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1  | INTRODUC TION

The commercial share of wrist- worn “Smartbands” has grown rap-
idly in recent years. Such devices can collect physiological data in 

a user- friendly and minimally invasive way, making them suitable 
for daily activity tracking (Henriksen et al., 2018). Smartbands 
have come to the medical community’s attention as tools capable 
of collecting biomarkers information, and therefore to monitor 
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Summary
Consumer “Smartbands” can collect physiological parameters, such as heart rate (HR), 
continuously across the sleep– wake cycle. Nevertheless, the quality of HR data de-
tected by such devices and their place in the research and clinical field is debatable, as 
they are rarely rigorously validated. The objective of the present study was to investi-
gate the reliability of pulse photoplethysmographic detection by the Fitbit ChargeHR™ 
(FBCHR, Fitbit Inc.) in a natural setting of continuous recording across vigilance states. 
To fulfil this aim, concurrent portable polysomnographic (pPSG) and the Fitbit’s pho-
toplethysmographic data were collected from a group of 25 healthy young adults, for 
≥12	hr.	The	pPSG-	derived	HR	was	 automatically	 computed	 and	visually	 verified	 for	
each 1- min epoch, while the FBCHR HR measurements were downloaded from the ap-
plication programming interface provided by the manufacturer. The FBCHR was gener-
ally accurate in estimating the HR, with a mean (SD)	difference	of	−0.66	(0.04)	beats/
min (bpm) versus the pPSG- derived HR reference, and an overall Pearson’s correlation 
coefficient (r) of 0.93 (average per participant r = 0.85 ± 0.11), regardless of vigilance 
state. The correlation coefficients were larger during all sleep phases (rapid eye move-
ment, r = 0.9662; N1, r = 0.9918; N2, r = 0.9793; N3, r = 0.9849) than in wakefulness 
(r =	0.8432).	Moreover,	 the	correlation	coefficient	was	 lower	 for	HRs	of	>100 bpm 
(r = 0.374) than for HRs of <100 bpm (r =	0.84).	Consistently,	Bland–	Altman	analysis	
supports the overall higher accuracy in the detection of HR during sleep. The relatively 
high accuracy of FBCHR pulse rate detection during sleep makes this device suitable for 
sleep- related research applications in healthy participants, under free- living conditions.
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patients’ health status. Their role has been investigated in oncol-
ogy, where they were tested as a tool for the activity tracking in 
breast cancer survivors (Chung et al., 2019), and in emergency 
departments, where they were tested for the low- cost heart rate 
(HR)	monitoring	in	critical	patients	(Dagan	&	Mechanic,	2020).	Both	
studies concluded that commercial Smartbands are a feasible tool 
for HR monitoring in these two different circumstances. The pos-
sibility to collect data in a non- invasive way accounts for the large 
spread of commercial Smartbands in sleep research and explains 
why there is a large amount of validation studies that address their 
accuracy (Henriksen et al., 2018). For instance, they have been 
used in population- based projects to investigate circadian rhythms 
and sleep (Brazendale et al., 2019; Dunker Svendsen et al., 2019; 
Guarnieri	 et	 al.,	 2020;	Lee	&	Finkelstein,	2015)	 and	 in	autonomic	
nervous system (Dobbs et al., 2019; Hernando et al., 2018). Fitbit 
Inc. Smartbands are frequently used in research projects and are 
among the most popular wrist- worn devices (Lewis et al., 2020). 
The FBCHR is one of the Fitbits Inc. Smartbands. It is equipped with 
a photoplethysmography sensor, a detector of microvascular oscil-
lations of blood volume used to compute the HR. The FBCHR mea-
surements have been validated in a plethora of different studies, 
as	compared	to	electrocardiography	(ECG)	(Allen,	2007;	Benedetto	
et al., 2018), polysomnography (PSG) (de Zambotti et al., 2016) and 
chest- worn HR devices (Bai et al., 2018; Reddy et al., 2018). The 
accuracy of HR estimation was studied in different experimental 
settings, including both sedentary and physical activity conditions 
(Benedetto	et	al.,	2018;	Nelson	&	Allen,	2019)	or	during	daily	ac-
tivity	 (Nelson	&	 Allen,	 2019).	 The	 FBCHR	 received	 the	 attention	
of sleep researchers interested in validating its HR measurements 
during	sleep.	Among	them,	de	Zambotti	et	al.,	 (2016)	 investigated	
the quality of HR detection of the FBCHR in sleep and compared 
its performance to the PSG- based HR estimation. However, this 
experimental setting provides information on how FBCHR behaves 
under mostly sedentary conditions, as the data were collected in 
a	controlled	environment.	Moreover,	that	study	lacked	sleep-	stage	
specificity as it did not consider the heterogeneity of HR across 
different sleep stages. In particular, the HR variability between 
vigilance stages could be considerably high, as well assessed by dif-
ferent studies (Penzel et al., 2003; Zemaityte et al., 1986). In fact, 
the mean HR tends to be lower in N1, N2, N3 stages compared 
to	wakefulness,	while	 in	rapid	eye	movement	 (REM)	stage	the	HR	
tends to be higher compared to N1, N2 and N3 stages. Haghayegh 
et al., (2019) addressed the quality of HR detection in each sleep 
phase, comparing the quality of HR measurement to the ECG 
with a 5- min resolution. However, a temporal resolution of 5 min 
could not properly describe the sleep- related HR dynamics (Penzel 
et al., 2003; Zemaityte et al., 1986).

