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Abstract. We investigate the weak lensing corrections to the cosmic microwave background

temperature anisotropies considering effects beyond the Born approximation. To this aim,

we use the small deflection angle approximation, to connect the lensed and unlensed power

spectra, via expressions for the deflection angles up to third order in the gravitational poten-

tial. While the small deflection angle approximation has the drawback to be reliable only for

multipoles ℓ . 2500, it allows us to consistently take into account the non-Gaussian nature

of cosmological perturbation theory beyond the linear level. The contribution to the lensed

temperature power spectrum coming from the non-Gaussian nature of the deflection angle

at higher order is a new effect which has not been taken into account in the literature so

far. It turns out to be the leading contribution among the post-Born lensing corrections.

On the other hand, the effect is smaller than corrections coming from non-linearities in the

matter power spectrum, and its imprint on CMB lensing is too small to be seen in present

experiments.
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1 Introduction

Precise measurements of the anisotropies and the polarisation of the cosmic microwave back-

ground (CMB) have revolutionised cosmology from an order of magnitude science to a pre-

cision science. Especially, the latest observations with the Planck satellite [1, 2] and also

from experiments on the ground [3, 4] have determined the cosmological parameters that

describe the geometry and the matter content of our Universe and the initial conditions of

perturbations with percent accuracy and better.

To achieve this accuracy it is very important to include the effect of gravitational lensing

of CMB photons by foreground structures. Gravitational lensing has been predicted and

calculated to modify the CMB power spectrum by 10% and more on small angular scales,

ℓ & 1000 [5–10]. It is therefore imperative to take it into account for precision measurements.

In the mean time, lensing of the CMB has not only been detected [11, 12], but it has been used

to reconstruct the lensing potential to the CMB [13–16] and even a first map of the full sky

lensing potential inferred from observations with the Planck satellite has been generated [17].

In addition to modifying (damping and widening) the shape of the acoustic peaks in the

CMB temperature and polarisation spectra, lensing also rotates E-mode polarisation into B-

modes and these lensing B-modes have been detected in the CMB [18–22]. The possibility to

generate high precision maps of the lensing potential to the CMB is intriguing. The lensing

– 1 –



potential is a weighted integral of the matter distribution out to the CMB and especially

correlating it with different other surveys, for example the infrared background [23–25] or

galaxy surveys [26–30], will give us detailed information about the matter distribution in the

Universe. For this, however we must ensure that also the theoretical calculation of the CMB

deflection angle is sufficiently precise and this is the goal of the present paper.

So far, the effect of lensing in the CMB has been determined using the ’Born approxima-

tion’, i.e., considering the photons to move along the unperturbed geodesics when computing

their deflection angle. This is strictly true only to first order and since lensing is such a

significant effect, the question whether higher order terms have to be taken into account to

obtain sufficient accuracy for present and future experiments is justified. In this paper we

study in detail how the CMB temperature power spectrum is affected by lensing including all

terms up to third order in the deflection angle. For numerical attempts to describe post-Born

effects see, for instance, [31–33].

When going to second order in lensing, also the mean distance out to a fixed redshift is

modified. The problem of how the mean luminosity or area distance of a 2-sphere of constant

redshift is affected by aggregated lensing has been extensively studied in recent literature,

considering small and intermediate redshift in [34, 35] and going up to the last scattering

surface by [36, 37]. It has been found, however that the effects of this average perturbation

on cosmological parameter estimantions are small.

The remaining question, the one we address in this paper, is whether the effects of

’aggregated lensing’ on the CMB temperature fluctuations power spectrum are substantial

and have to be taken into account.

Previous estimations of the effect of lensing at higher order on the weak lensing power

spectra found a negligibly small result [38]. However, a recent attempt to evaluate the weak

lensing correction of the cosmic microwave background temperature anisotropies at the next

to leading order in [39] has obtained quite considerable corrections. The results obtained

in [39] are however based on the assumption that for a stochastic deflection α the relation

〈eiα〉 = e−〈α2〉/2 holds. This relation is used when considering first order lensing, to go

beyond the small deflection angle approximation. It allows to re-sum all the corrections

coming from the first order deflection angle non-perturbatively. However, it holds only if

α is a Gaussian variable which is (nearly1) true for the first order deflection angle. But

