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ABSTRACT

Assuming the existence of a primordial asymmetry in the dark sector, we study how DM-baryon long-
range interactions, induced by the kinetic mixing of a new U(1) gauge boson and the photon, affects
the evolution of the Sun and in turn the sound speed profile obtained from helioseismology. Thanks to
the explicit dependence on the exchanged momenta in the differential cross section (Rutherford-like
scattering), we find that dark matter particles with a mass of ∼ 10 GeV, kinetic mixing parameter
of the order of 10−9 and a mediator with a mass smaller than a few MeV improve the agreement
between the best solar model and the helioseismic data without being excluded by direct detection
experiments. In particular, the LUX detector will soon be able to either constrain or confirm our best fit
solar model in the presence of a dark sector with long-range interactions that reconcile helioseismology
with thermal neutrino results.
Subject headings: cosmology: miscellaneous, dark matter, elementary particles, Sun: helioseismology

1. INTRODUCTION

The standard ΛCDM cosmological model has been suc-
cessfully applied to explain the main characteristics of
the Universe (see e.g. Hinshaw et al. 2013; Ade et al.
2013). In particular, numerical simulations of colli-
sionless cold Dark Matter (DM) describe the gravita-
tional growth of infinitesimal primordial density pertur-
bations, probed by the cosmic microwave background
anisotropies, that lead to the formation of the present-
day large-scale structure of the universe. These simu-
lations provide us with a number of predictions about
the structure of cold DM halos and their basic prop-
erties (see e.g. Guo et al. 2013). Although the stan-
dard cosmological model has proven to be highly suc-
cessful in explaining the observed large-scale structure
of the universe, it has been less successful on smaller
scales. Recent data on low mass galaxies suggests that
the inferred subhalo DM distributions have almost flat
cores (see e.g. de Blok 2010), in contradiction with the
cuspy profile distributions predicted by numerical simu-
lations (see e.g. Navarro et al. 2010), and that sub halo
numbers are overpredicted at both low mass and inter-
mediate masses (see e.g. Klypin et al. 1999) and mas-
sive dwarf galaxy scales (see e.g. Garrison-Kimmel et al.
2013).
Some of the issues associated with dwarf galaxies

can be addressed if the DM is more ”collisional” (with
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baryons) than currently considered in numerical simula-
tions. This hypothesis favors constant-density cores with
lower central densities than those coming from cold DM
models, such as self interacting DM (see e.g., Rocha et al.
2013).
In addition, the closeness between ΩDM and Ωb, usu-

ally referred as cosmic coincidence, may suggest a pro-
found link between the dark and the ordinary sectors. In-
deed, although the two sectors have different macroscopic
properties, the total amount of DM observed today could
be produced in the early universe by a mechanism iden-
tical to baryogenesis, and therefore an asymmetry be-
tween DM particles and their antiparticles would be ex-
pected. A detailed account of current progress in asym-
metric DM studies can be found in the literature (see
e.g., Petraki & Volkas 2013).

All of these cosmological facts may suggest that dark
and ordinary matter may have more properties in com-
mon than expected. In view of this, it is tantalizing to
imagine that the dark world could be similarly complex
(CP violating and asymmetric) and full of forces that are
invisible to us (hidden parallel sector or mirror world8).
The history of the early mirror universe has been stud-
ied in ref. (Berezhiani et al. 2001), while the impact of
an hidden mirror sector in the CMB and LSS data can
be found in ref. (Berezhiani et al. 2005). For a general
review on the properties of a hidden world neighboring
our own, see e.g. refs. (Foot 2004b; Berezhiani 2005).
More specifically, since in our sector only long–range

electromagnetic force and gravity affect the dynamical
evolution of virialized astrophysical objects, the physics
of a complex dark sector in which the matter fields are
charged under an extra U(1) gauge group is particularly
interesting to study. Indeed, if the mass of the new
gauge boson (dark photon) is smaller that the typical

8 The idea of a mirror world was suggested prior to the ad-
vent of the Standard Model (see e.g. Refs. (Lee & Yang 1956;
Kobzarev et al. 1966). The idea that the mirror particles might
instead constitute the DM of the Universe was discussed in
refs. (Blinnikov & Khlopov 1982, 1983).

http://arxiv.org/abs/1402.0682v2
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Figure 1. An illustrative example of the DM-hydrogen energy
transfer cross section as a function of the mass of the dark photon
mφ for a fix value of the kinetic mixing parameter γφ = 10−9 and
a DM mass mχ = 10 GeV. In blue is shown the scattering cross
section responsible for the capture process σcap

T
, while in red the

one entering in the energy transport mechanism σtra
T computed at

the present time (T 0
c = 1.57× 107 K).

momenta exchanged in the scattering, the phenomenol-
ogy of the dark world can in itself be as complicated as
that of our sector (e.g. dark electromagnetism with quite
large self-interactions), providing at the same time also
a feeble long-range interaction between the two worlds
(thanks to the kinetic mixing of the new U(1) gauge bo-
son with the photon). This implies in general that the
dark world is more collisional than the standard cold DM,
and therefore some of the previously mentioned problems
can probably be solved (see e.g. Loeb & Weiner 2011).
In addition, since a long-range DM-nucleus interaction

is enhanced for small momentum exchanges, this class of
models can also relax the tension between the positive
results of direct detection experiments (the annual mod-
ulation observed by DAMA (Bernabei et al. 2008, 2010)
and CoGeNT (Aalseth et al. 2011a,b), and the hints of an
observed excess of events on CRESST (Angloher et al.
2012) and CDMS-Si (Agnese et al. 2013a,b)), and the
constraints coming from null results (e.g. CDMS-

Ge (Ahmed et al. 2010), XENON100 (Aprile et al. 2011)
and very recently LUX (Akerib et al. 2013)). The phe-
nomenology of long-range DM-nucleus interactions in di-
rect DM searches has been studied in Refs. (Foot 2004a,
2008, 2010, 2012; Fornengo et al. 2011; Panci 2012).

In this paper, we investigate how a DM-baryon Long
Range Interaction (DMLRI), induced by the kinetic mix-
ing of a new U(1) gauge boson and the photon, affects
the evolution of the Sun. The results obtained are then
confronted with helioseismology data. The helioseis-
mic data that we use was obtained by several interna-
tional collaborations, such as the Solar and Heliospheric
Observatory (SOHO) mission and the Birmingham So-
lar Oscillations Network (BiSON) observational net-
work (Turck-Chieze et al. 1997; Basu et al. 2009). Fur-
thermore, we also discuss the constraints on the main
parameters of long-range DM particle interactions which
can be obtained from direct DM search data.

2. PROPERTIES OF DM WITH LONG-RANGE
INTERACTIONS

In most of the classical models, one often assumes a
symmetric dark sector in which the DM scattering off of

baryon nuclei is done by a contact-like interaction. In our
study, we will instead focus on a class of asymmetric DM
models in which the interaction between DM particles
and target nuclei is mediated by a light messenger. If
the typical momenta exchanged in the scattering is bigger
than the mass of the mediator, a long–range interaction
then arises.

