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Abstract
The pegmatite district of El Quemado (NW Pampean Ranges, NW Argentina) hosts several Ordovician pegmatite bodies of the
LCT (Li, Cs, Ta) type. We present paragenetic assemblages for a set of samples from two of the El Quemado pegmatite groups,
Santa Elena and Tres Tetas, and mineral chemistry analyses for gahnite, columbite-group minerals, tourmaline, micas, albite,
microcline, and discuss the relation between their major element composition and the degree of evolution of pegmatite melts. The
chemical composition of rare element minerals allows recognizing an evolutive trend reaching highly differentiated composi-
tions, with complex paragenetic assemblages including Li-, Zr-, U-, Zn-, P-, Mn- and Ta-bearing minerals. The temperature of
crystallization during the magmatic phase was below 400 °C. Non-pervasive hydrothermal alteration, testified by a moderate
presence of phyllosilicates, affected the pegmatite bodies. Chlorite geothermometry indicates that the circulation of post-
magmatic hydrothermal fluids occurred at a temperature ranging between 200 °C and 250 °C. The mineralogical features
recognized in the El Quemado pegmatite rocks have implications for the metallogenesis of the region, suggesting that the
pegmatites potentially contributed to the genesis of Ta-Nb oxide placer mineralizations.
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Introduction

Numerous studies demonstrated that the investigation of para-
genetic assemblages, together with the chemical composition
of some accessory minerals (i.e., tourmaline, Nb-Ta oxides,
gahnite) represent a very useful tool for understanding the
magmatic evolution of the granitic pegmatites and pegmatite
melts (Tindle et al. 2002; Simmons and Webber 2008; Soares

et al. 2007; Van Hinsberg et al. 2011). In particular, the major
element composition of these minerals has the potential to
reveal the degree of fractionation of pegmatite melts, as well
as to track their geochemical evolution up to the late magmatic
stages (Batchelor and Kinnaird 1984; Breaks et al. 2005;
Trumbull et al . 2009; Trumbull and Chaussidon
1999; Badanina et al. 2015). Consequently, many studies have
provided models of pegmatite evolution based on the fraction-
ation of some key elements in these accessory minerals (Černý
et al. 1986; Novàk et al. 2003; Chudík et al. 2011; Van
Hinsberg et al. 2011; Marks et al. 2013; Heimann et al.
2015; Feng et al. 2019; Zhou et al. 2019; Fuchsloch et al.
2019). The potential for pegmatite rocks to concentrate rare
element minerals of economic interest enhances the impor-
tance of determining the chemical composition of their min-
eral phases and of understanding their petrogenetic history.

This research is focused on the petrographic analysis and
the chemical composition of mineral species from the Santa
Elena and Tres Tetas pegmatites, belonging to the Ordovician
(Hongn et al. 2014) El Quemado pegmatite district (Sierra de
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Cachi, NW Argentina). The El Quemado district is the north-
ernmost sector of the orogenic pegmatite belt that extends for
800 km from north to south in north-western and central
Argentina, the Pampean Pegmatite Province, which provided
important metal and industrial mineral resources in the past
century (Galliski 2009). Previous works have described the
mineral composition of pegmatites of the El Quemado district
and discussed their petrogenesis (Galliski 1983a, b; Galliski
and Upton 1992; Galliski et al. 1999; Galliski and Černý
2006; Sardi et al. 2017). In this paper, we present paragenetic
assemblages for the Santa Elena and Tres Tetas granitic peg-
matites, and chemical analysis for the primary minerals gahn-
ite, columbite-group minerals, tourmaline, micas, albite, mi-
crocline, and for secondary chlorite. The new chemical com-
position data for gahnite, columbite-group minerals and tour-
maline provide insights into the differentiation degree reached
by these pegmatite melts and the geochemical evolution of
pegmatite melt composition during fractionation. Moreover,
the collected data allow inferences regarding the petrogenetic
conditions during emplacement and the role of the mineralog-
ical composition of the pegmatites for the metallogenic poten-
tial of the region. Finally, the finding and analysis of second-
ary chlorite allow unravelling the physical-chemical condi-
tions occurred during a late hydrothermal stage.

Geological and petrogenetic background

The El Quemado pegmatite district is located in the Sierra de
Cachi (24 °40’S-25 °07’S, 66 °10’W-66 °30’W, Salta Province,
NW Argentina), ca. 200 km west of Salta city (Fig. 1). The
altitude is between 3800 and 5200 m above sea level.

The district is in the northwestern part of the Pampean
Range structural unit, at the boundary with the Puna altiplano
(Ramos 2017). The oldest rocks outcropping in the area are
Neoproterozoic-Early Cambrian meta-sedimentary rocks of
the Puncoviscana Formation, making transition to the cordi-
erite schists of La Paya Formation (Hongn et al. 2014), which
extend northward up to the Quilmes Ranges. These schists
show evidence of a medium-high temperature, low-pressure
metamorphism (Rossi de Toselli et al. 1987; Lucassen et al.
1996) and a N to NNE-trending foliation.

The Puncoviscana and La Paya Formations are intrud-
ed by the Lower Paleozoic magmatic rocks of the Cachi
Formation (Galliski 1983a, b). The igneous rocks consist
of two different suites: (i) gabbros, diorites, tonalites and
trondhjemites, I-type; (ii) granodiorites, peraluminous
granites and pegmatites, S-type. Their ages span from
477.5 ± 3.9 Ma for the basic rocks to 472.1 ± 11 Ma for
granites (Hongn and Seggiaro 2001; Galliski 2007;
Hongn et al. 2014; Miller et al. 2019). Basaltic bodies
of 496 ± 3 Ma in the Río Blanco area were considered
by Miller et al. (2019) as possible parents of the

trondhjemitic suite, while crustal sediments’ melting,
without involvement of the mantle, would have produced
the granitoid suite.

In the study zone, the intrusive magmatic rocks of the
Cachi Formation consist of:

(i). trondhjemite plutons, composed of ~60 vol% plagioclase
and ~ 35 vol% quartz; while formerly interpreted as post-
kinematic (Galliski 1983a; Toselli 1992), more recent
works suggest syn-kinematic emplacement for these plu-
tons, during the extensional tectonic event (Hongn et al.
2014);

(ii). pegmatites, including rare-elements pegmatites in the El
Quemado District, forming N to NW-striking tabular
bodies, showing SW-dipping and 4 to 30 m of thick-
ness; the pegmatites show intra- and peri-batholitic em-
placement, with sharp cutting relations.

The Santa Elena and Tres Tetas pegmatites, which are the
object of this study, have been dated at 564 ± 25 Ma and 545
± 15 Ma, respectively, based on K-Ar ages in muscovite
(Galliski 1983a). Hongn et al. (2014) U-Pb ages for the
trondhjemite stocks in Aguas Calientes and Tres Tetas, and
for the granite La Paya of the Cachi Formation, are
Tremadocian-Katian (~485–452 Ma). We take into account
the discussions in Hongn et al. (2014) and Miller et al.
(2019) regarding the older ages and adopt a Lower
Ordovician age for the pegmatite cortex, supported by the
geological relations with the trondhjemite pluton in the Tres
Tetas zone.

The El Quemado district extends over an area of 300 km2.
The pegmatites have a primary mineralogical paragenesis
dominated by albite, quartz, muscovite and microcline,
forming megacrysts of 1–15 cm in size. Common accessory
minerals are tourmaline, apatite, garnet and zircon. Rare-
element accessory minerals are columbite-group minerals
(Nb-Ta), ixiolite (Ta-Nb), bismuth minerals (native Bi,
bismutotantalite, bismuthine and bismutite), uraninite (U),
beryl (Be), spodumene (Li), lepidolite (Li), elbaite (Li),
petalite (Li, inferred from spodumene-quartz intergrowth,
Galliski and Černý 2006). The paragenetic assemblage is ac-
companied by diverse phosphate phases such as triplite (Fe,
Mn), triphylite (Fe, Li), amblygonite-montebrasite (Li)
(Galliski 1981, 1983b). This mineral paragenesis implies that
these pegmatites belong to the LCT (Li, Cs, Ta) family, rare
elements class (Galliski 1999). Different types and subtypes
have been recognized, following the classification of Černý
(1991a) and Černý and Ercit (2005): (i) beryl type, beryl-
columbite-phosphate subtype; (ii) complex type, petalite sub-
type; (iii) complex type, spodumene subtype (Galliski 1999).

