaces in general

For a generic lens space $L(p, q)$, the corresponding Heegaard diagram has the same structure of the diagram shown in Fig. 5. The curve C^{\prime} on ∂H_{R} and the boundary of the disc $(+F)$ give rise to p intersection regions. Since the group $\pi_{1}(L(p, q))$ is abelian, the analogues of equations (5.3) and (5.5) take the form

$$
\begin{equation*}
\left.A_{L}^{0}\right|_{N_{L}}=\frac{2 \pi}{p} M \theta^{\prime}(t) d t \tag{5.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.A_{R}^{0}\right|_{N_{R}}=\frac{2 \pi q}{p} M \theta^{\prime}(u) d u \tag{5.10}
\end{equation*}
$$

where the matrix M belongs to the Lie algebra of $S U(N)$ and satisfies

$$
\begin{equation*}
e^{i 2 \pi M}=1 \tag{5.11}
\end{equation*}
$$

Therefore the expression of the classical Chern-Simons invariant (5.7) is given by

$$
\begin{equation*}
\operatorname{cs}[A]=-\frac{1}{8 \pi^{2}}\left\{\frac{(2 \pi)^{2} q}{p^{2}} \operatorname{Tr}\left(M^{2}\right) \times p\right\}=-\frac{q}{p}\left[\frac{1}{2} \operatorname{Tr}\left(M^{2}\right)\right] \bmod \mathbb{Z} \tag{5.12}
\end{equation*}
$$

Expression (5.12) is in agreement with the results [16,17] obtained in the case of the abelian Chern-Simons theory, where it has been shown that the value of the Chern-Simons action is specified by the quadratic intersection form on the torsion component of the homology group of the manifold.

6. Second example

Let us consider the 3-manifold Σ_{3} which is homeomorphic with the cyclic 3-fold branched covering of S^{3} which is branched over the trefoil [20]. Σ_{3} admits a Heegaard splitting presentation of genus 2 and the corresponding Heegaard diagram is shown in Fig. 7. The surface ∂H_{R} is represented by the surface of a 2 -sphere with four removed discs: the boundaries of $+F$ and $-F$ (and similarly the boundaries of $+G$ and $-G$) must be identified. In Fig. 7, the two characteristic curves C_{1}^{\prime} and C_{2}^{\prime} are represented by the continuous and the dashed curve respectively, and the base point x_{b} is also shown.

The two meridinal discs $D_{1 R}$ and $D_{2 R}$ of H_{R} are chosen so that their boundaries coincide with the boundaries of the discs $+F$ and $+G$ respectively. The corresponding generators γ_{1} and γ_{2} of $\pi_{1}\left(H_{R}\right)$ can be represented by two arrows which are based on the boundaries of $+F$ and $+G$ and oriented in the outward direction. By taking into account the constraints coming from the requirement of homotopy triviality of the curves C_{1}^{\prime} and C_{2}^{\prime}, one finds a presentation of the fundamental group of Σ_{3},

$$
\begin{equation*}
\pi\left(\Sigma_{3}\right)=\left\langle\gamma_{1} \gamma_{2} \mid \gamma_{1}^{2}=\gamma_{2}^{2}=\left(\gamma_{1} \gamma_{2}\right)^{2}\right\rangle \tag{6.1}
\end{equation*}
$$

Fig. 7. Heegaard diagram for Σ_{3}, with base point x_{b} displayed.
The group $\pi\left(\Sigma_{3}\right)$ is usually called [20] the quaternionic group; it has eight elements which can be denoted by $\{ \pm 1, \pm i, \pm j, \pm k\}$, in which $i j=k, k i=j$ and $j k=i$.

