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Introduction. �he theoretical concepts of full-waveform inversion (FWI) date �ack to the 
earl� 1980s (�arantola, 1984), �ut due to lack of sufficient computer power, the application of 
FWI to seismic data did not take off until a few �ears ago. In particular, over the past several 
�ears, the industr� has �een making large strides toward using gradient-�ased full-waveform 
inversion (FWI) to �uild velocit� models for use with pre-stack depth migration (�ajeva et al., 
2016� Aleardi et al., 2016) after man� s�nthetic model exercises, the attention has turned to the 
use of field data with the acoustic approximation of the two-wa� wave propagation (Morgan 
et al., 2013). �hese studies have shown that if the acquired data provide long offsets and low 
frequencies in the range of 2 to 3 Hz, gradient-�ased FWI can iterativel� �uild a high-fidelit� 
velocit� model �� means of consecutive use of data with increasing frequenc� �andwidth (the 
so-called multiscale approach� Bunks et al., 1995). In addition, although the acquired data are 
not acoustic (�ut more realisticall� viscoelastic and anisotropic) it has �een demonstrated that 
the 3D FWI can �ring significant uplift to the details in the acoustic velocit� field and thus 
create superior migrated images. 

Recent computational improvements allowed for the simulation of 3D elastic wavefields and 
thus undertake the challenge of elastic full-waveform inversion (EFWI). Differentl� from acoustic 
FWI that is primaril� focused on inverting diving waves, EFWI has the a�ilit� to simultaneousl� 
invert reflected and transmitted energ� using traveltime, amplitude, and phase information. In 
this context, EFWI can theoreticall� �e an optimal tool to derive high-resolution and relia�le 
elastic characterizations of the su�surface that are crucial in man� geoph�sical applications, �ut 
particularl� in reservoir characterization studies in which onl� primar� P-P reflections and 1D 
convolutional forward models are routinel� used (e.g. Aleardi and Cia�arri, 2017).

��viousl�, the non-linearit� and the ill-conditioning of FWI increase as man� wave 
phenomena (multiples or converted waves) or different model parameters (�p, �s, densit�, 
viscoelastic and anisotropic parameters) are simultaneousl� inverted (�perto et al., 2013). For 
this reason, applications of EFWI are primaril� focused on inverting multicomponent seismic 
data (�ears et al., 2010� Prieux et al., 2013� Vigh et al., 2014) that compared to conventional 
single-component data, �ring in additional information a�out shear wave velocit�.  However, 
acquiring multicomponent seismic data is expensive especiall� in deep-water areas, where 
hardware limitations prevent multicomponent technolog� from �eing extended to water depths 
in excess of 1500 m. For this reason, in this work we assess the a�ilit� of EFWI of single-
component data to provide accurate elastic su�surface models that could �e used as input for 
reservoir characterization studies. In the following we show some preliminar� results o�tained 
on the Marmousi-2 model, which is an elastic model that reproduces a geological profile of 
north Quenguela in the Quanza Basin in Angola (Martin et al., 2006). We primaril� focus our 
attention on the evaluation of the accurac� and qualit� of the �p, �s and corresponding �p/�s 
models. �he inversion strateg�, uses starting models that nicel� approximate the true elastic 
model and moves from low frequencies to high frequencies, using �oth earl� arrivals, diving 
waves and reflected events. �he densit� was kept constant to maintain the inversion at a simple 
level, which allowed us to draw essential conclusions. 

The Marmousi-2 model and the inversion approach. �he Marmousi-2 elastic model 
(Figs. 1a and 1�) has �een developed from the Marmousi-1 acoustic model. Both models aim 
to reproduce the geolog� of the north Quenguela in the Quanza Basin in Angola. Marmousi-2 
preserves the Marmousi-1 lithologies and geological structures �ut is deeper and laterall� more 
extended. �he sedimentar� sequence is quite simple in the left and right edges of the model, 
�ut it is ver� complex in the centre where thrust structures, salt �odies and high-angle normal 
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faults are present. Differentl� from the Marmousi-1, some reservoir levels with different fluid 
saturation conditions have also �een included into the Marmousi-2 model.  