Hydrothermal alteration minerals were first reported in El
Quemado District by Galliski (1983b), who identified kaolin-
ite, montmorillonite and chlorite. Chlorite is subordinate in the
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district and mentioned only in La Elvirita pegmatite (N of
Santa Elena). Metal sulfides are associated to the final hydro-
thermal stages and consist of chalcopyrite (Cu), tetrahedrite,
less common molybdenite (Mo) and Bi sulfides (Galliski
1981, 1983b; Márquez-Zavalía et al. 2012), these last
consisting of an assemblage dominated by Bi, Cu and S, with
traces of Pb, Fe and Te, reported in La Elvirita, El Peñón, El
Quemado and Santa Elena pegmatites. Considering experi-
mental data on the system Cu – Bi – S of Wang (1994),

Márquez-Zavalía et al. (2012) suggest temperatures of
300 °C to 200 °C for the stability of the assemblage emplectite
+ bismuthinite + native bismuth in the El Quemado pegmatite,
and relate these temperatures to the late, waning hydrothermal
stages.

The Li-bearing minerals, columbite-group minerals and
other metalliferous accessory minerals, characteristic of these
granitic pegmatites, are of notable economic and/or petroge-
netic interest. The Anzotana Mining Company, operating in

Fig. 1 Location, schematic
geological map and age of the
main geological units for the El
Quemado pegmatite district (NW
Argentina). Geological data from
this work (field surveys) and from
the geological base of the Hoja
Geológica Cachi-2566-III
(Hongn and Seggiaro, 2001) and
Hoja Geológica San Antonio de
los Cobres-2566-I (Blasco et al.
1996)
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the area in 1943–1944, extracted in El Quemado Pegmatites
~10 tons of Ta-Nb concentrates, more than 5 tons of Bi
concentrates, with an average grade of the marketed
product of 40.5 wt% Nb2O5 and 14.5 wt% Ta2O5, and
52.85 wt% Bi (Galliski 1999). The Quaternary alluvium
deposits covering the area contain significant concentra-
tions of minerals of economic interest (columbite-tanta-
lite minerals, bismuth minerals), derived from the phys-
ical and chemical alteration (weathering) of the pegma-
tite bodies.

From a petrogenetic point of view, LCT pegmatites are
believed to originate from extreme crystal-melt fraction-
ation of parental granitoids, S-type and, occasionally,
evolved I-type (Černý 1991b, 1998; Černý et al. 2005;
London 2005; Linnen and Cuney 2005). The parental
granitoids may be distal from pegmatite emplacement
(Kontak 2006). In the case of study, magmatic activity
during Early Paleozoic involved metaluminous
trondhjemites with I-type affinity, interpreted to origi-
nate from partial melting of amphibolite mafic rocks in
a continental margin arc setting (Galliski et al. 1990),
and peraluminous granite apophyses with S-type affinity
(Galliski 2007). The genesis of the pegmatite melts was
formerly attributed to differentiation from trondhjemite
magmas (Galliski 1983b). More recent works have de-
bated this explanation based on geochemical data, and
suggested models involving fractionation from the
peraluminous granitoids (Galliski 2007). The emplace-
ment of I-type and S-type granitoids and the differenti-
ation towards highly evolved pegmatites occurred in a
particularly complex geodynamic setting. Strike-slip
geodynamics combined with subduction setting, as well
as extensional/compressional tectonics in back-arc set-
ting at mid-levels of the continental crust, had been
proposed (Coira et al. 1999; Hongn et al. 2014).

Field characteristics, internal structure, and
mineralogy of El Quemado pegmatite bodies

The El Quemado pegmatite dykes form tabular bodies
with thickness from a few centimeters to over 30 m
(Fig. 2). They have NW- and subordinately NE-striking
directions, dipping 12 ° to 90 ° to East or West, and are
displaced by NE-SW and E-W-trending faults for several
meters. The host rocks consist of schists of La Paya
Formation and trondhjemites of Cachi Formation.

La Paya Formation is composed by interlayered cor-
dierite schists and subordinate quartzites. The cordierite
schists host ovoidal, up to 3 cm-long cordierite crystals
accompanied by muscovite, biotite, quartz and plagio-
clase, oriented following the S1 metamorphic foliation,
partially coinciding with S0 and oriented N220 °/50 °
(dip direction/dip, DD/D); an axial folding S2 foliation,

trending N260 °/40 °, and a crenulation cleavage are
also recognized.

The trondhjemitic intrusive rocks of Cachi Formation
are sub-rounded bodies outcropping for up to several
square kilometers, and generally form topographic highs.
They have an equigranular texture consisting of euhedral,
oscillatory zoned plagioclase for 50–60% by volume, and
anhedral quartz, with biotite, muscovite, zircon and
opaque minerals as main accessories. Occasionally, the
intrusive bodies induce the development of fine grained,
black hornfels, of tens of centimeters thick, at the contact
with the metamorphic unit, which also are recognized as
roof pendants.

In the Tres Tetas mine, the outcropping pegmatite
dykes are oriented NW and subordinately NE, with steep
dipping. Thickness of the dykes is 20 cm to 8.50 m and
they can be followed for up to 0.5 km of length.
Zonation within the pegmatites dykes, considering the
fundamental minerals, is as follows: (i) border: ~3 mm-
thick, fine-grained; (ii) wall: 5–10 cm-thick, medium-
grained, composed of up to 5 cm-long quartz crystals,
muscovite, albite, microcline; (iii) intermediate: between
10 cm and several meters thick, composed of milky
quartz (occasionally smoky), muscovite, albite, micro-
cline, biotite nests; (iv) core: up to 1 m thick, coarse-
grained (10 cm-sized crystals), composed of quartz +
albite. The lenticular morphology and oblique arrange-
ment of cores with respect to the outer zones indicate
the kinematics of deformation during emplacement of
this segregated pegmatite phase. Accessory minerals
are oxides (tantalite, columbite, ixiolite, gahnite, urani-
nite, hematite), silicates (beryl, spodumene, lepidolite,
tourmal ine , garne t ) , phosphates (amblygoni te -
montebrasite) and sulfides (pyrite, molybdenite) (Fig. 2
and Table 1).

In Santa Elena mine, the pegmatite dykes have a pref-
erential NW-trending direction, thickness of 0.50 m to
more than 30 m, and a length of up to 0.8 km. The host
rocks are the metamorphic rocks of La Paya Formation.
Border, wall and core main mineral associations are the
same as those described above for Tres Tetas. In the in-
termediate zone, the rock-forming mineral association is
quartz, plagioclase and microcline with myrmekitic rims,
and accessory minerals are oxides (tantalite, columbite,
gahnite, uraninite), silicates (beryl, spodumene, musco-
vi te- lepidol i te , tourmaline, garnet) , phosphates
(amblygonite-montebrasite, triplite) and fluorides (fluo-
rite). Amethyst quartz is rarely present (Fig. 2 and
Table 1). Some narrow dykes emplaced within the main
pegmatite dyke in the exploitation area are composed of
up to 80 vol% of lepidolite + quartz. This type of sub-
unit was recognized by Galliski (1999) and assigned to
a late pegmatite replacement phase.
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Sampling and analytical methods

Sample collection and specimen preparation for
optical petrography and microanalysis

Samples were collected by the authors from the intermediate zone
of the pegmatite dykes, in both Tres Tetas (samples Q12, Q13)
and Santa Elena (samples Q1 to Q11 and sample Q14) mines.

Standard-sized 27 × 47 mm petrographic thin sections of
default 30 μm nominal thickness were made for mineralogical
and paragenetic analysis, while extra thick 500 μm polished
sections were made from mineral separates and larger speci-
mens of gahnite and tourmaline collected in the field.
Petrographic analysis was conducted using Leitz Orthoplan
reflected/transmitted light microscope at the School of
Geology, National University of Salta (UNSa), Argentina.

