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Study Importance Questions 

- What major reviews have already been published on this subject?  

Many reviews have been published on the metabolic predictors of weight change in 

humans. However, this review responds to recent studies profiling specific 

phenotypes of individual human metabolism and not yet addressed in previous 

reviews. 

- What does your study add? 

This review focuses on recent findings demonstrating the existence of human 

metabolic phenotypes that characterize individual susceptibility to weight gain. 

Additionally, it treats the concepts of adaptive thermogenesis and “energy sensing” 

as potential metabolic determinants of weight change in humans.  

 

  



Abstract 

One of the fundamental challenges in obesity research is to identify subjects prone to gain weight 

so that obesity and its comorbidities can be promptly prevented or treated. The principles of 

thermodynamics as applied to human body energetics demonstrate that susceptibility to weight 

gain varies among individuals as a result of inter-individual differences in energy expenditure 

and energy intake, two factors that counterbalance one another and that together determine daily 

energy balance and, ultimately, bodyweight change. This review focuses on the variability 

among individuals in human metabolism that determines weight change. Conflicting results have 

been reported about the role of inter-individual differences in energy metabolism during energy 

balance in relation to future weight change. However, recent studies show that metabolic 

responses to acute, short-term dietary interventions that create energy imbalance, such as low-

protein overfeeding or fasting for 24 hours, may reveal the underlying metabolic phenotype that 

determines the degree of resistance to diet-induced weight loss or the propensity to spontaneous 

weight gain over time. Metabolically “thrifty” individuals, characterized by a predilection for 

saving energy in settings of undernutrition and dietary protein restriction, display a minimal 

increase in plasma Fibroblast Growth Factor 21 (FGF21) concentrations in response to a low-

protein overfeeding diet and tend to gain more weight over time as compared to metabolically 

“spendthrift” individuals. Similarly, inter-individual variability in the causal relationship 

between energy expenditure and energy intake (“energy sensing”) and in the metabolic response 

to cold exposure (e.g., brown adipose tissue activation) seems to some extent to be indicative of 

individual propensity to weight gain. Thus, an increased understanding and the clinical 

characterization of phenotypic differences in energy metabolism among individuals (metabolic 

profile) may lead to new strategies to prevent weight gain or improve weight loss interventions 



by targeted therapies on the basis of metabolic phenotype and susceptibility to obesity in 

individual persons.   



Introduction 

Concordant with the laws of thermodynamics and the preservation of energy, the human body is 

in a state of energy balance when energy input (nutrient intake) continually equals energy output 

(energy expenditure and energy waste), thus allowing for the maintenance of bodyweight mass. 

Accordingly, even small but persistent deviations from energy balance, which may arise from 

altered energy expenditure or energy intake and which lead to sustained positive or negative 

energy balance states, must result in changes in body energy stores (mainly, adipose tissue) and 

consequent changes in body weight over time. Variability in weight change across the human 

population however, is extremely diverse. Some individuals are more prone to gain or lose 

considerable weight, even in shorter periods of time, than others who can more easily maintain 

their body weight even over the course of an entire lifetime. Accordingly, natural history studies 

have reported broad ranges of change in body weight over time in free-living conditions (1, 2, 3, 

4). Notably, in a recent longitudinal study that included healthy subjects who were weight stable 

at admission (5), the standard deviation (a quantitative measure of inter-individual variability) of 

free-living weight change after six months was 4.7 kg with an average weight change of only 0.8 

kg (1). Such broad inter-individual variability in weight change among humans implies that 

differences in underlying metabolism and/or energy intake among individuals are responsible for 

subject-specific propensity to weight gain/loss. This review takes into account the role of inter-

individual variability in energy metabolism in relation to human weight change. First, it focuses 

on measures of energy metabolism obtained during conditions of energy balance. Second, it 

discusses short-term adaptation in energy metabolism (i.e., adaptive thermogenesis) as a 

response to acute changes in energy intake (fasting or overfeeding). Third, it briefly discusses 

other metabolic predictors of weight change such as the metabolic response to cold exposure and 



the activation of brown adipose tissue. Finally, it discusses the putative “energy-sensing” link 

between energy metabolism and energy intake, which may determine weight change. 

