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Abstract. The evolution of the glass production process requires high accuracy 

in defects detection and faster production lines. Both requirements result in a 

reduction in the processing time of defect detection in case of real-time 

inspection. In this paper, we present an algorithm for defect detection in glass 

tubes that allows such reduction. The main idea is based on the reduce the image 

areas to investigate by exploiting the features of images. In our experiment, we 

utilized two algorithms that have been successfully applied in the inspection of 

pharmaceutical glass tube: Canny algorithm and MAGDDA. The proposed 

solution, applied on both algorithms, doesn’t compromise the quality of detection 

and allows us to achieve a performance gain of 66% in terms of processing time, 

and 3 times in term of throughput (frames per second), in comparison with 

standard implementations. An automatic procedure has been developed to 

estimate optimal parameters for the algorithm by considering the specific 

production process. 

Keywords: Defect detection, glass tube production, real time inspection, image 

processing, inspection systems. 

1 Introduction 

The evolution of the glass production process requires both high accuracy in defects 

detection and faster production lines. 

The general schema of inspection systems for semi-finished glass production, 

based on machine vision [1][2][3][4], is constituted by the Image Acquisition 

Subsystem and the Host Computer (Fig. 1). The Image Acquisition Subsystem is 

devoted to the acquisition of the digitized images (frames); key components of such 

system are a LED-based illuminator, a line scan camera, and a frame grabber, which 

groups together single sequential lines captured by the camera into a single frame, 

transferring it to the Host Computer. The Host Computer implements defect detection 

and classification algorithms (in the Defect Detection and Classification subsystems). 

Discard decisions, sent [5] to a Cutting and Discarding Machine, are taken considering 

process parameters, some of which are settled via a high usable operator GUI [6]. 

Defect detection and classification algorithms usually are applied only to a part of the 

acquired image (Region Of Interest – ROI), as only a portion of the image represents 
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the semi-finished glass. 

The inspection system works in pipeline, and the Image Acquisition Subsystem 

feeds the pipeline at a rate which is determined by the sampling rate of the line scan 

camera divided by the number of lines in a frame. The Defect Detection and 

Classification module must work with the same rate, to avoid frame loss, i.e., the 

sampling rate of the line scan camera enforces an upper bound to the processing time 

of defect detection and classification algorithms. The current requirement of increasing 

the production speed involves the use of line scan cameras with increased sampling rate 

to keep constant or to improve the accuracy of defects detection. Consequently, the 

increase of production speed determines the need to reduce the processing time of 

defect detection and classification algorithms. 

 

In this paper, we propose an algorithm to reduce the processing time of defect 

detection by means of the size reduction of the images to investigate. We easy exclude 

the subareas that can be assumed to not include defects, by exploiting Detrend Standard 

Deviation of columns luminous intensity and double thresholding with hysteresis. 

 

We consider the critical production of glass tubes, converted into pharmaceutical 

containers such as vials, syringes and carpules. In this case, to achieve a 360 degrees 

inspection, 3 cameras and led illuminators are utilized in the system. Due to 

imperfections in the raw materials used in the furnace, the glass tube may have defects 

such as knot inclusions (blobs) or flexible fragments called lamellae, which can cause 

subsequent problems and pharmaceutical recalls [7][8][9]. The main classes of defects 

relevant for pharmaceutical glass production [1][10] due to critical size features and 

their significant effects on the final quality of the tubes are:  

1) air lines, due to the presence of air bubbles in the furnace which are pulled by the 

drawing machine; they appear as darker lines of long dimensions (Fig. 2) with a 

 
 

Fig. 1. The architecture of an inspection system for glass production. 
 



back illuminator, with the end parts thinner than the center one. This line, when it 

is too close to the tube surface, breaks and therefore is thinner and more difficult 

to detect.  

2) knot inclusion (blobs), due to imperfections in the raw materials used in the 

furnace; they appear on the tube surface as circular lenses, while they appear on 

the captured image as dark patches, orthogonal to the frame (Fig. 3).  

 
Fig. 2.  Example of an air line defect in a glass tube. We must observe that the line is straight 

but appears as curved and irregular due to the oscillations and rotations of the tube. 