Let the representation $\rho: \pi_{1}\left(\Sigma_{3}\right) \rightarrow S U(2)$ be given by

$$
\begin{align*}
& \gamma_{1} \rightarrow g_{1}=\exp \left[i(\pi / 2) \sigma^{1}\right]=i\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)=i \sigma^{1}, \\
& \gamma_{2} \rightarrow g_{2}=\exp \left[i(\pi / 2) \sigma^{2}\right]=i\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=i \sigma^{2} \tag{6.2}
\end{align*}
$$

The corresponding flat connection A_{R}^{0} on H_{R} vanishes in $H_{R}-\left\{N_{1 R}, N_{2 R}\right\}$, where $N_{1 R}$ and $N_{2 R}$ are collared neighbourhoods of the two meridinal discs $\left\{D_{1 R}, D_{2 R}\right\}$ of H_{R}, and

$$
A_{R}^{0}=\left\{\begin{array}{l}
\left.A_{R}^{0}\right|_{N_{1 R}}=\frac{\pi}{2} \sigma^{1} \theta^{\prime}(u) d u \tag{6.3}\\
\left.A_{R}^{0}\right|_{N_{2 R}}=\frac{\pi}{2} \sigma^{2} \theta^{\prime}(v) d v
\end{array}\right.
$$

With the choice of the base point x_{b} shown in Fig. 7, the flat connection A_{L}^{0} on H_{L} turns out to be

$$
A_{L}^{0}=\left\{\begin{array}{l}
\left.A_{L}^{0}\right|_{N_{1 L}}=\frac{\pi}{2} \sigma^{1} \theta^{\prime}(t) d t \tag{6.4}\\
\left.A_{L}^{0}\right|_{N_{2 L}}=\frac{\pi}{2} \sigma^{2} \theta^{\prime}(s) d s
\end{array}\right.
$$

where $N_{1 L}$ and $N_{2 L}$ are collared neighbourhoods of the two meridinal discs $\left\{D_{1 L}, D_{2 L}\right\}$ of H_{L}, and A_{L}^{0} vanishes on $H_{L}-\left\{N_{1 L}, N_{2 L}\right\}$. Note that, on the surface $\partial H_{R}, f * A_{L}^{0}$ is nonvanishing inside the two ribbons which constitute collared neighbourhoods of the curve C_{1}^{\prime} and C_{2}^{\prime}, whereas A_{R}^{0} is nonvanishing inside the collared neighbourhoods of $\partial D_{1 R}$ and $\partial D_{2 R}$. In the region of the surface ∂H_{R} where both $f * A_{L}^{0}$ and A_{R}^{0} are vanishing, the values taken by the map U_{0} entering equation (2.2) are shown in Fig. 8.

We now need to specify the values of $U_{0}=\Phi_{R}^{-1} \Phi_{f * L}$ in the eight intersections regions of ∂H_{R} where both $f * A_{L}^{0}$ and A_{R}^{0} are not vanishing. The value of U_{0} is defined in equation (3.9). In each region, we shall introduce the variables X and Y according to a correspondence of the type

Fig. 8. Values of the map U_{0} in the region where $f * A_{L}^{0}$ and A_{R}^{0} are vanishing.

$$
\begin{gather*}
d X=\theta^{\prime}(t) d t \quad, \quad 0 \leq X \leq 1 \\
d Y=\theta^{\prime}(u) d u \quad, \quad 0 \leq Y \leq 1 \tag{6.5}
\end{gather*}
$$

The intersection regions are denoted as $\{F 1, F 2, F 3, F 4, G 1, G 2, G 3, G 4\}$ with the convention that, for instance, the region $F 3$ (or $G 3$) is a rectangle in which one of the vertices is the point denoted by the number 3 of the boundary of the disk $+F$ (or $+G$). The values of U_{0} in these eight regions are in order; in each of the corresponding pictures, the values of U_{0} at the vertices of the rectangle are also reported.
$[F 1]: \quad U_{0}=e^{i \frac{\pi}{2}(X+Y) \sigma^{1}}$

[F2]: $\quad U_{0}=e^{i \frac{\pi}{2} X \sigma^{1}} e^{i \frac{\pi}{2} Y \sigma^{2}}$

$$
[F 3]: \quad U_{0}=e^{i \frac{\pi}{2}(1-X-Y) \sigma^{1}} e^{i \frac{\pi}{2} \sigma^{2}}
$$