Electron microscopy and in-situ mineral chemistry

To prevent charge build-up under the impeding electron
beam, polished specimen were thermally coated with conduc-
tive carbon in a Leica EM ACE600.

BSE-imaging and qualitative element analysis were con-
ducted using a FEI Quanta 450 field-emission scanning elec-
tron microscope (FE-SEM) equipped with a Bruker-Quantax
energy-dispersive spectrometer (EDS), located at the
University of Pisa, Italy, operated in high vacuum
(<10−5 Torr) at 20 kV acceleration voltage, 10 nA beam cur-
rent (on Faraday cup) and 1 μm nominal diameter, keeping a
constant 10 mm working distance.

Quantitative mineral compositions were determined on
preselected spots in a JEOL JXA-8200 SuperProbe
electron-probe micro-analyzer (EPMA) instrument located
at the Department of Earth Sciences “Ardito Desio” of the
University of Milan, Italy. The instrument is equipped
with five wavelength-dispersive spectrometers (WDS)
with a range of LiF, PET and TAP crystals, and one ad-
ditional EDS detector. The tungsten-filament instrument
was operated in high vacuum (<5·10−6 Torr), 15 kV ac-
celeration voltage, 5 nA beam current, 3 μm nominal
beam size and 20 s counting time on peak and 10 s on
background. Na and K were assigned to separate WDS
spectrometers at the beginning of each analysis to mini-
mize alkali migration.

a

c

e

d

f

bFig. 2 Examples of the pegmatite
dykes in the field and of the
mineral assemblage: (A) pano-
ramic view of pegmatite dykes
(arrows) emplaced in cordierite
schists (CS) of the La Paya
Formation and trondjemites of the
Cachi Formation (T); (B) pegma-
tite dyke (PD) in Santa Elena
zone; (C) Santa Elena principal
mining labour, with on the left the
fragmented blocks; (D) Santa
Elena dyke association: plagio-
clase (Pl) + lepidolite (Lep) +
gahnite (Ghn) + tourmaline
(Tour); (E) gahnite (Ghn) crystal
from Tres Tetas pegmatite, ac-
companied by phosphates (Ph) +
muscovite (Mu) + plagioclase
(Pl) + quartz (Qz); (F) gahnite
crystal, sample Q11
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The instrument was internally calibrated using mineral
standards and metals of natural and synthetic origin, notably:
grossular (Si Kα, Ca Kα, Al Kα), omphacite (Na Kα),
forsterite (Mg Kα), fayalite (Fe Kα), ilmenite (Ti Kα), ortho-
clase (KKα), rhodonite (MnKα), pure metals Cr (Cr Kα), Nb
(Nb Lα), Ta (Ta Lα), Zn (Zn Kα), and PbO (PbMα), UO2 (U
Mα). Raw element data were ZAF-corrected using phi-rho-Z
analysis program, and corrected element contents were con-
verted to oxide contents in weight percent (wt%) assuming
stoichiometry. FeOT represents total iron (oxide) content.
Ultralight (element) species B, Li, and H2O were not mea-
sured but instead calculated by stoichiometry, where
applicable.

Main element oxide contents were recast into numbers of
cations in atoms per formula unit (apfu) following the general
guidelines in the appendices to Deer et al. (1983), applying
IMA-approved classification and nomenclature as available
(e.g., Bayliss 1975, Rieder et al. 1998, Henry et al. 2011).

Mineral identification by X-ray powder diffraction
(XRPD)

For identification purposes, selected mineral fragments were
pulverized in an agate mortar and pestle, until a smooth paste
without granularity when rubbed between fingertips was ob-
tained. The powders were mounted on a zero-background
glass plate lightly greased with silicone. X-ray diffractograms
were recorded in a Rigaku D/MAX IIIC diffractometer

located at the Department of Geology of the National
University of the South, Argentina. The X-ray tube was oper-
ated at 35 kV and 15 mA cathode current producing bulk
CuKα radiation at λ = 1.54059 Å, whereas CuKβ was re-
moved by a graphite monochromator. Diffractograms were
recorded from 3 to 60 °2θ in 0.04 °2θ increments and 1 s
counting time per step. Peaks were indexed and mineral spe-
cies were identified using the JADE software and database.

Results

Petrography and mineral chemistry

The EPMA chemical composition and the textural relation-
ships of the minerals tourmaline, gahnite, columbite-tantalite,
feldspars and mica (primary) and chlorite (secondary) of El
Quemado pegmatites are presented here below (see Table 2
for the full list of the mineral phases identified by petrographic
and/or SEM-EDS or XRD). Other minerals identified with
optical petrography and with SEM-EDS analysis are also de-
scribed for textural relationships and semiquantitative elemen-
tal composition. Examples of textural relationships are shown
in Figs. 3 and 4. Mineral abbreviations follow Whitney and
Evans (2010).

Tourmalines In the studied pegmatites, tourmaline occurs as
prismatic, blue to dark blue and black crystals, sometimes

Table 1 Accessory minerals accompanying quartz, albite, microcline and muscovite in Santa Elena and Tres Tetas pegmatite dykes, identified by their
macroscopic characteristics; X: present; −: not identified

Group Mineral Characteristics Tres Tetas Santa Elena

Oxides Tantalite Tabular, reddish-brown X X

Columbite Prismatic, sometimes developing chains or nests formed
by crystals up to 5 mm-long

X X

Ixiolite Fine, tabular, black, diamond-bright X –

Gahnite Sub-euhedral to euhedral, dark blue to turquoise coloured,
up to several cm- crystals

X X

Uraninite Black, short tabular; green to yellow colours X X

Hematite Globular aggregates or euhedral crystals formed after pyrite X –

Silicates Beryl Fibrous, apple green X X

Spodumene White to light grey X X

Lepidolite Pink to violet, associated to muscovite and subordinate garnet X X

Garnet Sub-euhedral, up to 3 mm diameter, reddish-brown,
sometimes developing aggregates

X X

Schorl Prismatic, black X X

Elbaite Prismatic, blue violet – X

Phosphates Amblygonite-Montebrasite White, prismatic X X

Triplite Reddish-brown, vitreous – X

Fluorides Fluorite Violet, sometimes associated to lepidolite – X

Sulphides Molybdenite Fine-grained, blueish grey X –

Pyrite Pseudomorphically replaced by hematite X –
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forming clusters of radiated aggregates, ranging in size from
0.5 to 5 cm. The crystals exhibit pleochroism of variable in-
tensity, generally diminishing or absent towards the rims.
From the paragenetic point of view, in both Tres Tetas and
Santa Elena samples, tourmaline is found in association with
the fundamental minerals quartz, albite, muscovite-lepidolite
and occasionally Al- and Ca-phosphates, and presents apatite
inclusions (Fig. 3a, d).

The structural formulae of the analysed tourmalines were
calculated assuming the general formula with 15 cations in the
octahedral and tetrahedral (Y + Z + T) sites and 31 anions, as
proposed by Henry et al. (2011). B2O3, H2O and Li2O are
calculated by stoichiometry for OH + F = 4 apfu, B = 3 apfu
and Li = 15 – (T + Y + Z) and normalized to 31 anions.
Tourmaline compositions are given in Table 3. Tourmalines
of Santa Elena and Tres Tetas pegmatites belong to the alkali
group (Fig. 5a) following the nomenclature of Henry et al.
(2011). All the tourmalines are Al-rich compared to the ideal
schorl–dravite formulae, with total Al contents between 6.5
and 8.0 apfu and large alkali deficiencies (12%–50% X-site

vacancies). The recalculated analyses show that, except for
those in sample Q3, all tourmalines are Li-rich (Fig. 5b,
Table 3), particularly those found in samples Q4, Q6 and Q7
(Santa Elena) and Q12 (Tres Tetas). No noticeable core-rim Li
zoning has been observed. According to the classification of
Henry et al. (2011), Q3 sample tourmalines are classified as
schorl, with the exception of one analysis that falls in the
foitite compositional field; all the other tourmalines are
elbaites, as also shown in Fig. 5b.

