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Abstract

A general method for the construction of smooth flat connections on 3-manifolds is introduced. The 
procedure is strictly connected with the deduction of the fundamental group of a manifold M by means of a 
Heegaard splitting presentation of M . For any given matrix representation of the fundamental group of M , 
a corresponding flat connection A on M is specified. It is shown that the associated classical Chern–Simons 
invariant assumes then a canonical form which is given by the sum of two contributions: the first term is 
determined by the intersections of the curves in the Heegaard diagram, and the second term is the volume 
of a region in the representation group which is determined by the representation of π1(M) and by the 
Heegaard gluing homeomorphism. Examples of flat connections in topologically nontrivial manifolds are 
presented and the computations of the associated classical Chern–Simons invariants are illustrated.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Each SU(N)-connection, with N ≥ 2, in a closed and oriented 3-manifold M can be repre-
sented by a 1-form A = Aμdxμ which takes values in the Lie algebra of SU(N). The Chern–
Simons function S[A],
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S[A] =
∫
M

LCS(A) = 1

8π2

∫
M

Tr
(
A ∧ dA + i 2

3A ∧ A ∧ A
)

= 1

8π2

∫
M

d3x εμνλ Tr
(
Aμ(x)∂νAλ(x) + i 2

3Aμ(x)Aν(x)Aλ(x)
)

, (1.1)

can be understood as the Morse function of an infinite dimensional Morse theory, on which the 
instanton Floer homology [1] and the gauge theory interpretation [2] of the Casson invariant [3]
are based. Under a local gauge transformation

Aμ(x) −→ A�
μ(x) = �−1(x)Aμ(x)�(x) − i�−1(x)∂μ�(x) , (1.2)

where � is a map from M into SU(N), the function S[A] transforms as

S[A�] = S[A] + I� , (1.3)

where the integer I� ∈ Z,

I� = 1

24π2

∫
M

Tr
(
�−1d� ∧ �−1d� ∧ �−1d�

)
, (1.4)

can be used to label the homotopy class of �. The stationary points of the function (1.1) corre-
spond to flat connections, i.e. connections with vanishing curvature F(A) = 2dA + i[A, A] = 0. 
We shall now concentrate on flat connections exclusively. Let A be a flat connection in M , and let 
γ ⊂ M be an oriented path connecting the starting point x0 to the final point x1. The associated 
holonomy γ → hγ [A] ∈ SU(N) is given by the path-ordered integral

hγ [A] = P e
i
∫
γ A

, (1.5)

which is computed along γ . Under a gauge transformation A → A�, one finds

hγ [A�] = �−1(x0)hγ [A]�(x1) . (1.6)

Let us consider the set of holonomies which are associated with the closed oriented paths such 
that x0 = x1 = xb , for a given base point xb. Since the element hγ [A] ∈ SU(N) is invariant under 
homotopy transformations acting on γ , this set of holonomies specifies a matrix representation 
of the fundamental group π1(M) in the group SU(N). Because of equation (1.3), the classical 
Chern–Simons invariant cs[A],

cs[A] = S[A] mod Z , (1.7)

is well defined for the gauge orbits of flat SU(N)-connections on M , and it is well defined [4] for 
the SU(N) representations of π1(M) modulo the action of group conjugation. If the orientation 
of M is modified, one gets cs[A] → −cs[A].

In the case of the structure group SU(2), methods for the computation of cs[A] have been 
presented in References [5–10], where a few non-unitary gauge groups have also been consid-
ered. In all the examples that have been examined, cs[A] turns out to be a rational number. In 
the case of three dimensional hyperbolic geometry, the associated PSL(2, C) classical invariant 
[7,11–13] combines the real volume and imaginary Chern–Simons parts in a complex geometric 
invariant. The Baseilhac–Benedetti invariant [14] with group PSL(2, C) represents some kind 
of corresponding quantum invariant.
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Precisely because flat connections represent stationary points of the function (1.1), flat con-
nections and the corresponding value of cs[A] play an important role in the quantum Chern–
Simons gauge field theory [15]. For instance, the path-integral solution of the abelian Chern–
Simons theory has recently been produced [16,17]. In this case, flat connections dominate the 
functional integration and the value of the partition function is given by the sum over the gauge 
orbits of flat connections of the exponential of the classical Chern–Simons invariant. The classi-
cal abelian Chern–Simons invariant is strictly related [16,17] with the intersection quadratic form 
on the torsion group of M , which also enters the abelian Reshetikhin–Turaev [18,19] surgery in-
variant.

In general, the precise expression of the flat connections is an essential ingredient for the com-
putation of the observables of the quantum Chern–Simons theory by means of the path-integral 
method. In this article we shall mainly be interested in nonabelian flat connections. We will show 
that, given a representation ρ of π1(M) and a Heegaard splitting presentation [20] of M (with the 
related Heegaard diagram), by means of a general construction one can define a corresponding 
smooth flat connection A on M . The method that we describe is related with the deduction [21]
of a presentation of the fundamental group of a manifold M by means of a Heegaard splitting 
of M . Then the associated invariant cs[A] assumes a canonical form, which can be written as 
the sum of two contributions. The first term is determined by the intersections of the curves in 
the Heegaard diagram and can be interpreted as a sort of “coloured intersection form”. Whereas 
the second term is the Wess–Zumino volume of a region in the structure group SU(N) which is 
determined by the representation of π1(M) and by the Heegaard gluing homeomorphism.

The procedure that we present for the determination of the flat connections can find possible 
applications also in the description of the topological states of matter [22,23]. A discussion on 
the importance of topological configurations and of the holonomy operators in gauge theories 
can be found for instance in Ref. [24].

Our article is organised as follows. Section 2 contains a brief description of the main results 
of the present article. The general construction of flat connections in a generic 3-manifold M by 
means of a Heegaard splitting presentation of M is discussed in Section 3. The canonical form of 
the corresponding classical Chern–Simons invariant is derived in Section 4, where a two dimen-
sional formula of the Wess–Zumino group volume is also produced. In the remaining sections, 
our method is illustrated by a few examples. Flat connections in lens spaces are discussed in 
Section 5 and a non-abelian representation of the fundamental group of a particular 3-manifold 
is considered in Section 6; computations of the corresponding classical Chern–Simons invariants 
are presented. The case of the Poincaré sphere is discussed in Section 7. One example of a gen-
eral formula of the classic Chern–Simons invariant for a particular class of Seifert manifolds is 
given in Section 8. Finally, Section 9 contains the conclusions.