1When taking into account a nonlinear matter distribution in principle also the first order deflection angle

is no longer Gaussian. In the present work we focus on the pure post-Born corrections and neglect this

non-Gaussianity. However, for the sake of completeness, let us underline that, in principle, the effect of the

non-Gaussianity associated to the non-linear matter distribution can be taken in consideration by expanding

ΦW as ΦW +Φ
(2)
W

+ Φ
(3)
W

in the expressions for the deflection angles. The additional contributions are of the

same parametric order of the pure post-Born corrections. In our analysis we do not perform these corrections

but in some plots we replace the liner power spectrum by a fully non-linear Halofit approximation. In this

case, the above Gaussian relation to resum the first order deflection angle can in principle no longer be trusted

since then the latter is no longer Gaussian.
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once we go beyond linear order in perturbation theory, the deflection angle no longer obeys

Gaussian statistics and the above identity can not be used. Actually, as we shall see, using

this property corresponds to neglecting terms that are not negligible beyond linear order. In

practice, terms of the form 〈θθθ〉, with θ a deflection angles to any order, cannot be obtained

in the above approximation which contains only even powers of deflection angles.

For this reason, in the present paper we choose a different approach. We employ the

approximation of small deflection angles. With this we find here a reliable result which takes

into account the Gaussian and non-Gaussian contributions in the lensed CMB anisotropies,

going beyond the correction from first order deflection angles. Starting from the result for

the deflection angle up to third order obtained in [40], we investigate whether the next to

leading order correction coming from foreground structures has to be taken in account for a

precise calculation of the observed, lensed CMB temperature anisotropy power spectrum. The

results of [40] are based on the use of the so-called geodesic light-cone gauge [41]. This gauge

is especially adapted to the calculation of physical observables and has already previously

been applied to this goal, see [42–45].

The paper is organized as follow. In Sect. 2 we present the small deflection angle ap-

proximation for CMB lensing beyond linear order, and give the expressions for the deflection

angle and the amplification matrix up to third perturbative order. In Sect. 3 we translate

these results into harmonic space, ’ℓ–space’ and we derive the deflection angle to third order

in ℓ–space. In Sect. 4 we evaluate the lensed power spectrum of the temperature anisotropies

at higher order and beyond the Born approximation. In Sect. 5 we introduce the Limber

approximation and apply it to some of the results of the previous section. Our main results

are presented in Sect. 6. In particular, we give the Limber approximated expression for the

post-Born corrections to the lensed power spectrum of the CMB temperature anisotropies,

evaluating numerically the different contribution both considering a linear and a non-linear

power spectrum. In Sect. 7 we conclude and add a note regarding a recent paper [46] that

appeared while we were finalizing our manuscript. Some lengthy expressions needed in our

calculation in ℓ–space are presented in Appendix A.

2 Weak Lensing Corrections beyond leading order

We want to determine the effect of lensing on the CMB anisotropies beyond the leading order

which involves only first order perturbation theory [9, 10]. Let us consider a generic scalar

field M, that we will identify with the CMB temperature anisotropies, and let us denotes

lensed quantities by a tilde (̃ ). We can generalize the result of [9, 10] and write the following

relation between the lensed and unlensed temperature fluctuations M valid up to fourth
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order in the deflection angles θa(i) (the superscript i denotes the order).

M̃(xa) = M (xa + δθa) ≃ M(xa) +

4
∑

i=1

θb(i)∇bM(xa) +
1

2

∑

i+j≤4

θb(i)θc(j)∇b∇cM(xa)

+
1

6

∑

i+j+k≤4

θb(i)θc(j)θd(k)∇b∇c∇dM(xa) +
1

24
θb(1)θc(1)θd(1)θe(1)∇b∇c∇d∇eM(xa) .

(2.1)

This can be written in a more compact form as follows

M̃(xa) ≃ A(0)(xa) +
4
∑

i=1

A(i)(xa) +
∑

i+j≤4, 1≤i≤j

A(ij)(xa) +
∑

i+j+k≤4, 1≤i≤j≤k

A(ijk)(xa)

+A(1111)(xa) , (2.2)

where

A(i1i2....in)(xa) =
Perm(i1i2....in)

n!
θb(i1)θc(i2).....∇b∇c.......M(xa) , (2.3)

where Perm(i1i2....in) gives the number of permutation of the set (i1i2....in), and

A(0)(xa) ≡ M(xa).