 

 

 

 

 
Fig. 3.  Example of a blob defect in a glass tube (highlighted by a red oval). 

 

 

In our experiment, we utilized two algorithms that have been successfully 

applied in the inspection of pharmaceutical glass tube: the Canny algorithm [11] and 

the MAGDDA [12]. With Canny, the image is first smoothed with a Gaussian filter and 

then gradient magnitude is computed at each pixel; edges (marked pixels) are 

determined via non-maximum suppression, double threshold, and hysteresis. 

MAGDDA algorithm [12] works at row level and apply a moving average filter of an 

assigned windows size WS to the image.  

The reduced area to be investigated has a direct impact on the processing time 

of the further stages of detection, and in the overall processing time. Results of the 

experimental evaluation show that the proposed solution achieves a 66% reduction in 



processing time during the detection/classification phase and improvement of 3x in 

term of frames per seconds, preserving the same accuracy in defect detection of 

standard solutions.  

 

We characterize also the effects of the parameters of the algorithm on processing 

time and quality of detection and propose a procedure to determine upper bound to such 

parameters. 

 

2 State of the art 

As usually done in inspection systems, the set of elaborations performed on each frame 

can mainly be divided into 3 stages [2][13][14]. 

1. Image preprocessing 

2. Defects detection 

3. Defects classification 

In the pre-processing phase, algorithms are used to prepare the image for the 

following stages, with the aim of reducing detection errors due to the acquisition 

process and/or speeding up the calculation by excluding the regions not to be 

investigated. The steps generally adopted concern noise reduction, contrast 

enhancement [15], elimination of unwanted regions and identification of the Region Of 

Interest (ROI). 

State-of-the-art ROI extraction techniques consist in identifying the visible part of 

the glass inside the frame. In the case of the glass tube, ROI extraction consists in 

identifying the visible part of the tube inside the frame (called hereinafter internal part 

of the tube, Fig. 4), excluding also the edges of the tube. They appear dark as the light 

rays of the illuminator, having a critical angle of incidence on them according to Snell's 

law, are reflected on the glass tube and do not affect the camera sensor. An algorithm 

to extract the internal part of the tube has been proposed in [1], and it is based on 

detecting the minimums of columns luminous intensity and moving from them to detect 

not visible part of the tube. 

In the defect detection stage, algorithms are used to determine image regions whose 

pixels may identify a defect. To extract these regions, segmentation techniques are 

adopted [13], typically based on thresholds [3] or on edge detection [11][16]. 

The classification stage consists of algorithms that extract a series of characteristics 

of the segmented regions, eventually including them within predetermined classes of 

defects. 

State of the art techniques for feature/defect detection and extraction are the edge 

detection techniques [16]. Edge detection aims to identify points in a digital image 

where the image brightness changes sharply compared to the rest. Among the various 

edge detection techniques, the algorithm proposed by Canny [11] (Canny algorithm) is 

considered the ideal one for images with noise [16]. The image is first smoothed with 

a Gaussian filter and then gradient magnitude is computed at each pixel of the smoothed 

image; edges are determined by applying non-maximum suppression, double threshold, 

and hysteresis. The algorithm has been usefully adopted in various applications 

domains (inspection of semiconductor wafer surface [17], detection of defects in satin 



glass [18], measuring icing shape on conductor [19], studies on bubble formation in co-

fed gas-liquid flows [20]) and it has been also adopted for the detection of defects in 

glass tube inspection systems [1].  

Other techniques for defect detection and extraction are based on thresholds, that can 

be global (fixed for the whole image) or local, i.e. they can be variable in different 

regions of the image [21]. 

As for global thresholds techniques, [3] presents an inspection method for float glass 

fabrication. The authors utilize a benchmark image to remove bright and dull stripes 

that are present in their glasses. Then, they utilize adaptive global thresholds based on 

the OTSU algorithm [22] to separate distortions from defects. The OTSU algorithm 

selects threshold values (one for each image) that maximize the inter-class variance of 

the image histogram [23]. It is useful for separating background from 

defects/foreground and produces satisfactory results when images present bimodal or 

multimodal histograms [13]. It has been successfully utilized in [13] to derive a 

configurable industrial vision system for surface inspection of transparent parts (in 

particular, it has been tested on headlamp lens) and again in [24] to detach defects from 

the background in a float glass defect classificatory and in [25] or glass inspection 

vision systems.  

