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We investigate the critical behavior of three-dimensional ferromagnetic CPN−1 models, which are
characterized by a global U(N) and a local U(1) symmetry. We perform numerical simulations of
a lattice model for N = 2, 3, and 4. For N = 2 we find a critical transition in the Heisenberg
O(3) universality class, while for N = 3 and 4 the system undergoes a first-order transition. For
N = 3 the transition is very weak and a clear signature of its discontinuous nature is only observed
for sizes L & 50. We also determine the critical behavior for a large class of lattice Hamiltonians
in the large-N limit. The results confirm the existence of a stable large-N CPN−1 fixed point.
However, this evidence contradicts the standard picture obtained in the Landau-Ginzburg-Wilson
(LGW) framework using a gauge-invariant order parameter: the presence of a cubic term in the
effective LGW field theory for any N ≥ 3 would usually be taken as an indication that these models
generically undergo first-order transitions.

I. INTRODUCTION

CPN−1 models are a class of quantum field theories in
which the fundamental field is a complex N -component
unit vector z(x), associated with an element of the com-
plex projective manifold CPN−1. They are characterized
by a global U(N) symmetry

z(x) → Uz(x) U ∈ U(N), (1)

and a local U(1) gauge symmetry

z(x) → eiΛ(x)
z(x). (2)

The corresponding statistical field theory is defined by

Z =

∫
[dz] exp

[
−
∫

dxL(z)
]
,

L =
1

2g
Dµz ·Dµz, Dµ = ∂µ + iAµ, (3)

where Aµ = iz̄ · ∂µz is a composite gauge field, which
transforms as Aµ(x) → Aµ(x)−∂µΛ(x) under the gauge
transformations (2). For N = 2 the CP1 field theory is
locally isomorphic to the O(3) non-linear σ model with
the identification sa =

∑
ij z̄

iσa
ijz

j, where a = 1, 2, 3 and
σa are the Pauli matrices.
Three-dimensional (3D) CPN−1 models emerge as ef-

fective theories of SU(N) quantum antiferromagnets [1–
7] and of scalar electrodynamics with a compact U(1)
gauge group. The two-dimensional (2D) CPN−1 model
is instead an interesting theoretical laboratory to study
quantum field theories of fundamental interactions as it
shares several features with quantum chromodynamics
(QCD), the theory that describes the hadronic strong in-
teractions [8, 9].
The simplest lattice formulation of CPN−1 model is

obtained by a straightforward discretization of the con-
tinuum theory (3). One considers N -component complex

unit vectors zx defined on the sites of a lattice and the
nearest-neighbor Hamiltonian

Hs = −J
∑

xµ

|z̄x · zx+µ̂|2, (4)

where the sum is over the lattice sites x and the lattice
directions µ (µ = 1, . . . , d), and µ̂ = 1̂, 2̂, . . . are unit
vectors along the lattice directions.
In three dimensions CPN−1 models are expected to

undergo a finite-temperature transition between a high-
and a low-temperature phase. Its nature may be in-
vestigated by resorting to the Landau-Ginzburg-Wilson
(LGW) field-theoretical approach [10–14]. In this frame-
work the critical features are uniquely specified by the
nature of the order parameter associated with the criti-
cal modes, by the symmetries of the model, and by the
symmetries of the phases coexisting at the transition, the
so-called symmetry-breaking pattern. In the presence of
gauge symmetries, the traditional LGW approach starts
by considering a gauge-invariant order parameter, effec-
tively integrating out the gauge degrees of freedom, and
by constructing a LGW field theory that is invariant un-
der the global symmetries of the original model.
The order parameter of the transition in ferromag-

netic CPN−1 models is usually identified with the gauge-
invariant site variable

Qab
x

= z̄a
x
zb
x
− 1

N
δab, (5)

which is a hermitian and traceless N × N matrix. It
transforms as

Qx → U †Qx U, (6)

under the global U(N) transformations (1). The order-
parameter field in the corresponding LGW theory is
therefore a traceless hermitian matrix field Φab(x), which
can be formally defined as the average of Qab

x
over a large
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but finite lattice domain. The LGW field theory is ob-
tained by considering the most general fourth-order poly-
nomial in Φ consistent with the U(N) symmetry (6):

HLGW = Tr(∂µΦ)
2 + rTrΦ2 (7)

+w tr Φ3 + u (TrΦ2)2 + vTrΦ4.

A continuous transition is possible if the renormalization-
group (RG) flow computed in the LGW theory has a
stable fixed point.
For N = 2, the cubic term in Eq. (7) vanishes and the

two quartic terms are equivalent. Therefore, one recovers
the O(3)-symmetric LGW theory, consistently with the
equivalence between the CP1 and the Heisenberg model.
For N ≥ 3, the cubic term is generically expected to be
present. The presence of a cubic term in the LGWHamil-
tonian is usually taken as an indication that phase tran-
sitions occurring in this class of systems are generically of
first order. Indeed, a straightforward mean-field analysis
shows that the transition is of first order in four dimen-
sions. The nature of the transition should not change
sufficiently close to four dimensions, as long as statis-
tical fluctuations are small. In particular, it is usually
assumed that the four-dimensional mean-field result also
applies in three dimensions. In this scenario, continuous
transitions may still occur, but they require a fine tun-
ing of the microscopic parameters leading to the effective
cancellation of the cubic term. If this occurs, the critical
behavior is controlled by the stable fixed point of the RG
flow of the LGW theory (7) with w = 0. Such a LGW
model was studied in detail in Ref. [15]. For N = 3 it is
equivalent to the O(8) vector φ4 theory, therefore there
is a stable fixed point, while no fixed point was identified
for N ≥ 4 by using field-theoretical methods.
The prediction of a first-order transition is appar-

ently contradicted by recent numerical studies [5, 16, 17].
Refs. [16, 17] report evidence of a continuous transition in
a loop model supposed to belong to the same universality
class as that of the 3D CP2 model. Their results hint at
a new CP2 universality class, [17] characterized by the
correlation-length critical exponent ν = 0.536(12). This
result is not consistent with the standard LGW picture
we reported above. In the standard scenario in which
generic CP2 models undergo first-order transitions due
to the cubic term in the corresponding LGW theory, a
continuous transition may only emerge from a tuning of
the parameters achieving its cancellation. Therefore, the
continuous transition associated with the effective cancel-
lation of the cubic term is described by the stable fixed
point of the LGW theory without cubic term, which be-
longs to the O(8) vector universality class, whose critical
exponent [15] ν = 0.85(2) definitely differs from that re-
ported in Ref. [17]. Therefore, the emergence of a new
CP2 universality class is in apparent contradiction with
the predictions of the standard LGW picture, in which
the presence of a cubic term in the effective LGW Hamil-
tonian implies that first-order phase transitions. To make
the existence of the CP2 universality class plausible even
in the presence of a cubic term, Ref. [17] proposed a

double expansion around N = 2 (where the cubic term
vanishes) and ǫ = 4− d, arguing that a continuous tran-
sition may be possible for values of N sufficiently close
to N = 2.