2. Outlook

The main steps of our construction can be summarised as follows. For any given SU(N)

representation ρ of π1(M),

ρ : π1(M) → SU(N) , (2.1)

one can find a corresponding flat connection A on M whose structure is determined by a Hee-
gaard splitting presentation M = HL ∪f HR of M . In this presentation, the manifold M is 
interpreted as the union of two handlebodies HL and HR which are glued by means of the home-
omorphism f : ∂HL → ∂HR of their boundaries, as sketched in Fig. 1.
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Fig. 1. Attaching homemorphism f : ∂HL → ∂HR .

Fig. 2. Generators {γ1, γ2} and meridinal discs {D1,D2} in a handlebody of genus 2.

Let the fundamental group of M be defined with respect to a base point xb which belongs to 
the boundaries of the two handlebodies. Then the representation ρ of π1(M) canonically defines 
a representation of the fundamental group of each of the two handlebodies HL and HR . As shown 
in Fig. 2, in each handlebody the generators of its fundamental group can be related with a set 
of corresponding disjoint meridinal discs. To each meridinal disc is associated a matrix which is 
specified by the representation ρ; this matrix can be interpreted as a “colour” which is attached 
to each meridinal disc. With the help of these coloured meridinal discs, one can construct a 
smooth flat connection A0

L in HL—and similarly a smooth flat connection A0
R in HR—whose 

holonomies correspond to the elements of the representation ρ in the handlebody HL (or HR). 
The precise definition of A0

L and A0
R is given in Section 3.

In general, A0
L and A0

R do not coincide with the restrictions in HL and HR of a single con-
nection A in M , because the images—under f —of the boundaries of the meridinal discs of HL

are not the boundaries of meridinal discs of HR . So, in order to define a connection A which is 
globally defined in M , one needs to combine A0

L with A0
R in a suitable way. In facts, the exact 

matching of the gauge fields A0
L and A0

R in M is specified by the homeomorphism f through 
the Heegaard diagram, which shows precisely how the boundaries of the meridinal discs of HL

are pasted onto the surface ∂HR , in which the boundaries of the meridinal discs of HR are also 
placed. Let us denote by f ∗ A0

L the image of A0
L under f . The crucial point now is that, on the 

surface ∂HR , the connections A0
R and f ∗ A0

L are gauge related

f ∗ A0
L = U−1

0 A0
RU0 − iU−1

0 dU0, on ∂HR , (2.2)

because their holonomies define the same representation of π1(∂HR). The value of the map U0
from the surface ∂HR on the group SU(N) is uniquely determined by equation (2.2) and by the 
condition U0(xb) = 1. In facts, we will demonstrate that

U0(x) = 
−1
R (x)
f ∗L(x), for x ∈ ∂HR , (2.3)

where 
R and 
f ∗L denote the developing maps associated respectively with A0
R and f ∗ A0

L

from the universal covering of ∂HR into the group SU(N). The definition of the developing map 
will be briefly recalled in Section 3.3. Then the map U0 can smoothly be extended to the whole 
handlebody HR ; this extension will be denoted by U . The values of U : HR → SU(N) inside 
HR are not constrained and can be chosen without restrictions apart from smoothness. As far as 
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the computation of the classical Chern–Simons invariant is concerned, the particular choice of 
the extension U of U0 turns out to be irrelevant. To sum up, the connection A—which is well 
defined in M and whose holonomies determine the representation ρ—takes the form

A =
⎧⎨⎩

A0
L in HL ;

U−1A0
RU − iU−1dU in HR ;

(2.4)

the correct matching of these two components is ensured by equation (2.2). The expression (2.4)
of the connection implies

Proposition 1. The classical Chern–Simons invariant (1.7), evaluated for the SU(N) flat con-
nection (2.4), takes the form

cs[A] =X [A] + �[U ] mod Z , (2.5)

where

X [A] = 1

8π2

∫
∂HR

Tr
[
U−1

0 A0
RU0 ∧ f ∗ A0

L

]
, (2.6)

and

�[U ] = 1

24π2

∫
HR

Tr
[
U−1dU ∧ U−1dU ∧ U−1dU

]
. (2.7)

The function X [A] is defined on the surface ∂HR , and similarly the value of the Wess–Zumino 
volume �[U ] mod Z only depends [25–27] on the values of U in ∂HR (i.e., it only depends 
on U0). A canonical dependence of � on U0 will be produced in Section 4.4. Therefore both 
terms in expression (2.5) are determined by the data on the two-dimensional surface ∂HR of the 
Heegaard splitting presentation M = HL ∪f HR exclusively. This is why the particular choice of 
the extension of U0 inside HR is irrelevant. The remaining part of this article contains the proof 
of Proposition 1 and a detailed description of the construction of the flat connection A. Examples 
will also be given, which elucidate the general procedure and illustrate the computation of cs[A].

3. Flat connections

Given a matrix representation ρ of π1(M), we would like to determine a corresponding flat 
connection A on M whose holonomies agree with ρ; then we shall compute S[A].

In order to present a canonical construction which is not necessarily related with the properties 
of the representation space, we shall use a Heegaard splitting presentation M = HL ∪f HR of M . 
The construction of A is made of two steps. First, in each of the two handlebodies HL and HR we 
define a flat connection, A0

L and A0
R respectively, whose holonomies coincide with the elements 

of the matrix representation of the fundamental group of the handlebody which is induced by ρ. 
Second, the components A0

L and A0
R are combined according to the Heegaard diagram to define 

A on M .
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Fig. 3. Example of a genus 2 Heegaard diagram.

3.1. Heegaard splitting

Let us recall [4,20] that the fundamental group of a three-dimensional oriented handlebody 
H of genus g is a free group with g generators {γ1, γ2, ..., γg}. A disc D in H is called a 
meridinal disc if the boundary of D belongs to the boundary of H , ∂D ⊂ ∂H , and ∂D is ho-
motopically trivial in H . Let {D1, D2, ..., Dg} be a set of disjoint meridinal discs in H such 
that H − {D1, D2, ..., Dg} is homeomorphic with a 3-ball with 2g removed disjoint discs in its 
boundary. These meridinal discs {D1, D2, ..., Dg} can be put in a one-to-one correspondence 
with the g handles of the handlebody H or, equivalently, with the generators of π1(H), and can 
be oriented in such a way that the intersection of γj with Dk is δjk . For instance, in the case of a 
handlebody of genus 2, a possible choice of the generators {γ1, γ2} and of the discs {D1, D2} is 
illustrated in Fig. 2, where the base point xb is also shown.