In the present study, we aimed to address the quality of HR 
detection of the FBCHR in a natural setting, across all vigilance 
stages, with a 1- min resolution, by comparing the HR data ob-
tained from the manufacturer server with the portable PSG 
(pPSG)- derived HR.

2  | METHODS

2.1 | Participants

A	 total	 of	 25	 volunteers	 were	 recruited	 among	 undergraduate	
and graduate students at the University of Pisa. The group com-
prised 17 females and eight males and the mean (SD) age was 
22.36 (3.00) years. This study was approved by the University 
of Pisa Bioethical Committee (Review No: 02/2020 Prot. 
0036352/2020).

2.2 | Procedure

Participants were concurrently monitored with the FBCHR and a 
pPSG device. Once participants were equipped with the two de-
vices, they were asked to carry on their daily routines without any 
specific	activity	restrictions.	Participants	spent	≥12-	hr	wrist-	wearing	
under	continuous	(Nelson	&	Allen,	2019)	monitoring.

2.3 | Portable PSG

The pPSG recordings were performed through a portable device 
(MORPHEUS	HOME	LTM,	Micromed).	The	electrodes	were	placed	
according	 to	 the	 American	 Academy	 of	 Sleep	 Medicine	 (AAMS)	
guidelines	(Berry	et	al.,	2012).	We	applied	on	the	scalp	12	electroen-
cephalographic (EEG) derivations electrodes (F3, F4, C3, C4, T3, T4, 
P3, P4, T5, T6, O1, O2, P, ground in Cz, reference in Fz), one ECG deri-
vation on the chest, placed symmetrically around the sternum within 
the third and fourth ribs, two electrooculographic (EOG) (left and 
right	 vertical),	 and	 two	electromyographic	 (EMG)	derivations	 (elec-
trodes placed on the chin over the suprahyoid muscles). Each 30- s 
epoch	was	scored	by	a	trained	professional	according	to	the	AASM	
guidelines (Berry et al., 2012). The pPSG ECG measurements (sam-
pled at 512 Hz) were imported and processed through a custom func-
tion	 in	MATLAB	 (MATLAB	R2020b,	Math	Works).	The	ECG	signals	
were filtered through a Savitzky– Golay filter and a high- pass filter. 
The Savitzky– Golay polynomial order (7) and frame length (30) were 
respectively maximised and minimised in order to improve the QRS 
complex quality (Hargittai, 2005). Due to a low- frequency compo-
nent in all 25 PSG’s ECG signals, we applied a high- pass filter with a 
passband of 2 Hz.

The pPSG- derived HR was then automatically computed by 
identifying the R peaks in each 1- min epoch. The results of the com-
putation were visually verified for 1- min each epoch.

2.4 | The FBCHR

A	 FBCHR	 Smartband	 is	 a	 wrist-	worn	 commercial	 device	 able	
to track the activity through a tri- axial accelerometer sensor 



     |  3 of 10BENEDETTI ET AL.