1) Measures of energy metabolism obtained during energy balance  

The study of energy metabolism in humans relies on the precise measurement of energy 

expenditure (EE) as well as of substrate oxidation as quantified by the non-protein respiratory 

quotient (RQ), an index of the ratio of carbohydrate to fat oxidation. Daily EE and RQ can both 

be continuously and precisely measured via indirect calorimetry methods (6, 7). The main 

determinants of 24-h EE include body size and composition, but also to a lesser degree, age, 

gender, ethnicity, glucose tolerance (8, 9, 10, 11, 12, 13, 14), and familial membership 

(heritability of 24-h EE=0.52 (15)) as reflections of genetic variability (15, 16, 17, 18, 19). Taken 

together, physiologic determinants explain more than 80% of inter-individual variance in 24-h 

EE in a given population (9). Given the high accuracy and reproducibility of indirect calorimetry 

methods (variance of methodologies <5%) (8), this leaves the remaining 10-15% variance in EE 

as a potential predictor of future weight change.  

Several prospective studies have been carried out with the goal of assessing the causal 

association between future weight change and variability in energy metabolism as measured in 

conditions of near energy balance. The results of these longitudinal studies are extremely 

variable. Some showed an inverse relationship, that is, a relatively low EE (i.e., relative to body 

size and composition) associated with weight gain. For example, in American Indian adult 

populations with high prevalence of obesity, a relatively low EE (i.e., low 24-h EE and low 

resting metabolic rate, RMR) is a predictor of long-term weight gain (4, 17, 19, 20). Similar 

results were obtained in studies of infants (21) and children (22, 23), as well as in another study 

in adult whites (24) in which reduced RMR longitudinally predicts increased adiposity over time. 



By contrast, other studies reported a positive association. For example, in lean Nigerian 

populations, a relatively high RMR predicts an increase in weight over time (25); similar results 

were found in prepubescent girls (26) (although RMR was not adjusted for body size in this 

study). Several other studies instead have shown no association between RMR and weight 

change in humans (27, 28, 29, 30). Results for RQ measured during energy balance are similarly 

mixed. A relatively higher RQ has been shown to be predictive of weight gain in some studies 

(19, 27, 31), while others failed to demonstrate an association between inter-individual 

variability in RQ during energy balance and future weight change (28, 32).  

The reasons for these mixed results are unclear. They may be due to population-specific 

characteristics comprising both genetic and environmental factors, different pre-test conditions, 

varying durations of measurement (e.g., ranging from 20-30 minutes to several days), or 

disparate methods for assessing energy metabolism (e.g. ventilated hood system vs. whole-room 

indirect calorimeters vs. doubly labeled water). Such mixed results may also be due to different 

methods for adjusting energy metabolism for body size (e.g., normalization to lean mass vs. 

statistical regression methods) and the inclusion of different covariates, unequal sample sizes 

across studies (e.g., ranging from few subjects to hundreds or thousands of subjects), or 

differences in the follow-up time to assess free-living weight change. Such differing results 

prompt contrasting interpretations in light of the principles of energy balance. On the one hand, a 

small but persistent positive energy balance as a result of reduced EE can lead to weight gain 

over a longer period of time (e.g., months or years) even as energy intake remains consistent and 

weight does not change substantially over short periods of time (e.g., days). On the other hand, 

even as the laws of thermodynamics state that negative energy balance may be a result of 

increased EE, studies have nevertheless somewhat counterintuitively shown that increased EE 



results in weight gain. Given that weight gain can only happen under conditions of positive 

rather than negative energy balance, it must be that positive energy balance results from 

increased energy intake to the degree that it overcomes EE. Thus, in a context of increased EE, 

weight gain could be the result of an effort to restore energy equilibrium (i.e., energy sensing) 

through over-compensatory increases in energy intake, as will be discussed in further detail in 

Section 4 below. 

In summary, the question of the role of energy metabolism on weight change remains 

controversial and the inter-individual variability in EE measures during energy balance does not 

seem to explain broad differences in weight change as observed among individuals in the current 

obesogenic environment. Moreover, the degree to which these metabolic measures predict future 

weight change (regardless of directionality) is very limited as it explains little (<5%) of the inter-

individual variance in weight change. 