By means of a Heegaard presentation M = HL ∪f HR of the 3-manifold M , which is specified 
by the homeomorphism

f : ∂HL → ∂HR , (3.1)

one can find a presentation of the fundamental group π1(M). Suppose that the two handlebodies 
HL and HR have genus g. Let {D1, D2, ..., Dg} be a set of disjoint meridinal discs in HL which 
are associated with the g handles of HL. The homeomorphism f : ∂HL → ∂HR is specified—up 
to ambient isotopy—by the images C′

j = f (Cj ) in ∂HR of the boundaries Cj = ∂Dj , for j =
1, 2, .., g. Thus each Heegaard splitting can be described by a diagram which shows the set of 
the characteristic curves {C ′

j } on the surface ∂HR . One example of Heegaard diagram is shown 
in Fig. 3.

Let {γ1, γ2, ..., γg} be a complete set of generators for π1(HR) which are associated to a 
complete set of meridinal discs of HR . The fundamental group of M is specified by adding to 
the generators {γ1, γ2, ..., γg} the constraints which implement the homotopy triviality condition 
of the curves {C ′

j }. Indeed, since each curve Cj is homotopically trivial in M , the fundamental 
group of M admits [20,21] the presentation

π1(M) = 〈γ1, γ2, ..., γg | [C′
1] = 1, ..., [C′

g] = 1 〉 , (3.2)

where [C′
j ] denotes the π1(HR) homotopy class of C′

j expressed in terms of the generators 
{γ1, γ2, ..., γg}. The classes [C′

j ] are determined by the intersections of the boundaries of the 
meridinal discs of HL and HR , which can be inferred from the Heegaard diagram.

3.2. Flat connection in a handlebody

Let us consider the handlebody HL of the Heegard splitting M = HL ∪f HR of genus g and 
a corresponding set {D1, D2, ..., Dg} of disjoint meridinal discs in HL. For each j = 1, 2, ..., g, 
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Fig. 4. Disc Dj and the neighbourhood Nj of Dj .

consider a collared neighbourhood Nj of Dj in HL. As shown in Fig. 4, Nj is homeomorphic 
with a cylinder Dj × [0, ε] parametrised as (z ∈ C, |z| ≤ 1) × (0 ≤ t ≤ ε).

The strip (|z| = 1) × (0 ≤ t ≤ ε) belongs to the surface ∂HL. The flat SU(N)-connection on 
HL we are interested in will be denoted by A0

L; A0
L is vanishing in HL − {N1, N2, ..., Ng} and, 

inside each region Nj , A0
L is determined by ρ(γj ). More precisely, suppose that

ρ(γj ) = eibj , (3.3)

where the hermitian traceless matrix bj belongs to the Lie algebra of SU(N). Let θ(t) be a C∞
real function, with θ ′(t) = dθ(t)/dt > 0, satisfying θ(0) = 0 and θ(ε) = 1. Then the value of A0

L

in the region Nj is given by

A0
L

∣∣∣
Nj

= bj θ
′(t)dt . (3.4)

The orientation of the parametrisation (or the sign in equation (3.4)) is fixed so that the holonomy 
of the connection (3.4) coincides with expression (3.3). As a consequence of equation (3.4) one 
has dA0

L = 0 and also, since Nj ∩ Nk = ∅ for j �= k, one finds A0
L ∧ A0

L = 0.
By construction, the smooth 1-form A0

L represents a flat connection on HL whose holonomies 
coincide with the matrices that represent the elements of the fundamental group of HL. The 
restriction of A0

L on the boundary ∂HL has support on g ribbons and its values are determined 
by equation (3.4); the j -th ribbon represents a collared neighbourhood of the curve Cj = ∂Dj

in ∂HL. The same construction can be applied to define a flat connection A0
R on HR .

3.3. Flat connection in a 3-manifold

Let us now construct a flat connection A in M = HL ∪f HR which is associated with the 
representation ρ of π1(M). As far as the value of A on HL is concerned, one can put

A

∣∣∣
HL

= A0
L . (3.5)

The image f ∗ A0
L of A0

L under the homeomorphism f : ∂HL → ∂HR does not coincide in 
general with A0

R in ∂HR . But since f ∗A0
L and A0

R are associated with the same matrix represen-
tation of π1(∂HR), the values of f ∗ A0

L and A0
R on ∂HR are related by a gauge transformation, 

f ∗ A0
L = U−1

0 A0
RU0 − iU−1

0 dU0, as shown in equation (2.2), in which U0 must assume the unit 
value at the base point xb. Then the map U0 can smoothly be extended in HR , let U denote this 
extension. The value of A on HR is taken to be

A

∣∣∣ = U−1A0
RU − iU−1dU . (3.6)
HR
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The value of U0 on the surface ∂HR represents a fundamental ingredient of our construction, 
so we now describe how it can be determined. To this end, we need to introduce the concept of 
developing map.

Let us recall that any flat SU(N)-connection A defined in a space X can be locally trivialized 
because, inside a simply connected neighbourhood of any given point of X, A can be written 
as A = −i
−1d
. The value of 
 coincides with the holonomy of A. When the representation 
of π1(X) determined by A is not trivial, 
 cannot be extended to the whole space X. A global 
trivialisation of A can be found in the universal covering X̂ of X; in this case, the map 
 : X̂ →
SU(N) represents the developing map. For any element γ of π1(X) acting on X̂ by covering 
transformations, the developing map satisfies


(γ · x) = hγ [A] · 
(x) , (3.7)

in agreement with equations (1.6). Now, on the surface ∂HR we have the two flat connections 
f ∗ A0

L and A0
R which are related by a gauge transformation, equation (2.2). Thus, for each 

oriented path γ ⊂ ∂HR connecting the starting point x0 with the final point x, the corresponding 
holonomies are related according to equation (1.6) which takes the form

U−1
0 (x0)hγ [A0

R]U0(x) = hγ [f ∗ A0
L] . (3.8)

From this equation one obtains U0(x) = h−1
γ [A0

R] U0(x0) hγ [f ∗A0
L]. When the starting point x0

coincides with the base point xb of the fundamental group, one has U(xb) = 1, and then

U0(x) = h−1
γ [A0

R] hγ [f ∗ A0
L] , for x ∈ ∂HR . (3.9)

This equation is equivalent to the relation (2.3). Indeed, because of the transformation prop-
erty (3.7), the combination 
−1

R 
f ∗L is invariant under covering translations acting on the 
universal covering of ∂HR (and then 
−1

R 
f ∗L is really a map from ∂HR into SU(N)), and 
locally coincides with the product h−1

γ [A0
R] hγ [f ∗ A0

L] appearing in equation (3.9).