An additional apparent contradiction emerges when
considering CPN−1 models in the large-N limit. In this
limit one may argue that 3D CPN−1 models may un-
dergo a continuous transition, because the correspond-
ing continuum field theory is expected to share the same
critical behavior as the abelian Higgs model for an N -
component complex scalar field coupled to a dynamical
U(1) gauge field [9]. This equivalence is conjectured to
extend to finite N at the critical point [9]. The RG flow
of the abelian Higgs model presents a stable fixed point
for a sufficiently large number of components [18]. More
precisely, in the perturbative ǫ expansion (ǫ = 4 − d)
one finds a stable fixed point for N > Nc, with [9, 18]

Nc = 90 + 24
√
15 + O(ǫ). Thus, for large values of N ,

3D CPN−1 models may undergo a continuous transition,
in the same universality class as that occurring in the
abelian Higgs model.

The above results may suggest that the critical modes
at the transition are not exclusively associated with the
gauge-invariant order parameter Q defined in Eq. (5).
Other features, for instance the gauge degrees of freedom,
may become relevant, requiring an effective description
different from that of the LGW theory (7).

We mention that the LGW description apparently fails
also in other systems in which a gauge symmetry is
present, for instance in antiferromagnetic 3D CPN−1 and
RPN−1 models [19, 20], although the discrepancies are
not related to the presence of a cubic term in the corre-
sponding LGW theory.

In this paper we discuss the critical behavior of fer-
romagnetic 3D CPN−1 models, presenting additional nu-
merical and analytical results, which may help clarify the
above apparent contradictions between the actual behav-
ior of lattice CPN−1 models and the LGW approach. We
consider an alternative lattice formulation of 3D CPN−1

models, which contains an additional U(1) gauge vari-
able and is linear with respect to all lattice variables,
and perform numerical simulations for N = 2, N = 3,
and N = 4. Moreover, we reconsider the large-N limit,
presenting analytical results for the phase diagram. Our
results for N = 2, 3, 4 are consistent with the standard
LGW picture. Indeed, while the transition is continuous
for N = 2, for N = 3 and 4 the transition is of first order
(for N = 4 we confirm the results of Ref. [21]), although
very weak for N = 3.

The paper is organized as follows. In Sec. II we define
the 3D CPN−1 model we consider and the observables
that are determined in the Monte Carlo simulations. In
Sec. III we summarize the main features of the finite-
size scaling (FSS) theory at continuous and first-order
transitions, which allow us to distinguish the nature of
the transitions observed in lattice 3D CPN−1 models.
Then, in Secs. IV, V, and VI, we report a numerical study
of the 3D CPN−1 models for N = 2, N = 4, and finally
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for N = 3 (the most controversial case), respectively. For
N = 2 the transition is continuous and belongs to the
O(3) vector universality class, while it is of first order for
N = 4. For N = 3, the transition is also of first order,
but it is so weak that its first-order nature only emerges
when relatively large systems are considered. In Sec. VII
we discuss the large-N limit of lattice CPN−1 models.
Finally, in Sec. VIII we summarize our main results and
draw our conclusions. In App. A we discuss the large-N
behavior of a general class of CPN−1 models.

II. LATTICE THREE-DIMENSIONAL CPN−1

MODELS

In our study we consider a lattice formulation, in which
gauge invariance is guaranteed by introducing a U(1) link
variable λx,µ ≡ eiθx,µ [22–24]. The Hamiltonian is given
by

Hλ = −tN
∑

x,µ

(z̄x · λx,µ zx+µ̂ + c.c.) , (8)

where the sum is over all lattice points x and lattice
directions µ. In the simulations we set t = 1. The factor
N is introduced for convenience; with this definition, the
large-N limit is defined by taking N → ∞ keeping β
fixed [25].
One can easily check that Hamiltonian (8) is invariant

under the global and local U(1) transformations (1) and
(2). Moreover, by integrating out the gauge field, one
can rewrite the partition function as

Z =
∑

{z,λ}

e−βHλ =
∑

{z}

∏

x,µ

I0 (2βNt|z̄x · zx+µ̂|) , (9)

where I0(x) is a modified Bessel function. The corre-
sponding effective Hamiltonian is

Hλ,eff = −β−1
∑

x,µ

ln I0 (2βNt|z̄x · zx+µ̂|) . (10)

We recall that I0(x) = I0(−x), I0(x) = 1+x2/4+O(x4),

and I0(x) ≈ ex/
√
2πx for large x. The above formu-

las imply that, independently of the sign of t, the model
defined by the Hamiltonian (10), or equivalently Hamil-
tonian (8), is ferromagnetic, as is the formulation (4)
with J > 0. For N = 2 Hamiltonian (10) is a variant of
the standard O(3)-symmetric (Heisenberg) spin model,
which is equivalent to formulation (4).
The lattice formulation (8) is numerically more con-

venient than the formulation (4). The main reason is
that Hamiltonian (8) is linear with respect to all vari-
ables zx and λx,µ, unlike the standard Hamiltonian (4).
This leads to notable advantages for Monte Carlo (MC)
simulations. For linear Hamiltonians one can use overre-
laxed algorithms [26–28], which are more efficient than
the standard Metropolis algorithm, the only one that

can be straightforwardly used for the nonlinear Hamil-
tonian (4). We employ overrelaxed updates obtained
by a stochastic mixing of microcanonical and standard
Metropolis updates of the lattice variables [29].
In our numerical study we consider cubic lattices of lin-

ear size L with periodic boundary conditions. We com-
pute the energy density and the specific heat, defined
respectively as

E =
1

NV
〈Hλ〉, C =

1

N2V

(
〈H2

λ〉 − 〈Hλ〉2
)
, (11)

where V = L3. We consider correlations of the gauge
invariant operator Qab

x
defined in Eq. (5). Its two-point

correlation function is defined as

G(x− y) = 〈TrQxQy〉, (12)

where the translation invariance of the system has been
taken into account. The susceptibility and the correlation
length are defined as

χ =
∑

x

G(x) = G̃(0), (13)

ξ2 ≡ 1

4 sin2(π/L)

G̃(0)− G̃(pm)

G̃(pm)
, (14)

where G̃(p) =
∑

x
eip·xG(x) is the Fourier transform of

G(x), and pm = (2π/L, 0, 0) is the minimum nonzero lat-
tice momentum. We also consider the Binder parameter

U =
〈µ2

2〉
〈µ2〉2

, µ2 =
1

V 2

∑

x,y

TrQxQy. (15)

III. SUMMMARY OF FINITE-SIZE SCALING

THEORY

In this section we summarize the finite-size scaling
(FSS) theory at continuous and first-order transitions.
It will be useful later to distinguish the nature of the
transition in 3D CPN−1 models.