By considering the characteristics of the tube glass production, the use of single or 

multiple constant thresholds does not allow the detection of defects (Fig.6b highlights 

that the luminous intensity of columns belonging to the defect is similar to the ones of 

columns not including a defect). Besides, techniques based on background subtraction 

or other template matching techniques [3][26] cannot be utilized due to the tube 

vibration and the not perfect circular section of the tube (“sausage” shape). 

As for local thresholds techniques, the Niblack’s [21] binarization method is a local 

adaptive thresholding technique, based on varying threshold over the image by using 

local mean value and the standard deviation of gray level evaluated in a window 

centered in each pixel. This method can separate the object or text from the background 

effectively in the areas near to the object. Niblack method is one of the document 

segmentation methods and has shown good results in segmenting text from the 

background. Anyway, it can be applied also to images without text [27] and has been 

applied in a vision system for auto seeding and for observing the surface of the melt in 

the Ky method for the Sapphire Crystal Growth Process [28]. 

All these techniques extract a ROI from the acquired image. This extraction removes 

the part of the image that is not part of the inspection object (for example the portion 

of image that does not contain the tube, as in [1], or the image of the roller conveyor 

that is separated from the glass in [18]) but do not use information on defects to further 

reduce the ROI. Only in [25] is presented a technique that identifies not defective areas 

within the ROI (background) using a threshold on the local variance calculated in a 

window centered on a pixel. In the paper, statistics on areas without error are used to 

automatically calculate global thresholds to perform segmentation, more accurately 

than OTSU. In our work, we use the knowledge of the no defective areas to reduce the 

size of the ROI and improve the execution time. Unlike the previous work, in our case, 

it is not possible to use the standard deviation for the lighting effects. We besides use a 

double threshold mechanism with hysteresis to further limit the size of the ROI, and we 

perform columns elaboration as they have an almost constant distribution of luminous 

intensity, thus avoiding the introduction of further expensive filtering. 



 

 
Fig. 4. Image taken by the line-scan camera. The array of CCD sensors in the line scan camera 

is orthogonal to the direction of the movement of the tube. The internal of the tube is also 

highlighted. It represents the portion of the image which is further analyzed for detecting 

defects. The frame is composed of 1000x2048 pixels.  

3 Rational 

State-of-the-art techniques for defect detection consider the ROI as the input image for 

their elaboration. Since not all the portions of the ROI include defects, the application 

of defect detection algorithm to these portions is useless and wastes processing time. 

Fig. 5 shows the processing time of the 3 stages of detection when the Canny algorithm 

is applied to a defective image. Bar Canny Whole ROI represents the processing time 

when Canny is applied to the whole ROI, while Canny Defective ROI represents the 

processing time when Canny is applied only to the columns of the ROI that includes 

the defect (defective ROI). As can be seen, it is possible to reduce the processing time 

of about 60%. As our main requirement is to reduce the overall processing time, our 

idea is to remove, from the ROI, portions where it is possible to easily predict that no 

defects are present (reducing the size of the ROI). 

 
Fig. 5. Processing Time on an Intel i7-940 CPU (2.93 GHz) on a defective image. Canny 

Whole ROI represents the processing time when the Canny algorithm is applied to the whole 
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ROI. Canny defective ROI represents the processing time when Canny is applied only to the 

columns of the ROI that include the defects. 

 

To reduce the size of the ROI, we observe that the luminous intensity inside a column 

is almost constant except in pixels where there is noise or defects. So, the standard 

deviation of the column may be used as an indicator of defect presence on that column, 

as shown in Fig. 6b. Therefore, values of the standard deviation for column below a 

specific threshold indicate that the column can be excluded by the next processing. 

Anyway, the standard deviation of the columns in a glass object is influenced by the 

alignment of the illuminator with the tube. In case of not perfect alignment, usual in 

glass tube production, the standard deviation shows an increasing trend from one edge 

of the tube to the other, which can be approximated with a linear trend (Fig. 6d). In 

order not to have any influence from this factor, we consider the values of the standard 

deviation of the columns removing their linear trend (Detrended Standard Deviation - 

DSD). 