Columbite-group minerals Columbite-group minerals (CGM)
were only analysed in the Santa Elena pegmatites. These ox-
ides occur in close association with gahnite, Al-phosphates
and quartz (quartz forms throughout the entire crystallization
of the pegmatitic melt), isolated or in clusters of 2–3 individ-
uals (Fig. 4a–c) and are generally unzoned but, in some ex-
amples, strongly zoned in the Nb/Ta ratio (Fig. 4d). The chem-
ical composition of CGM is shown in Table 4. The
recalculated formula is close to the ideal 1:2 stoichiometry
(Table 4). In the columbite-tantalite quadrilateral proposed

Table 2 Minerals identified by petrographic and/or SEM-EDS analysis of thin sections and XRD; X: present; −: not identified

SANTA ELENA TRES TETAS

Sample Q1 Q2 Q3 Q4 Q6 Q7 Q8 Q9 Q10 Q11 Q14 Q12 Q13

Fundamental and accessory primary minerals

Silicates Quartz – X X – – X – X X X X X –

Albite X – X X X X – – – X X X X

Microcline – – X – X – – – – – – – –

Tourmaline – – X X X X X – – – X X –

Micas – X X X X – X X – X X X –

Spodumene X – – X X – – X – X X – –

Beryl – – – – – – – – – – – X –

Zircon – – X – – X – – – X – – –

Cs-silicate – – – – – – – – – – – X –

Phosphates Apatite (Mn)(1) – – X X X X – – – – – X –

Al-phosphate (amblygonite-montebrasite) X – – X – X X – X X X – X

Mn-Fe phosphate (triplite group) – – – – – X – – – – – X X

Xenotime – – – – – – – – – X – – –

Oxides Columbite-tantalite – – X X – X – – – X – – –

Gahnite – – – – – X X – – X – – –

W-oxide – – – – – – – – – – – – X

Uraninite – – – – – X – – – X – – –

Sulphides Pyrite – – – – – – – – – – – – X

Sphalerite – – – – – – – – – – – X –

Secondary minerals

Phosphates (U) (2) – – – – – – – – – X – – –

Chlorite – – – – – X – – – – – – –

Baryte – – X – – – – – – – – – –

Clays – – – – – – – – – X – – –

(1) Apatite (Ca-phosphate) containing Mn, identified by EDS spectrum; (2) Phosphate of uranium, identified by EDS spectra, probably autunite group
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by Černý (1989), the analyses plot largely within the colum-
bite field (Ta/(Ta + Nb) < 0.5), with values of the Mn/(Mn +
Fe) ratio that span between ca. 0.40 and 0.95 (Fig. 6). The data
plot in the fields of columbite-(Fe), columbite-(Mn) and, in
two cases, tantalite-(Mn), and show a positive correlation be-
tween Ta/(Ta + Nb) and Mn/(Mn + Fe).

Gahnite Gahnite was analysed in two samples of the Santa
Elena pegmatites. It shows idiomorphic crystals up to
centimetric in size, in association with quartz, Nb-Ta oxides
and phosphates (Fig. 4a, b). Some crystals are cut by fine
veinlets of unidentified late silicates.

The chemical composition of gahnite is reported in Table 5
and shows very high Zn content (> 40 wt%; up to 100% Ghn)
and low Fe content (< 1.5 wt%, or 4.3% Hc) (Fig. 7). The
contents of Mg, Mn and Cr elements are very low (<
0.13 wt%), consequently spinel (Spl) and galaxite (Glx) com-
ponents are negligible. A compositional profile across a large
gahnite crystal indicates that no significant compositional zon-
ing affects gahnite of Santa Elena pegmatites (Fig. 8).

Feldspars Albite and microcline coexist as large crystals or
crystal aggregates in both the Tres Tetas and Santa Elena
pegmatites, together with quartz, mica, tourmaline and phos-
phate (Fig. 3a, c). Albite is more abundant thanmicrocline and
mainly occurs in radiatedmasses of platy crystals, correspond-
ing to the platy variety called cleavelandite. Subordinately,
albite occurs in aggregates showing a granular texture.
Albite shows nearly end-member composition, with at most
1.1 mol% Or and 0.4 mol% An. Microcline can be easily
recognized by the coarse crosshatched multiple twinning

(“tartan twinning”), characteristic of low-T alkali-feldspar.
Microcline contains up to 3.2 mol% Ab and negligible An
(Table 6). Perthitic texture is not common.

The textural relationships suggest the contemporaneous
crystallization of the two feldspars. This feature is typical of
“subsolvus” granites and agrees with the high PH2O conditions
during the crystallization of the pegmatite melt.

Mica-group minerals In the studied pegmatites, mica occurs
as grey, pink to violet crystals. The composition of mica was
analysed by EPMA in the Santa Elena samples (Fig. 3a-d).
The results display a spectrum from nearly stoichiometric
muscovite, with total filling of interlayer sites, in sample
Q6, to mica with Na + K + Ca as low as 1.28 (calculated
on the basis of 22 anions), in sample Q11. The X-site defi-
ciency can be explained by the presence of elements that are
not analysed, such as Cs and Rb. Lower Al (<26 wt%
Al2O3) and higher Fe distinguish the mica analysed in sam-
ple Q7 (Table 7). When plotted in the ternary diagram Al-
R2+-Si (Fig. 9), the composition of the mica minerals ranges
from muscovite (samples Q6 and Q11) to the field of the
trilithionite-polylithionite series (sample Q7 and, in part,
Q11), indicating the presence of Li-mica (intermediate be-
tween muscovite and lepidolite). These results are in agree-
ment with those of Galliski et al. (1999), reporting chemical
analyses of Li-mica in Santa Elena pegmatites. Lithium was
not determined by EPMA; an estimation of Li has been,
however, carried out according to Tischendorf et al.
(1997, 2004) only in the micas with intermediate composi-
tion between muscovite and lepidolite in sample Q7, which
approach the required range of validity (Table 7).

a b

c d

Fig. 3 SEM-BSE images
showing the main minerals of El
Quemado pegmatites: (a) albite+
microcline+Al-phosphate, Q6
sample; (b) albite+microcline+
mica, Q7 sample; (c) mica+quartz
with phosphate veinlets, Q12
sample; (d) zoned tourmaline+
quartz+mica, Q6 sample. Qtz:
quartz; Tur: tourmaline;
Ab: albite; Mc: microcline

V. López de Azarevich et al.



Chlorite An Fe-rich chlorite (chamosite, Table 8) occurs as
densely packed rosette-shaped aggregates in some samples
of Santa Elena pegmatite (Fig. 4g, h). The analysed chlorites
are trioctahedral in nature, characterized by a nearly full octa-
hedral occupancy. The number of vacant octahedral sites per
twelve positions is <0.5. The Na + Ca + K sum is always
<0.08 (formula based on 28 oxygens). These characteristics
indicate that these chlorites are free of smectite interstratifica-
tions or corrensite packets in their structure (Martinez-Serrano
and Dubois 1998 and reference therein).

Other minerals Zircon is common in both Santa Elena and
Tres Tetas pegmatites in subhedral to euhedral grains that, in
some cases, exhibit compositional zoning (Fig. 4d). The zir-
con crystals constantly host, in the core or in the entire crystal,
numerous minute inclusions consisting of uraninite and other
minor non-identified phases, in some cases bearing P and U

(Fig. 7e, f). Xenotime with uraninite inclusions has been
found associated with zircon (Fig. 4f).