By using the value of U_{0} in the eight intersections regions $\{F 1, F 2, F 3, F 4, G 1, G 2, G 3, G 4\}$, the contribution $\mathcal{X}[A]$, defined in equation (4.5), of the Chern-Simons invariant can easily be determined. One finds

$$
\begin{align*}
\mathcal{X}[A]=\frac{1}{8 \pi^{2}} & \operatorname{Tr}\left\{-\frac{\pi}{4} \sigma^{1} \sigma^{1}+\frac{\pi}{4} \sigma^{1} \sigma^{2}+\frac{\pi}{4} \sigma^{1} \sigma^{1}+\frac{\pi}{4} \sigma^{1} \sigma^{2}\right. \\
& \left.-\frac{\pi}{4} \sigma^{2} \sigma^{2}+\frac{\pi}{4} \sigma^{2} \sigma^{1}+\frac{\pi}{4} \sigma^{2} \sigma^{2}+\frac{\pi}{4} \sigma^{2} \sigma^{1}\right\}=0 . \tag{6.6}
\end{align*}
$$

Fig. 9. Images of the regions $\{F 2, F 4, G 2, G 4\}$ parametrised in equation (6.7).

Fig. 10. Closed surface specified by $\Phi_{R}^{-1} \Phi_{f * L}: \partial H_{R} \rightarrow S U(2)$.
Let us now consider the computation of the contribution $\Gamma[A]$ of equation (2.7). Under the map $U_{0}=\Phi_{R}^{-1} \Phi_{f * L}: \partial H_{R} \rightarrow S U(2)$, the images of the rectangles $\{F 1, F 3, G 1, G 3\}$ are degenerate (they have codimension two). Whereas the images of the remaining four rectangles $\{F 2, F 4, G 2, G 4\}$ constitute a closed surface of genus zero in $S U(2) \sim S^{3}$.

As sketched in Fig. 9, the set of the images of $\{F 2, F 4, G 2, G 4\}$ can be globally parametrised by new variables $-1 \leq X \leq 1$ and $-1 \leq Y \leq 1$ according to the relations

$$
\begin{array}{ll}
{[G 2]:} & U_{0}=e^{i \frac{\pi}{2}(X+1) \sigma^{2}} e^{i \frac{\pi}{2} Y \sigma^{1}}=e^{i \frac{\pi}{2} X \sigma^{2}} e^{-i \frac{\pi}{2} Y \sigma^{1}} i \sigma^{2}=\widetilde{U}_{0} i \sigma^{2}, \\
{[F 4]:} & U_{0}=e^{-i \frac{\pi}{2} Y \sigma^{1}} e^{i \frac{\pi}{2}(1+X) \sigma^{2}}=e^{-i \frac{\pi}{2} Y \sigma^{1}} e^{i \frac{\pi}{2} X \sigma^{2}} i \sigma^{2}=\widetilde{U}_{0} i \sigma^{2}, \\
{[F 2]:} & U_{0}=e^{-i \frac{\pi}{2} Y \sigma^{1}} e^{i \frac{\pi}{2}(1+X) \sigma^{2}}=e^{-i \frac{\pi}{2} Y \sigma^{1}} e^{i \frac{\pi}{2} X \sigma^{2}} i \sigma^{2}=\widetilde{U}_{0} i \sigma^{2}, \\
{[G 4]:} & U_{0}=e^{i \frac{\pi}{2}(X+1) \sigma^{2}} e^{i \frac{\pi}{2} Y \sigma^{1}}=e^{i \frac{\pi}{2} X \sigma^{2}} e^{-i \frac{\pi}{2} Y \sigma^{1}} i \sigma^{2}=\widetilde{U}_{0} i \sigma^{2} . \tag{6.7}
\end{array}
$$

