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Abstract

In this paper, identification methods are proposed to estimate the neuromuscular and visual responses of a multi-

loop pilot model. A conventional and widely used technique for simultaneous identification of the neuromuscular

and visual systems makes use of cross-spectral density estimates. This paper shows that this technique requires a

specific non-interference hypothesis, often implicitly assumed, that may be difficult to meet during actual experimental

designs. A mathematical justification of the necessity of the non-interference hypothesis is given. Furthermore, two

methods are proposed that do not have the same limitations. The first method is based on ARX models, whereas

the second one combines cross-spectral estimators with interpolation in the frequency domain. The two identification

methods are validated by offline simulations and contrasted to the classic method. The results reveal that the classic

method fails when the non-interference hypothesis is not fulfilled; on the contrary, the two proposed techniques give

reliable estimates. Finally, the three identification methods are applied to experimental data from a closed-loop control

task with pilots. The two proposed techniques give comparable estimates, different from those obtained by the classic

method. The differences match those found with the simulations. Thus, the two identification methods provide a good

alternative to the classic method and make it possible to simultaneously estimate a human’s neuromuscular and visual

response in cases where the classic method fails.
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I. INTRODUCTION

Novel pilot support systems include haptic aids that help pilots perform a control task by providing additional

tactile information on the control device [1]–[3]. Haptic aids have been widely employed in several contexts.

Examples are remote control with the master-slave paradigm [1], [4], force feedback in servo-actuated systems [5],

and robotic assisted surgery [6]. In these contexts the haptic channel is used to let the operator feel variations

and/or discontinuities in the environment, like hitting or approaching an obstacle, encountering unexpected loads,

or interacting with surfaces (i.e. tissues) with different softness. This knowledge eventually increases performance

and situational awareness. Other studies investigated the use of haptic feedback for generating synthetic warnings.

So-called stick shakers are currently used in many modern aircraft for alerting pilots to a potential stall [7], [8].

In recent years, there has been considerable interest in designing haptic aids as guidance systems. Such aids

continuously provide a haptic feedback on the control device that suggests a possible right control action to the

pilot. Examples are a haptic gas pedal that assists the driver in car following [9], a haptic steering wheel for lane-

keeping [3], [10], and a haptic flight director that assists pilots in following a glide slope [11], [12]. The pilot can

either follow the continuous haptic feedback, or override it in case of discordance. It has been shown that pilots

quickly get acquainted with this type of haptic feedback, learn how to exploit it to increase their performance, and

adapt their responses to the specific type of haptic aid [10], [13].

Due to the continuous nature of the tactile feedback, one can assume that pilots adopt a time-invariant behavior.

Since humans can adapt their responses over a large range [13], [24], an effective design of haptic aid requires

accurate knowledge of pilot adaptation to the provided continuous haptic feedback. This papers seeks to address

how to model and estimate the pilot responses in control tasks with continuous haptic feedback.

Quasi-linear models are commonly used to describe pilot behavior in various control tasks [14]–[16]. These

models represent pilot behavior with linear describing functions combined with a remnant signal to account for

non-linearities. When haptic aids are used and tactile information is provided in addition to presenting visual

information, the tactile perception channel needs to be modeled as an additional input to the pilot. A multi-loop

quasi-linear model that meets this requirement was developed by van Paassen et al. [19], [20]. This model is

characterized by two control loops, one describing the visual perception channel and one describing the tactile

information processed by the neuromuscular system. Identifying the neuromuscular and visual responses would

provide quantitative insights into the pilot adaptation to the haptic feedback.

To identify pilot visual and neuromuscular responses during a closed-loop control task, identification techniques

are needed that account for the multi-loop nature of the task. A commonly used technique is based on the

Cross Spectral Density (CSD) analysis [21]. This technique has been initially applied to neuromuscular system

estimation for tasks in which pilot visual feedback is not involved and the pilot is essentially a single-input

single-output system [22]. In [13], [23] the technique was extended to estimate neuromuscular system in control

tasks with visual feedback. Two mutually uncorrelated forcing functions, a visual reference trajectory and a force
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Fig. 1. Compensatory tracking task, in which a pilot controls the Controlled Element (CE) through a Control Device (CD). The pilot is described

with a visual (VIS) and a neuromuscular response (the inverse of the admittance ADM), combined with the remnant signal n. The dashed

arrows indicate signals that can not be measured, while the large shaded arrows represent the known forcing functions needed for identification.

All other signals can be measured.

disturbance, were inserted in the feedback loop to estimate the neuromuscular and visual dynamics. The contribution

of force disturbance in the visual error was implicitly assumed to be negligible, i.e., the force disturbance used for

identification was assumed not to interfere with the visual feedback. Unfortunately, this non-interference assumption

is not always verified [24]. As a sufficiently high Signal-to-Noise Ratio (SNR) is required for the identification

procedure, the power of the force disturbance cannot be decreased such that its effect on the visual feedback is not

actually perceived by the pilot.

This paper shows that the commonly used CSD method may provide biased estimates when the non-interference

assumption is not fulfilled. Two novel identification methods are presented, which also produce reliable estimates

when the force disturbance influences the visual error. In the first method (ARX-method), a multi-loop Auto-

Regressive model with eXogenous inputs (ARX) is used to fit the measured data in the time domain. A similar

identification procedure was successfully applied for a different control task [25]. The second method (CSD-ML

method) makes use of the Cross Spectral Density analysis like the conventional method, but does not require the

non-interference assumption. Numerical simulations and human in-the-loop experiment are performed to provide

supportive evidence of the reliability of the two novel methods.