(micro-	electro-	mechanical	systems	[MEMS]	tri-	axial	accelerometer),	
whose measurements are used to compute steps and energy ex-
penditure through a proprietary algorithm, and a photoplethysmog-
raphy. The latter sensor can detect blood volume oscillations in the 
microvascular bed of a tissue, continuously. The collected data are 
shaped as a waveform, which is composed of a pulsatile component 
and a group of slow frequency components attributed to respiration, 
sympathetic nervous system activity, and thermoregulation. The for-
mer pulsatile component is generated by the cardiac synchronous 
changes in the blood volume with each heartbeat. The synchronicity 
of the pulsatile waveform to the blood volume is then used to com-
pute	the	HR	(Allen,	2007).

The FBCHR is equipped with a PurePulse® light- emitting diode 
(LED), a photoplethysmographic technology that could be found 
in other Fitbit Inc. devices, such as Fitbit Charge 2™, Fitbit Charge 
3™,	 Fitbit	 Alta	 HR™,	 Fitbit	 Versa™,	 Fitbit	 Blaze™,	 and	 Fitbit	 Ionic™	
(Haghayegh	et	al.,	2019).	We	accessed	FBCHR	MEMS	tri-	axial	accel-
erometer and PurePulse® measurements from the Fitbit Inc. server 
via	the	application	programming	interface	(API),	provided	by	Fitbit	Inc.	
through a third- party platform (www.sleep acta.com). Calorimetric and 
steps	measures	were	stored	at	one	data	point	per	minute.	As	far	as	
the HR data, Fitbit Inc. discloses that “Heart rate data is stored at one- 
second intervals when in exercise mode and at five- second intervals at 
all other times”, but does not officially disclose the HR sampling rate. 
However, the manufacturer does claim that the HR detectable range 
spans from 30 to 220 beats per min (bpm); a validation study could 
confirm	that	data	are	collected	up	to	153	bpm	(Nelson	&	Allen,	2019),	
consistently with our data. The pPSG and FBCHR measurements 

were synchronised on the same computer when the participants were 
equipped with the devices, at the beginning of the recording session. 
Once	 data	were	 imported	 in	 the	MATLAB	 environment,	 they	were	
graphically cross correlated to pPSG measurements for alignment 
(Buck et al., 2002).

2.5 | Statistical analysis

Statistical analysis was performed in Python using NumPy library 
(Harris et al., 2020), while plots were computed through the Seaborn 
library.

While	 the	 FBCHR	HR	 data	were	 sampled	 at	 a	 1-	min	 resolu-
tion,	 the	pPSG	were	scored	according	to	the	AAMS	criteria	with	
a	 30-	s	 resolution.	We	 re-	coded	 pPSG	 epochs’	 sleep	 score	 from	
30- s resolution to 1- min resolution so that they were coupled 
(Sadeh	et	 al.,	 1994;	de	Zambotti	 et	 al.,	 2016).	We	compared	 the	
FBCHR and pPSG measurements of HR on a minute- by- minute 
basis (Figure 1).

We	computed	the	mean	and	the	standard	deviation	(SD) of the 
single- epoch differences between the pulse detected by the FBCHR 
and the pPSG. The same calculation was repeated for each vigilance 
state (i.e. sleep stages and wake). Pearson’s correlation coefficient 
was computed for each participant between paired data that were 
not stratified for vigilance state, and then for all sleep stages and 
waking (Giavarina, 2015). Correlation coefficients were computed 
separately	in	the	two	groups	identified	by	PSG’s	HR	≥100	bpm	and	
PSG’s HR <100 bpm.

F I G U R E  1  Minute-	by-	minute	heart	
rate (HR) across the recording for a 
representative participant. Top panel: 
HR	(beats/min	[bpm])	derived	from	the	
portable polysomnographic (pPSG) 
electrocardiography (ECG) derivation 
(ECG, in blue) is plotted against the Fitbit 
ChargeHR™ (FBCHR, in red). Bottom 
panel: corresponding hypnogram, 
depicting the transitions across pPSG- 
determined	behavioural	states	(Wake,	
N1, N2, N3, rapid eye movement 
[REM])
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To formally test whether the correlation between paired data 
varied for different HR zones, as graphically suggested by the Bland– 
Altman	 plots,	 correlations	 between	 the	 pPSG	 and	 Fitbit-	detected	
HR were re- computed for bins of 10- bpm intervals.

Along	with	Pearson’s	correlation	coefficients,	we	calculated	both	
the Lin’s concordance correlation coefficients (CCC) and the mean 
absolute	percentage	errors	(MAPE).