2) Measures of energy metabolism in response to changes in energy intake 

Based on the principles of energy homeostasis, weight gain can only be achieved with a 

persistent state of positive energy balance, e.g. overeating sustained to a degree that constantly 

exceeds daily EE (33). Accordingly, it is reasonable that assessments of EE in a context of 

positive energy balance would be more informative of the etiology of weight gain than are 

measurements done in settings of energy balance and weight maintenance (34). Indeed, the 

disruption of energy balance through acute, short-term changes in energy intake and the 

assessment of the resulting metabolic response to such dietary interventions may reveal the 

subject-specific capacity to promptly increase/decrease the metabolic rate in response to 

excess/limitation of ingested nutrients. In other words, it is possible that EE responses to acute 

change in energy intake (such as during 24-h overfeeding or fasting) can quantify the different 



susceptibilities to long-term weight change observed across individuals (35, 36), because they 

may be informative of an individual’s propensity to weight loss/gain achieved by sustained, 

long-term dietary regimens. For instance, short-term metabolic assessment to 24-h fasting (as an 

extreme dietary intervention that leads to maximum daily energy deficit) may quantify a given 

individual’s ability to adapt his/her metabolism (metabolic “thriftiness”) to a less extreme but 

sustained low-calorie diet that achieves an energy deficit and, thus, weight loss over time.  

Such inter-individual differences in the short-term EE response to overfeeding or fasting must 

arise from diet-induced changes in each component of daily EE (37, 38): sleeping EE; “awake 

and fed” thermogenesis (39), or the thermic effect of food and the cost of being awake; and the 

energy cost of physical activity. In particular, the thermic effect of food represents a direct link 

between energy intake and EE insofar as it quantifies the increase in resting EE after food 

consumption (40, 41, 42). It may thus constitute the daily EE component that promptly changes 

and best characterizes the subject-specific metabolic adaptation to acute, short-term changes in 

energy intake (e.g., overfeeding or fasting for 24 hours), which may be indicative of a propensity 

to weight gain. On average, the thermic effect of food accounts for approximately 10% of total 

ingested calories and, in conditions of near energy balance where energy intake is almost equal 

to EE, it also represents an average 10% of 24-h EE (43) with a broad inter-individual variability 

ranging from 1% to 20% (36). However, the extent of the increase in 24-h EE during overfeeding 

depends on the total caloric content (44, 45) and on the macronutrient composition (36) of the 

diet, ranging from an approximately 3%-increase in the case of a low-protein high-fat diet to 

14% with a high-carbohydrate normal-protein overfeeding diet (46), with both overfeeding diets 

representing twice the daily energy needs. Despite limited increases in 24-h EE (average increase 

~10%) in response to extreme changes in energy intake during this overfeeding diet (=200% of 



eucaloric needs), the EE response to 24 hours overfeeding show a large inter-individual 

variability with standard deviation values for the increases in 24-h EE of about 5% (46).  

Overfeeding studies suggest that there is substantial inter-individual variation in the energy cost 

of weight gain, particularly in response to macronutrient-unbalanced diets (47, 48). In fact, 

overfeeding diets with low-protein (<10%) content have been shown to most effectively uncover 

the individual propensity to weight gain (2, 47, 49), presumably due to the energy required to 

maintain lean body mass (50, 51). In a pilot study aimed at investigating how the metabolic 

responses to short-term (i.e., 48 hours) overfeeding and fasting relate to one another in 

individuals, it was confirmed that humans have the ability to respond to overfeeding and fasting 

with an increase and decrease in EE, respectively, and that these adaptive changes to the 

perturbation of energy balance vary considerably among individuals (52). More importantly, this 

study also revealed that individuals with the greatest increase in 24-h EE during overfeeding tend 

also to have the smallest decrease in 24-h EE while fasting (proposed metabolic “spendthrift” 

phenotype), and vice versa (proposed metabolic “thrifty” phenotype) (34, 52) (Figure 1). These 

two human metabolic phenotypes as revealed through acute, short-term dietary manipulation 

consist of a more metabolically efficient, or “thrifty” phenotype that can save energy both in 

conditions of energy surplus (overfeeding) or deficit (fasting), and a more “spendthrift” 

phenotype that maintains higher EE in settings of energy deficiency (such as fasting) while also 

capable of expending more energy settings of energy surplus. It must be noted that the human 

metabolic phenotype is defined over a continuum. Namely, it is quantified by the extent of 

change in 24-h EE during fasting or overfeeding from energy balance conditions. That is, the 

more 24-h EE decreases with fasting, or the less 24-h EE increases with overfeeding, the more 

metabolically thrifty is the individual. Nevertheless, and for the sake of clarity, in this review 



individuals are exclusively classified as either metabolically thrifty or spendthrift (the two 

extremes of the spectrum) based on an arbitrary cutoff such as the median value of the decrease 

in 24-h EE during fasting, as recently done in studies that identified these phenotypes (53, 54). 