A specific realization of this kind of picture is offered by
particle physics models where a new U(1) hidden gauge
boson φ (dark photon) possesses a small kinetic mixing
ǫφ with the photon. In this case, the interaction between
a nucleus with mass mT and electric charge Ze (Z is the
number of protons in the baryon nucleus and e the elec-
trical charge) and a DM particle with mass mχ and dark
charge Zχgχ (Zχ and gχ are the equivalent quantities
of Z and e in the dark sector) is described in the non-
relativistic limit by the following Yukawa potential (see
e.g., Fornengo et al. 2011),

V (r) = ǫφ kχ
Zα

r
e−mφr , (1)

where α = e2/4π is the electromagnetic fine structure
constant and the parameter kχ = Zχgχ/e measures the
strength of the DM-dark photon coupling. Here mφ is
the mass of the dark photon that acts like an electronic
cloud which screens the charges of the particles involved
in the scattering. Since both kχ and ǫφ are unknown,
we define γφ ≡ kχ ǫφ and we treat it as a free parameter
of our model together with mχ and mφ. Before mov-
ing on we have however verify whether the symmetric
component of χ in the dark sector is annihilated away or
not. In general, since for this simple model the dom-
inant annihilation channel is given by χχ → φφ, we
can put a lower bound on the parameter kχ by demand-
ing that the annihilation cross section into dark photons
(〈σv〉φφ = πα2k4χ/(2m

2
χ)) is bigger than the thermal one

(〈σv〉φφ ∼ 1 pb). In agreement with Refs. (Tulin et al.
2013; Kaplinghat et al. 2013), this condition requires

kχ ≥ kΩχ = k̄Ωχ
√

mχ/GeV, where k̄Ωχ ≃ 7.5 × 10−2. We
shall come back to this point at the end of Sec. 3 because
for this kind of models the DM-DM scattering can plays
an important role in the capture rate and in the energy
transport by DM particles in the Sun.

The differential cross section, neglecting the form fac-
tor of the target nuclei9, can be simply obtained by per-
forming the Fourier transform of Eq. 1 and it reads

dσT

dΩ
=

ξ2χµ
2

(q2 +m2
φ)

2
, (2)

where ξχ = 2αZ γφ, µ = mχmT /(mχ +mT ) is the DM-
nucleus reduced mass and q =

√
2mTER is the momenta

exchanged in the interaction with ER the recoil energy.
As is apparent from the dependence on the dark photon
mass, two different regimes clearly appear:

⋄ Point–like limit (q ≪ mφ): In this regime the in-
teraction is of a contact type. Indeed the differen-
tial cross section turns out to be proportional to

9 The Sun being mostly composed of hydrogen and helium, we
can justify neglecting the nuclear responses. On the other hand for
the derivation of the direct detection constraints, we use the form
factors provided in ref. (Fitzpatrick et al. 2012).
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ξ2χ/m
4
φ which plays the same role as Fermi’s con-

stant in weak interactions. The interaction reduces
to the “standard” spin-independent picture, apart
from the fact that in this case, DM particles only
couple with protons (dσT /dΩ ∝ Z2).

⋄ Long–range limit (q ≫ mφ): In this regime, the
differential cross section acquires an explicit depen-
dence on the momenta exchanged in the interaction
and therefore a Rutherford-like cross section arises
(dσT /dΩ ∝ 1/q4). This is extremely interesting
because ideal experiments with very low energy
threshold and light target nuclei (e.g. the Sun) are
in principle more sensitive than the ones with high
threshold and heavy targets (e.g. XENON100 and
LUX). To give a concrete example, once DM par-
ticles are thermalized with baryons in the center
of the Sun, their collisions occur with q ≃ 1 MeV
considering a DM mass of 10 GeV. For direct detec-
tion experiments, the typical momenta transferred
in the scattering is instead bigger (q & 20 MeV).
Thanks to this fact, we expect that DM models fea-
ture a long-range interaction with ordinary matter
can affect the sound-speed radial profile of the Sun
without being excluded by terrestrial experiments.

Having the differential cross section at our disposal,
we assume that the normalization of both the capture
rate and the transport of energy by DM particles in the
Sun is controlled by the energy transfer cross section ob-
tained by weighting Eq. (2) with (1 − cos θ). This is
of course a good estimator for the transport mechanism,
while for the capture process the introduction of the same
cross section is justified because the Sun’s escape velocity
vesc(r) is much bigger than both the thermal velocity of
baryons in the Sun and the typical dispersion velocity of
the DM particles in the halo v0. In particular, we have
checked that the error in the total rate is negligible, if we
replace the total cross section in the rate per unit time
Ω(w) given e.g. in Eq. 7 of (Kumar et al. 2012), with the
energy transfer cross section computed for w = vesc(r).
In the Born approximation10, the energy transfer cross
section writes,

σT (vrel) =
2πβ2

φ

m2
φ

[

ln
(

1 + r2φ
)

−
r2φ

1 + r2φ

]

, (3)

where βφ = ξχmφ/(2µv
2
rel), rφ = 2µvrel/mφ, and vrel is

the relative velocity between the DM flux and the Sun.
Unlike the customary DM models, in this case σT de-
pends on vrel in the long–range regime. Thanks to this
main novelty, one therefore expects that the typical scat-
tering cross section in the capture process differs com-
pared to the one entering in the transport mechanism.
On a more specific level, one has:

⋄ Capture: In general, the infalling DM particles
reach a given shell of radius r with a velocity
w(r) =

√

u2 + v2esc(r), where u is the DM veloc-
ity at infinity with respect to the Sun’s rest frame.

10 The Born approximation is valid if βφ . 0.1 (see
e.g. Loeb & Weiner (2011)). Since we are interested in the long-
range regime (µv2

rel
≫ mφ), it is easy to check that this approxi-

mation is very well satisfied.

Since both the thermal velocity of baryons in the
Sun and the dispersion velocity of DM particles in
the halo are much smaller than vesc, we can assume
as commented upon above that the relative veloc-
ity vrel ≡ w(r) ≃ vesc(r). Furthermore, since the
total number of DM particles captured by the Sun
is independent on r, it is a good approximation to
define an average infalling DM velocity by

w̄ =
1

M⊙

∫ R⊙

0

d3r w(r) ρ(r) ≃ 1120 km/s . (4)

Here ρ(r) is the Sun’s mass density, M⊙ =
∫

d3r ρ(r) ≃ 1.98 × 1030 kg is its total mass and
R⊙ ≃ 6.95× 1010 cm is its radius. As explained in
more detail in the next section, the capture rate is
then computed numerically considering a constant
cross section σcap

T = σT (w̄).

⋄ Transport: In this case, the typical relative veloc-
ity for the scattering is much smaller than w̄ being
due to DM particles thermalized together with the
ordinary plasma in the center of the Sun. It is
then a good approximation to assume vrel ≡ vth,
where vth =

√

2Tc/mχ is the thermal speed and
Tc is the time-dependent temperature in the Sun’s
core. As explained in more detail in the next sec-
tion, we compute the transport of energy numer-
ically by considering σtra

T = σT (vth). It is worth
stressing that since the solar code follows the time
evolution of the Sun, in the early stages the energy
transport, and in turn the thermal conduction by
DM particles, was much more efficient with Tc at
that time being smaller than the present-day cen-
tral temperature.