A	Bland–	Altman	analysis	 (Aadland	&	Ylvisaker,	2015;	Nelson	&	
Allen,	 2019)	 was	 performed	 in	 order	 to	 visually	 assess	 the	 distri-
bution of the difference between HR measured by the FBCHR and 
pPSG.	Both	Bland–	Altman	plots	and	limits	of	agreement	(LoA)	were	
computed for each sleep stage and in wakefulness.

To understand how movement, detected as actiomet-
ric measures, might affect the HR detection of the FBCHR, 
we estimated a quantile regression model with response 
ΔHR = (HRFITBIT	−	HRPSG) and the following predictors: the PSG 
itself, and a natural cubic spline that describes the effect of the 
actiometric measures.

3  | RESULTS

3.1 | Correlation Analysis between pPSG and 
FBCHR HR detection

Pearson’s correlation coefficient (r) was computed on aggregated 
paired HR data (FBCHR and pPSG), showing an overall correlation 
of 0.93 (number of samples [n]	= 13,058; Figure 2a). The correla-
tion was lower in wakefulness (r = 0.84, n = 5,028, Figure 2b), and 
greater	for	each	and	every	sleep	phase	(REM,	r = 0.97, n = 1,656; 
N1, r = 0.99, n = 77; N2, r = 0.98, n = 3,282; N3, r = 0.98, n = 3,015, 
Figure 2c– f). In Table 1 the correlation coefficients are reported for 
each monitored subject, while in Table S1 are shown the CCCs and 
MAPEs.

For the same HR intervals, the correlation was consistently 
higher	during	sleep	than	waking	(Figure	3).	Moreover,	epochs	with	
HRs >100 bpm showed a significantly worse correlation (r = 0.35, 
n = 116) than those with HRs <100 bpm (r = 0.84, n = 4,912).

3.2 | Bland– Altman analysis

Overall, regardless of vigilance state, the mean difference of HR 
measurements between the FBCHR and pPSG was ΔHR = (HRFITBI

T	−	HRPSG) =	−0.66	SEM: 0.04 bpm (Figure 4a). Such bias was larger 
for wake epochs (ΔHR =	 −1.51	 SEM: 0.10 bpm, Figure 4b) com-
pared	 to	each	sleep	stage	 (REM,	ΔHR = 0.03 SEM: 0.06 bpm; N1, 
ΔHR =	−0.29	SEM: 0.16 bpm; N2, ΔHR =	−0.12	SEM: 0.04 bpm; N3, 
ΔHR =	−0.21	SEM:	0.04	bpm,	Figure	4c–	f).	As	it	can	be	observed	in	
Figure 4, the HR estimation by the FBCHR from 60 to 80 bpm, while 
it tends to overestimate the HR for lower and upper frequencies, 
respectively.	 Furthermore,	 in	 Bland–	Altman	 plots	 (Figure	 4)	 those	

samples lying at >100 bpm have a more diffuse distribution (i.e. a 
wider dispersion).

3.3 | Quantile regression model

In Figure 5, we show the predicted quantiles of order 0.05 and 0.95, 
for pPSG = 60 bpm. The bias of the FBCHR is generally positive and 
is	closer	 to	zero	at	 low	actiometric	measures.	While	 the	bias	 is	an	
increasing function of the actiometric measures, the rate of increase 
is much higher during wake than during sleep.