A. Continuous transitions

At continuous transitions the FSS limit is obtained by
taking β → βc and L → ∞ keeping

X ≡ (β − βc)L
1/ν (16)

fixed, where βc is the inverse critical temperature and
ν is the correlation-length exponent. Any RG invariant
quantity R, such as Rξ ≡ ξ/L and U , is expected to
asymptotically behave as

R(β, L) = fR(X) +O(L−ω), (17)

where fR(X) is a function, which is universal apart from
a trivial normalization of its argument and which only
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depends on the shape of the lattice and on the boundary
conditions. In particular, the quantity R∗ ≡ fR(0) is
universal. The approach to the asymptotic behavior is
controlled by the universal exponent ω > 0, which is
associated with the leading irrelevant RG operator.
Assuming that the scaling function of a RG invariant

quantity R1 is monotonic—this is generally the case for
Rξ and therefore we will usually set R1 = Rξ—we may
also write

R2(β, L) = FR(R1) +O(L−ω), (18)

for any R2 6= R1, where FR(x) is a universal scaling
function as well. Eq. (18) is particularly convenient, as
it allows a direct check of universality, without the need
of tuning any parameter.
In order to estimate the exponent η, one may analyze

the FSS behavior of the susceptibility. It scales as

χ(β, L) ∼ L2−η
[
fχ(X) +O(L−ω)

]
, (19)

or, equivalently, as

χ(β, L) ∼ L2−η
[
Fχ(Rξ) +O(L−ω)

]
. (20)

The behavior of the specific heat at the transition is [14]

C(β, L) ≈ Creg(β) + Lα/νfC(X), (21)

where Creg(β) denotes the regular background, which is
an analytic function of β. This contribution is the dom-
inant one for α < 0, or, correspondingly, for ν > 2/3.
When α > 0, we may also write the above equation as

C(β, L) ≈ Lα/νFC(Rξ) +O(L−α/ν , L−ω). (22)

B. First-order transitions

At first-order transitions the probability distributions
of the energy and of the magnetization are expected to
show a double peak for large values of L. Therefore, two
peaks in the distributions are often taken as an indication
of a first-order transition. However, as discussed, e.g., in
Refs. [30–33] and references therein, the observation of
two maxima in the distribution of the energy is not suffi-
cient to conclude that the transition is a first-order one.
For instance, in the two-dimensional Potts model with
q = 3 and q = 4 [31, 32], double-peak distributions are
observed, even if the transition is known to be continu-
ous. Analogously, in the 3D Ising model the distribution
of the magnetization has two maxima [34]. In order to
identify definitely a first-order transition, it is necessary
to perform a more careful analysis of the large-L scal-
ing behavior of the distributions or, equivalently, of the
specific heat and the of Binder cumulants [35–39].
If E+ and E− are the values of the energy correspond-

ing to the two maxima of the energy-density distribution,
the latent heat ∆h is given by ∆h = E+ −E−. An alter-
native estimate of the latent heat can be obtained from

the FSS of the specific heat C. According to the standard
phenomenological theory [35] of first-order transitions,
for a lattice of size L there exists a value βmax,C(L) of
β where C takes its maximum value Cmax(L). For large
volumes, we have

Cmax(L) = V

[
1

4
∆2

h +O(1/V )

]
, (23)

βmax,C(L)− βc ≈ c V −1, (24)

where V = Ld.
The Binder parameter U can also be used to character-

ize a first-order transition. As discussed in Ref. [36] (see
also Ref. [38] for the extension to models with continuous
symmetries), the distribution of the order parameter is
also expected to show two peaks at M+ and M−, M− <
M+, with M− → 0 as L → ∞ since there is no spon-
taneous magnetization in the high-temperature phase.
As a consequence, the behavior of the Binder parame-
ter U(β, L) at fixed L must show a maximum Umax(L)
at fixed L (for sufficiently large L) at β = βmax,U (L) < βc

with

Umax = a V +O(1) , (25)

βmax,U (L)− βc ≈ b V −1 . (26)

Note that FSS also holds at first-order transitions [38, 40–
42], although it is more sensitive to the geometry and
and to the nature of the boundary conditions [39]; for in-
stance, FSS differs for boundary conditions that favor or
do not favor the different phases coexisting at the tran-
sition [43, 44]. In the case of cubic systems with periodic
boundary conditions, FSS behavior is typically charac-
terized by an effective exponent ν = 1/d = 1/3 (thus
α/ν = d = 3). An exponent ν larger than 1/d = 1/3
indicates a continuous transition.

IV. NUMERICAL ANALYSIS OF THE 3D CP1

MODEL

To begin with, we discuss the 3D CP1 lattice model
(8), corresponding to N = 2. As already mentioned in
the introduction, the transition in 3D CP1 models should
belong to the 3D O(3) vector (Heisenberg) universality
class, whose universal features are known with high ac-
curacy [14]. Accurate estimates of the critical exponents
have been obtained by various methods; we quote [45, 46]

νh = 0.7117(5), ηh = 0.0378(3), (27)

so that αh = 2 − 3νh = −0.1351(15). Moreover, accu-
rate results have also been obtained for the RG invariant
quantities Rξ and U . For cubic systems with periodic
boundary conditions, we have [45]

R∗
ξ = 0.5639(2), U∗ = 1.1394(3), (28)

at the critical point.
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0.8

Rξ

L=8
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L=16
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L=32
L=48

FIG. 1: Estimates of Rξ ≡ ξ/L for the CP1 lattice model
and several lattice sizes L up to L = 48. The horizontal
dashed line corresponds to the universal value R∗

ξ = 0.5639(2)
of Rξ obtained for the 3D Heisenberg universality class. The
vertical dotted line indicates our best estimate βc = 0.7102(1)
of the critical point.

−2 −1 0 1
X

0.0

0.2

0.4

0.6

0.8

1.0

Rξ

L=8
L=12
L=16
L=24
L=32
L=48

FIG. 2: Scaling plot of Rξ for the CP1 model, versus X ≡

(β − βc)L
1/νh , using νh = 0.7117 and βc = 0.7102. The

horizontal dashed line corresponds to the universal valueR∗

ξ =
0.5639(2) at the critical point (X = 0) for the 3D Heisenberg
universality class.

In order to verify that the critical behavior of the lat-
tice CP1 model (8) belongs to the 3D Heisenberg univer-
sality class, we show that the FSS behavior in the CP1

model has the same universal features (same critical ex-
ponents and same values for R∗

ξ and U∗) as in the 3D
Heisenberg model.

Figure 1 shows our results for the ratio Rξ = ξ/L.
The data corresponding to different value of L have a
crossing point, which provides us a first estimate of the
critical temperature, βc ≈ 0.710. The slopes of the curves
are related to the critical exponent ν. Their behavior is
nicely consistent with the Heisenberg value. An accurate
estimate of the critical point is obtained by assuming
the Heisenberg critical exponents and fitting the data to

0.0 0.2 0.4 0.6 0.8 1.0
Rξ

1.0

1.2

1.4

1.6

U

L=8
L=12
L=16
L=24
L=32
L=48

FIG. 3: Plot of U versus Rξ for the CP1 model. The hor-
izontal and vertical dotted lines correspond to the universal
values U∗ = 1.1394(3) and R∗

ξ = 0.5639(2), which are the
universal values of Rξ and U at the critical point for the 3D
Heisenberg universality class, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Rξ

0.0

0.5

1.0
L

-2
+

η h
χ

L=8
L=12
L=16
L=24
L=32
L=48

FIG. 4: Scaling behavior of the susceptibility χ for the CP1

model: plot of L−2+ηhχ versus Rξ, using the 3D Heisenberg
value ηh = 0.0378.