The images of $\{F 2, F 4, G 2, G 4\}$ are glued as shown in Fig. 9; the edges which are labelled by the same symbol must be identified. Therefore, the closed surface which is specified by $\Phi_{R}^{-1} \Phi_{f * L}: \partial H_{R} \rightarrow S U(2)$ is topologically equivalent to the tetrahedron shown in Fig. 10. Relations (6.7) show that $U_{0}(X, Y \underset{\sim}{Y})$ can globally be written as $U_{0}(X, Y)=\widetilde{U}_{0}(X, Y) i \sigma^{2}$, therefore if \widetilde{U} denotes the extension of \widetilde{U}_{0} in H_{R}, one has

$$
\begin{equation*}
\Gamma[U]=\Gamma[\tilde{U}] . \tag{6.8}
\end{equation*}
$$

In order to determine the value of $\Gamma[\tilde{U}]$ one can use symmetry arguments.
The manifold $S U(2) \sim S^{3}$ can be represented as the union of two equivalent (with the same volume) balls in \mathbb{R}^{3} of radius $\pi / 2$ with identified boundaries, $S U(2) \sim \mathcal{B}_{1} \cup \mathcal{B}_{2}$. Indeed each element of $S U(2)$ can be written as

$$
e^{i \boldsymbol{\theta} \boldsymbol{\sigma}}=\cos (|\boldsymbol{\theta}|)+i \widehat{\boldsymbol{\theta}} \boldsymbol{\sigma} \sin (|\boldsymbol{\theta}|),
$$

Fig. 11. \widetilde{U}_{0} images in \mathcal{B}_{1} of the boundaries of the regions $\{F 2, F 4, G 2, G 4\}$.
where $|\boldsymbol{\theta}|=[\boldsymbol{\theta} \boldsymbol{\theta}]^{1 / 2}$ and $\widehat{\boldsymbol{\theta}}=(\boldsymbol{\theta} /|\boldsymbol{\theta}|)$. The ball \mathcal{B}_{1} contains the elements with $0 \leq|\boldsymbol{\theta}| \leq \pi / 2$, and \mathcal{B}_{2} contains the elements with $(\pi / 2) \leq|\boldsymbol{\theta}| \leq \pi$.

The application $\widetilde{U}_{0}: \partial H_{R} \rightarrow S U(2)$ maps the boundaries of the rectangles $\{F 2, F 4\}$ and $\{G 2, G 4\}$ into the eight edges in \mathcal{B}_{1} shown in Fig. 11. Equation (6.7) and the picture of Fig. 11 demonstrate that the surface $\widetilde{U}_{0}: \partial H_{R} \rightarrow S U(2)$ is symmetric under rotations of $\pi / 2$ around the σ^{3} axis and bounds a region \mathcal{R} of $S U(2)$ which is contained in half of the ball \mathcal{B}_{1}. According to the reasoning of Section 4.4, the volume of this region \mathcal{R} must take the value $n / 8$, where n is an integer. This integer n is less than 4 because \mathcal{R} is contained inside \mathcal{B}_{1} and satisfies $n \leq 2$ because \mathcal{R} is contained inside half of \mathcal{B}_{1}. Finally, the value $n=2$ is excluded because a direct inspection shows that \mathcal{R} does not cover the upper half-part of \mathcal{B}_{1} completely. Therefore one finally obtains

$$
\begin{equation*}
\Gamma[U]=\Gamma[\tilde{U}]=\frac{1}{8} . \tag{6.9}
\end{equation*}
$$

In Section 8 it will be shown that equation (6.9) is also in agreement with a direct computation of $\Gamma[U]$ that we have performed by means of the canonical expression (4.18). Finally, the validity of the result (6.9) has also been verified by means of a numerical evaluation of the integral (4.18). To sum up, in the case of the manifold Σ_{3} with the specified representation (6.2) of its fundamental group, the value of the classical Chern-Simons invariant is given by

$$
\begin{equation*}
c s[A]=\frac{1}{8} \quad \bmod \mathbb{Z} \tag{6.10}
\end{equation*}
$$

7. Poincaré sphere

The Poincaré sphere \mathcal{P} admits a genus 2 Heegaard splitting presentation. The corresponding Heegaard diagram [20] is shown in Fig. 12. One of the two characteristic curves, $C_{1}^{\prime}=f\left(C_{1}\right)$, is described by the continuous line, whereas the second curve $C_{2}^{\prime}=f\left(C_{2}\right)$ is represented by the dashed path; x_{b} designates the base point for the fundamental group.