In this study, we focus on the interaction of DM with
hydrogen – the most abundant chemical element in the
Sun’s interior. Fig. 1 shows an illustrative example of
the DM-hydrogen energy transfer cross section σT as a
function of the mass of the dark photon mφ for a fixed
value of the kinetic mixing parameter γφ = 10−9 and a
DM mass mχ = 10 GeV. On a more specific level we
show in blue the scattering cross section responsible for
the capture process σcap

T , while in red is shown the one
entering into the energy transport mechanism σtra

T com-
puted at the present time (T 0

c = 1.57× 107 K). We can
see that if the mass of the dark photon is smaller than a
few MeV (long–range regime), the capture and the trans-
port processes are controlled by different scattering cross
sections. It is worth pointing out that in this limit, the
ratio σtra

T /σcap
T is barely dependent on mφ, if mχ is larger

than the hydrogen mass. It instead depends on the mass
of the DM particle through the thermal velocity relation
and in particular for a 10 GeV candidate, σtra

T ∼ 103 σcap
T .

The main new aspect is actually given by this enhanced
conduction in the inner part of the Sun compared to
the usual DM models. Thanks indeed to this fact, DM
particles, interacting via long-range forces with ordinary
matter, can produce an impact on the helioseisomology
data without evading the constraints coming from direct
DM search experiments.

In our analysis, we consider the observed sound speed
radial profile of the Sun and compare it to the theoretical
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Figure 2. Comparison of sound speed differences: ∆c2 =
(c2

mod
− c2ssm)/c2ssm, c2ssm is the sound speed of the SSM (e.g.,

Lopes & Turck-Chieze 2013) and c2 is either c2
obs

the ob-
served sound speed (green-square dots: Turck-Chieze et al. 1997;
Basu et al. 2009) or c2

mod
the sound speed of a DMLRI solar model

(continuous curves: [|∆c2| < 2.0%] blue, [2.0 ≤ |∆c2| ≤ 4.0%]
green and [|∆c2| > 4.0%] red). The DMLRI models were com-
puted for the parameters (see text): 5 GeV ≤ mχ ≤ 20 GeV;
0.1 keV ≤ mφ ≤ 1 GeV and γφ = 10−9. The black curve corre-
sponds to a fiducial model with mχ = 10 GeV and mφ = 10 keV.
Note that the observational error in cobs is multiplied by a factor
10.

prediction over a broad range of DM masses (4 GeV≤
mχ ≤ 20 GeV), dark photon masses (0.1 keV ≤ mφ ≤
1 GeV)11 and kinetic mixing parameters (10−12 ≤ γφ ≤
10−6). With these choices, the scattering cross-section
spans a large interval of values from 5 × 10−29 cm2 to
8 × 10−55 cm2. The cross-section range of interest for
the Sun corresponds to the values for which σT is close
to the Sun’s characteristic scattering cross-section, σ⊙ =
mp/M⊙ R2

⊙. From the zero-age mean-sequence (ZAMS)
until the present age of the Sun (4.6 Gyear), σ⊙ takes
values between 2.5× 10−32 cm2 and 4× 10−36 cm2.

3. DARK MATTER AND THE SUN

The Sun, as are all stars in the Milky Way, is immersed
in a halo of DM. As with any other star in the galaxy,
the Sun captures substantial numbers of DM particles
during its evolution, but any impact on the star depends
on the properties of these particles, as well as on the
stellar dynamics and structure of the star. In general,
for low-mass stars evolving in low density DM halos, the
presence of DM inside the star changes its evolution by
providing the star with a new mechanism to evacuate the
heat produced in the stellar core (e.g., Lopes et al. 2002;
Lopes & Silk 2002; Zentner & Hearin 2011; Lopes & Silk
2012a; Casanellas & Lopes 2013). This is quite differ-
ent for stars evolving in DM halos of high density –
as occurs during the formation of the first generation
of stars. In these cases, the annihilation of DM parti-
cles supplies the star with an additional source of en-
ergy capable of substantially extending the lifetimes of
these stars (Scott et al. 2009; Casanellas & Lopes 2009;
Lopes et al. 2011; Scott et al. 2011).
The computation of the impact of DM in the evo-

lution of the Sun is done by a modified version of
the cesam code (Morel 1997; Morel & Lebreton 2008),

11 As we will see later, for masses below 0.1 keV the Sun’s sound
speed profiles become independent on mφ and therefore our results
can also be extended for lighter mediators.

which has been widely used to compute the SSM
and for modelling other stars by different research
groups (Deheuvels et al. 2010; Turck-Chieze et al. 2010;
Lopes 2013; Lopes & Turck-Chieze 2013). In this
study, we follow a procedure identical to other stud-
ies published in the literature by some of us as well
as other authors (e.g., Lopes et al. 2002; Lopes & Silk
2002; Cumberbatch et al. 2010; Taoso et al. 2010;
Lopes & Silk 2010a,b; Hamerly & Kosovichev 2012;
Lopes & Silk 2012a,b; Lopes et al. 2014). Nevertheless,
there are some important differences between this study
and the previous ones, which we will highlight in the
remainder of this section.

As commented upon in the previous section, the im-
pact of DM in the Sun’s interior depends on two major
physical processes: the accumulation of DM inside the
star, and the efficiency of DM in transferring energy from
the core to the external layers. In any case, the density
of DM in the halo is the single major ingredient affecting
the impact of DM in the Sun. As usually done in these
studies, we consider that the local density of DM is ρ⊙ =
0.38 GeV/cm3 (Gates et al. 1995, 1996; Catena & Ullio
2010; Salucci et al. 2010). The choice of this value is in
part made to facilitate the comparison with other work.
Still, this is a very reliable value: the most recent esti-
mates of ρ⊙ made by two independent groups have ob-
tained values of 0.3 GeV/cm3 (Bovy & Tremaine 2012)
and 0.85 GeV/cm3 (Garbari et al. 2012). In particu-
lar (Garbari et al. 2012) argue that their new method
is quite robust, and they have obtained their value at
90% confidence level. In our computation, we will also
consider that the DM particles in the solar neighbor-
hood have dispersion velocity v0 = 220 km/s (see e.g.,
Bertone et al. 2005).

The accumulation of DM in the Sun’s core during its
evolution from the beginning of the ZAMS until the
present age (4.6 Gyear) is regulated by three physical
processes: capture, annihilation and evaporation of DM
particles. At each step of the evolution, the total number
of DM particles Nχ, that is captured by the star is given
by

dNχ(t)

dt
= Γcap+ΓχNχ(t)−ΓannNχ(t)

2−ΓevaNχ(t), (5)

where Γcap, Γχ, Γann and Γeva refer to the DM capture,
self-capture, annihilation and evaporation rates respec-
tively. It is worth noticing that, unlike previous studies,
in this work we resolve numerically the equation (5) for
each step of the star’s evolution. A detailed discussion
about these processes can be found in the literature (e.g.,
Griest & Seckel 1987; Lopes et al. 2011).
The capture rate Γcap is computed numerically from

the expression obtained by Gould (1987) as implemented
by Gondolo et al. (2004). The scattering of DM parti-
cles with the baryons inside the Sun is the main factor
affecting the capture rate Γcap. We restrict our study
to the scattering of DM particles to the most abundant
element, i.e., hydrogen. We consider that the capture
rate is controlled by σcap