Phosphate minerals are rather common in the Santa Elena
and Tres Tetas samples (Figs. 3 and 4). Their EDS spectra and
composition show the presence of different phosphate mineral
groups. Three main phosphate groups can be recognized. The
most common phosphates occur as coarse crystals in associa-
tion with quartz, albite, mica and spodumene (identified by
XRD) and are Al-rich with an evident F peak in the EDS
spectrum, suggesting a correspondence with Al-phosphates
with light elements (Li, F, OH-group). These minerals belong
to the amblygonite-montebrasite group as indicated by XRD
data. The second phosphate group is often in association with
tourmaline and feldspars and consists ofMn-bearing Ca-phos-
phates (apatite group). Thirdly, Li-Fe andMn-F phosphates of
the triplite and triphylite groups are also common both in the
Santa Elena and the Tres Tetas pegmatites. The phosphates of
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Ab

mica
ChlChl

Zrn

phosphate

Nb-Ta ox
mica

phosphate

Urn

Urn

Qz Qz

Ghn

clays

phosphate

Nb-Ta ox

Nb-Ta ox

a b
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10 micron200 micron
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d

e

g

f

h

20 micron

Ab
vein-filling
phosphates

Al-phosphates

Nb-Ta ox

c

100 micron

Fig. 4 SEM-BSE images
showing accessory mineral
associations in the El Quemado
pegmatites. (a) qtz + ghn + Nb-
Ta-oxides, Q11 sample; (b) detail
of (a) showing phyllosilicates and
phosphates with the oxides; (c)
Al-phosphate crystal with Nb-Ta
oxides and quartz, cut by veinlets
of secondary phosphates, Q11
sample; (d) zoned columbite-
tantalite and zircon, Q3 sample;
(e, f) zircon (Zrn) and xenotime
(Xtm) with inclusions, with the
brilliant ones being uraninite
(Urn) and others being a
P-bearing unidentified mineral,
sample Q11; (g, h) Fe-chlorite
rosettes, sample Q7
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this third group occur in veinlets crossing the amblygonite
crystals, indicating that they are not part of the early primary
assemblage, but they belong to a late stage of crystallization.
Similar suites of phosphates have been described from LCT-
type pegmatites (Eagle et al. 2015). In addition to this

phosphate suite, other phosphate minerals occurring in vein-
lets cross-cutting through all the primary minerals are Mn-Fe-
phosphates and U-bearing phosphates. The varied EDS spec-
tra observed did not permit to identify all these minerals but
suggest that several different phosphate mineral phases are

Table 3 Selected microprobe chemical analyses (wt%) and
compositional formulae (see text for formula calculation) of tourmaline
in the El Quemado pegmatites; FeOT: all Fe as FeO; bdl: below detection

limit. *: calculated by stoichiometry following Henry et al. (2011). Rim
and core analysis are specified for crystals zoned in BSE images

Sample Q3 Q4 Q4 Q4 Q6 Q7 Q7 Q7 Q12 Q12

core core rim

SiO2 37.06 36.87 37.89 37.80 36.47 36.69 37.48 37.46 38.49 38.66

TiO2 0.04 0.05 0.04 0.04 0.01 bdl 0.04 0.07 bdl 0.02

Al2O3 34.89 36.91 39.52 37.83 36.13 36.32 38.85 37.78 38.17 37.70

Cr2O3 0.02 bdl bdl 0.03 bdl bdl bdl bdl bdl bdl

FeOT 9.73 7.19 1.77 3.48 10.34 8.59 3.95 5.35 2.46 1.29

MnO 0.17 0.48 1.82 1.45 0.39 0.30 0.62 0.73 2.04 2.68

MgO 3.70 0.02 bdl 0.02 0.12 0.23 0.04 0.13 0.01 bdl

CaO 0.09 0.08 0.15 0.16 0.04 0.03 0.18 0.15 0.20 0.30

Na2O 1.52 2.55 2.26 2.43 1.72 2.32 2.53 2.46 2.49 2.49

K2O 0.03 0.02 0.03 0.01 0.01 0.02 0.01 0.04 bdl 0.03

B2O3* 10.73 10.51 10.72 10.59 10.48 10.48 10.66 10.62 10.70 10.65

Li2O* 0.21 1.36 1.79 1.84 0.79 1.12 1.72 1.56 2.02 2.24

H2O* 3.70 3.62 3.70 3.65 3.62 3.61 3.68 3.66 3.69 3.67

Total 101.94 99.93 100.03 99.68 100.27 99.93 100.09 100.31 100.67 100.16

T:

Si 5.99 5.99 6.00 6.05 5.98 6.00 5.97 6.01 6.09 6.13

Al 0.01 0.01 0.00 0.00 0.02 0.00 0.03 0.00 0.00 0.00

Z:

Al 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Y:

Al 0.63 1.06 1.38 1.14 0.97 0.99 1.27 1.14 1.11 1.04

Ti 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mg 0.89 0.00 0.00 0.00 0.03 0.06 0.01 0.03 0.00 0.00

Mn 0.02 0.07 0.24 0.20 0.05 0.04 0.08 0.10 0.27 0.36

Fe 1.31 0.98 0.23 0.47 1.42 1.17 0.53 0.72 0.33 0.17

Li* 0.14 0.89 1.14 1.18 0.52 0.74 1.10 1.00 1.29 1.43

X:

Ca 0.02 0.01 0.03 0.03 0.01 0.01 0.03 0.03 0.03 0.05

Na 0.48 0.80 0.69 0.75 0.55 0.74 0.78 0.76 0.76 0.77

K 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01
X❑ 0.50 0.18 0.27 0.22 0.44 0.26 0.19 0.20 0.20 0.18

Na+K 0.48 0.81 0.70 0.76 0.55 0.74 0.78 0.77 0.76 0.77

Na/(Na+Ca) 0.97 0.98 0.96 0.96 0.99 0.99 0.96 0.97 0.96 0.94

Mg(/Fe+Mg) 0.40 0.00 0.00 0.01 0.02 0.05 0.02 0.04 0.01 0.00

Y site Fe+Mg+Mn 2.23 1.05 0.48 0.67 1.50 1.27 0.62 0.85 0.60 0.53
X❑/(X❑+Na) 0.51 0.18 0.28 0.22 0.45 0.26 0.19 0.21 0.21 0.19

V. López de Azarevich et al.



present, as already reported for other LCT-pegmatite rocks.
The textural evidence that these phosphate mineral phases
post-date all primary minerals indicates that they are second-
ary phases.

Rare grains of Fe-Mn-W oxide minerals, the sulfides pyrite
and sphalerite, beryl and an unidentified Cs-bearing silicate
mineral (pollucite?) have been found only in the Tres Tetas
pegmatites, enclosed in the primary minerals Al-phosphate,
tourmaline and quartz.

Finally, minor clays (mixed-layers illite-smectite, Fig. 4b)
have been found in veinlets or as thin rims at the contact
between main minerals, suggesting a modest circulation of
possibly supergene fluids in low-T alteration neutral-alkaline
environment.

Paragenetic successions and geothermometric
calculations

By means of the textural relationships between the different
identified mineral components (cross-cutting veinlets,
inclusion relationships) and the chemical range displayed by

some minerals (tourmaline, Nb-Ta oxides), a paragenetic dia-
gram has been constructed (Fig. 11). The diagram shows the
paragenetic evolution from the magmatic-pegmatite stage to
the late hydrothermal stage. The decreasing temperature can
be constrained thanks to mineral geothermometry in the mag-
matic and hydrothermal stages.

The crystallization temperature of pegmatites was estimat-
ed by two-feldspar geothermometry, which has been applied
to coexisting plagioclase and non-perthitic alkali feldspar in
sample Q6 (Santa Elena pegmatite). The results of Fuhrman
and Lindsley (1988) and Elkins and Grove (1990) two-
feldspar geothermometers indicate temperature around
340 °C; the equations of Putirka (2008) suggest a temperature
of crystallization of 315 ± 30 °C (eq. 27b) and 395 ± 30 °C
(eq. global regression 42 experiments).