Let the generators $\left\{\gamma_{1}, \gamma_{2}\right\}$ of $\pi_{1}\left(H_{R}\right)$ be associated with $+F$ and $+G$ respectively and oriented in the outward direction. According to the Heegaard diagram of Fig. 12, the homotopy class of C_{1}^{\prime} is given by $\gamma_{1}^{-4} \gamma_{2} \gamma_{1} \gamma_{2}$, whereas the class of C_{2}^{\prime} is equal to $\gamma_{2}^{-2} \gamma_{1} \gamma_{2} \gamma_{1}$. Therefore the fundamental group of \mathcal{P} admits the presentation

$$
\begin{equation*}
\pi_{1}(\mathcal{P})=\left\langle\gamma_{1}, \gamma_{2} \mid \gamma_{1}^{5}=\gamma_{2}^{3}=\left(\gamma_{1} \gamma_{2}\right)^{2}\right\rangle \tag{7.1}
\end{equation*}
$$

which corresponds to the binary icosahedral (or dodecahedral) group of order 120. Since the abelianization of $\pi_{1}(\mathcal{P})$ is trivial, \mathcal{P} is a homology sphere. A nontrivial representation $\rho: \pi_{1}(\mathcal{P}) \rightarrow S U(2)$ is given [40,41] by

Fig. 12. Heegaard diagram for the Poincaré sphere.

$$
\begin{align*}
& \rho\left(\gamma_{1}\right)=g_{1}=e^{i b_{1}}=\exp \left[i \frac{\pi}{5} \sigma\right] \\
& \rho\left(\gamma_{2}\right)=g_{2}=e^{i b_{2}}=\exp \left[i \frac{\pi}{3} \tilde{\sigma}\right] \tag{7.2}
\end{align*}
$$

where

$$
\begin{align*}
\sigma & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \\
\widetilde{\sigma} & =r\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+\sqrt{1-r^{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \\
r & =\frac{\cos (\pi / 3) \cos (\pi / 5)}{\sin (\pi / 3) \sin (\pi / 5)} . \tag{7.3}
\end{align*}
$$

Equation (7.2) specifies the values of A_{R}^{0},

$$
A_{R}^{0}= \begin{cases}b_{1} \theta^{\prime}\left(t_{1}\right) d t_{1} & \text { inside a neighbourhood of }+F \tag{7.4}\\ b_{2} \theta^{\prime}\left(t_{2}\right) d t_{2} & \text { inside a neighbourhood of }+G \\ 0 & \text { otherwise }\end{cases}
$$

The values of A_{L}^{0} are determined by equation (7.2) and by the choice of the base point. Indeed, let the generators $\left\{\lambda_{1}, \lambda_{2}\right\}$ of $\pi_{1}\left(H_{L}\right)$ be associated with C_{1} and C_{2} respectively. Then, from the Heegaard diagram and the position for the base point, one finds

$$
\begin{align*}
& \rho\left(\lambda_{1}\right)=g_{1}=e^{i b_{1}}=\exp \left[i \frac{\pi}{5} \sigma\right] \\
& \rho\left(\lambda_{2}\right)=g_{2}=e^{i b_{2}}=\exp \left[i \frac{\pi}{3} \widetilde{\sigma}\right] \tag{7.5}
\end{align*}
$$

Fig. 13. Values of U_{0} in the region where $f * A_{L}^{0}$ and A_{R}^{0} vanish.