T obtained by substituting vrel
with the averaged infalling speed w̄ in Eq. (3) as briefly
explained in the previous section. In particular, in the
long-range regime (rφ ≫ 1 or in terms of the exchanged
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momenta, q ≫ mφ), the DM-hydrogen energy transfer
cross section responsible for the capture process is inde-
pendent of mχ and logarithmically dependent on mφ. It
reads

lim
rφ≫1

σcap
T = 4π

α2γ2
φ

m2
pw̄

4
Lcap
φ (mφ) ≃

( γφ
10−9

)2
(

Lcap
φ

L̄cap
φ

)

· 1.1× 10−38 cm2 ,

(6)

where Lcap
φ = ln(2mpw̄/mφ) is a sort of Coulomb loga-

rithm that measures the strength of the screening effect
in the capture process and L̄cap

φ ≃ 6.5 is its value for
mφ = 10 keV.
The other chemical elements are under-abundant, con-

sequently their contribution for the capture of DM is neg-
ligible. The dependence of the scattering cross-section
on the parameter space of long-range DM particles is
given by equation (3). The description of how this cap-
ture process is implemented in our code is discussed
in Lopes et al. (2011).

Since we assume a primordial asymmetry between par-
ticles and anti-particles in the dark sector, the anni-
hilation rate Γann is set to be zero. This condition,
as we have briefly mentioned in Sec. 2 is justified if
kχ ≥ kΩχ ≃ k̄Ωχ

√

mχ/GeV.

The evaporation rate Γeva is relevant only for very
light particles, i.e., particles with mχ ≤ 4 GeV (Gould
1990). Kappl & Winkler (2011) estimated the evapora-
tion mass for DM particles in the Sun, meva, to be such
that meva = 3.02 + 0.32 log10 (σT /10

−40cm2) GeV. If
mχ ≤ meva the DM particle escapes the solar gravita-
tional field and consequently has no impact on the struc-
ture of the star. Kappl & Winkler (2011) also found that
the evaporation of DM particles is completely irrelevant
form ≥ 8 GeV. It is worth noticing the fact that because
the evaporation boundary has a exponential dependency
on the mass and the scattering cross-section of the DM
particle (Gould 1990), it follows that if mχ exceeds meva

by a few percent, then the evaporation of DM particles
is totally negligible. Furthermore it is also important to
point out that our DM model can easily have a quite
large self–interaction in the long–range regime with size
similar to the electromagnetic scattering. If then this
self–interaction is attractive (e.g. this can be obtained if
the dark sector is composed by light and heavy species
with a different sign of the dark charge Zχgχ) we expect
that Γeva can be set to zero for DM masses below 4 GeV
as well, in such cases the properties of the dark plasma
being similar to the ordinary one (electrons are indeed
trapped in the Sun). We leave further discussion of this
important effect for future studies.
In our computation, we use Γeva estimated

by Busoni et al. (2013) in the regime where the
Sun is optically thin with respect to the DM particles.
Nevertheless, we restrict our analysis to particles with
mass larger than 4 GeV, for which the evaporation rate
is almost negligible.

Once gravitationally captured by the star, the DM par-
ticles thermalise with baryons after a few Kepler orbits

around the solar centre, colliding through elastic scat-
tering with hydrogen and other elements, and thus pro-
viding the star with an alternative mechanism for the
transport of energy. The relatively efficiency of the DM
energy transport in relation to the radiative heat trans-
port depends on the Knudsen number,Kχ = lχ/rχ where
lχ is the free mean path of the DM particle inside the star
and rχ(mχ) is the characteristic radius of the DM dis-
tribution (Gilliland et al. 1986; Lopes et al. 2002) given
by

rχ(mχ) =

(

3Tc

2πGNρcmχ

)
1

2

≃
(

10 GeV

mχ

)
1

2
(

Tc

T 0
c

)
1

2
(

ρ0c
ρc

)

1

2

· 0.035R⊙ ,

(7)

where ρ0c ≃ 8.3× 1025 GeV/cm3 is the today’s density of
the Sun’s core. Depending on the value of σT , the trans-
port of energy by DM is local (conductive) or non-local,
which corresponds to Kχ ≪ 1 orKχ ≫ 1. In the conduc-
tive regime the effective luminosity carried by DM parti-
cles is proportional to nχlχ, while in the non-local one to
nχ/lχ. The maximal luminosity is instead achieved when
lχ ≃ 10 rχ (see e.g. Fig. 11 of Gould & Raffelt (1990)).
Here nχ is the number density of DM particles captured
in the Sun which is given by nχ(r) = n0 exp[−r2/r2χ]

where n0 = Nχ/(π
3/2r3χ) (see e.g. Lopes et al. (2002)).

We assume that the thermal conduction by DM parti-
cles is controlled by σtra

T obtained by substituting vrel
with the thermal speed vth in Eq. (3) as briefly explained
in the previous section. Unlike the cross section respon-
sible for the capture process, in the long–range limit σtra

T
depends on the DM mass via the thermal velocity vth. It
explicitly reads

lim
rφ≫1

σtra
T = π

α2γ2
φ m

2
χ

m2
pT

2
c

Ltra
φ (mχ,mφ, Tc) ≃

( mχ

10 GeV

)2
(

Tc

T 0
c

)2
( γφ
10−9

)2
(

Ltra
φ

L̄tra
φ

)

· 1.9× 10−35 cm2 ,

(8)

where Ltra
φ (mχ,mφ, Tc) = 1/2 ln(8m2

pTc/(mχm
2
φ)) em-

ulates the screening effect in the energy transport and
L̄tra
φ ≃ 4.5 is its value for mφ = 10 keV, mχ = 10

GeV and Tc = T 0
c . Once computed the energy transfer

cross section the averagemean free path in the long-range
regime, can be estimated as

lχ =

(

〈nb〉 · lim
rφ≫1

σtra
T

)−1

≃
(

10 GeV

mχ

)2(
T 0
c

Tc

)2(
10−9

γφ

)2
(

L̄tra
φ

Ltra
φ

)

· 0.055R⊙ ,

(9)

where

〈nb〉 =
1

R⊙

∫ R⊙

0

dr nb(r) ≃ 1.3× 1025/cm3 , (10)

is the average number density of baryons in the Sun
and nb(r) ≃ ρ(r)/mp. Depending on the free pa-
rameters of the model scanned in our analysis, the
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energy transfer cross section covers a broad range of
values (5 × 10−29 cm2 ≤ σtra

T ≤ 8 × 10−55 cm2).
In this case the corresponding range of the Knudsen
number is (5 × 10−9 ≤ Kχ ≤ 3 × 1018). Both
mechanisms of energy transport are considered in this
study (Gilliland et al. 1986; Lopes et al. 2002). In the
case of the non-local regime, we follow the numerical
prescription of Gould & Raffelt (1990) rather than the
original one proposed by Spergel & Press (1985).
We note that in the long-range limit, a Rutherford-

like DM-baryon interaction can significantly enhance the
energy transport (σtra

T ≫ σcap
T ) compared to the usual

picture (for the standard spin-independent and spin-
dependent cases, one always has σtra

T = σcap
T ). Indeed,

even if the capture cross section is around 10−39 cm2 (this
choice correspond to γφ = 3.3×10−10), the DM particles
can have a mean free path around 10 rχ, providing then
the maximum luminosity carried by DM particles. For
the standard contact interaction and for the same cross
section, the mean free path is much longer and therefore
the luminosity is reduced being in this case the trans-
port non-local. This is the main new element, and in
particular, as we will see in Sec. 5, this class of models
with enhanced energy transport can solve the so-called
solar abundance problem without being excluded by di-
rect searches experiments.