The paper is structured as follows: Section II presents a model that describes pilots in a tracking task with

continuous haptic aids. Sections III and IV illustrate the theoretical basis of the three adopted identification methods,

followed by a set of off-line Monte Carlo simulations in section V. Subsequently, section VI shows an experimental

validation of the proposed identification methods. Finally, conclusions are drawn.

II. PILOT MODEL AND CONTROL TASK DESCRIPTION

This paper focuses on human control behavior in a compensatory tracking task. In this task, pilots are asked

to follow a reference signal by compensating for a tracking error e. When haptic aids are used, additional tactile

information is provided to the pilot for achieving the control task. To assess the influence of this second input on

the pilot, the visual and tactile perception channels need to be modeled separately.
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A multi-loop model that meets these requirements was developed by van Paassen et al. [13], [19], see Fig. 1.

The human operator is described by two control loops, the outer describing the visual response, whereas the inner

loop describes the neuromuscular response. The neuromuscular response is represented by the inverse of the arm

admittance ADM, defined as the dynamic relationship between the force acting on the arm and the position of

the arm [13]. The visual system VIS and the neuromuscular response ADM both contribute to the control force

Fhuman. As common in the context of pilot dynamics identification with continuous haptic aids [9], [13], the visual

and the neuromuscular responses are assumed to be produced by linear and time-invariant systems. Nonlinearities

in the pilot response are accounted for by the remnant signal n [15].

The haptic force Fhapt represents any additional force feedback provided by the haptic aid. In the field of guidance

haptic aids, the haptic system is generally designed as a standard compensator, which continuously provides forces

that aim at achieving a certain control task [24], [27]. Referring to the compensatory tracking task shown in Fig. 1,

the haptic compensator is commonly designed to regulate the tracking error e to zero. Throughout this paper, we will

consider the dynamics of the haptic compensator equal to zero for the purposes of developing the pilot identification

techniques. This simplification does not affect the generality of the developed identification methods, since they are

easily extensible to the case of non-zero haptic aid dynamics.

III. CONVENTIONAL IDENTIFICATION TECHNIQUE

This section describes the identification technique, based on cross-spectral analysis, that is commonly used to

estimate the pilot responses of the model shown in Fig. 1. To simultaneously estimate the admittance and the

visual response, two deterministic forcing functions need to be inserted into the loop: the target position xtar,

which represents the reference trajectory that pilot has to track, and the force disturbance Fdist, which represents

a continuous force disturbance that the pilot can feel on the control device.

The forcing functions have to be tuned with care, as the presence of human in the control loop poses constraints

on their power content. The amount of power and the bandwidth should not be too high, to prevent changes in the

human control strategy [21], [28], [29]. At the same time, they should not be too low in order to ensure an accurate

estimate. In order to satisfy both conflicting constraints simultaneously, a trade-off has to be found.

A. Forcing Functions Design

The two forcing functions xtar and Fdist were designed as multisine signals [30]:

xtar(t) =

Nt∑
j=1

Tj sin(2πfTj t+ ψTj ) (1)

Fdist(t) =

Nd∑
j=1

Dj sin(2πfDj
t+ ψDj

) . (2)

Each frequency fDj
and fTj

was chosen as an integer multiple of the base frequency, which is defined as the inverse

of the measurement time T of the forcing function. In this case, all measurements lasted 81.92 s, corresponding to

a base frequency of 0.0122 Hz.
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Fig. 2. Forcing signals xtar and Fdist.

Simultaneously applying two forcing functions requires a method that allows distinguishing their contribution in

the measurements. A well-documented method consists of assigning different sets of discrete points in the available

frequency range to Fdist and xtar [31], [32]. Fig. 2a shows the frequency separation of the two forcing signals

used in this research. Each set of frequency points is composed of a cluster of two adjacent frequencies to allow

for frequency averaging during estimation.

For both forcing functions, the phases ψi were chosen randomly to obtain unpredictable behavior. A cresting

technique was applied to avoid peaks in the time domain [30], [33]. This technique minimizes the Cresting Factor

(CF), which is defined as the maximum amplitude of the signal divided by the Root Mean Square (RMS) of the

signal. By minimizing the cresting factor, the power of the signal can be higher without increasing the signal

amplitude. The increased signal power generally results in better Signal-to-Noise Ratios (SNR), and, consequently,

in better estimates.

The choice of signal amplitudes must account for human limitations. For the target position xtar, the sinusoidal

amplitudes at high frequencies should not be too large, since the pilot must be able to follow them. The amplitude

distribution was chosen to match the frequency response of a filter Hf [25]:

Hf =
(s+ 10)2

(s+ 1.25)2
. (3)

The amplitudes for Fdist were tuned to reach a trade-off between two conflicting objectives: they have to be

low enough not to disturb pilots during the tracking task, but still allow distinguishing their contribution in the

measurements. Furthermore, the “Reduced Power Method” was used [29], see Fig. 2a. The principle of this method

is to apply a reduced power level at higher frequencies, to allow estimation in a wide range of frequencies without

influencing the control behavior of pilots.

The multisine time signals were obtained from their spectra using the inverse Fast Fourier Transform [30]. Table I

lists the base-frequency multiple k, the actual frequency f , the amplitude A and the phase φ of each of the sines

in the forcing functions, and Fig. 2b shows a sample realizations of Fdist and xtar.
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B. Cross-Spectral Density Analysis

A common method for identification of control behavior is based on cross-spectral density estimates. This

approach, referred to as the CSD-based method, has previously been used for pilots in a pitch tracking task [23],

[26] and for car drivers in a car following task [31].