Consequently, the image of A_{L}^{0} under the gluing homeomorphism f takes values

$$
f * A_{L}^{0}= \begin{cases}b_{1} \theta^{\prime}\left(u_{1}\right) d u_{1} & \text { inside a neighbourhood of } C_{1}^{\prime} \tag{7.6}\\ b_{2} \theta^{\prime}\left(u_{2}\right) d u_{2} & \text { inside a neighbourhood of } C_{2}^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

One can now determine the map $U_{0}=\Phi_{R}^{-1} \Phi_{f * L}: \partial H_{R} \rightarrow S U(2)$. In the region of the surface ∂H_{R} where both $f * A_{L}^{0}$ and A_{R}^{0} are vanishing, the values of U_{0} are shown in Fig. 13. By using the method illustrated in the previous examples, one can compute the classical Chern-Simons invariant. The intersection component is given by

$$
\begin{align*}
\mathcal{X}[A]= & \frac{1}{8 \pi^{2}}\left\{-4 \operatorname{Tr}\left(b_{1} b_{1}\right)-2 \operatorname{Tr}\left(b_{2} b_{2}\right)+4 \operatorname{Tr}\left(b_{1} b_{2}\right)\right. \\
& \left.+\operatorname{Tr}\left(b_{1} g_{2} b_{1} g_{2}^{-1}\right)+\operatorname{Tr}\left(b_{2} g_{1} b_{2} g_{1}^{-1}\right)\right\} \\
= & -\frac{2}{15}+\frac{1}{2}\left[\frac{1}{5} \frac{\cos (\pi / 3)}{\sin (\pi / 5)}+\frac{1}{3} \frac{\cos (\pi / 5)}{\sin (\pi / 3)}\right]^{2} . \tag{7.7}
\end{align*}
$$

The image of the map $\Phi_{R}^{-1} \Phi_{f * L}: \partial H_{R} \rightarrow S U(2)$ is a genus 0 surface in the group $S U(2)$. We skip the details, which anyway can be obtained from the Heegaard diagram and equations (7.2)-(7.6). Numerical computations of the integral (4.18) give the following value of the WessZumino volume (with 10^{-10} precision)

$$
\begin{equation*}
\Gamma[A]=0.0090687883 \cdots \tag{7.8}
\end{equation*}
$$

Therefore, the value of the classical Chern-Simons invariant associated with the representation (7.2) of $\pi_{1}(\mathcal{P})$ turns out to be

$$
\begin{equation*}
c s[A]=-0.0083333333 \cdots=-\frac{1}{120} \quad \bmod \mathbb{Z} \tag{7.9}
\end{equation*}
$$

where the last identity is a consequence of the fact that $\left|\pi_{1}(\mathcal{P})\right|=120$. The result (7.9) has also been obtained by means of a complete computation of the integral (4.18); this issue is elaborated in Section 8.

8. Computations of the Wess-Zumino volume

The computation of $\Gamma[U]$ by means of the canonical expression (4.18) presents general features that are consequences of our construction of the flat connection A by means of a Heegaard splitting presentation of M. This allows the derivation of universal formulae of the classical Chern-Simons invariant for quite wide classes of manifolds. We present here one example; details will be produced in a forthcoming article.

Let us consider the set of Seifert spaces $\Sigma(m, n,-2)$ of genus zero with three singular fibres which are characterised by the integer surgery coefficients $(m, 1),(n, 1)$ and $(2,-1)$. The manifolds $\Sigma(m, n,-2)$ admit $[4,40]$ a genus two Heegaard splitting $M=H_{L} \cup_{f} H_{R}$ and their fundamental group can be presented as

$$
\begin{equation*}
\pi_{1}(M)=\left\langle\gamma_{1}, \gamma_{2} \mid \gamma_{1}^{m}=\gamma_{2}^{n}=\left(\gamma_{1} \gamma_{2}\right)^{2}\right\rangle, \tag{8.1}
\end{equation*}
$$

for nontrivial positive integers m and n. The manifold Σ_{3} discussed in Section 6 and the Poincaré manifold \mathcal{P} considered in Section 7 are examples belonging to this class of manifolds. Let us introduce the representation of $\pi_{1}(M)$ in the group $S U(2)$ given by

$$
\begin{align*}
& \gamma_{1} \rightarrow g_{1}=\exp \left[i \theta_{1} \sigma\right] \\
& \gamma_{2} \rightarrow g_{2}=\exp \left[i \theta_{2} \tilde{\sigma}\right] \tag{8.2}
\end{align*}
$$

where σ and $\widetilde{\sigma}$ are combinations of the sigma matrices satisfying $\sigma^{2}=1=\widetilde{\sigma}^{2}$, and

$$
\begin{equation*}
g_{1}^{m}=g_{2}^{n}=\left(g_{1} g_{2}\right)^{2}=-1 \tag{8.3}
\end{equation*}
$$