4  | DISCUSSION

In the present study the accuracy of pulse estimation by the FBCHR 
is evaluated in comparison to the HR estimated by the pPSG 
under	 free-	living	 conditions	 (Aadland	&	Ylvisaker,	2015;	Nelson	&	
Allen,	2019).	Our	present	results	show	that	the	FBCHR	tends	to	un-
derestimate the HR detected by the pPSG ECG recording (overall 
Bland–	Altman	bias	=	−0.66	SEM: 0.04 bpm). This evidence is sup-
ported by other studies suggesting that the FBCHR’s PurePulse is 
prone to underestimate the HR compared to the HR detected on 
ECG traces recorded by PSG devices (de Zambotti et al., 2016), 
chest- worn three- lead ECG (Haghayegh et al., 2019) and ambu-
latory	 ECG	 (Nelson	&	Allen,	 2019).	 The	bias	 is	 larger	 during	wake	
than	during	sleep	phases	(Waking	Bland–	Altman	bias	=	−1.514	SEM: 
0.10 bpm). Consistently, also the correlation coefficient between the 
pPSG and FBCHR measurements is at its peak during wakefulness 
compared to sleep. The observation that the FBCHR is less relia-
ble when the wearer is awake is consistent with other studies (Jo 
et al., 2016; Reddy et al., 2018). The higher wrist movement rates 
during waking and the related lower stability of the sensor contact 
with the skin during wakefulness can account for the lower agree-
ment between the FBCHR and pPSG during wake, as suggested by 
the quantile regression model. The impact of movement on wrist 
photoplethysmographic HR detection has been already proposed 
by Benedetto et al., (2018) and by Bent et al., (2020). Instead, we 
exclude that the difference in accuracy between sleep and waking 
might depend on the mean difference in frequency rates between 
vigilance states. In fact, after controlling for the HR ranges, the 
FBCHR remains more accurate during sleep as compared to waking. 
Moreover,	the	correlation	between	HR	measured	by	the	FBCHR	and	
pPSG highlights the low reliability of FBCHR in estimating HR when 
the pulse is >100 bpm. The accuracy of the FBCHR during moderate 
to high physical activity states is controversial in the literature: some 
studies (Bai et al., 2018; Reddy et al., 2018) indicate an accurate HR 
estimation by the FBCHR PurePulse technology. Other studies (Bent 
et al., 2020; Jo et al., 2016) also support our conclusions: the FBCHR 
could not be considered as a reliable HR estimator of the HR during 
fitness activities. In the same paper, along with Sjoding et al., (2020), 
the authors show how the skin tone does impair the accuracy of the 
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F I G U R E  2  Scatterplots	and	regression	lines	for	aggregated	vigilance	states	(Panel	a),	wakefulness	(Panel	b),	rapid	eye	movement	(REM,	
Panel c), N1 (Panel d), N2 (Panel e) and N3 (Panel f). The corresponding Pearson’s correlation coefficients and p values are superimposed to 
each plot. Each colour displays data obtained from a single subject. Time resolution: 1 min
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TA B L E  1   Participants’ Pearson’s correlation coefficients (r) calculated for aggregated activity states (number of samples [n]	= 13,058) 
and	for	each	activity	state	(Wake,	n =	5,028;	REM,	n = 1656; N1, n = 77; N2, n = 3,282; N3, n = 3,015). The number of outliers is shown in 
brackets

ID Age, years Samples, n
Whole 
recording Wake (outliers) REM (outliers) N1 (outliers) N2 (outliers) N3 (outliers)

1 21 452 0.89 0.92 (12) 0.69 (3) 0.91 (0) 0.87 (0) 0.84 (0)

2 22 586 0.69 0.65 (66) 0.96 (0) 0.98 (0) 0.90 (0) 0.88 (0)

3 24 540 0.84 0.77 (42) 0.83 (0) 1 (0) 0.50 (3) 0.50 (6)

4 21 597 0.93 0.91 (27) 0.91 (3) 1 (0) 0.82 (3) 0.95 (0)

5 20 663 0.83 0.77 (30) 0.86 (0) 0.83 (0) 0.79 (6) 0.86 (0)

6 20 517 0.81 0.78 (33) 0.72 (0) 0.59 (0) 0.73 (3) 0.83 (3)

7 23 565 0.89 0.84 (66) 0.86 (3) 0.97 (0) 0.68 (9) 0.69 (3)

8 22 605 0.92 0.86 (87) 0.92 (0) 1 (0) 0.95 (0) 0.95 (0)

9 20 316 0.92 0.93 (0) 0.97 (0) 0.93 (0) 0.88 (3)

10 30 348 0.88 0.80 (21) 0.86 (0) 0.89 (0) 0.93 (0)

11 22 692 0.94 0.91 (90) 0.95 (0) 0.65 (0) 0.94 (3) 0.96 (0)

12 30 528 0.91 0.89 (3) 0.90 (3) 0.77 (0) 0.86 (0)

13 24 441 0.77 0.62 (183) 0.68 (12) 1 (0) 0.93 (0) 0.79 (3)

14 21 547 0.82 0.55 (54) 0.85 (3) 0.87 (0) 0.85 (0) 0.86 (3)

15 20 649 0.89 0.86 (21) 0.89 (0) 0.98 (0) 0.81 (6) 0.80 (3)