For instance, metabolic thrifty individuals are those subjects who decrease their 24-h EE during 

fasting by a degree more than the median value calculated in the entire cohort of a study.  

Based on the characteristics of these two metabolic phenotypes, it is possible that individuals 

with different energy profiles (thrifty vs. spendthrift) would show differences in their rates of 

weight change. Indeed, two recent studies have provided such evidence, namely that these 

metabolic phenotypes can characterize an individual’s propensity to weight gain or weight loss. 

The first study (ClinicalTrials.gov #NCT00523627) (2), which included healthy subjects with a 

wide range of body size, confirmed previous findings that EE responses to fasting and 

overfeeding (particularly, low-protein overfeeding) are correlated. More importantly, this study 

further confirmed for the first time that metabolically thrifty individuals are more prone to gain 

weight in free-living conditions as compared to metabolically spendthrift individuals (2). 

Specifically, a larger decrease in 24-h EE during fasting (Person correlation coefficient: 

R=−0.35, Table 1) and a smaller increase in 24-h EE during 200% low-protein overfeeding 

(R=−0.55, Table 1), both of which are features of the metabolic thrifty phenotype, predicted 6-

month weight gain in free-living conditions (2). The second study (ClinicalTrials.gov 

#NCT00687115) (53), which included overweight subjects who underwent six weeks of 50% 

caloric restriction showed once again that metabolically thrifty individuals who had a greater 

reduction in EE during 24-h fasting before beginning the caloric restriction period, lost lesser 

amounts of weight as compared to metabolically spendthrift subjects who instead lost greater 

amounts of weight during 6-week caloric restriction (R=−0.84, Table 1) (53). Further, in a 



second arm of this clinical trial that included only lean healthy men, metabolically spendthrift 

individuals who have smaller decreases in 24-h EE during fasting demonstrated lower rates of 

weight and fat mass gains during six weeks of 150% overfeeding a low-protein diet (R=−0.84, 

Table 1) (55). 

Taken together, these two independent studies provide compelling evidence that different human 

metabolic phenotypes exist in both lean and overweight individuals and that they may explain 

part of the inter-individual variability in weight change. The physiologic determinants underlying 

these metabolic phenotypes are not known but may include hormonal mediators that might 

explain metabolic differences in response to fasting and overfeeding conditions, particularly low-

protein overfeeding. In rodents, low-protein overfeeding leads to an increase in EE that is 

mediated by Fibroblast Growth Factor 21 (FGF21) (56, 57, 58, 59), thus indicating that this 

hormone may have a role in the metabolic response to low-protein overfeeding in humans as 

well. Indeed, in the previously mentioned study showing that metabolically thrifty individuals 

had a tendency to gain more weight in free-living conditions (2), circulating FGF21 

concentrations acutely and consistently increased approximately threefold only after two 

different overfeeding diets with low-protein content (one high in carbohydrate, and one high in 

fat), while decreasing after 24-h fasting and other overfeeding diets with either normal or high 

protein content (1). Importantly, the increases in plasma FGF21 concentration following both 

low-protein overfeeding diets were associated with concomitant changes in 24-h EE, where a 

greater increase in FGF21 concentration was associated with a greater increase in EE during 

those diets (1). Further, the extent of the increase in FGF21 concentration following low-protein 

overfeeding was associated with free-living weight change after 6 months (1), indicating that an 

impaired ability to increase plasma FGF21 concentration in response to low-protein overfeeding 



is one of the hormonal features of the thrifty metabolic phenotype inclined to gain weight over 

time. The mechanisms by which FGF21 may increase EE in humans are not known, but one may 

include increased glucose uptake in peripheral tissues. This would occur as FGF21 stimulates 

glucose uptake in murine 3T3-L1 adipocytes in an insulin-independent manner (60) and possibly 

due to transcriptional activation of the GLUT1 gene (61). Additional evidence for the role of 

FGF21 was found in a caloric restriction study, where a change in FGF21 concentration, 

following six weeks of dietary restriction, was associated with both a change in the UCP2 gene 

expression level in skeletal muscle and diet-induced weight loss (62). This suggests that FGF21 

may regulate energy production in skeletal muscle by exerting an effect on mitochondrial ATP 

production, thus potentially influencing the metabolic response to caloric restriction and 

ultimately determining the degree of weight loss. 