We emplo� a 2D time-domain elastic FWI code with the steepest-descent as the optimization 
tool and a finite difference method as forward modelling. �he forward modelling code adopts 
a�sor�ing �oundaries to avoid artificial signal reflections at the edges of the model. In order to 
attenuate the risk to converge toward a local minimum of the o�jective function, we used the 
multi-scale approach. �he inversion emplo�s the standard adjoint state method to compute the 
gradient of the o�jective function that is the L2 norm misfit �etween o�served and modelled 
seismic data. �he modelling and the inversion grids contain 3601 grid points along the horizontal 
direction and 701 grid points along the vertical direction. For the computation of the s�nthetic 
o�served data, we use the elastic wave equation and therefore the P-wave and �-wave velocit� 
models, and the constant densit� model, were the input to the forward modelling. As the source 
wavelet, we emplo� a Ricker wavelet with 60 Hz maximum frequenc� and a 0.5 ms sampling 
interval. �he acquisition geometr� was defined �� a towed-streamer s�stem, composed �� 181 
sources (with a source interval of 50 m) and 357 receivers (with a receiver interval of 25 m) all 
placed in the water at a depth of 12.5 m. �o make the EFWI inversion feasi�le, a long-offset (9 
km) acquisition geometr� was designed. �he 5 m grid-spaced model is numericall� sta�le and 
non-dispersive for the P- and �-waves velocities, and thus it ensures realistic results. 

We perform several experiments var�ing the acquisition geometr�, the num�er of source 
gathers considered in the inversion, var�ing the starting model and its resolution. However, for 
the lack of space, in the following we onl� show the results o�tained for a single test in which 
we consider 90 out of 181 shot gathers. We perform 70 iterations, 5 for each of the following 
frequencies: 2 Hz, 3 Hz, 5 Hz, 7 Hz, 9 Hz, 11 Hz, 13 Hz, 15 Hz, 17 Hz, 20 Hz, 22 Hz, 25 
Hz, 27 Hz and 30 Hz. �he proper choice of the initial model is crucial for the convergence of 
the gradient-�ased FWI to the glo�al minimum. For this reason, in the following the starting 
models for �oth �p and �s are directl� derived from the true model �� appl�ing a moving-
average filter.

Results. We now show the results o�tained for a single inversion test. Figs. 1a to 1c show the 
true �p, �s and �p/�s models, respectivel�� Figs. 1d to 1f illustrate the elastic properties of the 
starting models, whereas Figs. 1g to 1i represent the final predicted �p, �s and the corresponding 
�p/�s fields, respectivel�. We o�serve that the EFWI has �een a�le to progressivel� add high-
frequenc� details to the starting �p and �s models. In particular, the inversion allows for a 

Fig. 1 - �p, �s and �p/�s of the true (a, �, c), starting (d, e, f) and final predicted (g, h, i) models.
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good reconstruction of the medium scale geological characteristics in the central part of the 
model, such as the thrust structures and the salt �odies. Differentl�, due to the poor seismic 
illumination, the qualit� of the reconstruction decreases moving toward the leftmost and deeper 
edges of the model, where the predicted velocities remain ver� similar to the starting models. 
At a first glance, Fig. 1i shows that the estimated �p/�s ratio contains some high-frequenc� 
characteristics that are not present in the starting �p/�s model. At the large scale of Fig. 1, 
seems that having realistic P- and �-wave velocit� starting models, and thus a realistic �p/�s 
ratio, allows for an accurate reconstruction of the su�surface �p and �s fields. 