Chlorite composition has been used to have inferences on
the temperature during the late hydrothermal stage. Chlorite is
a relevant indicator of the rock history, because its large com-
positional variation is sensitive to the formation conditions
(i.e., pressure, temperature, redox conditions, bulk-rock and
fluid composition). Therefore, chlorite composition is the ba-
sis of many geothermometers that are commonly applied in a
variety of geological context (Fulignati 2020; Bourdelle 2021
and reference therein). In this work, both empirical and semi-
empirical approaches are used for chlorite geothermometry
and the obtained results are summarised in Table 8. Among
the empirical methods, three different geothermometers of
Cathelineau and Nieva (1985, C&N85), Cathelineau (1988,
C88), and Kranidiotis and MacLean (1987, K&ML87) are
used. The geothermometers of C88 and K&ML87 give simi-
lar estimated temperature of formation (±15 °C), with the
K&ML87 geothermometer giving systematically the higher
temperatures. The estimated temperatures are very high, with
average values of 350 °C and 370 °C for C88 and K&ML87
geothermometers, respectively. C&N85 geothermometer
gives lower temperature of formation with an average value
of 290 °C. The recent approach of Bourdelle and Cathelineau
(2015), which represents a graphical representation of the
semi-empirical chlorite geothermometer of Bourdelle et al.
(2013), was also used. The analysed chlorite, in the T-R2+-Si
diagram (Fig. 12) of Bourdelle and Cathelineau (2015), plots
between the 200 °C and 250 °C isotherms. These temperatures
are considerably lower than those estimated with the empirical
geothermometers, in particular with the C88 and K&ML87
ones. We are confident with the estimation carried out with
the most recent Bourdelle et al. (2013) geothermometer, as it
is best suited for the low temperature chlorites (< 350 °C,
P < 400 MPa) typical of low-grade metamorphism and hydro-
thermal alteration and circumvents bulk rock composition ef-
fects (Bourdelle et al. 2013). For these reasons, it has been
successfully applied in several recent works concerning tem-
perature estimation of hydrothermal fluid circulation (Harbi
et al. 2014; Vasquez et al. 2014; Mamadou et al. 2016; Pant

X-site vacancy Na+K

Ca

Vacancy group Alkali group

Calcic group

Q12 TT

Q 4
Q 3

Q 6
Q 7

a

b

Elbaite

Schorl Dravite

2Li

Fe Mg

0.5 0.5

0.5

Fig. 5 Ternary classification diagrams (after Henry et al. 2011) for the
composition of tourmaline from El Quemado pegmatites based on: (a) X
site occupancy; (b) and dravite-schorl-elbaite subsystem of the alkali
group
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et al. 2019; Raza and Absar 2021). The very high iron content
of these chlorites (Fe/(Fe +Mg) = 0.99) might be the cause of
the overestimation of temperature with the empirical
geothermometers of C88 and K&ML87.

Discussion

The composition of tourmaline, mica, gahnite and CGM in
Santa Elena and Tres Tetas pegmatites, in conjunction with
textural and paragenetic features at the microscale, are used to
give constrains on the petrogenesis of the El Quemado peg-
matite district. Furthermore, the secondary mineralogical as-
semblage and the chemical composition of chlorite are con-
sidered, with the aim to constrain the physical conditions oc-
curring during a late hydrothermal stage. Possible
metallogenetic implications for rare element resources in the
region are, finally, discussed.

Insights into petrogenesis of Santa Elena and Tres
Tetas pegmatites

Tourmaline is a very useful petrogenetic indicator mineral as
its major element composition is strongly related to the host
rock composition (Henry and Guidotti 1985; Van Hinsberg
et al. 2011). On the Al–Fe–Mg diagram (cf. Henry and
Guidotti 1985), tourmalines from Santa Elena and Tres
Tetas pegmatites cluster at very high Al and Fe/Mg ratios

and plot within field 1 (Fig. 10a), suggesting that their forma-
tion environments can be assumed those typical of Li-rich
granitic pegmatites and aplites. Only tourmalines of the sam-
ple Q3, from Santa Elena pegmatites, plot within field 2 rep-
resentative of Li-poor granitoids, pegmatites and aplites for-
mation environment (Fig. 10a). The tourmalines falling in the
field 1 show a clear trend toward the Al vertex (elbaite), with
the tourmalines most enriched in Al belonging to Q4 (Santa
Elena) and Q12 (Tres Tetas) samples (Fig. 10a). The Al en-
richment trend is well shown in Fig. 10b. Following Brown
and Wise (2001), the evolution of tourmaline composition
from schorl-dravite to elbaite can be taken as an evidence of
a progressive fractionation trend, with Tres Tetas (Q12 sam-
ple) pegmatite that represents the most differentiated compo-
sition. The Q4 sample, in this frame, represents the most
evolved composition found in the Santa Elena pegmatite.

The chemical zoning of single tourmaline crystals is mod-
est except for sample Q3, representing, based on tourmaline
chemistry, the least evolved composition. In this sample, tour-
maline crystals show homogeneous cores (MgO 3.6–3.8 wt%)
and rims with higher MgO content (up to 4.26 wt%, Table 3).
Similar zonation patterns for Mg and Ti are reported for tour-
malines from Giraúl Pegmatites, Angola (Gonçalvez et al.
2008), which are interpreted as the recurrent interaction of
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Fig. 6 Chemical composition of the columbite group-minerals of El
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Černý et al. (1992). Gray field corresponds to Nb-Ta oxides from Totoral
LCT rare-element pegmatite district, San Luis, Argentina (Galliski et al.
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Table 5 Selected
microprobe chemical
analyses of gahnite
(oxides in wt%) and
calculated compositional
formulae on the basis of
4 oxygens; FeOT: all Fe
as FeO; bdl: below
detection limit; Fe3+

recalculated from
stoichiometry

Sample Q11 Q11

core core

SiO2 bdl bdl

TiO2 0.03 0.02

Al2O3 57.70 58.33

Cr2O3 bdl bdl

FeOT 1.35 0.11

MnO 0.09 0.06

MgO 0.04 0.01

ZnO 42.41 41.95

Total 101.62 100.48

Si 0.00 0.00

Ti 0.00 0.00

Al 2.00 2.02

Cr 0.00 0.00

Fe3+ 0.00 0.00

Fe2+ 0.03 0.00

Mn 0.00 0.00

Mg 0.00 0.00

Zn 0.92 0.91

Glx 0.00 0.00

Spl 0.00 0.00

Ghn 96.8 100.0

Hc 3.2 0.00

Mag 0.00 0.00
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the pegmatitic melt with the host rock at the final stage of
pegmatite crystallization.

Based on pegmatite mineralogy, Zn contents, Zn/Fe2+ ra-
tios, and coupled Fe2++Mg and Zn +Mn values in gahnite
from LCT granitic pegmatites from Comechingones and
Conlara Districts in central Argentina, Heimann et al. (2015)
concluded that the major element composition of gahnite in
granitic pegmatites can effectively be used to determine the
relative degree of evolution of pegmatite-forming melts. The

composition of gahnite in the Santa Elena pegmatites is char-
acterized by very high Zn content and Zn/Fe2+ ratios (Fig. 7),
together with very low Mg and Mn contents, indicating that
they formed from highly differentiated melts. These melts
were, indeed, more evolved than the Pampean Range granitic
pegmatites from central Argentina studied by Heimann et al.
(2015).

The presence of gahnite as Zn mineral in the Santa Elena
pegmatites indicates a low sulfur activity in the granitic melt,
otherwise sphalerite instead of gahnite would have been the
common Zn mineral (Černý and Hawthorne 1982). On the
other hand, rare sphalerite has been found enclosed in tourma-
line (sample Q12) and pyrite within phosphate (sample Q13)
in the Tres Tetas samples. Since these scarce sulfides were not
found in association to secondary minerals, we suggest that
they are primary accessories. The occurrence of primary
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Table 6 Selected microprobe chemical analyses (oxides in wt%) of
feldspars in the studied pegmatites and calculated compositional
formulae on the basis of 8 oxygens; total Fe as FeOT; bdl: below
detection limit; Ab: albite, Mc: microcline

Sample Q11 Q12 Q4 Q6 Q6 Q6

Ab Ab Ab Ab Mc Mc

SiO2 69.25 69.78 69.72 69.23 65.34 65.56

Al2O3 19.90 20.00 19.09 19.51 17.01 17.31

FeOT bdl bdl bdl 0.05 bdl 0.03

CaO 0.06 0.15 0.03 0.02 0.01 0.01

Na2O 10.71 10.18 10.73 11.41 0.33 0.36

K2O 0.02 0.10 0.12 0.06 16.51 16.53

Total 99.93 100.21 99.68 100.28 99.20 99.81

An 0.30 0.78 0.14 0.11 0.05 0.07

Ab 99.60 98.57 99.16 99.57 2.94 3.23

Or 0.10 0.65 0.71 0.32 97.01 96.71
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sulfides may suggest slightly different sulfide activity in the
two pegmatite groups, despite gahnite seems ubiquitous, or

the fact that sulfide activity may have changed during evolu-
tion of these pegmatites, with initially moderate values,