We introduce the Weyl potential ΦW (in terms of the Bardeen potentials Φ and Ψ) as

ΦW =
1

2
(Φ + Ψ) . (2.4)

The lensing potential ψ to the last scattering surface is then given by

ψ(n, zs) = −
2

ηo − ηs

∫ ηo

ηs

dη
η − ηs
ηo − η

ΦW (−(ηo − η)n, η) = −2

∫ rs

0
dr′

rs − r′

rsr′
ΦW (−r′n, ηo − r′) ,

(2.5)

with n the direction of propagation of photon, η conformal time and r the comoving distance,

r = ηo − η. The index s denotes the corresponding quantity at the last scattering surface

while ηo denotes present time. The first order deflection angle is simply the gradient of the

lensing potential [10, 47]. Taking into account also the lensing of the direction n on the

path of the photon one obtains the following expressions for the deflection angles up to third

perturbative order [40]

θa(1) =−2

∫ rs

0
dr′

rs − r′

rs r′
∇aΦW (r′) , (2.6)

θa(2) =−2

∫ rs

0
dr′

rs − r′

rs r′
∇b∇

aΦW (r′)θb(1)(r′) , (2.7)

θa(3) =−2

∫ rs

0
dr′

rs − r′

rs r′

[

∇b∇
aΦW (r′)θb(2)(r′)+

1

2
∇b∇c∇

aΦW (r′)θb(1)(r′)θc(1)(r′)

]

.(2.8)

Latin letters a, b, c, d go over the two directions on the sphere. In Eqs. (2.6) to (2.8) we

take into account the terms with the maximal number of transverse derivatives. We do not
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expand to higher order the Weyl potential, ΨW , instead we shall later consider both the

linear potential and the fully non-linear one obtained by using Halofit model (see [48, 49])

for the non-linear fluctuations.

Let us also stress that the Taylor expansion in Eq. (2.1) is valid in the approximation

of small deflection angles, i.e. when the deflection angle is much smaller than the angular

separations which contribute mainly to Cℓ. This is certainly true for ℓ . 2500, which corre-

sponds to an angular scale of about 4.5 arc minutes (see [6, 9, 10]). We shall use the small

deflection angle approximation only for the second and third order deflection angles which

are much smaller than this value.

To better compare the results that we will obtain in the following, and to understand

discrepancy with the ones obtained in [39], let us define also the amplification matrix Aa
b

following [40]. It is defined as the derivative of the angular coordinates of the source with

respect to the angular direction of the light ray received at the observer position, namely

[47]:

(Aa
b ) =

(

∂θas
∂θbo

)

=

(

1− κ− γ1 −γ2 − ω

−γ2 + ω 1− κ+ γ1

)

. (2.9)

Here κ is the convergence, γ1 and γ2 the two shear components and ω is the vorticity. As one

sees by inspecting Eqs. (2.6) to (2.8), the deflection angle δθ can be written as the gradient

of a scalar field only to first order. In full generality, introducing a general lensing potential

Ψ and a curl potential Ω, we can write the deflection angles δθ (to all order) as

δθ = ∇Ψ +∇× Ω . (2.10)

It is then straightforward to show that

κ = −
1

2
∇δθ = −

1

2
∆Ψ , ω = −

1

2
∆Ω (2.11)

and

CΨΨℓ =
4

ℓ4
Cκκℓ , CΩΩ

ℓ =
4

ℓ4
Cωωℓ . (2.12)

Therefore, beyond the Born approximation, the CMB lensed power spectrum will not depend

only on a lensing potential, but it has also a curl contribution, see [39]. In our approach,

by computing directly the deflection angle δθ, we do not split the contribution coming from

the lensing potential Ψ and from the curl potential Ω, but we do include them both by

construction. We can then expand in perturbation theory and define the deformation part

of the amplification matrix by subtracting the zeroth order contribution, i.e. by introducing

the convenient quantity Ψa
b = δab −Aa

b , which is given by [40]

(Ψa
b )

(n) = −
∂θ

a(n)
s

∂θbo
, n ≥ 1. (2.13)
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Using our expressions for the deflection angle we find the following results for the deformation

matrix up to third order (these were first given in [40])