In this case, the value of the surface integral (4.5) is given by

$$
\begin{equation*}
\mathcal{X}[A]=-\frac{1}{4}\left\{m\left[\frac{\theta_{1}}{\pi}\right]^{2}+n\left[\frac{\theta_{2}}{\pi}\right]^{2}-2\left[\left(\frac{\theta_{2}}{\pi}\right) \frac{\cos \theta_{1}}{\sin \theta_{2}}+\left(\frac{\theta_{1}}{\pi}\right) \frac{\cos \theta_{2}}{\sin \theta_{1}}\right]^{2}\right\} . \tag{8.4}
\end{equation*}
$$

As it has been shown in the previous examples, the image of the map $\Phi_{R}^{-1} \Phi_{f * L}: \partial H_{R} \rightarrow S U$ (2) is a genus 0 surface in the group $S U(2)$. The corresponding Wess-Zumino volume turns out to be

$$
\begin{equation*}
\Gamma[U]=\frac{1}{4}\left\{\frac{1}{2}-2\left[\left(\frac{\theta_{2}}{\pi}\right) \frac{\cos \theta_{1}}{\sin \theta_{2}}+\left(\frac{\theta_{1}}{\pi}\right) \frac{\cos \theta_{2}}{\sin \theta_{1}}\right]^{2}\right\} . \tag{8.5}
\end{equation*}
$$

So that the value of the classical Chern-Simons invariant for the manifolds $\Sigma(m, n,-2)$ reads

$$
\begin{equation*}
c s[A]=-\frac{1}{4}\left\{m\left[\frac{\theta_{1}}{\pi}\right]^{2}+n\left[\frac{\theta_{2}}{\pi}\right]^{2}-\frac{1}{2}\right\} \quad \bmod \mathbb{Z} \tag{8.6}
\end{equation*}
$$

When $m=n=2$, expression (8.6) gives the value of the classical Chern-Simons invariant appearing in equation (6.9); and for $m=5, n=3$, expression (8.6) coincides with equation (7.9). Equation (8.6) is valid for generic values of m and n; for those particular values of m and n such that $\Sigma(m, n,-2)$ is a Seifert homology sphere, our equation (8.6) is in agreement with the results of Fintushel and Stern [5] and Kirk and Klassen [6] for Seifert spheres.

9. Conclusions

Given a $S U(N)$ representation ρ of the fundamental group of a 3-manifold M, we have shown how to define a corresponding flat connection A on M such that the holonomy of A coincides with ρ. Our construction is based on a Heegaard splitting presentation of M, so that the relationship between A and the topology of M is displayed. The relative classical Chern-Simons invariant $c s[A]$ is naturally decomposed into the sum of two contributions: a sort of coloured intersection form, which is specified by the Heegaard diagram, and a Wess-Zumino volume of a region of $S U(N)$ which is determined by the non-commutative structure of the ρ representation of $\pi_{1}(M)$. A canonical expression for the Wess-Zumino volume, as function of the boundary data exclusively, has been produced. A few illustrative examples of flat connections and of classical Chern-Simons invariant computations have been presented.

Acknowledgements

We wish to thank R. Benedetti and C. Lescop for discussions.