In a closed multi-loop system like in Fig. 1, the best linear approximation of the pilot admittance can be calculated

as [21], [33]:

ĤADM (f) =
ŜFdistxCD

(f)

ŜFdistFadm
(f)

, f ∈ {fd} (4)

where {fd} is the set of frequencies in which Fdist has power, ŜFdistxCD
and ŜFdistFadm

are the estimated cross-

spectral densities between Fdist and xCD and between Fdist and Fadm, respectively.

The CSD-based method assumes linearity of the pilot admittance; the validity of this assumption can be checked

with the squared coherence function defined as [21]:

Γ̂2(f) =
|ŜFdistxCD

(f)|2
ŜFdistFdist

(f)ŜxCDxCD
(f)

, f ∈ {fd} . (5)

The coherence function Γ̂ equals 1.0 when the system is linear and there is no noise, and approaches 0.0 when no

linear relation is found.

To estimate the cross-spectral density ŜFdistFadm
in (4), the time realization of the force Fadm must be known.

Unfortunately, only the total human force Fhuman on the control device can be measured, which is given by the

sum of Fadm and Fvis (and the remnant noise n). However, if it is assumed that the visual response Fvis does not

contain power at frequencies in {fd}, the force Fadm at frequencies {fd} can be approximated with the human

force Fhuman measured at frequencies {fd}. In this case, the admittance at frequencies {fd} can be estimated given

measurements of xCD, Fdist and Fhuman as:

ĤADM (f) =
ŜFdistxCD

(f)

ŜFdistFadm
(f)
≈ ŜFdistxCD

(f)

ŜFdistFhuman
(f)

, f ∈ {fd} . (6)

Note that only if the power of the tracking error e is zero for all frequencies {fd} does Fvis not contain power

at frequencies in {fd}. This is because the visual response VIS in Fig. 1 is considered linear. Therefore, to apply

the common identification method, it must be assumed that the power of the tracking error e must be zero for all

frequencies {fd}: the non-interference assumption.

When the non-interference assumption is not fulfilled and Fadm cannot be approximated with Fhuman, the

estimator in (6) actually estimates a transfer function different from the admittance. The estimated Frequency

Response Function (FRF) can be written as:

ĤADM (f) =
ŜFdistxCD

(f)

ŜFdistFhuman
(f)

=

ŜFdistxCD
(f)

/
ŜFdistFdist

(f)

ŜFdistFhuman
(f)

/
ŜFdistFdist

(f)

=
ĤFdistxCD

(f)

ĤFdistFhuman
(f)

, f ∈ {fd} (7)

where ĤFdistxCD
is the FRF from Fdist to xCD, and ĤFdistFhuman

is the FRF from Fdist to Fhuman. Note that

the transfer function ĤFdistxCD
is generally referred to as the force disturbance feedthrough [35]. Rearranging the
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pilot model in Fig. 1, an analytical expression of HFdistFhuman
is obtained as a function of the transfer functions

HADM , HV IS , HCE , and HCD, i.e.:

HFdistFhuman
=
−HCD(HCEHV IS +H−1

ADM )

1 +HCD(HCEHV IS +H−1
ADM )

= − HCDHCEHV ISHADM +HCD

HADM +HCDHCEHV ISHADM +HCD
. (8)

Similar steps are applied to find an analytical expression for the transfer function HFdistxCD
:

HFdistxCD
=

HCDHADM

HADM+HCD

1 + HCDHADM

HADM+HCD
HV ISHCE

=
HCDHADM

HADM +HCD +HCDHADMHV ISHCE
. (9)

More details on obtaining the previous expressions is given in the Appendix. Dividing (9) by (8), an analytical

expression of the estimated admittance is found:

ĤADM =
HFdistxCD

HFdistFhuman

=
HCDHADM

HCDHCEHV ISHADM +HCD
=

HADM

1 +HCEHV ISHADM
. (10)

It is clear that (6) represents a biased estimate of the admittance. Only at those frequencies where the product of

HV IS , HCE , and HADM is small compared to 1 (HCEHV ISHADM � 1), ĤADM approaches the real admittance

HADM . Therefore, if the non-interference assumption is violated, the estimated admittance may become unreliable.

Another drawback of the CSD-based method is that the pilot visual response HV IS can not be obtained directly,

because the force Fvis can not be measured. On the contrary, the transfer function between the visual error e and the

position of the controlled element xCE , i.e., the open-loop transfer function, can be estimated using cross-spectra

estimates [21], [33]. In this case, the target forcing function xtar is considered as the external deterministic input

uncorrelated with the remnant noise. The pilot open-loop FRF can be estimated as:

ĤOL(f) =
ŜxtarxCE

(f)

Ŝxtare(f)
, f ∈ {ft} (11)

where {ft} is the set of frequencies in which xtar has power.

The coherence function corresponding to the open-loop transfer function is given by:

Γ̂2
OL(f) =

|ŜxtarxCE
(f)|2

Ŝxtarxtar
(f)ŜxCExCE

(f)
, f ∈ {ft} . (12)

IV. NOVEL IDENTIFICATION TECHNIQUES

To address the limitations of the conventional identification method described in the previous section, two novel

identification techniques are presented. The first method operates in the time-domain and uses an AutoRegressive

model with eXogenous inputs (ARX) to fit measured data. The second identification method operates in the frequency

domain and uses cross-spectral density estimates similarly to the conventional technique. However, it does not require

the non-interference assumption.