Another relevant requirement concerns the ability to accurately detect the size of 

defects because it is a parameter for taking discard decisions. We have experimented 

that luminous intensity of the defects presents high values near the central area of the 

defects but tends to decrease away from it. Therefore, not all the columns including a 

defect present high standard deviation value. For these reasons, to detect these columns, 

we apply two hysteresis thresholds: tL and tH with tL<tH. Columns with DSD values less 

than tL are not considered to belong to ROI, columns with values greater than tH are 

considered to belong to ROI and columns with values between tL and tH are considered 

to belong to ROI only if they are adjacent to columns that belong to ROI (Fig. 7). 

Using the DSD criterion, areas near the edge of the tube are often classified as ROI, 

as they have peaks of DSD greater than the peaks of the DSD of the columns where 

defects are placed. These values are caused by many effects as the vibration of the 

moving tube or the imperfect circular shape of the tube surface. In these areas, there 

may be defects that if included in the ROI will be recognized by the Defect Detection 

and Classification Subsystem. Two solutions are then possible. The first is to exclude 

the ROIs located near the edges. This solution is not destructive because areas near the 

edges for a camera appear in the central area for one of the other two cameras positioned 

at 120 degrees from it and the tube. The second solution is to include these areas in the 

ROI for the next stage of Defect Detection. 

 

  
(a) (c) 



  
(b) (d) 

Fig. 6a-b. a) Internal part of the tube 

including an air line. b) Standard Deviation, 

Linear Trend and DSD of columns of Fig. 

a).  

Fig. 6c-d. c) Internal part of the tube 

including a blob. d) Standard Deviation, 

Linear Trend and DSD of columns of Fig. 

c). 

4 Algorithm and choice of the thresholds 

The proposed algorithm (Detrended Standard Deviation ROI Reduction algorithm, 

DSDRR), starting from the image representing the internal part of the tube, calculates 

for each column the DSD. Then, the algorithm finds the columns whose DSD values 

are greater than the tH threshold and promotes all these columns as belonging to the 

ROI. Next, for each of the columns belonging to the ROI, the algorithm finds the 

adjacent columns whose DSD values are greater than tL and promotes also these 

columns as belonging to the ROI. Finally, if ROI of areas close to the edge of the tube 

must be excluded from the analysis, the algorithm removes from the ROIs the columns 

adjacent to the first and the last column. 

 

  



  
Fig. 7. Application of two thresholds with hysteresis to the DSD of columns of Fig 6a and 6c. 

Above is shown the ROIs of images (in red boxes) in Figure 6a and 6c as results by applying 

the proposed algorithm. 

 

The choice of the threshold values determines algorithm performance in terms of 

detection. A bad choice may cause the exclusion of defects in the ROIs (causing a false 

negative in detection), or it can generate too large ROI with no reduction of the overall 

processing time. 

The choice of threshold tH must guarantee that at least one column of a defect belongs 

to the ROI, i.e. the DSD for that column must be higher than tH. So, to ensure that all 

the defects are correctly included in the ROI, the threshold tH must be lower than the 

maximum value of the DSD of the columns of each defect. Too high values of tH can 

exclude from the ROI areas that include defects, and too low values of tH, therefore, 

lead to extremely large ROI, that is, high processing times. 

The threshold tL must guarantee that all the columns of a defect belong to the ROI, 

otherwise portions of the defect are not detected, therefore, causing the incorrect 

measurement of the defect size. Too high value of tL could exclude a portion of the 

shape of the defect from the ROI, and too low values of tL could cause again the ROI 

to include the entire internal area of the tube. A possible solution is to set it to a value 

lower than the minimum value of the DSD of the columns of each defect. This ensures 

that, if a defect is detected using threshold tH, its entire shape is always included in the 

ROI.  

The thresholds tL and tH used by the algorithm are related also to properties of defects 

that depend on production-related parameters (such as glass tube size, diameter, 

thickness, opacity etc). In an industrial application scenario, these parameters change 

with batches of production, so it is important to adapt the thresholds to the changes in 

production. We have developed a procedure that suggests upper bounds for the 

thresholds that must be adopted when the production parameters change.  