So-called metabolic flexibility (63, 64, 65, 66, 67) – or the individualized ability to switch 

substrate for oxidation in response to changes in energy intake to match macronutrient 

availability in the diet – was also tested as a metabolic predictor of weight change. In particular, 

an impaired ability to increase fat oxidation in response to dietary fats in settings of positive 

energy balance such as during overfeeding leads to greater weight gain as fat balance (rather than 

carbohydrate or protein balance) is the main determinant of total daily energy balance (68). 

Excess ingested fats that are not oxidized are stored in the body as adipose tissue (67), ultimately 

leading to weight gain. In a recent study, reduced fat oxidation during sleep following 140% 

overfeeding a balanced diet for three days predicted greater free-living weight gain after five 

years (3). Similarly, a failure to increase fat oxidation during one day of 200% overfeeding a diet 

with 60% calories from fats also predicted weight gain over the period of a year (manuscript in 

preparation)(69), indicating that impaired metabolic flexibility (or inflexibility) in the context of 



a high-fat overfeeding diet is a metabolic predictor of weight gain. Although the use of such 

extreme and unusual diets given over 24/56-hour periods may not be reflective of real-life 

settings over longer periods of time, such metabolic “stress tests” may well allow for the 

evaluation of metabolic flexibility in different individuals and their varying capacities to adjust 

to daily changes in the extent and composition of diet in free-living conditions. 

In summary, all these results for both EE responses and metabolic flexibility strongly suggest 

that short-term perturbation of energy balance by acute overfeeding or fasting may uncover the 

underlying metabolic phenotype of single individuals and proactively identify subjects who are 

more at risk of weight gain. 

3) Other measures of adaptive thermogenesis  

In the context of daily EE compartmentalization, thermogenesis is defined as the production and 

release of heat by the human body that reflects the changes in EE in response to a broad range of 

stimuli that include not only food consumption (i.e., diet-induced thermogenesis or thermic 

effect of food), but also heat or cold exposure (i.e., cold-induced thermogenesis), voluntary (e.g., 

exercise-associated thermogenesis) or non-voluntary (non-exercise related thermogenesis) 

physical work, psychological and emotional states such as stress, anxiety or fear, and all 

pharmacological treatments that produce the same physiological response to such stimuli. 

Among all the forms of human thermogenesis, cold-induced thermogenesis has recently gained 

the most ground due to its putative role in human energy metabolism (70, 71) via brown adipose 

tissue activation as assessed by hybrid positron emission tomography and computed tomography 

(71, 72, 73, 74, 75). Interestingly, one study including 13 healthy men demonstrated that the 

metabolic response of one individual to 160% overfeeding positively correlates with the 

metabolic response to mild cold (16°C) (76), such that individuals who had a greater increase in 



EE after overfeeding also showed a greater increase in EE during cold exposure. This 

relationship between metabolic responses to feeding and to cold exposure was otherwise 

confirmed in another study including 21 healthy men (77). Specifically, subjects with a higher 

cold-induced activation of brown adipose tissue (thus, presumably, higher cold-induced 

thermogenesis) had a higher diet-induced thermogenesis during energy balance in conditions of 

thermoneutrality as compared to those individuals with less activation of brown adipose tissue 

who instead had a lower diet-induced thermogenesis during eucaloric feeding (77). Taken 

together, these two studies suggest a potential link between cold-induced thermogenesis 

mediated by brown adipose tissue activation and diet-induced thermogenesis which, as discussed 

above, could reveal an individual’s propensity to gain weight. Supportive of this hypothesis is a 

small study including 16 healthy individuals that showed the degree of brown adipose tissue 

activation after cold exposure was inversely associated with the change in body fat mass after six 

months in free-living conditions (54), such that subjects with a lesser degree of cold-induced 

activation of brown adipose tissue had an increase in fat mass (54). Yet, another study of 9 

healthy men instead reported no association between diet-induced thermogenesis during 150% 

overfeeding and cold-induced thermogenesis (78). Although the impact of brown adipose tissue 

on daily EE is limited (79), cold exposure assessments occurring on one occasion (much like the 

aforementioned metabolic assessments to acute, short-term dietary interventions) may identify 

the metabolic phenotype of an individual. Indeed, the extent of adaptive thermogenesis to cold 

temperatures may be reflective of the overall metabolic phenotype of an individual, which in turn 

is indicative of his/her propensity to gain weight. Yet, given the small sample size of studies 

assessing brown adipose tissue activation and EE, further research is warranted to clarify the role 



and the underlying physiologic mechanisms of cold-induced thermogenesis on energy balance 

and bodyweight regulation. 