A. AutoRegressive models with eXogenous inputs

Linear Time-Invariant (LTI) polynomial models, such as the ARX, ARMAX, and Box-Jenkins (BJ) models,

are commonly used for the identification of a large variety of dynamic systems [34]. These models describe the

relationship between the system inputs, the noise and the system outputs with parametric rational transfer functions.
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Based on time measurements of input and output signals of a generic dynamic system, an optimization procedure

is used to find the LTI polynomial model that fits the time signals best.

Polynomial models were previously used to estimate human admittance during a car following task [31]. The

driver model consisted of neuromuscular and visual responses as shown in Fig. 1. To identify the neuromuscular

response, the response to the visual error e was treated as an external filtered Gaussian noise. Single-input BJ models

were then used to estimate the neuromuscular response. Although this approach provided reliable neuromuscular

estimate [31], it may fail when the response to the visual error e cannot be approximated as an external Gaussian

noise.

The ARX method described in our paper explicitly accounts for the response to the visual error e by using a

multi-input ARX method. The stick deflection xCD can be considered as the output of a linear system that has

a visual error e and a disturbance force Fdist as inputs, and that is perturbed by the remnant noise n (Fig. 1). A

multi-input ARX model is then used to describe this dynamic system [34]:

xCD(t) = He(q)e(t) +Hf (q)Fdist(t) +Hn(q)n(t) =

Be(q)

A(q)
e(t) +

Bf (q)

A(q)
Fdist(t) +

1

A(q)
N(t) , (13)

with:

A(q) = 1 + a1q
−1 + . . .+ ana

q−na (14)

Be,f (q) = b0e,f + b1e,f q
−1 + . . .+ bnbe,bf

q−nnbe,bf . (15)

He and Hf represent the transfer functions from e and Fdist to xCD, respectively, which are related to the visual

response HV IS and the admittance HADM . The transfer function Hn models the effect of the remnant noise n on

stick deflection. In the ARX model, this effect is represented by the white noise signal N(t) filtered by the transfer

function 1
A(q) . The terms na, nbe, and nbf are the order of the corresponding polynomials. It should be noted

that all the transfer functions of the system have the same set of poles. Although this coupling may be unrealistic,

simulations and experimental results in sections V and VI will show that this does not to affect the identification

accuracy.

Given the measurements of xCD, Fdist, and e, the polynomial orders and the parameter values of the ARX model

are estimated as the optimal solution of a suitable cost function. In this paper, the Akaike final prediction error was

used as the cost function [34]. The optimal least-squares solution comes in closed form as a linear regression, and

does not suffer from local minima. It should be noted that this is not the case for other polynomial model structures

like ARMAX and BJ [34].

No requirements need to be imposed on frequency separation between the inputs signals e and Fdist in order

to obtain reliable estimates [25]. Thus, contrary to the CSD-based method, the ARX method does not require any

assumption about possible interference of the feedback from Fdist with the visual error e.

The arm admittance, visual response and open loop transfer functions are obtained from He, Hf using block
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diagram algebra:

ĤADM =
HCDHf

HCD −Hf
(16)

ĤV IS =
He

Hf
(17)

ĤOL = HeHCE . (18)

An overall validity of the ARX models is assessed by the Variance Accounted For (VAF), which shows how

well the model can predict the measured output signal [25]. The VAF is defined as:

V AF =

1−

N∑
k=1

|xCD(tk)− x̂CD,ARX(tk)|2

N∑
k=1

|xCD(tk)|2

× 100% (19)

where xCD(tk) and x̂CD,ARX(tk) represent the measured and the predicted stick deflection, respectively (k indexes

the time samples). The value of the VAF varies between 0% and 100%, where 100% indicates that the ARX model

completely describes the measured system response. Lower values are an indication of a worse model fit due to

noise, nonlinearities, or unmodeled system characteristics.

B. Multi-loop cross-spectral densities

This section presents a second novel identification method based on cross-spectral density estimates, which

explicitly accounts for the multi-loop nature of the considered control task. This method, referred to as the CSD-

ML method, does not require the non-interference hypothesis on the power content of the visual error e and does

not assume a rigid predefined model structure as the ARX approach.

In the CSD-ML method, the cross-spectral density analysis is used to estimate the following auxiliary FRFs:

• the FRF of the transfer function HxtarxCD
from the target position xtar to the CD deflection xCD, i.e.:

ĤxtarxCD
(f) =

ŜxtarxCD
(f)

Ŝxtarxtar
(f)

, f ∈ {ft} . (20)

• the FRF of the transfer function HFdistxCD
from the force disturbance Fdist to the CD deflection xCD, i.e.,

the so-called force disturbance feedthrough [35]:

ĤFdistxCD
(f) =

ŜFdistxCD
(f)

ŜFdistFdist
(f)

, f ∈ {fd} . (21)

ĤxtarxCD
and ĤFdistxCD

represent closed-loop dynamics from xtar and Fdist to xCD, respectively. Therefore

they include dynamics of admittance HADM , visual response HV IS , controlled element HCE , and control device

HCD, see Fig. 2. The feedback loop from Fdist to the visual error e is explicitly accounted for in the closed-loop

dynamics. Thus, the presence of any frequency content originating from Fdist in the visual error does not represent

a problem, as its effect on pilot behavior is explicitly accounted for.