Table 7 Selected microprobe chemical analyses (oxides in wt%) and
calculated compositional formulae (cation proportions on the basis of 22
oxygens) of micas in the El Quemado pegmatites; bdl: below detection

limit. *Li calculated for Q7 micas, which approach the parameters
required for the methodology, according to Tischendorf et al. (1997,
2004)

Sample Q6 Q6 Q6 Q6 Q6 Q11 Q11 Q7 Q7 Q7

SiO2 47.33 46.51 51.05 47.29 47.31 48.69 48.20 55.11 55.10 55.53

TiO2 0.04 bdl 0.01 bdl bdl bdl 0.03 bdl 0.01 0.00

Al2O3 34.70 35.74 28.96 35.06 36.02 36.44 37.84 25.19 21.02 21.34

Cr2O3 bdl 0.06 0.02 0.03 bdl 0.01 bdl bdl 0.00 0.00

FeOT 0.33 0.34 0.45 0.50 0.44 0.21 0.17 1.40 3.05 2.86

MnO 0.06 bdl 0.11 0.10 0.01 0.06 0.05 0.16 0.28 0.26

MgO 0.06 0.02 0.04 0.02 0.01 0.08 0.06 0.08 0.16 0.15

CaO 0.05 0.06 0.07 bdl 0.04 0.06 0.03 0.04 0.01 0.04

Na2O 0.21 0.16 0.08 0.25 0.18 0.04 bdl 0.06 0.07 0.04

K2O 11.17 11.16 11.41 10.27 10.44 9.49 8.87 10.03 10.05 10.18

Li2Ocalc* 6.26 6.26 6.39

Total 93.95 94.05 92.2 93.52 94.45 95.08 95.25 98.33 96.01 96.75

Si 6.36 6.24 6.96 6.35 6.29 6.36 6.26 6.1 6.27 6.26

Al (IV) 1.64 1.76 1.04 1.65 1.71 1.64 1.74 1.9 1.73 1.74

Al (VI) 3.85 3.90 3.62 3.89 3.93 3.98 4.06 1.38 1.08 1.09

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe 0.04 0.04 0.05 0.06 0.05 0.02 0.02 0.13 0.29 0.27

Mn 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.03 0.02

Mg 0.01 0.00 0.01 0.00 0.00 0.02 0.01 0.01 0.03 0.03

Cr 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Li 2.79 2.87 2.84

Sum [Y] 3.91 3.95 3.69 3.96 3.98 4.03 4.10 4.32 4.3 4.25

Ca 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01

Na 0.05 0.04 0.02 0.07 0.05 0.01 0.00 0.02 0.01 0.01

K 1.91 1.91 1.98 1.76 1.77 1.58 1.47 1.73 1.42 1.58

Sum [X] 1.97 1.96 2.01 1.83 1.83 1.60 1.47 1.76 1.44 1.60
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zinnwaldite
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Fig. 9 Chemical composition of
micas from El Quemado
pegmatites shown on ternary
diagram Al-R2+-Si (Monier and
Robert 1986). R2+ = Fe2+ + Mn2+

+ Mg2+
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allowing the formation of scarce sulfides, and lower values in
the final stages, favoring the formation of gahnite.

The CGM in the Santa Elena pegmatite exhibit an evolu-
tionary trend similar to that shown by this mineral group in
BlackMountain and Kolmozero pegmatites (Brown andWise
2001; Badanina et al. 2015) and in the Separation Rapids
pegmatite fields (the “manganoan trend”, Tindle and Breaks
2000), consisting in a progressive increase in Mn/(Mn + Fe)
subsequently accompanied by an increase in Ta/(Ta + Nb) ra-
tio (Fig. 6). This trend is not evident in the Sierras de San Luis
pegmatites (central Argentina), whose CGM composition
shows notable variations in Mn/(Mn + Fe) and (Ta/Ta + Nb)
(Galliski and Černý 2006; Galliski et al. 2019). Following
Černý (1989, 1992), the trend depicted by the variation of
the Mn/(Mn + Fe) and Ta/(Ta + Nb) ratios of Santa Elena peg-
matites is typical of the lepidolite and/or spodumene (F-rich)
subtype of rare-element granitic pegmatites. The Nb/Ta ratio
of the melt was high throughout the evolution of Santa Elena
and Tres Tetas pegmatites, and although melt composition
ultimately evolved toward Ta enrichment, Nb remained dom-
inant over Ta. Several papers (see Ercit 2005 and reference

therein) suggest that Ta would increase gradually at the ex-
pense of Nb duringmelt evolution. This could be explained by
the lower solubility of columbite-(Mn) in peraluminous
granite/pegmatite melts (Linnen and Keppler 1997) in com-
parison with tantalite-(Mn). More difficult is the explanation
of the increasing Mn/(Mn + Fe) ratio with fractionation
(Beurlen et al. 2008). The difficulty arises because the solu-
bility of the Fe-rich members of the CGM in the melt is larger
than of Mn-rich members (Linnen 2004). This fractionation
trend must, therefore, be controlled by other factors. Two
possible explanations have been proposed for interpreting
the controlling factors that lead to the fractionation of Fe from
Mn in CGM: (i) the first one is that co-existing phases com-
peting with CGM for Fe (i.e., tourmaline, Fe-phosphates) in
the pegmatites deplete Fe in CGM during fractionation, lead-
ing to Mn-rich end-members (Raimbault 1998; Van
Lichtervelde et al. 2007; Beurlen et al. 2008); (ii) the second
one suggests that an increased alkali-fluoride activity pro-
motes the extreme Fe–Mn fractionation before the onset of
Ta enrichment, instead of a competing mineral phase control
(Tindle and Breaks 2000; Černý et al. 2004; Wise et al. 2012).

Table 8 Selected chemical
analyses of chlorite (oxides in
wt%) and calculated composition
formulae (on the basis of 28
oxygens) for the sample Q7 of
Santa Elena pegmatite; bdl: below
detection limit; total iron as FeOT.
Temperature obtained by the
application of chlorite
geothermometers C&N85
(Cathelineau and Nieva 1985),
C88 (Cathelineau 1988),
K&ML87 (Kranidiotis and
MacLean 1987)

Sample Q7 Q7 Q7 Q7 Q7 Q7 Q7 Q7 Q7

SiO2 24.06 23.49 24.02 23.21 24.37 23.55 23.99 23.68 23.48

TiO2 bdl 0.01 bdl bdl 0.01 0.02 bdl 0.02 bdl

Al2O3 22.08 21.89 21.31 22.33 21.76 21.26 21.77 21.85 21.98

Cr2O3 0.01 bdl bdl 0.03 0.03 bdl 0.02 0.03 0.03

FeOT 41.15 41.98 42.02 41.55 41.84 42.10 41.64 40.66 41.77

MnO 0.63 0.54 0.50 0.54 0.50 0.50 0.51 0.56 0.47

MgO 0.29 0.30 0.29 0.30 0.35 0.28 0.29 0.30 0.30

CaO 0.04 0.08 0.04 0.15 0.07 0.05 0.15 0.03 0.07

Na2O 0.04 0.14 0.04 0.01 0.04 0.06 0.08 0.10 0.02

K2O bdl bdl bdl 0.03 0.01 0.02 0.01 0.01 bdl

Total 88.3 88.43 88.22 88.15 88.98 87.84 88.46 87.24 88.12

Si 5.49 5.40 5.52 5.34 5.53 5.46 5.49 5.48 5.40

Al (IV) 2.51 2.60 2.48 2.66 2.47 2.54 2.51 2.52 2.60

Al (VI) 3.44 3.32 3.30 3.39 3.36 3.26 3.36 3.43 3.36

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe 7.86 8.06 8.08 7.99 7.94 8.15 7.96 7.86 8.03

Mn 0.12 0.11 0.10 0.11 0.10 0.10 0.10 0.11 0.09

Mg 0.10 0.10 0.10 0.10 0.12 0.10 0.10 0.10 0.10

Cr 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01

Ca 0.01 0.02 0.01 0.04 0.02 0.01 0.04 0.01 0.02

Na 0.02 0.06 0.02 0.00 0.02 0.03 0.04 0.04 0.01

K 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00

Fe/(Fe+Mg) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

oct. vacancy 0.49 0.41 0.43 0.41 0.48 0.39 0.48 0.49 0.41

C&N85 (°C) 284 294 281 300 280 287 284 285 294

C88 (°C) 340 357 337 366 334 347 344 344 357

K&ML87 (°C) 357 367 354 373 353 361 357 359 367
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In the Santa Elena pegmatites, the occurrence of quite abun-
dant tourmaline and Fe-bearing phosphates may support the
first explanation, although we cannot exclude a possible role
played by fluorine activity increase with melt evolution.