A similar conclusion can also be found in
Ref. (Vincent & Scott 2013). In particular they
implement the formalism of Gould & Raffelt (1990) in
order to properly account for both velocity and ex-
changed momenta dependencies in the differential cross
section. Although their method is more refined compare
to the one we are using they did not incorporate their
results in a solar simulation software yet.

The self-capture rate Γχ (as in Eq. 5) is neglected in
our computation. Nonetheless, since in the long-range
regime the self-interaction between the DM particles can
be relatively large, we could expect a major impact in
the Sun’s evolution. As it will become clear later on we
find that for kχ ∼ kΩχ the contribution coming from Γχ is
negligible because the two leading processes (capture and
transport) compensate each other. On the other hand for
larger value of the parameter kχ we expect that the self-
interaction entirely dominates the transport of energy in
the Sun and therefore the results presented in this paper
will be no longer valid. In the following, we estimate the
impact of including the self-capture in Equation (5).
The starting point is the definition of the self-capture

energy transfer cross section σcap
χ that in the Born ap-

proximation can be computed by substituting in Eq. 3,
µ → mχ/2 and γφ → kχ. Since the DM particles occupy
a very small range of radii within the Sun, it reads

lim
rφ≫1

σcap
χ = 16π

α2k2χ
m2

χw(0)
4
Lcap
χφ (mφ) ≃

(

10 GeV

mχ

)2
(

kχ

k̄Ωχ

)2(

Lcap
χφ

L̄cap
χφ

)

· 9.6× 10−25 cm2 ,

(11)

where w(0) ≃ 1400 km/s is the infalling velocity of the
DM particles at r = 0. Here Lcap

χφ = ln(mχw(0)/mφ) is
the Coulomb logarithm for the self-capture process and

L̄cap
χφ ≃ 8.4 is its value for mφ = 10 keV. Since the self-

capture cross section, in the long-range regime is very
big, we have also to consider the capture of DM parti-
cles in the halo by other DM particles that have already
been captured within the Sun. This effect can lead to
exponential growth in the number of captured dark mat-
ter particles as a function of time until the number of
particles captured has become so large that the star is
optically thick to DM. As pointed out by Taoso et al.
(2010), the number of DM particles captured, including
the self-interactions, is then given by










Nw
χ (t) =

Γcap

Γχ
(eΓχt − 1) for t ≤ t̂,

Nw
χ (t) =

(

Γcap + Γ̂χ

)

(

t− t̂
)

+Nw
χ (t̂) for t > t̂,

(12)
where t̂ is the time at which the Sun becomes optically
thick to DM, Nw

χ (t̂) = πr2χ(mχ)/σ
cap
χ is the critical num-

ber of DM particles captured due to the self-interaction
and Γ̂χ = ΓχN

w
χ (t̂) ≃ (10 GeV/mχ)

2 · 5.5 × 1026 s−1 is
the critical rate. In Eq. (12) the capture and self-capture
rates, in the long-range regime, can be estimated by the
following analytic equations:

Γcap =

√

3

2

ρχ
mχ

lim
rφ≫1

σcap
T

v2esc(R⊙)

v0
N⊙〈φ〉

erf(η)

η
≃

(

10 GeV

mχ

)

( γφ
10−9

)2
(

Lcap
φ

L̄cap
φ

)

· 2.5× 1026 s−1 ,

(13)

and

Γχ =

√

3

2

ρχ
mχ

lim
rφ≫1

σcap
χ

v2esc(R⊙)

v0
〈φχ〉

erf(η)

η
≃

(

10 GeV

mχ

)3
(

kχ

k̄Ωχ

)2(

Lcap
χφ

L̄cap
χφ

)

· 2.9× 10−17 s−1 .

(14)

with 〈φ〉 ≃ 3.29, 〈φχ〉 ≃ 5.13 and η ≃ 1.29 (see

e.g. Zentner (2009)). The critical time t̂ can then be
obtained from the first line of Eq. (12) by substituting t
with t̂ and it reads explicitly

t̂ =
1

Γχ
ln (1 + ∆N ) ≃

0.24 t⊙ ·
( mχ

10 GeV

)3
(

k̄Ωχ
kχ

)2(

L̄cap
χφ

Lcap
χφ

)

ln (1 + ∆N ) ,

(15)

where ∆N = Γ̂χ/Γcap and t⊙ ≃ 4.567× 109 years.

Imposing now the constraint kχ & k̄Ωχ
√

mχ/GeV in or-
der that the symmetric component of χ is depleted in the
early universe, one can check from the equations above
that t̂ ≪ t⊙ for most of the parameter space considered
in our analysis. In this case we can easily estimate which
is the present time ratio between the number of DM par-
ticles captured including the self-interaction (the second
line of Eq. 12) and those captured neglecting this impor-
tant effect (the analytic standard solution without the
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self interaction is Nχ(t⊙) = Γcapt⊙). It reads

Nw
χ (t⊙)

Nχ(t⊙)
≃ 1 + ∆N , (16)

where the function ∆N has been defined in Eq. (15) and
writes explicitly

∆N =
r2χ(mχ)m

2
pw̄

4

4N⊙α2γ2
φL

cap
φ (mφ)

〈φχ〉
〈φ〉 ≃

2.2 ·
(

10 GeV

mχ

)(

10−9

γφ

)2
(

L̄cap
φ

Lcap
φ

)

.

(17)

As is apparent, since the luminosity carried by the DM
particles is proportional to the number density of them,
the increase in the number of DM particles captured due
to the self-interaction described in Eq. (16) would go in
the direction of increasing the effects pointed out in this
paper.
However, there is a countervailing effect associated

with quite large DM self interaction. Indeed, when the
Sun becomes optically thick to its own DM the mean
free path become in general shorter. Therefore the lumi-
nosity carried by DM particles in the conductive regime
(Kχ ≪ 1) is reduced and in turn the effects pointed
out in this paper will then decrease. In order now
to quantify this effect, the first thing that one has to
define is of course the average mean free path of the
DM particles in the Sun. Assuming now a Maxwell-
Boltzmann distribution for the DM particles such that
nw
χ (r) = nw

0 exp[−r2/r2χ] where nw
0 = Nw

χ /(π3/2r3χ), it
writes

lwχ = lχ

(

1 + lχ 〈nχ〉 · lim
rφ≫1

σcap
χ

)−1

, (18)

where

〈nχ〉 =
1

R⊙

∫ R⊙

0

dr nχ(r) =
Nw

χ

2π

erf (R⊙/rχ)

R⊙ r2χ
, (19)

is the average number density of DM particles in the
Sun. In analogy with Eq. (16), we can then estimate
which is the present time ratio between the average mean
free path including the self-interaction (Eq. (18)) and
the one neglecting this important effect (the mean free
path without the self-interaction lχ is given in Eq. (9)).
By means now of the second line of Eq. (12), the total
number of DM captured due to the self-interaction can
be written as (1 + ∆N )Γcapt⊙ and therefore

lwχ
lχ

= (1 + (1 + ∆N )∆l)
−1

, (20)

where the function ∆l is given by

∆l =
Γcapt⊙
2π

erf (R⊙/rχ)

R⊙ r2χ〈nb〉
lim
rφ≫1

σcap
χ

σtra
T

≃

0.054 ·
(

10 GeV

mχ

)4
(

kχ

k̄Ωχ

)2
(

Ll

L̄l

)

.