4. The invariant

4.1. Proof of Proposition 1

The Chern–Simons function S[A] of the connection (2.4)—whose components in HL and HR

are shown in equations (3.5) and (3.6)—is given by

S[A] =
∫
M

LCS(A) =
∫

HL

LCS(A) +
∫

HR

LCS(A) . (4.1)

Since dA0
L = 0 and A0

L ∧ A0
L = 0, one has∫

HL

LCS(A) =
∫

HL

LCS(A0
L) = 0 . (4.2)

Moreover, a direct computation shows that∫
HR

LCS(A) =
∫

HR

LCS(A0
R) − i

8π2

∫
HR

d Tr
[
A0

R ∧ dUU−1
]

+ 1

24π2

∫
Tr
[
U−1dU ∧ U−1dU ∧ U−1dU

]
. (4.3)
HR
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As before, the first term on the r.h.s of equation (4.3) is vanishing∫
HR

LCS(A0
R) = 0 . (4.4)

By using equation (2.2), the second term can be written as the surface integral

X [A] = 1

8π2

∫
∂HR

Tr
[
U−1

0 A0
RU0 ∧ f ∗ A0

L

]
. (4.5)

By combining equations (4.1)–(4.5) one finally gets

S[A] = 1

8π2

∫
∂HR

Tr
[
U−1

0 A0
RU0 ∧ f ∗ A0

L

]

+ 1

24π2

∫
HR

Tr
[
U−1dU ∧ U−1dU ∧ U−1dU

]
, (4.6)

which implies equation (2.5). This concludes the proof of Proposition 1.
The term X [A] can be understood as a sort of coloured intersection form, because its value 

is determined by the trace of the representation matrices—belonging to the Lie algebra of the 
group—which are associated with the boundaries of the meridinal discs of the two handlebodies 
which intersect each other in the Heegaard diagram. Indeed, on the surface ∂HR, A0

R is different 
from zero inside collar neighbourhoods of the boundaries of the meridinal discs of HR, whereas 
f ∗ A0

L is different from zero inside collar neighbourhoods of the images—under f —of the 
boundaries of the meridinal discs of HL. Thus, in the computation of X [A], only the intersection 
regions of the curves of the Heegaard diagram give nonvanishing contributions. But since the 
intersections of the boundaries of the meridinal discs of HL and HR determine the relations 
entering the presentation (3.2) of π1(M), an important part of the input, which is involved in the 
computation of X [A], is given by the fundamental group presentation (3.2). It turns out that the 
computation of X [A] can also be accomplished by means of intersection theory techniques by 
colouring the de Rham–Federer currents [28,29] of the disks {Dj }.

When the representation ρ is abelian, �[U ] vanishes and the classical Chern–Simons invariant 
is completely specified by X [A] which assumes the simplified form

cs[A]
∣∣∣
abelian

=X [A]
∣∣∣
abelian

= 1

8π2

∫
∂HR

Tr
[
A0

R ∧ f ∗ A0
L

]
mod Z . (4.7)

4.2. Group volume

The term �[U ] can be interpreted as the 3-volume of the region of the structure group which 
is bounded by the image of the surface ∂HR under the map 
−1

R 
f ∗L : ∂HR → SU(N). In this 
case also, the combination 
−1

R 
f ∗L of the two developing maps, which are associated with 
f ∗ A0

L and A0
R , is characterized by the homeomorphism f : ∂HL → ∂HR which topologically 

identifies M .
In general, the direct computation of �[U ] is not trivial, and the following properties of �[U ]

turn out to be useful. When U(x) can be written as

U(x) = W(x)Z(x) , (4.8)
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where W(x) ∈ SU(N) and Z(x) ∈ SU(N), one obtains

�[U = WZ] = �[W ] + �[Z] + 1

8π2

∫
∂HR

Tr
[
dZZ−1 ∧ W−1dW

]
. (4.9)

By means of equation (4.9) one can easily derive the relation

�[U = V HV −1] = �[H ] − 1

8π2

∫
∂HR

Tr
[
V −1dV ∧

(
H−1dH + dHH−1

)]

+ 1

8π2

∫
∂HR

Tr
[
V −1dV H ∧ V −1dV H−1

]
. (4.10)

With a clever choice of the matrices V (x) and H(x), equation (4.10) assumes a simplified 
form. Indeed any generic map U(x) ∈ SU(N) can locally be written in the form U(x) =
V (x)H(x)V −1(x) where

H(x) = exp(iC(x)) , (4.11)

and C(x) belongs to the (N − 1)-dimensional abelian Cartan subalgebra of the Lie algebra of 
SU(N). In this case, one has �[H ] = 0 and

H−1(x)dH(x) = dH(x)H−1(x) = i dC(x) . (4.12)

Therefore relation (4.10) becomes

�[V HV −1] = 1

8π2

∫
∂HR

{
2i Tr

[
dC ∧ V −1dV

]
+ Tr

[
e−iC V −1dV eiC ∧ V −1dV

]}
,

(4.13)

where it is understood that one possibly needs to decompose the integral into a sum of integrals 
computed in different regions of ∂HR where V (x) and H(x) are well defined [30]. Expression 
(4.13) explicitly shows that the value of �[U ] (modulo integers) is completely specified by the 
value of U on the surface ∂HR .

In the case of the structure group SU(2) ∼ S3, the computation of �[U ] can be reduced to the 
computation of the volume of a given polyhedron in a space of constant curvature. Discussions 
on this last problem can be found, for instance, in the articles [31–38].

4.3. Canonical extension

The reduction of the Wess–Zumino volume �[U ] into a surface integral on ∂HR can be done 
in several inequivalent ways, which also depend on the choice of the extension of U0 from the 
surface ∂HR in HR . Let us now describe the result which is obtained by means of a canonical 
extension of U0. We shall concentrate on the structure group SU(2), the generalisation to a 
generic group SU(N) is quite simple.

Suppose that the value of U0 on the surface ∂HR can be written as

U0(x, y) = ein(x,y)σ = ei
∑3

a=1 na(x,y) σ a

= cosn(x, y) + i n̂(x, y)σ sinn(x, y) , (4.14)
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where (x, y) designate coordinates of ∂HR , n =
[∑3

b=1 nbnb
]1/2

, the components of the unit 

vector ̂n are given by ̂na = na/n, and {σa} (with a = 1, 2, 3) denote the Pauli sigma matrices. 
The canonical extension of U0 is defined by

U(τ, x, y) = ei τ n(x,y)σ , (4.15)

where the homotopy parameter τ takes values in the range 0 ≤ τ ≤ 1. When τ = 1 one recovers 
the expression (4.14), whereas in the τ → 0 limit one finds U = 1. A direct computation gives

Tr
(
U−1∂τU

[
U−1∂xU,U−1∂yU

])
= 2i

n2 sin2(τn)Tr
(
�
[
∂y� , ∂x�

])
, (4.16)

in which �(x, y) =∑3
a=1 na(x, y)σ a . Therefore, by using the identity

1∫
0

dτ sin2(τn) = 1

2

[
1 − sin(2n)

2n

]
, (4.17)

one gets

�[U ] = −i

8π2

∫
∂HR

1

n2

[
1 − sin(2n)

2n

]
Tr (�d� ∧ d�) . (4.18)

This equation will be used in Section 6, Section 7 and Section 8.