Fig. 2a shows an example of o�served shot gather filtered �elow 60 Hz. Figs. 2� to 2d show 
the corresponding shot computed on the starting model, on the final predicted model, and the 
differences �etween o�served and the predicted shots, respectivel�. In Fig. 2� note that due 
to the long-wavelength structure, onl� diving waves generate on the starting model. �he fair 
match �etween o�served and predicted data demonstrates that the inversion actuall� converges 
toward a minimum of the misfit function. Indeed, even though some reflections are unpredicted 
and the correct amplitudes of the events are sometimes mispredicted, the diving waves are 
totall� recovered and the overall energ� of the waveform differences is small.

Figs. 3a and 3� offer a closer look at the final predictions that allows for a more quantitative 
assessment of  their features. In this case the results are compared along two velocit� columns 
of the Marmousi-2 model located at 10935 m and 15000 m from the leftmost edge of the model. 
We note that the estimated �p model fairl� reproduces the velocit� variations and the velocit� 
contrasts of the true model. Differentl�, the estimated �s field underpredicts the velocit� 
contrasts that characterize the true model. In other words, the estimated shear-wave velocit� 
is mainl� a low-pass filtered version of the true one. But more importantl� the comparison 
of the estimated and the true �p/�s ratios, demonstrate that the EFWI has not �een a�le to 
retrieve relia�le estimations of this elastic parameter. In particular, if we focus our attention on 

Fig. 2 - ��nthetic seismic data computed on the true model (a), on the starting model (�), and on the predicted model 
(c). (d) Differences for a single shot gather �etween the o�served seismic data (a) and the predicted data (c).
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Fig. 3 - a, �) Comparison �etween true, starting and predicted vertical velocit� profiles corresponding to two horizontal 
coordinates, respectivel�. �he �lack arrows in (a) indicate the reservoir la�er.

the reservoir interval (�lack arrows in Fig. 3a) we note that the inversion correctl� estimates 
the significant decrease in �p that marks the transition from the cap-rock to the reservoir la�er, 
�ut fails to reproduce the corresponding increase in �s. For the reservoir la�er, the algorithm 
erroneousl� predicts a decrease in �s and increase in �p/�s ratio instead of an increase in �s 
and a corresponding strong decrease in �p/�s ratio. �he good data reconstruction shown of 
Fig. 2 and the erroneous predictions of Fig. 3, indicate that the o�served seismic data (marine 
data with single-component recording) does not contain enough information to constrain the 
�s estimates, and for this reason, the final �p/�s model is not much modified from the initial to 
the reconstructed model. In other words, onl� the �p information guide the inversion process. 
�hese outcomes were also confirmed �� some additional FWI tests (not shown here) in which, 
for example, the initial P-wave models is kept fixed to the true model and onl� the �p/�s ratio 
is modified. �ur preliminar� results seem to indicate that EFWI of single-component marine 
seismic data, is not a�le to achieve relia�le �s and �p/�s estimations even if optimal starting 
models for �oth �s and �p are provided. 

Conclusions. In this work, we demonstrated the difficult� of shear waves velocit� 
estimations for elastic full-waveform inversion (EFWI) of single-component seismic data, even 
if optimal starting models for the compressional and shear waves velocities are provided. �o 
draw essential conclusions, we kept the inversion at a simple level. In particular, we limited our 
attention to the inversion of s�nthetic data computed on the Marmousi-2 model. We adopted a 
time-domain FWI algorithms that makes use of a multi-scale approach and a steepest-descent 
optimization procedure. �ur stud� indicates that single-component (pressure) seismic data does 
not provide enough information to relia�l� constrain �s and �p/�s estimations in a standard 
EFWI approach.

�ther EFWI approaches, such as target oriented or la�er stripping methods, or the inclusion 
of multicomponent data in the o�served data ma� help to improve the resolution and the 
relia�ilit� of the inversion results, which are certainl� needed for reservoir characterization 
applications.

�herefore, the challenge remains of how to use EFWI when onl� pressure measurements 
are acquired, as it commonl� happens in marine data acquisition. �he next step of our research 
will �e to compare the results provided �� EFWI to those �ielded �� a more conventional linear 
amplitude versus angle inversion of P-P wave reflection coefficients. 
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