Low temperature of crystallization, below 400 °C, is sug-
gested by the values obtained by coexisting albite and non-
perthitic microcline in one of the Santa Elena samples. This

temperature is lower than the hydrous minimum melt temper-
atures of about 600 °C suggested for pegmatites by Jahns and
Burnham (1969), but agrees with several more recent estima-
tions on Li-bearing, fluid-rich pegmatites based on mineral
geothermometry and fluid inclusion data (Nabelek et al.
1992; Tindle and Breaks 2000; Sirbescu and Nabelek 2003;
Simmons and Webber 2008; London et al. 2020). The abun-
dance of Li, Cs, B, P and F (as in the case of Santa Elena and
Tres Tetas pegmatites) has been experimentally demonstrated
to depress, to a significant extent, the liquidus and solidus of
hydrous haplogranite systems (Černý, 1991a; London, 1992).
These elements can, in fact, affect the melt by appreciably
lowering the crystallization temperature, decreasing nucle-
ation rates, decreasing melt polymerization, decreasing vis-
cosity, increasing diffusion rates, and increasing solubility
(London, 1992; Simmons and Webber, 2008). Moreover,
crystallization temperatures of 350–400 °C, at 2–3 kbar, are
also suggested by Galliski et al. (1999), based on the stability
of Li-bearing mica and spodumene in the Santa Elena pegma-
tites. These low temperatures, below 400 °C, may correspond
to the conditions of crystallization following undercooling to
about 250 °C below the liquidus, as found for similar thin
pegmatite dykes by London et al. (2020).

Evidence for a late hydrothermal stage

Several pegmatite samples show evidence of secondary alter-
ation mineralogical assemblage consisting of veinlets of phos-
phates, clay minerals, zeolites and, in one Santa Elena sample,
chlorite, whose presence can be related to circulation of
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Fig. 10 A. Diagram Al-Fe(tot)-Mg for tourmaline from El Quemado
pegmatites, with fields fromHenry and Guidotti (1985) for discrimination
of the different tourmaline-bearing rock types. Analysis in Table 5. (1) Li-
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Fig. 11 Paragenetic diagram summarizing the evolution of the mineral
associations in the studied El Quemado pegmatites
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hydrothermal fluids. This chlorite occurrence in aggregates or
rosettes is similar to that found in Hagendorf-South pegmatite
(Dill 2015). The origin of these chlorite aggregates can be
related to a non-pervasive alteration event, carried out by hy-
drothermal fluids that circulated in the pegmatites. The tem-
peratures during this hydrothermal late stage of alteration of
the El Quemado pegmatites, obtained by means of chlorite
geothermometry, range from 200 °C and 250 °C. These values
are in accordance with those proposed by Márquez-Zavalía
et al. (2012) on the basis of the secondary mineral assemblage
found in these rocks, formed by emplectite + bismuthinite +
native bismuth.

Implications regarding the metallogenesis of rare
element resources in the region

The Paleozoic pegmatite belt of El Quemado District suffered
of uplift, erosion and chemical weathering during Mesozoic
and Cenozoic times up to the Present. Those processes made
the pegmatites a favourable source for the formation of rare
element mineral resources. The concentration of Nb-Ta-Bi
minerals accumulated in alluvium deposits can be related to
the mineralogical composition and Mesozoic-Cenozoic histo-
ry of the El Quemado pegmatites. Instead, despite the signif-
icant Li resources linked to the occurrence of Li-brine deposits
(salars) in the Puna region (Orberger et al. 2015), at present it
is not possible to discuss a contribution of Li leached from the
El Quemado Li-rich pegmatites to those notable Li resources.
More structural and palaeogeographical studies concerning

the evolution of the area during Neogene are needed for shed-
ding light on this topic.

Physical weathering of El Quemado pegmatites contribut-
ed to free the Nb-Ta oxides and Bi minerals that accumulated
in nearby alluvial environments during Quaternary-Present
times. These placer minerals are concentrated naturally in al-
luvial fans and fluvial plains in Tres Tetas zone, covering
more than ca. 0.14 km2 with ~50 m of thickness, that allow
calculating ca. 7,000,000 m3 of sediment with Nb-Ta-Bi min-
erals. This material was beneficiated downstream in the ‘40th
decade (Galliski 1999). It is important to highlight that in El
Quemado zone, south of Santa Elena, the thickness of alluvial
sediments is ~20 m and the surface covered is ca. 2.55 km2.
Although no resource estimations have been carried out
(Palacio and Devito 1947), considering that Nb-Ta mineral
reserves are allocated in only 7 countries, and the high price
of these commodities (on the order of 42 USD/kg of FeNb for
2019 and projected to 50 UDS/kg FeNb in 2035) and Bi, the
alluvial area of El Quemado District might constitute an ex-
ploration target for Nb-Ta-Bi minerals in placers.

Conclusions

The reconstruction of the paragenetic assemblages and the
chemical composition of tourmaline, CGM, gahnite and mica
are here used to give insights concerning melt evolution in the
Santa Elena and Tres Tetas pegmatites of the El Quemado
district. Chemical trends in the composition of these minerals
indicate that both these pegmatites crystallized from highly

daphnite

Fig. 12 Chemical composition of
chlorites plotted in the T-R2+-Si
diagram of Bourdelle and
Cathelineau (2015). The iso-
therms are in 50 °C steps.
Analyses of chlorite are
recalculated based on 14 oxygens
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differentiated melts, with the Tres Tetas pegmatites
representing the most differentiated pegmatite composition.
The highly differentiated melts that generated the Santa
Elena and Tres Tetas pegmatites were B, F, P-enriched silicate
melts that became increasingly enriched in lithium and the
high-field-strength elements Nb, Ta, Zr, with an increase in
the ratio Ta/(Ta + Nb), during their crystallization. By com-
paring the chemical compositions of gahnite of El Quemado
district pegmatites with those of other Pampean Range granit-
ic pegmatites from central Argentina, we show that El
Quemado pegmatites reached a higher level of differentiation.
The occurrence of scarce Zn sulfides enclosed in the funda-
mental minerals and of gahnite among the accessories sug-
gests a generally low and probably decreasing sulfur activity
along differentiation of the pegmatite melts. The estimated
pegmatite crystallization temperature is below 400 °C,
confirming the low temperature of pegmatite melts with sim-
ilar composition (Li, F, B, P-enriched) proposed in the previ-
ous literature. This low temperature may correspond to crys-
tallization under strong undercooling conditions. In some
cases, it has been possible to show evidence of late (post-
magmatic), non-pervasive, hydrothermal alteration, which de-
veloped at temperature ranging from 200 ° and 250 °C.

The paragenesis and the mineral chemistry of these pegma-
tites provide, also, some implications regarding the
minerogenesis of the Nb-Ta resources of the region. In this
framework, the Nb-Ta oxide placer deposits formed in alluvial
environment during Quaternary-Present times can be consid-
ered the result of the physical weathering of El Quemado
pegmatites, which contributed to free the Nb-Ta oxides pres-
ent in their primary mineralogical assemblage.
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