4.4. Rationality

As it has already been mentioned, in all the considered examples the value of the SU(N)

classical Chern–Simons invariant is given by a rational number. Let us now present a proof of 
this property for a particular class of 3-manifolds. Suppose that the universal covering M̃ of the 
three-manifold M is homeomorphic with S3, so that M can be identified with the orbit space 
[39] which is obtained by means of covering translations (acting on S3) which correspond to the 
elements of the fundamental group π1(M). Given a flat connection A on M , let us denote by Ã
the flat connection on M̃ ∼ S3 which is the upstairs preimage of A. By construction, one has

S[A]
∣∣∣
M

= 1

|π1(M)| S[Ã]
∣∣∣
S3

, (4.19)

where |π1(M)| denotes the order of π1(M). On the other hand, since S3 is simply connected, 
one can find a map � : S3 → SU(N) such that

Ã = −i�−1 d� , (4.20)

and then

S[Ã]
∣∣∣
S3

= 1

24π2

∫
S3

Tr
(
�−1d� ∧ �−1d� ∧ �−1d�

)
= n , (4.21)

where n is an integer. Equations (4.19) and (4.21) imply

cs[A]
∣∣∣
M

= n

|π1(M)| mod Z , (4.22)

which shows that, for this type of manifolds, the value of cs[A] is indeed a rational number.
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Fig. 5. Heegaard diagram for the lens space L(5,2), with base point xb displayed.

Let us now present a few examples of computations of cs[A]; in the first instance, the 
representation of the fundamental group of the 3-manifold is abelian, whereas nonabelian repre-
sentations are considered in the remaining examples.

5. First example

In order to illustrate how to compute X [A], let us consider the lens spaces L(p, q), where 
the coprime integers p and q verify p > 1 and 1 ≤ q < p. The manifolds L(p, q) admit [4,20]
a genus 1 Heegaard splitting presentation, L(p, q) = HL ∪f HR where HL and HR are solid tori. 
The fundamental group of L(p, q) is the abelian group π1(L(p, q)) = Zp .

5.1. The representation

Let us concentrate, for example, on L(5, 2) whose Heegaard diagram is shown in Fig. 5, 
where the image C′ of a meridian C of the solid torus HL is displayed on the surface ∂HR . 
The torus ∂HR is represented by the surface of a 2-sphere with two removed discs +F and −F . 
The boundaries of +F and −F must be identified (the points with the same label coincide). 
A possible choice of the base point xb of the fundamental group is also depicted.

In the solid torus HL, let the meridian C be the boundary of the meridinal disc DL ⊂ HL, 
which is oriented so that the intersection of DL with the generator γL ⊂ HL of π1(HL) is +1. 
Suppose that the representation ρ : π1(L(5, 2)) = Z5 → SU(4) is specified by

ρ(γL) = exp

[
i
2π

5
Y

]
, (5.1)

where Y is given by

Y =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎞⎟⎟⎠ . (5.2)

Let NL ⊂ HL be a collared neighbourhood of DL parametrised by (z ∈C, |z| ≤ 1) × (0 ≤ t ≤ ε). 
The flat connection A0

L on HL is vanishing in HL − NL, whereas the value of A0
L in NL is given 

by

A0
L

∣∣∣
NL

= 2π

5
Yθ ′(t)dt . (5.3)

The restriction of A0
L on the boundary ∂HL is nonvanishing inside a strip which is a collared 

neighbourhood of C. Therefore the image f ∗ A0
L of A0

L on ∂HR is different from zero in a 
collared neighbourhood of C′.
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Fig. 6. Values of the connections inside one intersection region.

Let us now consider HR . The meridinal disc DR ⊂ HR can be chosen in such a way that the 
boundary of DR coincides with the boundaries of +F (and −F ) of Fig. 5. The image on ∂HR

of the corresponding generator γR of π1(HR) is associated to +F , and it can be represented by 
an arrow intersecting the boundary of the disc +F and oriented in the outward direction. As 
in the previous case, we introduce a collared neighbourhood NR ⊂ HR of DR parametrised by 
(z′ ∈ C, |z′| ≤ 1) × (0 ≤ u ≤ ε). The flat connection A0

R is vanishing in HR −NR and, inside NR , 
one has

A0
R

∣∣∣
NR

= Ỹ θ ′(u)du , (5.4)

where Ỹ represents an element of the Lie algebra of SU(N). The restriction of A0
R on the bound-

ary ∂HR is nonvanishing inside a collared neighbourhood of ∂(+F). The value taken by A0
R

must be consistent with the given representation ρ : π1(L(5, 2)) → SU(4) which is specified by 
equation (5.1). In order to determine A0

R , one can consider a closed path γ ⊂ ∂HR with base 
point xb. One needs to impose that the holonomy of A0

R along γ must coincide with the holon-
omy of f ∗ A0

L along γ . One then finds Ỹ = (4π/5)Y , and consequently

A0
R

∣∣∣
NR

= 4π

5
Y θ ′(u)du . (5.5)

As shown in the Heegaard diagram of Fig. 5, the collar neighbourhood of C ′ and the collar 
neighbourhood of ∂(+F)—where the connections f ∗ A0

L and A0
R are nonvanishing—intersect 

in five (rectangular) regions of ∂HR . Only inside these rectangular regions is the 2-form A0
R ∧f ∗

A0
L different from zero. As far as the computation of the Chern–Simons invariant is concerned, 

these five regions are equivalent and give the same contribution to X [A]. The values of the 
connections inside one of the five rectangular intersection regions are shown in Fig. 6.