4) Energy Sensing as a Predictor of Human Weight Change 

In addition to individual-specific responses in energy metabolism to various metabolic stimuli 

(fasting, over-eating, and cold exposure), another possible determinant in human weight change 

might be located in the relationship between EE and energy intake, which act together in 

determining daily energy balance (33, 80, 81, 82, 83, 84). Supportive of this hypothesis are 

several recent independent studies that consistently report a positive relationship between energy 

intake and EE (80, 83, 85, 86, 87, 88, 89), suggesting that EE may drive energy intake. However, 

the link between energy intake and EE was also previously explored in pioneering studies 

conducted more than 50 years ago (90, 91, 92, 93). In the seminal study by Elholm et al. where 

both energy intake and EE were measured daily for 2 weeks in army cadets (90), a positive 

relationship between energy intake and EE was observed when data were averaged over the 

entire length of the study, although no association was found within the same day (90). Similarly, 

in the classic study of Mayer et al. on Bengal jute mill workers (91), a positive relationship was 

also found between the physical demands of work (a proxy for daily EE) and daily energy intake. 

However, a positive relationship was only detected for relatively higher levels of EE (91) as 

opposed to an inverse relationship that was instead observed for relatively lower levels of EE. 

Taken together, these classic studies demonstrate that a coupling between EE and energy intake 

does exist in humans and that this link may only manifest over longer periods of time and at 

specific levels of physical activity and daily EE. 

As mentioned in Section 1 above however, some studies have observed that relatively high EE 

measured during energy balance coincides with a greater susceptibility to weight gain over time 



(25, 26), perhaps because an over-compensatory increase in energy intake as a result of greater 

energy requirements. However, the precise (putative) mechanism that elicits this response 

(higher energy intake) to increased EE remains unclear. Recent studies have begun to examine 

this potential causal link between EE and energy intake, tentatively calling it “energy sensing,” 

given that energy sensing mechanisms may regulate energy intake to match EE and ultimately 

achieve energy balance. As is known, EE is mainly determined by fat free mass (8), which is 

itself strongly associated with energy intake (85, 86, 94), raising the question as to whether the 

key regulator of energy intake in humans is body composition per se or EE, or both. Although 

interventional studies have not yet demonstrated the causality of the relationship between EE and 

energy intake, cross-sectional analyses from two independent research groups that employed a 

mediation-analysis framework have convincingly demonstrated that EE, indirectly and 

irrespective of its association with fat free mass, is the physiological mediator by which fat free 

mass exerts its effect on energy intake (88, 95). Accordingly, these two studies have provided 

compelling evidence of the existence of energy-sensing mechanisms that may regulate energy 

intake in humans on the basis of the body’s energy demands (50, 82). The biological architecture 

of energy sensing warrants further research as the physiologic and genetic mechanisms 

underlying energy sensing are not fully understood. Biological mediators may include circulating 

hormones such as myokines and adipokines as well as metabolites such as glucose and free fatty 

acids that, in concert, may act centrally to inform the hypothalamus and the brain areas involved 

in appetite and eating behaviors regarding the rate of energy expended by the organism. 

If there indeed is a causal link between EE and energy intake (i.e., energy sensing), it is possible 

that there are differences in the way some individuals are (un)able to sense the extent to which 

they must compensate for their own particular EE by eating. That is, some individuals may 



“sense” to offset their EE to a degree greater (or lesser) than is truly needed by consuming more 

(or less) food than required. Thus, this metabolic sensing mechanism may vary widely across 

individuals and the degree to which it varies may be informative of the propensity of an 

individual to gain weight over time (Figure 2). A recent study in Native Americans has explored 

broad, inter-individual variability in the energy-sensing relationship between 24-h EE and ad 

libitum food intake, as measured by a computerized vending system in an inpatient setting. 