The admittance ĤADM and visual response ĤV IS are computed from ĤxtarxCD
and ĤFdistxCD

using block

diagram algebra. This procedure requires that ĤxtarxCD
and ĤFdistxCD

must be known for a common set of
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frequencies {f̄} over which they can be combined. Unfortunately, ĤxtarxCD
and ĤFdistxCD

are known only for the

sets {ft} and {fd} respectively, which do not have frequency points in common. However, since it is reasonable to

assume a “smooth” behavior of the frequency response functions ĤxtarxCD
and ĤFdistxCD

, a linear interpolation

between neighboring frequencies can be applied to obtain ĤxtarxCD
and ĤFdistxCD

on frequencies at which they

are not known. The CSD-ML method uses interpolation to estimate ĤxtarxCD
in the set {fd} and ĤFdistxCD

in

the set {ft}. A similar interpolation approach was used in [35].

It should be noted that ĤxtarxCD
can only be interpolated on a limited subset of {fd}, due to the design of

disturbance forcing functions. As shown in Fig. 2, the frequency range of {fd} (0.05 Hz - 10 Hz) is larger than

the frequency range of {ft} (0.1 Hz - 3 Hz). Since an interpolation of ĤxtarxCD
outside the range of {ft} would

produce unreliable estimates, the interpolation procedure can only be applied to the frequencies of {fd} in the range

0.1 Hz - 3 Hz. The resulting set {f̄}, in which both ĤxtarxCD
and ĤFdistxCD

could be estimated, contained all

frequencies in {fd} and {ft} in the range 0.1 Hz - 3 Hz.

Analytical expressions for HFdistxCD
and HxtarxCD

can be given as functions of the various system transfer

functions, see equations (9) and (22):

HxtarxCD
=

HV IS
HCDHADM

HADM+HCD

1 + HCDHADM

HADM+HCD
HV ISHCE

. (22)

The derivation of these expressions is detailed in the Appendix. The FRFs of pilot admittance and visual response

are estimated from (9) and (22) by using the estimated ĤxtarxCD
and ĤFdistxCD

:

ĤV IS(f) =
ĤxtarxCD

(f)

ĤFdistxCD
(f)

(23)

ĤADM (f) =
ĤFdistxCD

(f)HCD(f)

HCD(f)−HCD(f)ĤxtarxCD
(f)HCE(f)− ĤFdistxCD

(f)
. (24)

Each FRF is calculated at the set of frequency points {f̄} resulting from the interpolation. In addition, the open-loop

FRF ĤOL from the visual error e to the CE position xCE is calculated as:

ĤOL(f) = HCE(f)
ĤxtarxCD

(f)

1− ĤxtarxCD
(f)HCE(f)

, f ∈ {f̄} . (25)

V. OFF-LINE SIMULATIONS

This section presents a comparison of the three identification techniques introduced in sections III and IV.

A Monte-Carlo simulation of the multi-loop pilot model with a fixed remnant power was used to validate the

identification methods. In addition, the effect of the controlled element gain on the accuracy of admittance estimation

was assessed. Finally, the identification methods were tested with increasing levels of the remnant power in order

to analyze their robustness.

A. Simulations with reference parameter values

The model in Fig. 1 was simulated with 100 different realizations of the remnant noise n, obtained as a Gaussian

white noise filtered by a third-order-low-pass filter Hn [36]:

Hn(s) = KN
12.73

(s+ 12.7)(s2 + 2 · 0.26 · 12.7s+ 12.72)
. (26)
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Fig. 3. A typical power spectral density plot of the simulated visual error e.

The value of the gain KN was set to 2.12, in order to obtain a ratio of 0.5 between the remnant power and the

power of the linear part of the pilot response: Fvis − Fadm.

All simulations used fixed dynamics for the dynamic elements in Fig. 1. The CE dynamics were modeled similar

to a previous study [37]:

HCE(s) =
18

s(s+ 3)
[rad/rad] . (27)

The CD dynamics were based on the identified response of a control device from Wittenstein Aerospace &

Simulation GmbH, Germany:

HCD(s) =
1

1.522s2 + 8.832s+ 86.469
[rad/N ] . (28)

The parameters for the pilot model were derived from Damveld et al. [23] by adapting their values to match the

measurements from experimental evaluations (section VI). Based on [23], the visual response was modeled by a

gain, a lead-lag filter and a time delay:

HV IS(s) = Kv
1 + sTlead
1 + sTlag

e−sτv [N/rad] (29)

where Kv = 20N/rad, Tlead = 0.3 s, Tlag = 0.04s, and τv = 0.2701 s. The model of the arm admittance was

determined heuristically to fit the non-parametric estimation shown in [23]. The resulting transfer function is given

by:

HADM (s) =
4.566 · 10−6s3 + 0.0046s2 + 1.333s+ 97.52

s3 + 82s2 + 712.2s+ 1.167 · 10−4
[rad/N ] . (30)

Fig. 3 shows a typical Power Spectral Density (PSD) of the simulated visual error e. The power of e is not

negligible at frequencies {ft} and {fd} where xtar and Fdist have power, respectively. This means that the force

disturbance Fdist produces a large interference on the visual error e and the non-interference hypothesis is not

fulfilled. Therefore, the CSD-based method is expected to provide biased estimates of neuromuscular response. In

contrast, ARX and CSD-ML methods are expected to provide reliable estimates.
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(a) CSD-based.
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(b) ARX.
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(c) CSD-ML.

Fig. 4. Comparison between admittance estimates given by the three identification methods. The estimates are averaged over all the simulations,

and the shaded areas show the (positive) standard deviation (mean + SD).
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(a) ARX.
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(b) CSD-ML.

Fig. 5. Comparison between visual response estimates given by ARX and CSD-ML methods. The estimates are averaged over all the simulations,

and the shaded areas show the (positive) standard deviation (mean + SD).