In the intersection region shown in Fig. 6, one then finds∫
one region

Tr
[
A0

R ∧ f ∗ A0
L

]
= −8π2

25

ε∫
0

dt θ ′(t)
ε∫

0

duθ ′(u)Tr
[
Y 2
]

= −96π2

25
. (5.6)

Therefore the value of the classical Chern–Simons invariant which, in this abelian case, takes the 
form

cs[A] = 1

8π2

∫
Tr
[
A0

R ∧ f ∗ A0
L

]
mod Z , (5.7)
∂HR
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is given by

cs[A] = 5 × (−96π2/25
)

8π2 mod Z = 3

5
mod Z . (5.8)

5.2. Lens spaces in general

For a generic lens space L(p, q), the corresponding Heegaard diagram has the same structure 
of the diagram shown in Fig. 5. The curve C′ on ∂HR and the boundary of the disc (+F) give 
rise to p intersection regions. Since the group π1(L(p, q)) is abelian, the analogues of equations 
(5.3) and (5.5) take the form

A0
L

∣∣∣
NL

= 2π

p
Mθ ′(t)dt , (5.9)

and

A0
R

∣∣∣
NR

= 2πq

p
M θ ′(u)du , (5.10)

where the matrix M belongs to the Lie algebra of SU(N) and satisfies

ei2πM = 1 . (5.11)

Therefore the expression of the classical Chern–Simons invariant (5.7) is given by

cs[A] = − 1

8π2

{
(2π)2 q

p2 Tr
(
M2

)
× p

}
= − q

p

[
1
2 Tr

(
M2

)]
mod Z . (5.12)

Expression (5.12) is in agreement with the results [16,17] obtained in the case of the abelian 
Chern–Simons theory, where it has been shown that the value of the Chern–Simons action is 
specified by the quadratic intersection form on the torsion component of the homology group of 
the manifold.

6. Second example

Let us consider the 3-manifold �3 which is homeomorphic with the cyclic 3-fold branched 
covering of S3 which is branched over the trefoil [20]. �3 admits a Heegaard splitting presenta-
tion of genus 2 and the corresponding Heegaard diagram is shown in Fig. 7. The surface ∂HR is 
represented by the surface of a 2-sphere with four removed discs: the boundaries of +F and −F

(and similarly the boundaries of +G and −G) must be identified. In Fig. 7, the two characteristic 
curves C′

1 and C′
2 are represented by the continuous and the dashed curve respectively, and the 

base point xb is also shown.
The two meridinal discs D1R and D2R of HR are chosen so that their boundaries coincide 

with the boundaries of the discs +F and +G respectively. The corresponding generators γ1 and 
γ2 of π1(HR) can be represented by two arrows which are based on the boundaries of +F and 
+G and oriented in the outward direction. By taking into account the constraints coming from 
the requirement of homotopy triviality of the curves C′

1 and C′
2, one finds a presentation of the 

fundamental group of �3,

π(�3) = 〈γ1 γ2 |γ 2 = γ 2 = (γ1γ2)
2 〉 . (6.1)
1 2
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Fig. 7. Heegaard diagram for �3, with base point xb displayed.

The group π(�3) is usually called [20] the quaternionic group; it has eight elements which can 
be denoted by {±1, ±i, ±j, ±k}, in which ij = k, ki = j and jk = i.

Let the representation ρ : π1(�3) → SU(2) be given by

γ1 → g1 = exp
[
i(π/2)σ 1

]
= i

(
0 1
1 0

)
= iσ 1 ,

γ2 → g2 = exp
[
i(π/2)σ 2

]
= i

(
0 −i

i 0

)
= iσ 2 . (6.2)

The corresponding flat connection A0
R on HR vanishes in HR − {N1R, N2R}, where N1R and 

N2R are collared neighbourhoods of the two meridinal discs {D1R, D2R} of HR , and

A0
R =

⎧⎪⎪⎨⎪⎪⎩
A0

R

∣∣∣
N1R

= π
2 σ 1 θ ′(u)du ;

A0
R

∣∣∣
N2R

= π
2 σ 2 θ ′(v)dv .

(6.3)

With the choice of the base point xb shown in Fig. 7, the flat connection A0
L on HL turns out to 

be

A0
L =

⎧⎪⎪⎨⎪⎪⎩
A0

L

∣∣∣
N1L

= π
2 σ 1 θ ′(t)dt ;

A0
L

∣∣∣
N2L

= π
2 σ 2 θ ′(s)ds ;

(6.4)

where N1L and N2L are collared neighbourhoods of the two meridinal discs {D1L, D2L} of HL, 
and A0

L vanishes on HL − {N1L, N2L}. Note that, on the surface ∂HR , f ∗ A0
L is nonvanishing 

inside the two ribbons which constitute collared neighbourhoods of the curve C′
1 and C′

2, whereas 
A0

R is nonvanishing inside the collared neighbourhoods of ∂D1R and ∂D2R . In the region of the 
surface ∂HR where both f ∗ A0

L and A0
R are vanishing, the values taken by the map U0 entering 

equation (2.2) are shown in Fig. 8.
We now need to specify the values of U0 = 
−1

R 
f ∗L in the eight intersections regions of 
∂HR where both f ∗ A0

L and A0
R are not vanishing. The value of U0 is defined in equation (3.9). 

In each region, we shall introduce the variables X and Y according to a correspondence of the 
type
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Fig. 8. Values of the map U0 in the region where f ∗ A0
L

and A0
R

are vanishing.

dX = θ ′(t)dt , 0 ≤ X ≤ 1

dY = θ ′(u)du , 0 ≤ Y ≤ 1 . (6.5)

The intersection regions are denoted as {F1, F2, F3, F4, G1, G2, G3, G4} with the convention 
that, for instance, the region F3 (or G3) is a rectangle in which one of the vertices is the point 
denoted by the number 3 of the boundary of the disk +F (or +G). The values of U0 in these 
eight regions are in order; in each of the corresponding pictures, the values of U0 at the vertices 
of the rectangle are also reported.

Y

X

F1

1 g1

−1g1

[F1] : U0 = e
i
π
2 (X+Y)σ 1

Y

X

F2

1 g1

g1g2g2

[F2] : U0 = e
i
π
2 Xσ 1

e
i
π
2 Yσ 2

Y

X

F3

g1g2 g2

g2g1g2

[F3] : U0 = e
i
π
2 (1−X−Y)σ 1

e
i
π
2 σ 2
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Y

X

F4

−1 g1

g2g1g2

[F4] : U0 = e
−i

π
2 Xσ 1

e
i
π
2 (2−Y)σ 2

Y

X

G1

1 g2

−1g2

[G1] : U0 = e
i
π
2 (X+Y)σ 2

Y

X

G2

1 g2

g2g1g1

[G2] : U0 = e
i
π
2 Xσ 2

e
i
π
2 Yσ 1

Y

X

G3

g2g1 g1

g1g2g1

[G3] : U0 = e
i
π
2 (1−X−Y)σ 2

e
i
π
2 σ 1

Y

X

G4

−1 g2

g1g2g1

[G4] : U0 = e
i
π
2 (2−X)σ 2

e
−i

π
2 Yσ 1

By using the value of U0 in the eight intersections regions {F1, F2, F3, F4, G1, G2, G3, G4}, 
the contribution X [A], defined in equation (4.5), of the Chern–Simons invariant can easily be 
determined. One finds

X [A] = 1

8π2 Tr
{
−π

4 σ 1σ 1 + π
4 σ 1σ 2 + π

4 σ 1σ 1 + π
4 σ 1σ 2

−π σ 2σ 2 + π σ 2σ 1 + π σ 2σ 2 + π σ 2σ 1
}

= 0 . (6.6)
4 4 4 4



E. Guadagnini et al. / Nuclear Physics B 925 (2017) 536–559 553
Fig. 9. Images of the regions {F2,F4,G2,G4} parametrised in equation (6.7).