Eq. (17). In particular, we fit Rξ to the simple ansatz

Rξ = R∗
ξ + c1 X, X = (β − βc)L

1/νh , (29)

using the known estimates of R∗
ξ and νh. In the fit

we only consider the data belonging to a small inter-
val around βc, where the behavior of Rξ looks linear.
We obtain βc = 0.7102(1). Fig. 2 shows Rξ versus

X ≡ (β − βc)L
1/νh . The quality of the collapse of the

data onto a unique scaling curve provides a striking evi-
dence that the exponent ν for the lattice CP1 model (8)
is that of the Heisenberg universality class. Scaling cor-
rections are very small; they are expected to decay as
L−ωh with [14, 45, 47] ωh = 0.78(1). We also note the
agreement of the X = 0 value of the curves with the
estimate (28) of R∗

ξ .
The Heisenberg nature of the transition is also sup-

ported by the data for the Binder parameter U . In Fig. 3
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0.000

0.001

0.002

0.003
C

/V
L=16
L=20
L=24
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L=40

FIG. 5: Plot of the ratio C/L3 versus β for several lattice
sizes L up to L = 40, where C is the specific heat. Results for
the CP3 lattice model. The vertical dotted line correponds
to the estimate βc ≈ 0.5636, obtained by extrapolating the
position of the maximum of the specific heat, using Eq. (24).
The dotted lines connecting the data for the same size L are
only meant to guide the eye.

we plot U versus Rξ. The data scale on a single curve,
in agreement with Eq. (18), and U takes the value U∗

reported in Eq. (28) when Rξ = R∗
ξ .

The scaling behavior of the susceptibility is also in
agreement with Heisenberg behavior. If we fix ηh to
the Heisenberg value, we observe very good scaling, see
Fig. 4. Since αh < 0, the leading asymptotic behavior
of the specific heat is given by the nonuniversal regular
part, see Eq. (21). Thus, C does not show any particular
feature that can be used to identify the universality class.
We may safely conclude that the above numerical FSS

analysis confirms that the critical behavior of the lattice
formulation (8) for N = 2 belongs to the 3D O(3) vector
universality class, as expected.

V. NUMERICAL ANALYSIS OF THE 3D CP3

MODEL

In this section we discuss the CP3 lattice model, i.e.
model (4) for N = 4. This model wes already considered
in Ref. [21], where the transition was identified as being
of first order. Here, we present additional simulations
on larger lattices, which confirm the first-order nature of
the finite-temperature transition, in agreement with the
predictions of the corresponding LGW field theory.
In Fig. 5 we report the specific heat up to L = 40.

For each L, it shows a maximum which increases approx-
imately as the volume, thus approaching the asymptotic
behavior predicted by Eq. (23) for a first-order transition.
We extrapolate the position βmax,C of the maximum us-
ing Eq, (24), obtaining βc = 0.5636(1) for the transition
point. Moreover, using Eq. (23) we can also estimate the
latent heat, obtaining ∆h = 0.11(1).
The first-order nature of the transition is also sup-

0.560 0.561 0.562 0.563 0.564
β

0

1

2

3

4

5

6

U

L=16
L=20
L=24
L=32
L=40

FIG. 6: Estimates of the Binder parameter U for the CP3

lattice model, for several lattice sizes L up to L = 40. The
vertical dotted line corresponds to the estimate βc ≈ 0.5636,
while the horizontal dashed line corresponds to Uh = 17/15,
the high-temperature value of U . The dotted lines connecting
the data for the same size L are only meant to guide the eye.

0.561 0.562 0.563 0.564
β

0.00000

0.00008

(U
-U

h)/
V

L=16
L=20
L=24
L=32
L=40

FIG. 7: Estimates of (U − Uh)/L
3 in the CP3 lattice model

for several lattice sizes L up to L = 40. Here U is the Binder
parameter and Uh = 17/15 its high-temperature value. The
vertical dotted line corresponds to the estimate βc ≈ 0.5636.
The dotted lines connecting the data for the same size L are
only meant to guide the eye.

ported by the behavior of the Binder parameter U . For
each L, data show a peak at a value βmax,U (L), where
U is significantly larger than the high-temperature and
low-temperature values given by

Uh ≡ lim
β→0

U =
N2 + 1

N2 − 1
=

17

15
, (30)

Ul ≡ lim
β→∞

U = 1 .

Data are in substantial agreement with the predictions
(25) and (26). This is clearly shown in Fig. 7, where we
plot (U − Uh)/L

3 (Uh = 17/15 is the high-temperature
value). As L increases the maximum of such quantity ap-
parently approaches a finite nonzero value, in agreement
with Eq. (25). Note that the subtraction of the constant
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Rξ
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2
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U

L=16
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L=40

FIG. 8: Plot of the Binder parameter U versus Rξ for the
CP3 lattice model, for several lattice sizes L up to L = 40.
Data do not scale, at variance with what happens in the CP1

model, characterized by a continuous transition.

Uh does not change the asymptotic L3 behavior. It is nat-
ural to expect that it provides a reasonable approxima-
tion of the O(1) contribution in Eq. (25) (we subtracted
Uh = 17/15 instead of Ul = 1, because the maximum
is located in the high-temperature phase). Moreover, the
large-L extrapolation of the position of the maximum us-
ing Eq. (26) is consistent with the value obtained from
the analysis of the specific heat.
Finally, in Fig. 8 we plot U versus Rξ. The data do

not converge to an asymptotic curve, at variance with
what happens in the CP1 model where the transition is
continuous, see Fig. 3.
In conclusion, numerical results provide a robust evi-

dence that the finite-temperature phase transition is of
first order in the CP3 model (4). This confirms the re-
sults of Ref. [21], and, in particular, the standard LGW
predictions. We recall that a first-order transition was
also found in Refs. [16, 17] for an alternative lattice loop
formulation corresponding to the 3D CP3 model.