The procedure consists of: 

1) collecting a number of frames from the acquisition system during the starting 

phase of a new batch of production, 

2) applying an algorithm for the detection and classification of defects to each frame, 

3) for each classified defect, calculating the maximum value and minimum value of 

the DSD of the columns of the defect and adding them respectively to the sets maxDSD 

and minDSD, 

4) the suggested upper bounds are: tL < min(minDSD) and tH < min(maxDSD). 

 



 

5 Results 

The inspection system of Fig. 1 is working on production lines of a glass tube foundry 

[1]. The image processing stages have been implemented in a task activated by the 

frame grabber when a new frame is ready in main memory. Table I summarizes the 

main features of the Host Computer, the algorithms utilized for the various stages of 

defect detection and their configuration parameters. All the image processing 

algorithms have been implemented using the OpenCV library [29] and compiled with 

the Visual Studio compiler. 

System performance has been evaluated using a dataset of 30 frames acquired during 

the production phase. All frames are composed of 1024 lines acquired by the line scan 

camera sensor (2K pixels). These frames contain 6 air lines and 10 blobs; one of these 

frames contains 3 blobs and another one contains 2 air lines while 17 frames do not 

have any type of defects. The machine on which tests are executed has a configuration 

similar to the production one and is equipped with an Intel Core i7-940 CPU running 

at 2.93 GHz. As for processing time, we perform 1000 executions of the whole dataset 

of images [30], and we take the average execution time spent by each stage (ROI 

extraction/Defect detection/Defect classification) and the maximum total processing 

time. 

In our experiment, we utilized two algorithms that have been successfully applied in 

the inspection of pharmaceutical glass tube: the Canny algorithm [11] and the 

MAGDDA [12]. With Canny, the image is first smoothed with a Gaussian filter and 

then gradient magnitude is computed at each pixel; edges (marked pixels) are 

determined via non-maximum suppression, double threshold, and hysteresis. 

MAGDDA algorithm [12] works at row level and apply a moving average filter of an 

assigned windows size WS to the ROI. Then applies a fixed threshold (k) to mark the 

pixel. As for the Defect Classification stage, we adopt an algorithm that groups adjacent 

Table 1. Host Computer. 

Hardware Configuration 

Processor Intel® Core™ i7-940 Processor (8MB Cache, 2.93 GHz) 

RAM 8 GB 

Defect detection system 

Algorithm 

name 

Without 

DSDRR 
DSDRR with edges DSDRR no edges 

ROI 

extraction 

Internal 

part 

Internal part + 

DSDRR including edge 

with tL=0, tH=2 

Internal part + 

DSDRR excluding edge 

with tL=0, tH=2 

Defect 

Detection 
Canny (35,80) MAGDDA (ws = 145, k=10.7) 

Implement

ation 
OPENCV 



marked pixels using connected-components labeling [31] and builds, for each group, 

the smallest rectangle that contains them. The rectangle features permit to individuate 

blobs and air lines. 

In the tested image-set, the autotuning method suggests for tH a value less than 2,0362 

and for tL a value less than 0,0126. We set tH = 2 and tL = 0. For Canny, we find that 

the optimal thresholds are 35, 80. 

 

 
Table 2. Number of recognized defects/Defective Frames and their classification 

 
Expected 

value 

Without 

DSDRR 

DSDRR 

with edge 

Canny 

DSDRR no 

edge 

Canny 

Without 

DSDRR 

DSDRR 

with edge 

MAGDDA 

DSDRR no 

edge 

MAGDDA 

 TP TP/FP (FN) 
TP/FP 

(FN) 
TP/FP (FN) 

TP/FP 

(FN) 

Blobs 10 10/5 (0) 9/5 (1) 10/6 (0) 9/6 (1) 

Air lines 6 6/0 (0) 6/0 (0) 6/0 (0) 6/0 (0) 

Defective 

Frames 
13 13/2 (0) 12/2 (1) 13/2 (0) 12/2 (1) 

 
 

Table 3. Air line length [pixels] 