16 21 580 0.91 0.89 (33) 0.92 (0) 0.96 (0) 0.97 (0)

17 22 583 0.65 0.57 (36) 0.81 (0) 0.97 (0) 0.74 (3) 0.78 (3)

18 21 564 0.81 0.74 (81) 0.91 (3) 1 (0) 0.93 (0) 0.83 (3)

19 22 376 0.93 0.88 (51) 0.84 (0) 0.82 (0) 0.88 (0) 0.88 (0)

20 20 473 0.91 0.82 (168) 0.75 (3) 0.98 (0) 0.83 (0) 0.76 (0)

21 21 605 0.79 0.71 (33) 0.94 (0) 0.93 (0) 0.88 (0)

22 20 250 0.95 0.95 (27) 0.36 (3) 0.95 (0) 0.55 (6)

23 29 694 0.48 0.47 (105) 0.73 (0) 0.66 (6) 0.44 (3)

24 24 370 0.84 0.87 (21) 0.73 (0) 0.76 (9) 0.83 (0)

25 19 517 0.91 0.78 (12) 0.99 (0) 0.94 (3) 0.93 (0)

Mean	[SD]	(outliers) 22.36	[3.00] 522.32	[115.71] 0.84	[0.11] 0.78	[0.13]	
(1,302)

0.83	[0.130]	
(36)

0.91	[0.14]	
(0)

0.83	[0.11]	
(54)

0.82	[0.14]	
(36)

ID,	participant	identification	number;	REM,	rapid	eye	movement.

F I G U R E  3   Pearson’s correlation 
coefficients (r) plotted against heart rate 
ranges. Correlation coefficients between 
Fitbit ChargeHR™ (FBCHR) and portable 
polysomnographic (pPSG) paired data 
are higher in aggregated (large blue solid 
line) as well as in each sleep stage, plotted 
separately	(rapid	eye	movement	[REM],	
thin red dashed line; N1, thin green 
dashed line; N2, thin blue dashed line; 
N3, thin dashed black line) than waking 
(large solid yellow line), across all heart 
rate frequency bins
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detection. In our study, given the demographics of the subjects en-
rolled, we could not verify this claim.

Consistently	with	the	correlation	coefficients	results,	the	LoA	of	
Bland–	Altman	analysis	(Figure	4)	are	wider	for	waking	samples	com-
pared	to	sleep	LoA.	This	result	suggests	that	the	HR	measurements	
of the FBCHR tends to be more accurate (i.e. nearer to the HR mea-
sured by the pPSG) in sleep epochs compared to wakefulness.

Both the low accuracy in wakefulness and the reliability of 
HR estimation in sleep have multiple implications. The FBCHR 
can provide clinicians a feasible tool for accurately and continu-
ously monitor HR during sleep. Beyond the clinical applications, 
it can be exploited in basic sleep research protocol, especially 
in those studies investigating HR variability and the autonomic 
nervous	 system.	Also,	 the	FBCHR	could	 improve	 the	analysis	of	
sleep parameters such as wake after sleep onset or sleep effi-
ciency. The FBCHR can possibly be used in HR monitoring during 
resting wakefulness, when the low rate of rest movements af-
fects the contact between the PurePulse diode and the skin less. 
Because PurePulse LED technology is shared with other Fitbit 
Inc. Smartbands, our results are generalisable to other devices 
(Haghayegh	et	al.,	2019).	A	limitation	of	our	present	study	is	that	
it was conducted on a relatively small sample, entirely composed 
of Caucasian, healthy young adults, the majority of whom were 

females. Furthermore, we computed the correlation coefficients 
for HR >100 bpm on 116 paired samples. The small sample size 
could further affect our results and our conclusion on the FBCHR 
reliability in this frequency range.

In conclusion, in the present study we addressed the quality of 
HR detection of a Fitbit Inc. wrist- worn Smartbands device (Fitbit 
ChargeHR™) across all vigilance states (i.e. all sleep stages and wak-
ing).	We	conducted	 this	quality	 assessment	 through	different	 sta-
tistical methodologies, such as correlation coefficient computation 
and	Bland–	Altman	 analysis	with	 a	 1-	min	 temporal	 resolution.	Our	
present results indicate that the accuracy of the tested Smartband is 
substantially higher during sleep than in waking, across all HR zones. 
A	plausible	explanation	is	provided	by	the	motion-	related	artefacts	
occurring during waking.
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