VI. NUMERICAL ANALYSIS OF THE 3D CP2

MODEL

We now study the behavior of the 3D CP2 model,
which is more controversial. On the one hand, the usual
LGW scenario predicts a first-order transition, as ob-
served in the CP3 model; on the other hand, the finite-
size scaling analysis [16, 17] of a loop model that is ex-
pected to be in the same universality class as that of the
lattice CP2 model favors a continuous transition with
critical exponents νn = 0.536(13), αn = 0.39(4), and
ηn = 0.23(2). As we shall see, our FSS analysis of the
lattice CP2 model up to L = 96 favors a weak first-order
transition.
To identify the transition temperature, we consider

the ratio Rξ as a function of β. As shown in Figure 9,
the data for different values of L clearly show a cross-

0.616 0.618 0.620 0.622 0.624
β

0.0
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L=16
L=20
L=24
L=32
L=40
L=48
L=64
L=96

FIG. 9: Estimates of Rξ ≡ ξ/L for the CP2 lattice model and
several lattice sizes L up to L = 96.
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X

0.0

0.5

1.0

1.5

Rξ

L=8
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L=24
L=32
L=40
L=48
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L=96

FIG. 10: Scaling plot of Rξ versus X ≡ (β − βc)L
1/νn , using

νn = 0.536, which is the exponent obtained in Ref. [17], and
βc = 0.6195, which is obtained by fitting the data around βc

(up to L = 48) to Eq. (29), keeping νn fixed. Results for the
CP2 model. Data up to L = 48 apparently collapse onto a
single curve, but discrepancies appear when considering L =
64 and L = 96 data; no significant improvement is observed
by only shifting the value of βc.

ing point, indicating a finite-temperature transition for
β ≈ 0.620. If the CP2 model has a continuous transi-
tion, Rξ(β, L) should scale as predicted by Eq. (17). In
this case, we expect the transition to be in the same uni-
versality class as that discussed in Ref. [17], and hence
exponents should be the same for the two models. There-
fore, we have analyzed our data setting ν = 0.536, the
estimate of Ref. [17], and keeping βc as a free parameter.
We obtain a reasonable collapse of the data correspond-
ing to sizes L ≤ 48. Systematic deviations are instead
observed for the data with L = 96 and, to a lesser ex-
tent, with L = 64, suggesting the presence of a crossover
for L ≈ 100. To provide a more convincing evidence that
the behavior for L ≤ 48 is only a transient small-size
behavior, we have repeated the determination of βc, us-
ing only the data corresponding to L ≤ 48. We obtain
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FIG. 11: Specific heat C for the CP2 lattice model as a func-
tion of β, for several lattice sizes L, up to L = 96. The dashed
lines are interpolations obtained using reweighting tecniques
[48].
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FIG. 12: Plot of L−κnC versus Rξ for the CP2 lattice model.
We set κn = 0.73, obtained using the relation κn ≡ αn/νn =
(2/νn−3) and the estimate νn = 0.536(13) of Ref. [17]. For a
continuous transition with α > 0, data should asymptotically
collapse onto a single curve, see Eq. (22).

βc ≈ 0.6195. The corresponding scaling plot is reported
in Fig. 10. Up to L = 48, the scaling is good, but the
largest-size data obtained on lattices with L = 64, 96 are
clearly not consistent with a continuous transition with
ν = 0.536. We have also tested if the data for the suscep-
tibility χ defined in Eq. (13) satisfy the scaling behavior
(20), using the estimate ηn = 0.23(2) of Ref. [17] (η is
the only free parameter). Scaling is quite poor, even if
we only consider data with L ≤ 48. For this set of small-
size results, a reasonable scaling is observed if we take a
significantly smaller value of η, η . 0.1. However, the
results for L = 96 appear to be off the curve even for this
value of η.

Similar conclusions are reached from the analysis of
the specific heat C, reported in Fig. 11. In Fig. 12, we
plot L−κnC as a function of Rξ, where κn = αn/νn =
(3/νn−1). Using [17] νn = 0.536, we fix κn ≈ 0.73. For a

0.617 0.618 0.619 0.620 0.621
β

1.0

1.2

1.4

1.6

U

L=32
L=40
L=48
L=64
L=96

FIG. 13: Estimates of the Binder parameter U for the CP2

lattice model and several lattice sizes L up to L = 96. The
horizontal dashed lines correspond to U = 5/4 and U = 1,
which are the asymptotic values of U for β → 0 and β →

∞, respectively. The interpolating dashed lines have been
obtained using reweighting tecniques [48].
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FIG. 14: The Binder parameter U versus Rξ for the CP2

model and several lattice sizes L up to L = 96.

continuous transition, all data should asymptotically fall
onto a single curve, see Eq. (22). The data up to L = 48
are in reasonable agreement with the predicted scaling
behavior, but this is not the case for those corresponding
to L = 64 and 96. The maximum Cmax(L), which can be
computed quite precisely using the reweighting method of
Ref. [48], increases indeed faster than L0.73, although we
are still very far from observing the asymptotic behavior
Cmax(L) ∼ L3 appropriate for first-order transitions.
The strongest indication for a first-order transition

comes from the anomalous behavior of the Binder param-
eter U . The numerical results, reported in Fig. 13, show
that the maximum Umax(L) does not converge to a finite
value as L increases, at variance with what is expected
for a continuous transition. It is also useful to plot U ver-
sus Rξ. For a continuous transition data should collapse
onto a single curve (note that there are no free parame-
ters), and indeed they do in the CP1 model, see Fig. 3.
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FIG. 15: Distributions of the energy density (top) and of
µ2 defined in Eq. (15) (bottom); see Eq. (31). We report
results for several values of β close to the transition point
and L = 96. The distributions have been estimated using
reweighting techniques [48].

Instead, here no evidence of scaling emerges, see Fig. 14.
The plot is similar to that obtained for the CP3 model,
see Fig. 8, where the transition is of first order. Note that
the plot of U versus Rξ is apparently the most appropri-
ate one to identify the nature of the transition. Indeed,
at variance with the previous analyses, here there are no
transient deceiving effects: even if we only consider data
with, say, L ≤ 32, we would still observe a poor scaling
behavior in the interval 0.3 . Rξ . 0.6.
Finally, we consider the distributions of the energy

density and of the quantity µ2, defined in Eq. (15):

PE(E) = 〈δ[E −Hλ/(NV )]〉,
PM (M2) = 〈δ(M2 − µ2)〉. (31)

Up to L = 64, the distribution PM (M2) does not show a
double-peak structure, although, for L = 48 and L = 64,
one can identify a somewhat flat top region, which is
analogous to that observed for the energy when L = 96
(see below). Two distinct peaks are only identified for
L = 96, see Fig. 15. In the case of the energy density
instead, even for L = 96 we do not observe a double-
peak structure. However, the distribution corresponding
to β = 0.61967 shows an intermediate flat top region,

suggesting that two peaks will appear for largest values of
L. The width of the flat region (we make the reasonable
assumption that such width is larger than the distance
between the positions of the two maxima that will appear
for large L) provides an upper bound for the latent heat.
We obtain ∆h < 0.01, which is very small, much smaller
than ∆h ≈ 0.11 obtained for the CP3 model.
In conclusion, the FSS analysis of the data up to L ≈

100 supports the presence of a weak first-order transition.
For L . 50, most of the data show an intermediate regime
where a behavior compatible with a continuous transition
is observed. In this regime, results are roughly consistent
with those obtained from the analysis of the CP2 loop
model [16, 17] with system sizes up to L ≈ 100. However,
our data corresponding to L = 64, 96 are not consistent
with the conclusions of Refs. [16, 17]. It is interesting to
note that the most robust evidence against a continuous
transition is provided by the Binder parameter, which,
however, was not considered in Refs. [16, 17].
From our results we might conclude that no CP2 uni-

versality class exists. In this case, the scaling behavior
observed in Ref. [17] is not asymptotic, but simply an
intermediate transient regime, as it occurs in the lattice
formulation we consider. In this case, also in the loop
model one would observe first-order behavior for large
values of L. However, we would like to stress that we
cannot completely exclude that a CP2 fixed point really
exists. Indeed, it is a priori possible that the CP2 lattice
model is outside the attraction domain of the fixed point.
With increasing L, the renormalization-group flow for the
lattice model gets initially closer to the CP2 fixed point,
giving somehow rise to an intermediate scaling regime,
and then it moves away to infinity, as expected for a
first-order transition.