(21)

Here Ll = Lcap
χφ Lcap

φ /Ltra
φ and L̄l ≃ 12 is its value for

mχ = 10 GeV andmφ = 10 keV. It is worth noticing that

the transport is mainly conductive once the constraint
kχ & k̄Ωχ

√

mχ/GeV is imposed.
Having now Eqs. (16,20) at our disposal, we can fi-

nally estimate the effect of the self-interaction on the
Sun’s sound speed profiles. Indeed since the Sun’s sound
speed profiles are related with the effective luminosity
carried by DM particles, in the conductive regime the
ratio YSI ≡ nw

χ l
w
χ /nχlχ is a good estimator which can be

used to quantify the effect of the self-interaction in our
results presented in the next section. It can be written
in a compact form as

YSI =

(

1

1 + ∆N
+∆l

)−1

. (22)

Considering now a fiducial model with mχ = 10 GeV,
mφ = 10 keV and γφ = 10−9 we have found that 1.17 &

YSI & 1 for kΩχ & kχ & 1.13 kΩχ . The reason of that relies
on the fact that there is a compensation in the Sun’s
sound speeds profiles between the larger number of the
DM captured due to the self-interaction and the shorter
mean free path. The range of the parameter kχ in which
YSI ∼ 1 does not depends too much on γφ and mφ, while
it scales as m−3

χ with the DM mass.
On the other hand, if kχ & 1.5 kΩ, the ratio YSI ≃

1/∆l. In that case there is not an efficient compensation
and therefore YSI can reach even small value12. In view of
these facts we can conclude that is a good approximation
neglecting the self-capture rate in Eq. (5) if kχ ∼ kΩχ .

Thanks to this constraint we can fix kχ = kΩχ and directly
present the final results in terms of the kinetic mixing
parameter ǫφ = γφ/k

Ω
χ .

4. DISCUSSION

The impact of DM in the Sun is studied by inferring
the modifications that DM causes to the Sun’s struc-
ture and to the solar observables. In the following, the
standard solar model (SSM; e.g., Turck-Chieze & Lopes
1993; Lopes 2013) is used as our model of refer-
ence, which predicts solar neutrino fluxes and he-
lioseismology data consistent with current measure-
ments. The excellent agreement obtained between the-
ory and observation results from the combined effort
between the fields of helioseismolgy and solar mod-
elling, a collaboration extended by several decades which
lead to a high precision description of physical pro-
cesses present inside the Sun (Turck-Chieze & Couvidat
2011; Turck-Chieze & Lopes 2012). This was very rel-
evant in the case of the physical processes related
with microscopic physics, including the equation of
state, opacities, nuclear reactions rates, and micro-
scopic diffusion of helium and heavy elements. A de-
tailed discussion about current predictions of the SSM
and their uncertainties can be found in the litera-
ture (e.g., Turck-Chieze & Lopes 1993; Serenelli et al.
2009; Guzik & Mussack 2010; Turck-Chieze et al. 2010;
Lopes & Turck-Chieze 2013; Lopes 2013; Lopes & Silk
2013).

12 For example, considering the maximal value of kχ = 1/
√
α ≃

11.7 allowed by perturbation theory, we get YSI ≃ 7.5 × 10−4 for
the benchmark model.
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Figure 3. The maximum sound speed difference ∆c2max = max
[

(c2
mod

− c2ssm)/c2ssm
]

in the full parameter space of DMLRI models

(ǫφ,mχ,mφ) once the constraint kχ = kΩχ (mχ) is imposed. Left panel: Parameter space projected in the (mχ, ǫφ) plane keeping fix

mφ = 10 keV; Central panel: Parameter space in the (mφ, ǫφ) plane considering mχ = 10 GeV; Right panel: Projection of the parameter

space in the (mχ,mφ) plane for a fix γφ = ǫφk
Ω
χ (mχ) = 10−9. In all panels the red(blue) areas individuate the regions of the parameter

space where ∆c2max > 4%(∆c2max < 2%) while those in light green refer to the regions where the agreement with helioseismic data is better
than the SSM (2% < ∆c2max < 4%). All the DMLRI models in the red regions are excluded since they produce a large impact on the Sun’s
core sound speed profile. The DM halo in the Galaxy has been assumed in the form of an isothermal sphere with local energy density
ρ⊙ = 0.38 GeV/cm3 and velocity dispersion v0 = 220 km/s.

In Fig. 2 we compare the sound speed profile of SSM
with the sound speed computed by an inversion technique
from helioseismology data (Turck-Chieze et al. 1997;
Basu et al. 2009). The green square dots correspond
to the relative sound speed difference ∆cobs = (c2obs −
c2ssm)/c

2
ssm, where cssm and cobs are the sound speed from

SSM and helioseismic data. ∆cobs is smaller than 2%
throughout the solar interior, above 20% and below 90%
of the Sun’s radius. Although agreement between cssm
and cobs is very good, a discrepancy remains between the
present SSM and helioseismic data, from which there is
no obvious solution Turck-Chieze & Couvidat (2011). It
is worth noticing that the quality of the sound speed
inversion is highly reliable, as most of the helioseismic
data has a relative precision of measurements larger than
10−4. Contrarily, in the Sun’s inner core below 0.2 R⊙,
the seismology data available is quite sparse and con-
sequently the sound speed inversion is less reliable (cf.
Fig. 2). As pointed out by Turck-Chieze & Couvidat
(2011) the inversion of the sound speed profile in the
Sun’s inner core is limited by the low number acoustic fre-
quencies measured (see Table 1 in Turck-Chieze & Lopes
(2012) and references therein), as well as by the weak
sensitivity of the eigenfunctions of global acoustic modes
to the structure of the Sun’s core. This difficulty can
only be overcome with the positive detection of grav-
ity modes. Equally, in the most external layers of the
Sun, the inversion of the sound speed profile is not pos-
sible, mainly due to the fact that the inversion tech-
nique breaks down (acoustic oscillations are no-longer
adiabatic), as a complex interaction occurs between con-
vection, magnetic fields and acoustic oscillations (Gough
2012; Lopes & Gough 2001).
Accordingly, for the purpose of this study, we choose

to consider the theory-observation uncertainty to be of
the order of 4% rather than 2%. In the remainder of the
article we will refer to this value as the SSM uncertainty,
meaning the undistinguished uncertainty related to the
physical processes of the SSM or helioseismogy sound
speed inversion.