Frame 

Without DSDRR  

 DSDRR with edge  

DSDRR no edge 

Canny 

Without DSDRR  

DSDRR with edge  

 DSDRR no edge  

MAGDDA 

1.1 81 / 81 / 81 72 / 72 / 72 

1.2 473 / 473 / 473 456 / 456 / 456 

2.1 709 / 709 / 709 758 / 758 / 758 

2.1 337 / 337 / 337 402 / 402 / 402 

2.6 502 / 502 / 502  509 / 509 / 509 

3.9 450 / 450 / 450 513 / 513 / 513 

 

With this setting, in terms of defect detection, the accuracy of each defect detection 

algorithm is the same with or without the application of the DSDRR algorithm when 

including also the edges of the tube (Table 2 and Table 3 for air lines; the same results 

are achieved for blob area). When the DSDRR algorithm excludes the edges, there is a 

false negative due to a defect near the edge of the tube whose columns are excluded 

from the ROI. Anyway, the system is equipped with three cameras to guarantee a 360 

degrees inspection of the tube, and defects near edge of the tube are located by one of 

the other cameras near the center of the image.  

The DSDRR algorithm is effective in reducing the ROI that is processed by the 

Defect Detection and Classification algorithms. DSDRR calculates 70 ROIs. 53 of 

these are in the proximity of the edge of tube (and 1 of these contains a defect), 14 

contain defects (3 defects are in the same columns/ROI). Compared to the total area, 

the ROI is reduced on average by 88%, to a maximum of 96% and at least b69%. 



Excluding the parts near the edges of the tube, the ROI is reduced on average by 98% 

and at most by 100% (in frames without defects) and at least by 82%. 

 

The reduced area of the ROI has a direct impact on the processing time of the further 

stages (Table 4) of detection and in the overall processing time (Fig. 8). As shown in 

Table 4, the average processing time of Canny without DSDRR is about 61 ms while 

the execution time of Canny with DSDRR with edges is about 20 ms and 10 ms with 

DSDRR no edges, with a decrease of 67% and 83%. For MAGDDA, the processing 

time without DSDRR is 8 ms while with DSDRR with edges is about 3 ms and 2 ms 

with DSDRR no edges. To further reduce the processing time, these results suggest 

excluding the investigation of the image edges. Indeed, the system is equipped with 

three cameras to guarantee a 360 degrees inspection of the tube, and defects near an 

image edge for a camera are located by one of the other cameras near the center of the 

image. So, the inspection quality is guaranteed. 

Similar improvements can be observed for the processing time of the Classification 

stage, as noisy pixels that do not belong to DSDRR ROI are not considered by the 

classification algorithm. The DSDRR algorithm increases the processing time for ROI 

extraction (from about 8 to 10 ms). Despite this, the total maximum processing time for 

Canny moves from 90 to 37/30 ms (with a 3x increase in throughput) and for 

MAGDDA from 34 to 19/17 ms (with a 2x increase in throughput). 

 

 

Table 4. Average Processing Time of defect detection phases (ms) 

  ROI ELAB CLASS 

Canny 

Without DSDRR 7,845 61,538 9,395 

DSDRR with edge 10,217 20,403 3,945 

DSDRR no edge 10,331 10,437 2,554 

MAGDDA 

Without DSDRR 7,695 8,333 8,114 

DSDRR with edge 10,221 2,817 3,924 

DSDRR no edge 10,331 1,442 2,446 

 



 
Fig.8. Processing Time and Throughput. 

 

6 Conclusion 

A vision system can be exploited to inspect in real-time the glass tube quality during 

the production process. Improvements in such process and the need to increase the 

detection accuracy suggest the adoption of a solution that reduces the processing time 

of all the steps involved in defect detection and classification. A classical approach for 

dealing with inspection consists in extracting the whole internal part of the tube (ROI) 

and passing it to the defect detection and classification algorithm. By considering the 

features of defects and properties that are relevant in the images, we presented an 

algorithm that further reduces the ROI area by excluding columns that can be 

determined to not include defects.  

We consider the production of glass tubes for pharmaceutical uses. Experimental 

results indicate that our proposal does not change the quality of detection of the system 

and significantly improves processing time of both defect detection and classification 

stages. The overall throughput (frames per second) is improved up to 3 times with 

respect to standard solutions. 

As for future works, we plan to test our algorithm in other application domains and 

to investigate strategies to parallelize the algorithms by considering CMPs and GPU 

architectures and related memory systems [32]. 
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