VII. THE LATTICE CPN−1 MODELS IN THE

LARGE-N LIMIT

To obtain further insight on the critical behavior of
CPN−1 models, we consider the large-N limit. We study
a very general class of Hamiltonians given by

H = −N
∑

xµ

W (|z̄x+µ̂ · zx|2), (32)

whereW (x) is an increasing function of x in [0, 1]. Hamil-
tonian (4) corresponds to W (x) = x. The gauge Hamil-
tonian (7) can also be studied in this framework. Indeed,
in the large-N limit, Hamiltonian (7) is equivalent to

H = −2N
∑

xµ

|z̄x+µ̂ · zx|. (33)

It therefore corresponds to the choice W (x) = 2
√
x.

The general analysis for N = ∞ is presented in the
Appendix. We find that a very general class of mod-
els undergoes a finite-temperature first-order transition.
This class includes all Hamiltonians for which W ′(x) is
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bounded in [0, 1]. In particular, it includes Hamiltonian
(4), but not the gauge Hamiltonian (7) (since the lat-
ter corresponds to W (x) = 2

√
x, W ′(x) = 1/

√
x is not

bounded in [0, 1]) . This result generalizes Ref. [49], that
showed that model (4) has a first-order transition in two
dimensions. If we additionally assume that W ′′(x) ≥ 0,
we can completely characterize the coexisting phases. In
the high-temperature phase, the correlation length van-
ishes identically and the system is disordered. In the
low-temperature phase, instead, the system is ordered
and the global symmetry is broken. The behavior we
find for large N in this class of systems is very similar to
what we observe in the gauge model for N = 3 and 4.
It is also possible to observe continuous transitions.

This is the case of the gauge model (7) or of linear com-
binations of the Hamiltonians (7) and (4). It is important
to stress that the analysis shows that continuous transi-
tions can be obtained without needing an exact tuning
of a Hamiltonian parameter. It therefore confirms the
existence of a stable CPN−1 fixed point for large N [9].
However, this does not guarantee that all CPN−1 models
undergo a continuous transition. There is indeed a large
class of theories that undergo a first-order transition. In
the renormalization-group language, these models do not
belong to the attraction domain of the fixed point, so
that, in the renormalization-group evolution, they flow
to infinity, giving rise to a discontinuous nonuniversal
transition.

VIII. SUMMARY AND CONCLUSIONS

In the last fifty years the LGW approach has played
a fundamental role as it has provided both qualitative
predictions and accurate quantitative estimates for the
universal properties of critical transitions [12–14]. The
approach has also been applied to systems with gauge
symmetries, the most notable case being QCD. Consid-
ering an appropriate gauge-invariant observable as order
parameter, the LGW approach was used [50–52] to pre-
dict the nature of the chiral transition in the massless
limit of quarks. that is presently looked for in heavy-
ion collisions. However, we have recently noted [19, 20]
that, if a gauge invariant order parameter is used, for
some systems that enjoy a gauge invariance the stan-
dard LGW scenario is not consistent with the numerical
and/or theoretical results obtained with other methods.
This is the case of ferromagnetic and antiferromagnetic
CPN−1 models and of antiferromagnetic RPN−1 systems
[19, 20], which are invariant under U(1) and Z2 gauge
transformations, respectively.
Here we consider the ferromagnetic CPN−1 models

that are invariant under U(1) transformations. If one
adopts the usual LGW strategy, one defines a gauge-
invariant order parameter and considers the most gen-
eral LGW Φ4 theory compatible with the symmetries,
cf. Eq. (7). In the case of CPN−1 models with N ≥ 3,
a cubic term is present in the LGW Hamiltonian. In the

mean-field approximation this implies that the transition
is of first-order. Such prediction is expected to hold close
to four dimensions, where statistical fluctuations are not
expected to be sufficiently strong to change the nature
of the transition, and, in particular, to be valid in three
dimensions. In this scenario, one would predict the ab-
sence of continuous transitions for all values of N sat-
isfying N ≥ 3 in generic CPN−1 models. If the model
undergoes a finite-temperature transition, as it usually
does, such transition should generically be of first order.

These conclusions disagree with the general arguments
of Ref. [9], that discusses CPN−1 models in the large-
N limit, and the numerical results of Refs. [16, 17] for
N = 3. In particular, for large values of N , it si pos-
sible to show [9] that the continuum CPN−1 field the-
ory is equivalent to an effective abelian Higgs model, for
which a large-N stable fixed point can be identified using
the standard perturbative ǫ expansion [9, 18]. Therefore,
in this limit CPN−1 models may undergo a continuous
finite-temperature transition.

In this work we reconsider the problem for ferromag-
netic CPN−1 models. We perform numerical simulations
of the lattice model (7), in which gauge invariance is guar-
anteed by the presence of an explicit gauge U(1) link
variable [22–24]. Such a formulation is particularly con-
venient from a numerical point of view and allows us to
obtain accurate results for systems of size L ≤ 96. For
N = 2 we confirm the equivalence of the CP1 model with
the O(3) Heisenberg vector model, while, for N = 3 and
4, we find that the transition is of first order. The re-
sults for N = 4 agree with those of Ref. [21], obtained
on smaller lattices. For N = 3 the first-order singu-
larity is very weak and indeed, a clear signature of the
nature of the transition is only obtained for sizes L & 50.
For smaller sizes, most of the numerical data are consis-
tent with a continuous transition characterized by critical
exponents roughly equal to those obtained in Ref. [17].
Therefore, our numerical results for N = 2, 3, and 4 are
consistent with the standard LGW picture, in which one
predicts a first-order transition because of the presence
of a cubic term in the LGW Hamiltonian.

Although we have no evidence of the existence of a
CPN−1 fixed point for N = 3, as claimed in Refs. [16,
17], our results do not exclude it either. Indeed, it is a

priori possible that the CP2 lattice model we consider
is outside the attraction domain of the stable fixed point
that controls the critical behavior of loop models [16, 17].
Clearly, simulations of the loop model on larger lattices
with a more careful choice of the observables are needed
to confirm that the loop model has indeed a continuous
transition and to exclude that the observed behavior is
a small-size apparent scaling behavior analogous to that
we have observed for N . 50.