The admittance estimates given by the three identification methods are shown in Fig. 4. The CSD-based approach

does not give correct estimates of the admittance at low frequencies, where the power level of e at the frequencies

in {fd} is comparable to the power level at the frequencies in {ft} (see Fig. 3). On the contrary, both ARX and

CSD-ML methods give good results. CSD-ML provides admittance estimate on a relatively small frequency range,

due to interpolation.

The pilot visual response can only be directly estimated with the ARX and CSD-ML methods. Fig. 5 shows that

both methods give reliable estimates. Finally, the estimated open-loop transfer function fits the simulated response

well for all identification methods, see Fig. 6.
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(c) CSD-ML.

Fig. 6. Comparison between open-loop transfer function estimates given by the three identification methods. The estimates are averaged over

all the simulations, and the shaded areas show the (positive) standard deviation (mean + SD).

B. Variation of the gain of the controlled element

As described in section III-B, admittance identified with the CSD-based method can be influenced to a large

extent by the power content of the visual error e. High power content in the visual error signal e at frequencies

{fd} results in a biased estimate. As shown in Eq. (10), the CSD-based method produces reliable estimates only at

frequencies where HCEHV ISHADM � 1. This was investigated by performing multiple simulations with different

values of the gain of the controlled element. It was hypothesized that the CSD-based method performs better with

small gains of HCE , whereas higher gains would result in a biased estimate of the admittance.

The dynamics for CD, ADM, VIS were the same as in section V-A. The CE dynamics was modeled as:

HCE = KCE
3

s(s+ 3)
[rad/rad] . (31)

Five different values of KCE were tested: 0, 3, 6, 9, 12. The condition KCE = 0 represents an open-loop situation,

where the non-interference hypothesis is completely fulfilled. No additional noise was inserted into the loop, as this

effect will be tested explicitly in the next section.

Fig. 7 shows the admittance estimated by the three methods. As expected, the performance of the CSD-based

method deteriorates with increasing values of KCE . In contrast ARX and CSD-ML methods are not influenced by

changes in the KCE value.

It should be noted that, in a realistic scenario, pilots would adapt their behavior to the controlled element [38].

However, this section aimed to highlight the influence of non-interference hypothesis on the admittance estimation,

and this effect becomes more clear when the pilot is considered invariant.
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Fig. 7. Admittances estimated for different values of KCE (KCE = 0, 3, 6, 9, 12). The ARX and CSD-ML methods provide similar estimates

for all values of KCE .

C. Variation of the power of noise

The robustness of the three identification methods to increasing levels of pilot remnant was investigated by

performing multiple simulations of the closed-loop control task with increasing levels of remnant noise power. The

remnant gain KN in (26) was gradually increased, resulting in 7 ratios between remnant power σ2
N and signal

power σ2
F , see table II. For each remnant level, 100 simulations were performed with different noise realizations.

The analytical dynamics for CE, CD, ADM, VIS were chosen as in section V-A.

The admittance, the visual response and the open-loop transfer function were estimated by applying the three

identification methods. To compare the performance of the methods, a cost function J was calculated, representing

the logarithmic mean squared error between the estimated FRF (Ĥ) and analytical FRF (H) [39]:

J =
1

N

N∑
k=1

∣∣∣∣∣log

(
Ĥ(fk)

H(fk)

)∣∣∣∣∣
2

. (32)

This cost function accounts for both relative errors in the magnitude, and absolute errors in the phase. In order to

obtain meaningful values, J was calculated considering the frequencies fk that are common to the three identification

methods, i.e., the frequencies in {fd} between 0.1 Hz and 3 Hz for admittance estimates, and the frequencies in

{ft} for estimates of visual and open loop transfer functions.

Fig. 8 shows how cost function J varies with respect to the power ratio σ2
N/σ

2
F . For all the estimates, J increases

with increasing values of the remnant power, implying a growing discrepancy between analytical and estimated

FRFs. The ARX method appears to be the most robust with respect to noise. This is due to the fact that the ARX

method explicitly accounts for the remnant noise in the estimation procedure. Considering the admittance estimates,
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(c) Open loop transfer function.

Fig. 8. Averaged values of the cost function J for different remnant levels.

the CSD-based method also shows a non-zero value of J when the remnant noise has zero power, i.e., σ2
N/σ

2
F = 0

in Fig. 8a, indicating how the CSD-based method also provides a biased admittance estimate without remnant noise.

Considering the visual response estimates, CSD-ML and ARX methods show a similar degradation of accuracy.

Also for the open-loop transfer function estimates, the three methods show comparable degradation trends.

VI. EXPERIMENTAL EVALUATIONS

A. Method

The three identifications methods were applied to data obtained from an experimental manual control task. The

experiment was performed using a control-loaded cyclic stick from Wittenstein Aerospace & Simulation GmbH,

Germany, whose identified response dynamics are given in Eq. (28).

Eight participants performed a compensatory pitch tracking task and the roll axis of the stick was fixed. Before

starting the experiment, participants received an overview about the scope of the experiment, and were instructed to

minimize the tracking error shown on a primary flight display. The control device was continuously perturbed by a

disturbance force. Both the reference signal and the disturbance force were designed as described in section III-A.

After a training phase, participants performed 8 experimental trials. Data were logged at 100 Hz and the last 213

samples (= 81.92 s) of each trial of 90 s were used for identification purposes. Before identification, the data of

the 8 trials performed by each participant were averaged in the time domain to reduce the effect of remnant noise.