References

[1] A. Floer, Commun. Math. Phys. 118 (1988) 215.
[2] C. Taubes, J. Differ. Geom. 31 (1990) 547.
[3] C. Lescop, Global Surgery Formula for the Casson-Walker Invariant, Princeton Univ. Press, 1996.
[4] N. Saveliev, Invariants for Homology 3-Spheres, Springer-Verlag, Berlin, Heidelberg, 2010.
[5] R. Fintushel, R. Stern, Proc. Lond. Math. Soc. 61 (1990) 109.
[6] P.A. Kirk, E. Klassen, Math. Ann. 287 (1990) 343.
[7] P.A. Kirk, E. Klassen, Commun. Math. Phys. 153 (1993) 521.
[8] P.A. Kirk, E. Klassen, D. Ruberman, Comment. Math. Helv. 69 (1994) 375.
[9] D.R. Auckly, Math. Proc. Philos. Soc. 115 (1994) 229.
[10] D.R. Auckly, Int. J. Math. 5 (1994) 179.
[11] T. Yoshida, Invent. Math. 81 (1985) 473.
[12] J.L. Dupont, in: Proceedings of the Northwestern Conference on Cohomology of Groups, vol. 44, Evanston, I11, 1985, 1987, p. 137.
[13] J. Marché, Algebraic Geom. Topol. 12 (2012) 805.
[14] S. Baseilhac, R. Benedetti, Geom. Topol. 9 (2005) 493.
[15] E. Witten, Commun. Math. Phys. 121 (1989) 351.
[16] E. Guadagnini, F. Thuillier, Nucl. Phys. B 882 (2014) 450-484.
[17] E. Guadagnini, F. Thuillier, J. Math. Phys. 54 (2013) 082302.
[18] N.Y. Reshetikhin, V.G. Turaev, Invent. Math. 103 (1991) 547.
[19] H. Murakami, T. Ohtsuki, M. Okada, Osaka J. Math. 29 (1992) 545.
[20] D. Rolfsen, Knots and Links, AMS Chelsea Publishing, Providence, 2003.
[21] R.H. Crowell, R.H. Fox, Introduction to Knot Theory, Dover Publications, Inc., Mineola, New York, 2008.
[22] M. Asorey, Nat. Phys. 12 (2016) 616.
[23] C. Beenakker, L. Kouwenhoven, Nat. Phys. 12 (2016) 618.
[24] G. 't Hooft, Nucl. Phys. B 138 (1978) 1.
[25] J. Wess, B. Zumino, Phys. Lett. B 37 (1971) 95.
[26] S.P. Novikov, Usp. Mat. Nauk 37 (5) (1982) 3-49. English transl.: Russ. Math. Surv. 37 (5) (1982) 1-56.
[27] E. Witten, Nucl. Phys. B 223 (1983) 422.
[28] G. de Rham, Varétés Differentiables, Formes, Courants, Formes Harmoniques, Hermann, Paris, 1955.
[29] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.
[30] K. Gawedzki, N. Reis, Rev. Math. Phys. 14 (2002) 1281.
[31] L. Schläfli, Q. J. Math. 2 (1858) 269; L. Schläfli, Q. J. Math. 3 (1860) 54.
[32] E.B. Vinberg, Russian Math, Surveys 48 (1993) 15.
[33] Y. Cho, Appl. Math. Lett. (2000) 45.
[34] D.A. Derevnin, A.D. Mednykh, M.G. Pashkevich, Sib. Math. J. 45 (2004) 840.
[35] J. Murakami, M. Yano, Commun. Anal. Geom. 13 (2005) 375.
[36] A.T. Yakut, M. Savas, S. Kader, Geom. Dedic. 138 (2009) 99-115.
[37] N.V. Abrosimov, M. Godoy-Molina, A.D. Mednykh, J. Math. Sci. (N.Y.) 161 (2009) 1.
[38] N. Abrosimov, Volumes of non-euclidean polyhedra, in: International Conference in Novosibirsk, 2011.
[39] W.M. Massey, Algebraic Topology: An Introduction, Springer-Verlag, New York, 1977.
[40] C. Lescop, Sur le calcul de l'invariant de Casson-Walker, Thèse de Doctorat, Université de Nantes, Faculté des Sciences et des Techniques, 1991.
[41] L. Guillou, A. Marin, Einsegn. Math. (2) 38 (1992) 233.

[^0]: * Corresponding author.

 E-mail address: enore.guadagnini @unipi.it (E. Guadagnini).