We have also investigated the behavior of CPN−1 mod-
els in the large-N limit. In this case, depending on the
specific Hamiltonian, it is possible to observe both first-
order and continuous transitions. The latter ones can be
obtained without any particular tuning of the Hamilto-
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nian parameters, therefore confirming the existence of a
large-N stable fixed point.
Summarizing, we can conclude that the usual LGW

picture is not always able to provide the correct qual-
itative description of the finite-temperature transitions
occurring in 3D CPN−1 lattice models. This conclusion
is quite robust in the large-N limit, as it is obtained by
analytic theoretical arguments. In this regime the gauge
degrees of freedom must play a role, as it should be also
expected on the basis of the equivalence of the CPN−1

field theory with the abelian Higgs model that describes
a dynamical U(1) gauge field interacting with a U(N)
matter scalar field. For small values of N , the existence
of a 3D CPN−1 universality class is less robust, as it only
relies on the numerical result of Refs. [16, 17] for N = 3.
For the lattice model we consider, there is no evidence of
a critical transition. Clearly additional numerical inves-
tigations are needed to settle the question.
In view of the equivalence of the abelian Higgs model

with the CPN−1 model for large values of N [9], it is
also worthwhile to discuss the critical behavior of the
corresponding lattice model. Its simplest version is given
by the Hamiltonian

H = Hgauge +Hλ, (34)

where Hλ is the CPN−1 Hamiltonian (7) and

Hgauge = cg
∑

xµν

(
λx,µλx+µ̂,ν λ̄x+ν̂,µλ̄x,ν + c.c.

)
, (35)

is the usual Wilson Hamiltonian for the gauge field. This
theory has been extensively studied for N = 2 [2, 3] and
N = 4 [21]. In particular, for N = 4, the numerical
results of Ref. [21] show that the first-order transition
becomes weaker by increasing the coupling cg, and turns
apparently into a continuous one. A similar scenario may
emerge for N = 3. It is however, not obvious if these re-
sults are relevant for CPN−1 models. Indeed, the equiv-
alence of the abelian Higgs model (34) with the CPN−1

has only been proved in the large-N limit. Therefore, we
cannot take the results on the existence of a continuous
transition in the Abelian Higgs model as an indication of
the existence of a stable CPN−1 fixed point. Additional
work is clearly needed.

Appendix A: Large-N solution

In this Appendix we will solve the most general CPN−1

theory in the large-N limit, generalizing to CPN−1 the
results of Refs. [53, 54]. We start from the general Hamil-
tonian

H = −N
∑

〈xy〉

W (|z̄y · zx|2), (A1)

where W (x) is an increasing function of x for 0 ≤ x ≤ 1
to guarantee ferromagnetism (therefore W ′(x) > 0), and

the sum is over all links 〈xy〉 of a lattice. For definiteness,
we will consider a d dimensional (hyper)-cubic lattice of
size L with periodic boundary conditions.
To linearize the dependence of the Hamiltonian on the

spin variables zx, we introduce a set of auxiliary fields
[53]. To each lattice link we associate the real fields ρxy
and λxy, and a complex field σxy, while to each lattice
site we associate a real field µx [55]. Using the identities
(note that ρxy is integrated in the interval [0, 1])

eNβW (|z̄y·zx|
2) ∝

∫
dρxydλxy

exp
[
Nβλxy(|z̄y · zx|2 − ρxy) +NβW (ρxy)

]
,

eNβλxy|z̄y·zx|
2 ∝

∫
dσxydσ̄xy

exp
[
−Nβλxy(|σxy |2 − σxyz̄y · zx − σ̄xyzy · z̄x

]
,

δ(|zx|2 − 1) ∝
∫

dµx exp[−Nβ(|zx|2 − 1)µx], (A2)

we can rewrite the partition function as

Z =

∫ ∏

〈xy〉

dρxydλxydσxydσ̄xy

∏

x

dµxdzxdz̄x e
NβA,

(A3)
where

A = −
∑

〈xy〉

[
λxy(|σxy |2 − σxyz̄y · zx − σ̄xyzy · z̄x)

+ λxyρxy −W (ρxy)]−
∑

x

(|zx|2 − 1)µx .(A4)

We perform a saddle-point expansion writing

λxy = α+ λ̂xy,

ρxy = τ + ρ̂xy,

µxy = γ + µ̂xy,

σxy = δ + σ̂xy. (A5)

We first consider the case αδ = 0. In this case, we have

〈z̄x · zy〉 =
1

γβ
δxy. (A6)

For α = 0, the saddle-point equations give W ′(τ) = 0,
which is in contrast with our assumption that W (x) is
an increasing function of x. We thus assume that α 6= 0
and δ = 0. The saddle-point equations give τ = 0, α =
W ′(0), and γβ = 1. At the saddle point we have simply

βA

Ld
= A1 = βdW (0) + 1. (A7)

We will call this case the white-noise solution, because of
the absence of correlations, see Eq. (A6).
If α, δ 6= 0, we can assume, using gauge invariance,

that δ is real. If we define m2
0 = (γ−2dδα)/δα we obtain

〈z̄x · zy〉 =
1

βδα
L−d

∑

p

eip(x−y)

p̂2 +m2
0

, (A8)
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where p̂µ = 2 sin pµ/2 and p̂2 =
∑

µ p̂
2
µ. We define

I(m2
0, L) =

1

Ld

∑

p

1

p̂2 +m2
0

, (A9)

J(m2
0, L) =

1

Ld

∑

p

cos px
p̂2 +m2

0

=
1

2d
[(2d+m2

0)I(m
2
0, L)− 1].

The saddle-point equations become

1 =
1

βδα
I(m2

0, L),

α−W ′(τ) = 0,

τ + δ2 − 2

βα
J(m2

0, L) = 0,

δ − 1

δβα
J(m2

0, L) = 0, (A10)

which give

δ =
√
τ ,

α = W ′(τ),

τ =

(
J(m2

0, L)

I(m2
0, L)

)2

,

β =
I(m2

0, L)√
τW ′(τ)

. (A11)

The quantity βA is given by

βA

Ld
= −βd[αδ2 +ατ −W (τ)]+βγ− g(m2

0, L)− ln(βδα),

(A12)
where

g(m2
0, L) = L−d

∑

p

ln(p̂2 +m2
0). (A13)

Using the gap equation, we can rewrite it as

βA

Ld
= A2(m

2
0, L) = βdW (τ) + F (m2

0, L), (A14)

where

F (m2
0, L) = (m2

0 + 2d)I(m2
0, L)− 2dJ(m2

0, L)

−g(m2
0, L)− ln I(m2

0, L). (A15)

To identify the correct phase, for each β, we should de-
termine the saddle point that maximizes A. Note that
F (m2

0, L) is always an increasing function of m−2
0 that

takes the value 1 for m0 = ∞. Given that W (τ) > W (0),
since W (x) is an increasing function of x, we obtain
A2(m

2
0, L) > A1 for any finite value of m2

0. Therefore,
the solution of Eq. (A11), if it exists, is always more sta-
ble than the white-noise one.
We will now focus on the three-dimensional case. As

discussed in Ref. [54], one should take the infinite-volume

limit of I(m2
0, L) carefully. For m

2
0 6= 0, the limit L → ∞

is simply

I∞(m2
0) =

∫
d3p

(2π)3
1

p̂2 +m2
0

, (A16)

which varies between 0 (for m2
0 = +∞) and a maximum

value [56]

I∗ = I∞(0) (A17)

=

√
6

192π3
Γ

(
1

24

)
Γ

(
5

24

)
Γ

(
7

24

)
Γ

(
11

24

)
.