Fig. 10. Closed surface specified by 
−1
R


f ∗L : ∂HR → SU(2).

Let us now consider the computation of the contribution �[A] of equation (2.7). Under the 
map U0 = 
−1

R 
f ∗L : ∂HR → SU(2), the images of the rectangles {F1, F3, G1, G3} are de-
generate (they have codimension two). Whereas the images of the remaining four rectangles 
{F2, F4, G2, G4} constitute a closed surface of genus zero in SU(2) ∼ S3.

As sketched in Fig. 9, the set of the images of {F2, F4, G2, G4} can be globally parametrised 
by new variables −1 ≤ X ≤ 1 and −1 ≤ Y ≤ 1 according to the relations

[G2] : U0 = e
i
π
2 (X+1)σ 2

e
i
π
2 Yσ 1 = e

i
π
2 Xσ 2

e
−i

π
2 Yσ 1

iσ 2 = Ũ0 iσ 2 ,

[F4] : U0 = e
−i

π
2 Yσ 1

e
i
π
2 (1+X)σ 2 = e

−i
π
2 Yσ 1

e
i
π
2 Xσ 2

iσ 2 = Ũ0 iσ 2 ,

[F2] : U0 = e
−i

π
2 Yσ 1

e
i
π
2 (1+X)σ 2 = e

−i
π
2 Yσ 1

e
i
π
2 Xσ 2

iσ 2 = Ũ0 iσ 2 ,

[G4] : U0 = e
i
π
2 (X+1)σ 2

e
i
π
2 Yσ 1 = e

i
π
2 Xσ 2

e
−i

π
2 Yσ 1

iσ 2 = Ũ0 iσ 2 . (6.7)

The images of {F2, F4, G2, G4} are glued as shown in Fig. 9; the edges which are labelled 
by the same symbol must be identified. Therefore, the closed surface which is specified by 

−1

R 
f ∗L : ∂HR → SU(2) is topologically equivalent to the tetrahedron shown in Fig. 10. Re-
lations (6.7) show that U0(X, Y) can globally be written as U0(X, Y) = Ũ0(X, Y) iσ 2, therefore 
if Ũ denotes the extension of Ũ0 in HR , one has

�[U ] = �[Ũ ] . (6.8)

In order to determine the value of �[Ũ] one can use symmetry arguments.
The manifold SU(2) ∼ S3 can be represented as the union of two equivalent (with the same 

volume) balls in R3 of radius π/2 with identified boundaries, SU(2) ∼ B1 ∪ B2. Indeed each 
element of SU(2) can be written as

eiθσ = cos(|θ |) + iθ̂σ sin(|θ |) ,
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Fig. 11. Ũ0 images in B1 of the boundaries of the regions {F2,F4,G2,G4}.

where |θ | = [θθ ]1/2 and ̂θ = (θ/|θ |). The ball B1 contains the elements with 0 ≤ |θ | ≤ π/2, and 
B2 contains the elements with (π/2) ≤ |θ | ≤ π .

The application Ũ0 : ∂HR → SU(2) maps the boundaries of the rectangles {F2, F4} and 
{G2, G4} into the eight edges in B1 shown in Fig. 11. Equation (6.7) and the picture of Fig. 11
demonstrate that the surface Ũ0 : ∂HR → SU(2) is symmetric under rotations of π/2 around the 
σ 3 axis and bounds a region R of SU(2) which is contained in half of the ball B1. According to 
the reasoning of Section 4.4, the volume of this region R must take the value n/8, where n is an 
integer. This integer n is less than 4 because R is contained inside B1 and satisfies n ≤ 2 because 
R is contained inside half of B1. Finally, the value n = 2 is excluded because a direct inspection 
shows that R does not cover the upper half-part of B1 completely. Therefore one finally obtains

�[U ] = �[Ũ ] = 1

8
. (6.9)

In Section 8 it will be shown that equation (6.9) is also in agreement with a direct computation of 
�[U ] that we have performed by means of the canonical expression (4.18). Finally, the validity of 
the result (6.9) has also been verified by means of a numerical evaluation of the integral (4.18). To 
sum up, in the case of the manifold �3 with the specified representation (6.2) of its fundamental 
group, the value of the classical Chern–Simons invariant is given by

cs[A] = 1

8
mod Z . (6.10)

7. Poincaré sphere

The Poincaré sphere P admits a genus 2 Heegaard splitting presentation. The corresponding 
Heegaard diagram [20] is shown in Fig. 12. One of the two characteristic curves, C′

1 = f (C1), 
is described by the continuous line, whereas the second curve C′

2 = f (C2) is represented by the 
dashed path; xb designates the base point for the fundamental group.

Let the generators {γ1, γ2} of π1(HR) be associated with +F and +G respectively and ori-
ented in the outward direction. According to the Heegaard diagram of Fig. 12, the homotopy 
class of C ′

1 is given by γ −4
1 γ2γ1γ2, whereas the class of C′

2 is equal to γ −2
2 γ1γ2γ1. Therefore the 

fundamental group of P admits the presentation

π1(P) = 〈γ1, γ2 |γ 5
1 = γ 3

2 = (γ1γ2)
2 〉 , (7.1)

which corresponds to the binary icosahedral (or dodecahedral) group of order 120. Since 
the abelianization of π1(P) is trivial, P is a homology sphere. A nontrivial representation 
ρ : π1(P) → SU(2) is given [40,41] by



E. Guadagnini et al. / Nuclear Physics B 925 (2017) 536–559 555
Fig. 12. Heegaard diagram for the Poincaré sphere.

ρ(γ1) = g1 = eib1 = exp
[
i
π

5
σ
]

,

ρ(γ2) = g2 = eib2 = exp
[
i
π

3
σ̃
]

, (7.2)

where

σ =
(

1 0
0 −1

)
,

σ̃ = r

(
1 0
0 −1

)
+
√

1 − r2

(
0 1
1 0

)
,

r = cos(π/3) cos(π/5)

sin(π/3) sin(π/5)
. (7.3)

Equation (7.2) specifies the values of A0
R ,

A0
R =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b1 θ ′(t1)dt1 inside a neighbourhood of + F ;

b2 θ ′(t2)dt2 inside a neighbourhood of + G ;

0 otherwise .