Although nearly all subjects tended to overeat in this context of ad libitum food intake, some 

subjects ate comparatively more than what was predicted according to their body energy 

requirements (96), implying that these particular individuals could not adequately “sense” (or 

perhaps better, they “over-sensed”) their metabolic demands. Importantly, a longitudinal analysis 

observed that the greater degree to which subjects over-ate in the inpatient setting (i.e., a positive 

deviation from the energy-sensing relationship linking EE and energy intake), the higher the rate 

of weight gain in free-living conditions after a median follow-up time of 1.7 years (96), 

indicating that subjects who ate to a degree that positively deviated further from their body 

metabolic requirements were more at risk of weight gain than others who “under-sensed” their 

metabolic needs. These results suggest that reactions to EE vary across individuals in terms of 

the amount of food consumed, such that some individuals over-sense while others under-sense 

their metabolic requirements. Specifically, for those who over-sense and thus, positively 

misconstrue their energy needs by consuming food as though they had higher EE, the propensity 

to gain weight is greater. In sum, the degree to which some individuals over-sense (or, over-

estimate) their metabolic demands may be another indicator of the susceptibility to weight gain 

in humans. 



It goes without saying that over-eating leads to weight gain. What remains to be established 

however, is how to properly define "over-eating." That is, how can an individual's “ideal” caloric 

intake be correctly identified? If the goal is to consume food in order to maintain body weight, it 

is necessary to consider body energy requirements, namely, EE. Given that EE is a continuous 

process throughout an individual's lifetime, whereas energy intake is episodic and sporadic, it is 

conceivable that an individual consumes food at a rate and to an extent relative to persistent 

energy demand, and further, that the rate and extent to which individuals consume varies, 

perhaps in the way they sense their energy needs. Any measure of suitable caloric intake is 

relative to an individual's particular daily EE, but it may be that individuals prone to over-

consuming inaccurately sense their EE. That is, they misconstrue their energy needs, consume 

more than is necessary, and thus, gain weight over time. 

While it is clear that the propensity to overeat informs a person’s tendency to gain weight over 

time, the mechanism dictating this propensity has hitherto remained unclear. It may, indeed, 

hinge on the putative, causal link between EE and energy intake as driven by the body’s ability 

to sense EE and consequently regulate energy intake by altering hunger to meet body’s energy 

requirements (80, 83, 85). From an evolutionary standpoint, a link between EE (i.e., energy 

needs) and energy intake would ensure that an organism experiences a physiologic drive to find 

enough food to maintain both life and reproduction. Thus, the higher EE associated in some 

individuals may well be associated with the demonstrable increased hunger and food-seeking 

behavior, which often lead to a greater-than-necessary intake and weight gain. However, 

interventional studies are necessary in order to clarify the mechanisms by which EE may act as a 

physiological mediator driving energy intake. An increased understanding of the ways in which 

EE may alter energy intake may provide further insight into the pathophysiology of obesity. For 



example, energy sensing may explain why some obesity therapies that act to increase EE do not 

effectively result in weight loss, presumably because of compensatory increases in energy intake 

driven by increased metabolism. Further, there is a need to more fully understand inter-

individual variability in the degree of over-sensing EE and the resulting proclivity to increase 

food consumption in order to identify those subjects more at risk of gaining weight as a 

consequence of impaired (or dysregulated) energy sensing. 

Conclusion 

There is substantial variability in weight change among individuals that can be explained in part 

by inter-individual differences in energy metabolism, particularly when metabolic measurements 

are obtained under conditions of energy imbalance like during fasting and low-protein 

overfeeding. By studying the EE response to acute, short-term changes in energy intake such as 

fasting or overfeeding, it is possible to uncover and quantify individual inclination or resistance 

to obesity. As shown in Table 1, the predictive power of these metabolic parameters in relation to 

future weight change ranges from 0.35 to 0.84 (absolute values of the Pearson Correlation 

coefficient), thus explaining more than 10% of the inter-individual variance in bodyweight 

change. These results for metabolic parameters obtained in conditions of energy imbalance are 

significantly more informative than those obtained by metabolic assessments in conditions of 

energy balance (~5% as reported above in Section 1). Metabolic phenotypes (thrifty vs. 

spendthrift), uncovered by low-protein overfeeding and characterized by plasma FGF21 

concentrations, can identify subjects who are more/less susceptible to weight gain. Namely, 

individuals with a modest FGF21 response to a low-protein diet have a thrifty metabolism and 

they are more at risk of future weight gain. These results may suggest that FGF21 

supplementation could assist metabolically thrifty individuals to increase their metabolism by 



targeting a metabolic defect and ultimately become more “spendthrift” by increasing their EE, 

thus preventing future weight gain or favoring diet-induced weight loss.  