Numerically, I∗ ≈ 0.252731. For m2
0 = 0 we should

take into account the presence of a diverging zero mode.
Therefore, for L → ∞ and m2

0 → 0, we have

I(m2
0, L) = L−d

∑

p6=0

1

p̂2 +m2
0

+
1

L3m2
0

≈ I∗ +
1

L3m2
0

.

(A18)
Thus, for any K > I∗, there is always a solution m0(L)
of the equation I(m0(L)

2, L) = K, with m0(L)
2 ∼ L−3.

Thus, in three dimensions there is a condensate phase
that we can access by considering m2

0 → 0 and L → ∞ at
fixed ∆−1 = m0(L)

2L3. In this limit I(m2
0, L) converges

to I∗ + ∆. Note [54] that the zero-mode is irrelevant
for g(m2

0, L). If m2
0 → 0 and L → ∞ at fixed ∆−1 =

m0(L)
2L3 we simply obtain

g(m2
0, L) → g∞(0) =

∫
d3p

(2π)3
ln p̂2. (A19)

The presence of the zero mode implies that, for L → ∞,
all quantities become functions of m2

0 or ∆, depending
on how the limit is taken. With an abuse of notation, we
will replace the L dependence with ∆ in the following, to
underscore that all quantities are either functions of m2

0

(and in this case ∆ = 0), or of ∆ (in this case m2
0 = 0).

We will now show that for β small enough, there is no
solution of the saddle-point equations (A11), provided
that W ′(τ) is finite for 0 ≤ τ ≤ 1. Indeed, as m2

0 and the
condensate value ∆ vary, β, computed from Eq. (A11),
is always larger than a specific value βmin. Therefore,
for β < βmin the white-noise solution is the relevant one.
To prove this point consider the saddle-point equations
(A11). The equation for β can be rewritten as

β =
H(m2

0,∆)

W ′(τ)
H(m2

0,∆) =
I(m2

0,∆)2

J(m2
0,∆)

. (A20)

Expressing J(m2
0,∆) in terms of I(m2

0,∆), one can easily
verify that:

i) for m2
0 → ∞, the function H(m2

0,∆ = 0) converges
to 1;

ii) as m2
0 decreases, also H(m2

0,∆ = 0) decreases; the
function keeps decreasing also in the condensate
phase up to ∆ = ∆min = 1/3−I∗, where is assumes
the value Hmin = H(0,∆min) = 2/3;
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iii) for ∆ > ∆min, H(0,∆) increases, going to infinity
as ∆ → ∞.

As for τ , it increases from zero (m2
0 → ∞) to 1 (m2

0 = 0,
∆ → ∞). If M is the maximum value that W ′(τ) takes
in 0 ≤ τ ≤ 1, we immediately verify that β, computed
from (A20) can never become smaller than 2/(3M). In
the interval 0 ≤ β < βmin the relevant solution is the
white-noise one, coresponding to m2

0 = ∞. Instead,
for β > βmin, the stable phase corresponds to a solu-
tion of Eq. (A11), since the free energy densities satisfy
A2(m

2
0, L) > A1. Therefore, the point β = βmin is a

first-order transition point, where m0 changes discontin-
uously. For β > βmin there are may be several solutions of
Eq. (A11). If, furthermore, we assume that also W ′(τ) is
an increasing function of τ , we can easily conclude that
the stable solution for β ≥ βmin always corresponds to
m2

0 = 0 and ∆ > 0. At the first-order transition there is
coexistence between a disordered phase with 1/m0 = 0
(the correlation length vanishes) and an ordered phase
with m0 = 0 and ∆ > 0.
It is interesting to note that the previous argument

does not apply to the gauge CPN−1 Hamiltonian for
which

H = − 1

β

∑

〈xy〉

ln I0(2Nβ|z̄y · zx|). (A21)

In the large-N limit it is equivalent to

H ≈ −2N
∑

〈xy〉

|z̄y · zx|, (A22)

so that W (τ) = 2
√
τ and W ′(τ) = 1/

√
τ . The derivative

W ′(τ) is clearly not bounded in [0, 1] and therefore the
previous argument does not apply. For this model the
gap equation (A11) becomes simply

β = I(m2
0, L). (A23)

For this Hamiltonian there is only a continuous transition
for m0 = 0.

We can consider Hamiltonians that interpolate be-
tween Hamiltonians (4) and (7). For instance, we can
consider

W (τ) = aτ + 2(1− a)
√
τ. (A24)

In this case we observe a first-order transition for
0.7582 ≈ a ≤ 1. In the opposite case there is a tran-
sition for m0 = 0. The first-order transition is however
different from the one we discussed before, as here the
high-temperature coexisting phase corresponds to a fi-
nite nonzero value of m2

0.

To conclude, let us note that, in the derivation of the
large-N solution, one explicitly breaks gauge invariance,
which is forbidden by Elitzur’s theorem [57]. It is usually
assumed this to be only a technical problem. Results
for gauge-invariant quantities are expected to be correct.
This has been extensively checked in two dimensions [25].
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[24] B. Berg and M. Lüscher, Definition and statistical dis-
tributions of a topological number in the lattice O(3)
σ-model, Nucl. Phys. B 190, 412 (1981).

[25] M. Campostrini and P. Rossi, The 1/N expansion of
two-dimensional spin models, Riv. Nuovo Cimento 16,
1 (1993).

[26] M. Campostrini, P. Rossi, and E. Vicari, Monte Carlo
simulation of CPN−1 models, Phys. Rev. D 46, 2647
(1992).

[27] L. Del Debbio, G. Manca, and E. Vicari, Critical slow-
ing down of topological modes, Phys. Lett. B 594, 315
(2004).

[28] M. Hasenbusch, Fighting topological freezing in the two-
dimensional CPN−1 model, Phys. Rev. D 96, 054504
(2017).

[29] To update each lattice variable, we randomly choose ei-
ther a standard Metropolis update, which ensures ergod-
icity, or a microcanonical move, which is more efficient
than the Metropolis one but does not change the en-
ergy. Typically, on average we perform four/three micro-
canonical updates for every Metropolis proposal. In the
Metropolis update, changes are tuned so that the accep-
tance is approximately 1/3.

[30] S. Cabasino et al. (APE collaboration), The ape with a
small jump, Nucl. Phys. B (Proc. Suppl.) 17, 218 (1990).

[31] M. Fukugita, H. Mino, M. Okawa, and A. Ukawa, Resolv-
ing the order of phase transitions in Monte Carlo simu-
lations, J. Phys. A 23, L561 (1990).

[32] J. F. McCarthy, Determination of the order of phase tran-
sitions in numerical simulations, Phys. Rev. B 41, 9530
(1990).

[33] A. Billoire, First order phase transitions of spin systems,
Nucl. Phys. B (Proc. Suppl.) 42, 21 (1995).

[34] M. M. Tsypin and H. W. J. Blöte, Probability distri-
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