(7.4)

The values of A0
L are determined by equation (7.2) and by the choice of the base point. Indeed, 

let the generators {λ1, λ2} of π1(HL) be associated with C1 and C2 respectively. Then, from the 
Heegaard diagram and the position for the base point, one finds

ρ(λ1) = g1 = eib1 = exp
[
i
π

5
σ
]

,

ρ(λ2) = g2 = eib2 = exp
[
i
π

σ̃
]

. (7.5)

3
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Fig. 13. Values of U0 in the region where f ∗ A0
L

and A0
R

vanish.

Consequently, the image of A0
L under the gluing homeomorphism f takes values

f ∗ A0
L =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b1 θ ′(u1)du1 inside a neighbourhood of C′

1 ;

b2 θ ′(u2)du2 inside a neighbourhood of C′
2 ;

0 otherwise .

(7.6)

One can now determine the map U0 = 
−1
R 
f ∗L : ∂HR → SU(2). In the region of the surface 

∂HR where both f ∗ A0
L and A0

R are vanishing, the values of U0 are shown in Fig. 13. By using 
the method illustrated in the previous examples, one can compute the classical Chern–Simons 
invariant. The intersection component is given by

X [A] = 1

8π2

{
−4 Tr (b1b1) − 2 Tr (b2b2) + 4 Tr (b1b2)

+ Tr
(
b1g2b1g

−1
2

)
+ Tr

(
b2g1b2g

−1
1

)}
= − 2

15
+ 1

2

[
1

5

cos(π/3)

sin(π/5)
+ 1

3

cos(π/5)

sin(π/3)

]2

. (7.7)

The image of the map 
−1
R 
f ∗L : ∂HR → SU(2) is a genus 0 surface in the group SU(2). 

We skip the details, which anyway can be obtained from the Heegaard diagram and equations 
(7.2)–(7.6). Numerical computations of the integral (4.18) give the following value of the Wess–
Zumino volume (with 10−10 precision)

�[A] = 0.0090687883 · · · . (7.8)

Therefore, the value of the classical Chern–Simons invariant associated with the representation 
(7.2) of π1(P) turns out to be

cs[A] = −0.0083333333 · · · = − 1
mod Z , (7.9)
120
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where the last identity is a consequence of the fact that |π1(P)| = 120. The result (7.9) has also 
been obtained by means of a complete computation of the integral (4.18); this issue is elaborated 
in Section 8.

8. Computations of the Wess–Zumino volume

The computation of �[U ] by means of the canonical expression (4.18) presents general fea-
tures that are consequences of our construction of the flat connection A by means of a Heegaard 
splitting presentation of M . This allows the derivation of universal formulae of the classical 
Chern–Simons invariant for quite wide classes of manifolds. We present here one example; de-
tails will be produced in a forthcoming article.

Let us consider the set of Seifert spaces �(m, n, −2) of genus zero with three singular fi-
bres which are characterised by the integer surgery coefficients (m, 1), (n, 1) and (2, −1). The 
manifolds �(m, n, −2) admit [4,40] a genus two Heegaard splitting M = HL ∪f HR and their 
fundamental group can be presented as

π1(M) = 〈γ1, γ2 |γ m
1 = γ n

2 = (γ1γ2)
2 〉 , (8.1)

for nontrivial positive integers m and n. The manifold �3 discussed in Section 6 and the Poincaré 
manifold P considered in Section 7 are examples belonging to this class of manifolds. Let us 
introduce the representation of π1(M) in the group SU(2) given by

γ1 → g1 = exp [iθ1σ ] ,

γ2 → g2 = exp [iθ2σ̃ ] , (8.2)

where σ and ̃σ are combinations of the sigma matrices satisfying σ 2 = 1 = σ̃ 2, and

gm
1 = gn

2 = (g1g2)
2 = −1 . (8.3)

In this case, the value of the surface integral (4.5) is given by

X [A] = −1

4

{
m

[
θ1

π

]2

+ n

[
θ2

π

]2

− 2

[(
θ2

π

)
cos θ1

sin θ2
+
(

θ1

π

)
cos θ2

sin θ1

]2
}

. (8.4)

As it has been shown in the previous examples, the image of the map 
−1
R 
f ∗L : ∂HR → SU(2)

is a genus 0 surface in the group SU(2). The corresponding Wess–Zumino volume turns out to 
be

�[U ] = 1

4

{
1

2
− 2

[(
θ2

π

)
cos θ1

sin θ2
+
(

θ1

π

)
cos θ2

sin θ1

]2
}

. (8.5)

So that the value of the classical Chern–Simons invariant for the manifolds �(m, n, −2) reads

cs[A] = −1

4

{
m

[
θ1

π

]2

+ n

[
θ2

π

]2

− 1

2

}
mod Z . (8.6)

When m = n = 2, expression (8.6) gives the value of the classical Chern–Simons invariant ap-
pearing in equation (6.9); and for m = 5, n = 3, expression (8.6) coincides with equation (7.9). 
Equation (8.6) is valid for generic values of m and n; for those particular values of m and n such 
that �(m, n, −2) is a Seifert homology sphere, our equation (8.6) is in agreement with the results 
of Fintushel and Stern [5] and Kirk and Klassen [6] for Seifert spheres.
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9. Conclusions

Given a SU(N) representation ρ of the fundamental group of a 3-manifold M , we have shown 
how to define a corresponding flat connection A on M such that the holonomy of A coincides 
with ρ. Our construction is based on a Heegaard splitting presentation of M , so that the rela-
tionship between A and the topology of M is displayed. The relative classical Chern–Simons 
invariant cs[A] is naturally decomposed into the sum of two contributions: a sort of coloured 
intersection form, which is specified by the Heegaard diagram, and a Wess–Zumino volume of a 
region of SU(N) which is determined by the non-commutative structure of the ρ representation 
of π1(M). A canonical expression for the Wess–Zumino volume, as function of the boundary 
data exclusively, has been produced. A few illustrative examples of flat connections and of clas-
sical Chern–Simons invariant computations have been presented.
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