Fig. 9 illustrates the PSD of the error signal e, the human force Fhuman, the control signal xCD, and the pitch

angle xCE for a single participant. The Signal-to-Noise Ratios (SNR) were high for most of the input frequencies

of xtar and Fdist.
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(b) Control device deflection xCD .
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(d) Pitch angle xCE .

Fig. 9. Power spectral densities. The crosses and the points represent the disturbance force and target position frequencies, respectively.

The identification methods described in sections III and IV were then applied to the measured data. It was

hypothesized that the CSD-based method would be influenced by the non-interference assumption, leading to

estimates of admittance that differ from the ones obtained with the ARX and the CSD-ML methods. Furthermore,

it was expected that the ARX and the CSD-ML provide similar admittance estimates.

B. Results

A sample PSD of the visual error is depicted in Fig. 9c. The power of e contained large peaks at frequencies {fd}
where the force disturbance Fdist has power, especially at low frequencies. This indicates that Fdist had a large

influence on the visual error e and the non-interference assumption of the CSD-based method was not fulfilled.

Fig. 10 shows the admittance identified by the three identification methods. The CSD-based method gives the

admittance FRFs for all frequencies of {fd}, while the CSD-ML method only provides admittance estimates below

3 Hz, which is the highest value in the frequency set {ft} as discussed in section IV-B. On the other hand, the ARX

method provides a mathematical expression for the admittance transfer function, and the FRFs can be calculated

for all the desired frequency points ({fd} ∪ {ft} in Fig. 10).

As expected, the admittance estimates given by ARX and CSD-ML were different from those given by the CSD-

based technique, especially at lower frequencies. The admittance estimated by the CSD-method showed the same

bias as found in simulations, see section V-A. At low frequencies (f < 0.2 Hz), the magnitude of the admittance

estimated by CSD-based technique was lower than the magnitude given by the other two methods; the opposite

occurred at medium frequencies (0.2 Hz < f < 2 Hz); at higher frequencies the differences between methods

disappeared. On the other hand, the ARX and CSD-ML methods provided similar estimates.
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Fig. 10. Admittance frequency response functions for the three identification methods. The estimates are averaged over all participants.
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Fig. 11. (a) Bias Hden of the admittance estimate by the CSD-based method. The bias is calculated using the FRFs estimated by the ARX and

the CSD-ML methods. (b) Comparison between the admittance estimate by the CSD-based method and HADM/Hden estimate by the ARX

and the CSD-ML methods. The dynamics HADM/Hden represent the biased admittance actually estimated by the CSD-based method.

Although the CSD-based method provided a biased admittance estimate, high squared coherence values were

found at all frequencies (Γ2 > 0.8). In fact, the coherence function does not give information about the correspon-

dence between the actual and the estimated admittance, but only indicates that the relation between the measured

human force Fhuman and the position of the control device xCD can be approximated as linear. The estimates given

by the ARX method were characterized by high VAF values (the mean value of the VAF was 87%), indicating that

ARX models reproduce the measured signals well.

As shown in (10), the bias in the CSD-based method results from the admittance estimate including the dynamics

of the visual response HV IS and the controlled element HCE . The bias is negligible only at those frequencies where

Hden = 1−HV ISHCEHADM is close to 1, whereas it becomes larger when Hden diverges from 1. Hden can thus

be used as a measure of the bias of the CSD-based estimate. To evaluate Hden, the actual dynamics of admittance

HADM and visual responses HV IS are required. Since these dynamics are not known a priori, the estimates provided

by ARX and CSD-ML methods can be used. Fig. 11a shows that the resulting magnitude of Hden is close to 1 at
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Fig. 12. Comparison between visual responses given by ARX and CSD-ML methods.

frequencies above 1 Hz, whereas it diverges from 1 at low frequencies. This is in complete agreement with results

shown in Fig. 10.

The bias measure Hden can be used to correct the biased admittance given by the CSD-based method. The

corrected admittance is obtained by multiplying the biased estimate by Hden, see (10). Fig. 11b shows the biased

admittance given by CSD-based method, together with the corrected admittance and the ARX estimate. As the

admittance estimate from the CSD-ML method was similar to the ARX estimate, it is not shown. As expected

the corrected admittance is similar to the ARX estimate, confirming the validity of our analysis of the bias in the

CSD-based method.

The pilot visual response can be computed directly only with ARX and CSD-ML methods. Fig. 12 shows

that the estimates were comparable. The shape of the visual response resembled a gain at low frequencies and a

differentiator at higher frequencies. The three identification methods gave comparable estimates also for the open-

loop transfer function HOL (Fig. 13). The open-loop responses resembled the dynamics of a single integrator at

frequencies below 1 Hz. This correlates fairly well with McRuer’s theories [14], which assess that pilots adapt

their responses to yield integrator-like dynamics of the open-loop transfer function around the crossover frequency

where HOL = 100 rad/rad. The peak of the open-loop response at higher frequencies is related to the neuromuscular

dynamics [14].

VII. CONCLUSIONS

Three techniques for simultaneous identification of pilot neuromuscular and visual responses have been investi-

gated. We showed that the identification method commonly used in literature (CSD-based method) may give biased

estimates of admittance in cases when a so-called non-interference assumption is not fulfilled. Furthermore, we

have derived an analytic expression for the bias in the CSD-based admittance estimate.

We presented two different procedures, one based on ARX models and a multi-loop cross-spectral density method,

which allow overcoming this limitation. The results of offline simulations confirmed that both the ARX and the
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Fig. 13. Comparison between open-loop transfer function estimates given by the three identification methods.