The DMLRI solar models were obtained in an identi-
cal manner to the SSM, by adjusting the initial helium
Yi and the mixing length parameter αMLT in such a way
that at the present age (4.6 Gyear), these solar mod-
els reproduced the observed values of the mass, radius
and luminosity of the Sun, as well as the observed pho-
tospheric abundance ratio (Z/X)⊙, where X and Z are
the mass fraction of hydrogen and the mass fraction of el-
ements heavier than helium, respectively. Fig. 2 shows a
comparison between SSM and different DMLRI models.
The different continuous lines correspond to the squared
sound speed difference ∆c2mod = (c2mod−c2ssm)/c

2
ssm where

cmod is the sound speed of DMLRI solar models. These
models are obtained for a fiducial value of γφ = 10−9 and
different values ofmχ andmφ. The most important point
about Fig. 2 is the fact that there are some DMLRI so-
lar models that can resolve the current discrepancy with
helioseismology data, as ∆c2mod reproduces the observed
discrepancy ∆c2obs.
In DMLRI models, the DM impact is most visible in

the core of the star where the DM particles accumulate.
However, because the solar models are required to have
the current observed values of radius and luminosity, a
decrease of the production of nuclear energy in the Sun’s
core due to the reduction of the central temperature
(caused by the thermalisation of DM with baryons), is
compensated by an increase of the sound speed in the ra-
diative region. In Fig. 2 we show an illustrative DMGRI
solar model with benchmark parameters: mχ = 10 GeV,
mφ = 10 keV and γφ = 10−9 (black curve). Moreover,
all the DMLRI solar models have an identical impact be-
haviour on the solar structure, however, based upon the
parameters mχ and mφ it is possible to distinguish three
sets of models: i) DMLRI models for which the squared
sound speed difference is larger than the SSM uncertainty
(red curves); ii) DMLRI models for which the agreement
with the helioseismic data is better than the current SSM
(green curves); iii) DMLRI models for which the squared
sound speed difference is smaller than the SSM uncer-
tainty (blue curves). Although, there is a large set of



9

DMLRI models (red and green curves) for which ∆c2mod

tends to agree ∆c2obs, as for those models for which the
central value of cmod varies more than 4%, the central
temperature will change for an identical amount. Conse-
quently, the solar neutrino fluxes of these models become
strongly in disagreement with the current neutrino flux
observations (e.g., Lopes & Silk 2012b,a). Therefore, we
make the conservative option in this preliminary study to
only consider models for which the central temperature
does not change very much from the SSM (green curves
DMLRI models).
Fig. 3 shows the maximum sound speed difference

∆c2max = max
[

(c2mod − c2ssm)/c2ssm
]

in the full parame-
ter space of DMLRI models (ǫφ,mχ,mφ) once the con-
straint kχ = kΩχ (mχ) is imposed. The represented per-
centages are performed for r ≤ 0.3R⊙. On a more spe-
cific level in the right panel of Fig. 3 we project the pa-
rameter space in the (mχ, ǫφ) plane by choosingmφ = 10
keV. In the central plane the (mφ, ǫφ) plane is shown
for mχ = 10 GeV, while on the left panel, the parame-
ter space is projected in the (mχ,mφ) plane keeping fix
γφ = ǫφk

Ω
χ (mχ) = 10−9. Once ∆c2max is larger than the

SSM uncertainty it is reasonable to exclude all DMLRI
models, since they produce a large impact on the Sun’s
core sound speed profile (red regions). On the other
hand, if ∆c2max is in the range 2% − 4% the agreement
with the helioseismic data, as commented upon above,
is improved (green regions). For instance, we find that
DM particles with a mass in the range 4 GeV–8.5 GeV
coupled with ordinary baryons via a kinetic mixing pa-
rameter ǫφ bigger than 5 × 10−9, produce a very large
impact on the Sun’s core in the long–range regime (mφ

smaller than a few MeV). Therefore they can be excluded
as possible DM candidates. On the other hand, we can
see that DM particles with a mass of the order of 10 GeV,
a kinetic mixing parameter ∼ 10−9 and a mediator with
a mass smaller than a few MeV improve the agreement
between the best solar model and the helioseismic data.
This is quite interesting since direct DM searches ex-
periments, as we shall see in the next section, either do
not, or barely exclude, these kinds of DM models with
long–range interactions with baryons. Furthermore, it
is worth noticing that for very light dark photon (mφ

smaller than few keV), and for ǫφ & 3.33×10−9/kΩχ (mχ)
the transport occurs in the conductive regime. In this
case, as we can see in the figure, our results are indepen-
dent on mφ, because the effective luminosity carried by
DM particles in the conductive regime is proportional to
nχlχ ∝ σcap

T /σtra
T . This is important because, as we will

see in the next section, the complementary constraints
coming from supernova observations and astrophysical
or cosmological arguments are very week for very light
mediators.

5. COMPLEMENTARY CONSTRAINTS

In this section, we present the complementary con-
straints which are relevant for DMLRI models. A first
class of them come from terrestrial direct detection ex-
periments. In particular, since the interactions con-
sidered in our work is spin-independent, we only com-
pute the constraints coming from the XENON100 and
LUX experiments. The statistical analysis used to treat
the datasets can be found in (Cirelli et al. 2013) where

the authors have provided a complete sets of numeri-
cal tools for deriving the bounds in direct searches in
a completely model independent way. Without entering
in the details of this work we can compute the bounds
in the relevant parameter space of our model following
the main steps summarized in Sec. 6 of (Cirelli et al.
2013). In particular, as pointed out in the first three
steps (1a-1c), we have to identify the non-relativistic
operator and its coefficient associated with a Yukawa-
type interaction given in Eq. (1). Since this interac-
tion is spin independent the operator is simply the iden-
tity, while the non-relativistic coefficient is given by
cpY = 16παγφmpmχ/(q

2 + m2
φ) (see e.g. (Panci 2014)

for details). Thanks now to ready-made scaling func-
tions provided in the webpage of (Cirelli et al. 2013),
the bounds on the parameter space of our model can
be obtained by following the last two steps (2a-2b). In
Fig. 4 we show the constraints in the relevant parameter
spaces of our model. As we did in the previous section,
we project the parameter space in the (mχ, ǫφ) plane
(left panel), (mφ, ǫφ) plane (central panel) and (mχ,mφ)
plane (right panel). The dark blue (red) lines refer to
the constraints coming from XENON100(LUX), while the
different hatching (dotted, dashed-dotted, dashed) indi-
cates the three values of the third direction in the pa-
rameter space that we kept fixed (mφ =(1, 0.1, ≤ 0.01)
GeV on the left panel, mχ =(6, 10, 14) GeV on the cen-
tral panel and γφ = ǫφk

Ω
χ (mχ) = (10−8, 10−9, 10−9.5) on

the right panel). The areas of the parameter space above
the first and second plots, and the ones below the third
plot are excluded. Similar constraints can also be found
in Ref. (Kaplinghat et al. 2013). We can see that in the
long–range regime (mediator masses below roughly 10
MeV), the constraints becomes independent of mφ. In-
deed in this case, the interaction is Rutherford-like and
therefore the differential cross section in Eq. (2), which
sets the normalization of the total number of events in
certain experiments, solely depends on the exchanged
momentum q. By virtue of this fact, we can just use
the left plot of Fig. 4 and compare it directly with the
results shown in Fig. 3. We can see that in the rele-
vant DM mass range that affects helioseismic data (4–20)
GeV, the constraints, coming from the LUX experiments,
exclude DMLRI models that are coupled with baryons
through kinetic mixing parameters larger than roughly
(& 10−7, 5×10−10). Therefore, as is apparent, long-range
spin-independent DM-baryon interactions can easily im-
prove the agreement between the best solar model and
the helioseismic data without being excluded by direct
detection experiments for DM masses in the range (4-12)
GeV. Indeed, as we have already pointed out, the Sun is
an ideal experiments for DM models which posses an en-
hanced cross section with baryons for small momentum
exchanges.