Continued research into metabolic phenotypes is warranted in order to further the development 

of clinical tests (e.g., measuring plasma FGF21 concentration following a low-protein meal) that 

will proactively gauge individual susceptibilities to weight gain. Once the unique metabolic 

phenotype of individuals can be successfully identified through such tests, it will be possible to 

proactively intervene through counseling or therapies to achieve a clinical outcome. For instance, 

for lean individuals shown to have “thrifty” metabolisms, it will be possible to council against 

chronic overeating on account of their higher susceptibility to future weight gain. For individuals 

with obesity shown to have “spendthrift” metabolisms, we will be able to predict that caloric 

restriction will indeed have an effect on weight loss. Conversely, for individuals with obesity 

shown to have “thrifty” metabolisms, it will be immediately clear that caloric restriction alone 

will not be sufficient to fully achieve weight loss and that, thus, additional therapies, such as 

prescribing physical therapy and/or anti-obesity medications, will be needed to favor diet-

induced weight loss.  

In summary, a better understanding of the metabolic differences among individuals may lead to 

individualized therapies for preventing or treating weight gain by identifying subjects at risk on 

the basis of each person's metabolic phenotype and susceptibility to obesity. 
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Table 1. Strength of the relationships between metabolic phenotype variables and weight 

change assessments in human studies. 

Study Metabolic phenotype 

variable 

Weight change  

variable 

Strength of 

relationship* 

Schlögl M, et al. (2) Decrease in 24-h EE 

during fasting 

Free-living weight change 

after 6 months 

R = −0.35 

 

Schlögl M, et al. (2) Change in 24-h EE during 

200% low-protein 

overfeeding 

Free-living weight change 

after 6 months 

R = −0.55 

 

Reinhardt M, et al. (53) Decrease in 24-h EE 

during fasting 

Weight loss after 6 weeks 

of daily 50% caloric 

restriction 

R = −0.84 

 

Hollstein T, et al. (55) Decrease in 24-h EE 

during fasting 

Weight gain after 6 weeks 

of daily 150% low-protein 

overfeeding 

R = −0.84 

 

Vinales KL, et al. (5) Change in plasma FGF21 

after 24 hours of 200% 

low-protein overfeeding 

Free-living weight change 

after 6 months 

R = −0.36 

 

Begaye B, et al. (69) Change in 24-h RQ during 

200% high-fat overfeeding 

Free-living weight change 

after 1 year 

R = +0.39 

 

*: quantified by the Pearson correlation coefficient (R) 

 

  



Figure 1. Definition of thrifty and spendthrift metabolic phenotypes. 

 

Human metabolic phenotypes can be revealed by measuring the short-term (24 hours) response 

to fasting and overfeeding (especially, low-protein overfeeding) from conditions of energy 

balance. Compared to metabolically spendthrift individuals, subjects with a thrifty metabolism 

demonstrate a greater decrease in 24-h energy expenditure from energy balance during fasting 

and smaller increase in energy expenditure during overfeeding (upper-left panel), thus showing 

relatively lower metabolic rates in both dietary conditions (upper-right panel). Subjects with a 

thrifty metabolism lose less weight during sustained caloric restriction (lower-left panel) and 

gain more weight during prolonged overfeeding (lower-right panel).  
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Figure 2. Variability in energy sensing and its effects on weight change. 

 

Positive linear relationship between energy intake and energy expenditure (EE) as determined by 

energy-sensing mechanisms (left graph). Inter-individual variability in the degree of energy 

sensing (i.e., over- vs. under-sensing) might explain the degree of susceptibility to weight gain or 

loss (right graph). Over the entire range of this energy-sensing relationship (e.g., low EE or high 

EE), there are subjects who normally sense their EE and eat accordingly (black circle), thus they 

can better maintain their weight over time. At any given point of the energy-sensing relationship, 

there are also subjects who over-sense their EE (solid square) and, as such, positively 

misconstrue their energy needs by consuming food as if they had higher EE (open circle), thus 

overeating relative to their energy needs and being more inclined to gain weight over time. 

Conversely, subjects that under-sense their EE (open square), eat less food than what they 

expend, thus are more prone to lose weight over time. 
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