CSD-ML methods give reliable estimates also in the case when the non-interference assumption is not satisfied.

The three identification methods were validated experimentally. The ARX and the CSD-ML methods showed

estimates that were similar to each other, whereas the CSD-based method gave a biased estimate of admittance.

Similar results were also found in simulation. The biased estimate of admittance from the CSD-based method could

be corrected with experimental data, which corroborates our theoretical analysis of the CSD-based method.

Taken together, these results suggest that the admittance estimated by the CSD-based method cannot be considered

to be reliable when the disturbance forcing function always has an influence on the visual error. On the contrary,

the ARX and the CSD-ML methods are not influenced by the power content of the visual error.

The most important limitation of the ARX method lies in the fact that it assumes a rigid model structure that

could be unrealistic. Despite this, the experimental results suggest that the ARX-model structure can describe our

experimental data well. A number of potential limitations need to be considered also for the CSD-ML method.

First, it gives admittance estimates in a reduced set of frequencies (at low frequencies with the forcing functions

used in this paper). Furthermore, the interpolation procedure could yield noisy estimates. Nevertheless, we believe

that this method could be a powerful tool to obtain an accurate low-frequency estimate when the influence of the

disturbance force on the visual error is not negligible. The CSD-ML method neither makes a-priori hypothesis about

the visual error, nor assumes a rigid model structure.

APPENDIX

In a closed-loop linear system as in Fig. 14a, the closed-loop transfer function Hcl between the input signal u

and the output signal y is given by:

Hcl =
H

1 +H ·G (33)

where H and G represent the transfer functions of the system dynamics in the forward and feedback path,

respectively.
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Fig. 14. Rearranged models of the compensatory tracking task in Fig. 1

The closed-loop dynamics between two generic signals of the compensatory tracking task in Fig. 1 can be

obtained by rearranging the model to have a similar configuration as the system in Fig. 14a. Fig. 14b illustrates the

rearranged model to obtain the dynamics between the disturbance force Fdist and the human force Fhuman. Here,

the notation HSY S indicates the transfer function of SYS. The forward and feedback transfer functions are given

by:

H = HCD(−HCEHV IS −H−1
ADM ), G = −1 . (34)

Fig. 14c shows the rearranged model to calculate the dynamics from xtar and Fdist to xCD. The forward and

feedback transfer functions for the input signals xtar and Fdist are:

xtar : H = HV IS
HCDHADM

HADM +HCD
, G = HCE (35)

Fdist : H =
HCDHADM

HADM +HCD
, G = HCEHV IS (36)
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TABLE I

FREQUENCIES, AMPLITUDES, AND PHASES DEFINING THE DISTURBANCE AND TARGET FORCING FUNCTIONS.

Disturbance Fdist Target xtar

k f A φ k f A φ

(-) (Hz) (N) (rad) (-) (Hz) (N) (rad)

4 0.0488 0.3810 1.3875 10 0.1221 0.0198 -0.7003

5 0.0610 0.3810 2.5511 11 0.1343 0.0198 2.2216

14 0.1709 0.3810 2.7917 20 0.2441 0.0111 4.5432

15 0.1831 0.3810 -0.4228 21 0.2563 0.0111 4.3424

24 0.2930 0.3810 -2.9281 30 0.3662 0.0065 4.5408

25 0.3052 0.3810 -1.8836 31 0.3784 0.0065 6.6869

34 0.4150 0.3810 -3.6960 40 0.4883 0.0042 4.6231

35 0.4272 0.3810 -4.1771 41 0.5005 0.0042 5.8999

44 0.5371 0.3810 -2.6694 50 0.6104 0.0030 8.3374

45 0.5493 0.3810 -3.5128 51 0.6226 0.0030 7.1502

54 0.6592 0.3810 -2.6805 60 0.7324 0.0023 7.4114

55 0.6714 0.3810 -0.1215 61 0.7446 0.0023 5.1712

64 0.7813 0.3810 2.9424 70 0.8545 0.0018 8.4636

65 0.7935 0.3810 2.8250 71 0.8667 0.0018 9.6620

74 0.9033 0.3810 -0.0129 80 0.9766 0.0015 8.6567

75 0.9155 0.3810 -1.2966 81 0.9888 0.0015 9.8456

94 1.1475 0.3302 2.2066 100 1.2207 0.0011 8.1844

95 1.1597 0.3302 2.0687 101 1.2329 0.0011 8.1368

124 1.5137 0.3302 0.1803 140 1.7090 0.0008 5.7817

125 1.5259 0.3302 0.4412 141 1.7212 0.0008 6.0687

154 1.8799 0.3302 3.8712 180 2.1973 0.0006 9.5528

155 1.8921 0.3302 3.7964 181 2.2095 0.0006 10.5519

194 2.3682 0.3302 0.4953 230 2.8076 0.0006 7.6383

195 2.3804 0.3302 1.6589 231 2.8198 0.0006 8.0429

254 3.1006 0.3302 2.1529 260 3.1738 0.0005 7.0004

255 3.1128 0.3302 -0.8407 261 3.1860 0.0005 6.3912

344 4.1992 0.3302 -0.2912

345 4.2114 0.3302 2.0218

484 5.9082 0.3302 4.7341

485 5.9204 0.3302 8.1897

694 8.4717 0.3302 5.8242

695 8.4839 0.3302 9.2787
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TABLE II

SIMULATED POWER RATIOS.

KN 0 2.21 3.5 4.6 6 7.6 10

σ2
N/σ

2
F 0 0.5 1 1.5 2 2.5 3

July 30, 2014 DRAFT