A second class of complementary constraints that only
depends on the properties of the dark photon (kinetic
mixing parameter ǫφ and its mass mφ) are those coming
from supernovæ observations and beam dump neutrino
experiments. These are presented, for instance, in the
(mφ, ǫφ) plane in Fig. 6 (mφ > 10−3 GeV) and Fig. 7
(mφ < 10−3 GeV) of (Essig et al. 2013). We can see that
the most stringent constraints are the ones coming from
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Figure 4. Direct detection constraints in the relevant parameter space of DMLRI models once the constraint kχ = kΩχ (mχ) is imposed.

Left panel: Parameter space projected in the (mχ, ǫφ) plane; Central panel: Parameter space in the (mφ, ǫφ) plane; Right panel: Projection
of the parameter space in the (mχ,mφ) plane. In all panels, the dark blue(red) lines refer to the constraints coming from XENON100(LUX),
while the different hatching (dotted, dashed-dotted, dashed) indicates the three values of the third direction in the parameter space we kept
fixed (mφ =(1, 0.1, ≤ 0.01) GeV on the left panel, mχ =(6, 10, 14) GeV on the central panel and γφ = ǫφk

Ω
χ (mχ) = (10−8, 10−9, 10−9.5)

on the right panel). Like in Fig. 3, the bounds are computed by assuming an isothermal halo with ρ⊙ = 0.38 GeV/cm3 and v0 = 220 km/s.

supernova observations (namely the energy loss observed
from SN1987a) and from astrophysical, or cosmological
arguments: they indeed constrain relatively small kinetic
mixing parameters (ǫφ above roughly (10−11 − 10−10))
and dark photon masses in the range (10−9 . mφ . 0.2)
GeV. Therefore they ruled out all the parameter space
above mφ & 10−9 GeV shown in the central panel of
Fig. 3. On the other hand for very light messengers,
they become extremely weak (ǫφ & 10−8) being the di-
rect production of dark photons forbidden by kinematical
reasons. In that case all the parameter space will be then
reopened since, as we commented upon in the last para-
graph of Sec. 4, the amplitude of the Sun’s sounds speed
profiles is independent on mφ (see e.g. the central panel
of Fig. 3).

A third class of constraints which instead solely depend
on the characteristics on the dark sector itself are those
coming from self–interactions. Indeed, since for this type
of model, the DM-DM scattering is not suppressed by ǫφ,
the self–interactions, especially in the long–range limit,
can easily reach large values, affecting the dynamics of
virialized astrophysical objects. In Refs. (Tulin et al.
2013; Kaplinghat et al. 2013), the constraints on mφ

coming from the observations of a few elliptical DM ha-
los have been presented. These constraints are in gen-
eral very stringent for DM masses below 10 GeV: in this
case, in fact, the time over which energy is transferred in
the system is extremely rapid and therefore a spherical
DM halo tends to form in contradiction with observa-
tions. In particular, dark photon masses below roughly
100 MeV are excluded. However, the derivation of this
last class of constraints is very uncertain, both from the
theoretical and experimental side, because we do not re-
ally know how virialized astrophysical objects are formed
in the presence of a DM sector with long–range interac-
tions. Indeed, since the self-interaction needed to change
their dynamics is in general of the order of the Thompson
scattering (σem ≃ 10−24 cm2), from trivial dimensional
analysis of such large cross sections, the following rough
estimate yields that the self-interaction is of a long–range
type in most of the virialized astrophysical objects under

the assumption that the DM-dark photon coupling is of
the order of α. In this case, the probability to radiate
a dark photon in the scattering process is different from
zero and therefore it might well be possible that the DM
sector is dissipative just like our sector. The time over
which energy is transferred in the system is no longer a
good indicator, since the relevant quantity that describes
the dynamical evolution of the system is now the cooling
time: in particular, for a DM sector composed of heavy
and light species, the dissipation time due to the soft
emission of dark photons (dark bremsstrahlung) can be
smaller than the age of the virialized astrophysical ob-
jects (see e.g. Fan et al. 2013a,b; McCullough & Randall
2013). In this case, the system is no longer stable and in
general it starts to collapse. By virtue of this fact, we do
not consider this last class of constraints, since a more
dedicated and careful analysis also involving numerical
simulations is clearly needed.

6. CONCLUSION AND SUMMARY

We have examined how DM-baryon long–range inter-
actions can affect the Sun’s sound speed radial profile.
The phenomenological approach used in our analysis
lets us explore all the parameter space from the con-
tact regime to the long-range regime. We find that
DM particles lighter than 8.5 GeV coupled with ordi-
nary baryons through a kinetic mixing parameter γφ big-
ger than 5 × 10−9, produce a very large impact on the
Sun’s core in the long–range regime (mφ smaller than few
MeV). Therefore they can be excluded as possible DM
candidates. However, solar models for which the DM
particle has a mass of 10 GeV and the mediator a mass
smaller than 1 MeV improve the agreement with helio-
seismic data. Nevertheless, when the mass of the dark
photon is larger than 10 MeV the impact on the Sun’s
structure is very small, being in this case the interaction
of a contact-type (standard spin-independent picture).
In particular, the results obtained here reveal that DM
models featuring a long-range interaction with ordinary
matter can affect the sound-speed radial profile and in
turn probably solve the so-called solar abundance prob-
lem without being excluded by terrestrial experiments
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(e.g. LUX and XENON100) in which the scattering cross
section is suppressed by the strong inverse dependence
on q. The Sun is in fact an ideal DM detector for the
type of particle considered here, since it measures the
entire nuclear recoil energy spectra in the scatterings.

To summarize, in this work we have obtained two main
results. Firstly, for the first time, a DM-baryon velocity
dependent total cross-section has been implemented in
solar simulation software. Secondly, but even more im-
portantly, our analysis shows that DM particles with a
mass of 10 GeV and a long–range interaction with ordi-
nary matter mediated by a very light mediator (below
roughly a few MeV), can have an impact on the Sun’s
sound speed profile without violating the constraints
coming from direct DM searches. Our results are valid
if the parameter kχ which controls the self-interaction is
of the order of kΩχ . Larger values of this parameter, as
we have shown in the last paragraph of Sec. 4, can dra-
matically reduced the effective luminosity carried by DM
particles in the Sun and therefore our results can not be
applied in that case. Furthermore, as commented upon
in Sec. 5, it might well be possible that a dark sector
with long–range forces can dissipate a relevant amount
of energy through the emission of dark photons. A dissi-
pative dark sector is extremely interesting because it can
offer a rich array of new ideas ranging from the detection
of primordial dark radiation to new possibilities for DM
dynamics in virialized astrophysical objects.
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