(Ψa
b )

(1) = 2

∫ rs

0
dr′

rs − r′

rs r′
γac∂c∂bψ(η

′, r′, θao) , (2.14)

(Ψa
b )

(2) = 2

∫ rs

0
dr′

rs − r′

rs r′
γac
[

∂c∂b∂dψ(r
′)θd(1) − ∂c∂dψ(r

′)Ψ
d(1)
b

]

, (2.15)

(Ψa
b )

(3) = 2

∫ rs

0
dr′

rs − r′

rs r′
γac
[

∂c∂b∂dψ(r
′)θd(2) +

1

2
∂c∂b∂d∂eψ(r

′)θd(1)θe(1)

−∂c∂d∂eψ(r
′)θe(1)Ψ

d(1)
b − ∂c∂dψ(r

′)Ψ
d(2)
b

]

, (2.16)

where γac denotes the standard metric on the two-sphere and γac is its inverse. The results

above are consistent with the ones obtained in [38] for the amplification matrix, while they

differ from the expressions in [39]. In particular, as already underlined in [40], the deformed

part of the amplification matrix used in [39] cannot be obtained as a derivative of a deflection

angle order by order, as it should be according to Eq. (2.13). In particular, in [39] there seems

to be a sign error in the second order expression (Ψa
b )

(2), which could be the explanation of

an overestimation of the post-Born corrections to the convergence power spectrum (due to

such an error the subtle cancellation between the terms 〈κ(2)κ(2)〉 and 〈κ(1)κ(3)〉, which has

already been obtained in [38] and which also we have recovered in our framework, might

be spoiled). This could be the cause of the overestimation of the post-Born correction of

the lensed power spectrum of CMB temperature anisotropies by the authors of [39]. As we

show in the following, the post-Born corrections to lensed power spectrum of CMB temper-

ature anisotropies from higher order contributions to the convergence (and vorticity) power

spectrum are nearly two order of magnitude smaller than the result obtained in [39].

3 Expansion in ℓ-space

To evaluate the lensing correction to the angular power spectrum CM
ℓ of the CMB temper-

ature anisotropies we consider the flat sky limit. In this approximation, see e.g. [10], the

combination (ℓ,m) is replaced by a two dimensional vector ℓ. The angular position is then

the 2-dimensional Fourier transform of the position in ℓ space at redshift z, for a generic

variable Y (z,x) we have

Y (z,x) =
1

2π

∫

d2ℓ Y (z, ℓ)e−iℓ·x , (3.1)

and

〈Y (z1, ℓ)Ȳ (z2, ℓ
′)〉 = δ

(

ℓ − ℓ
′
)

CYℓ (z1, z2) , (3.2)

where an overline denotes complex conjugation. We denote

CYℓ (z, z) ≡ CYℓ (z) .

– 6 –



To determine the angular power spectra defined above we follow [45, 50] and introduce the

(3 dimensional) initial curvature power spectrum by

〈Rin (k) R̄in

(

k′
)

〉 = δD
(

k− k′
)

PR (k) . (3.3)

(In both 2- and 3-dimensional Fourier transforms we use the unitary Fourier transform nor-

malisation, hence there are no factors of 2π in this formula.)

For a given linear perturbation variable A we define its transfer function TA(z, k) nor-

malized to the initial curvature perturbation by

A (z,k) = TA(z, k)Rin(k) . (3.4)

An angular power spectrum will be then given by

CABℓ (z1, z2) = 4π

∫

dk

k
PR(k)∆

A
ℓ (z1, k)∆

B
ℓ (z2, k) =

2

π

∫

dkk2PR(k)∆
A
ℓ (z1, k)∆

B
ℓ (z2, k) ,

(3.5)

where PR(k) = k3

2π2PR(k) is the dimensionless primordial power spectrum, and ∆A
ℓ (z, k)

denotes the transfer function in angular and redshift space for the variable A. For example,

by considering A = B = ΦW and A = B = ψ we obtain that (setting CΨW

ℓ (z, z′) ≡ CWℓ (z, z′))

CWℓ (z, z′) =
1

2π

∫

dk k2 PR(k) [TΨ+Φ(k, z)jℓ ((kr)]
[

TΨ+Φ(k, z
′)jℓ

(

kr′
)]

, (3.6)

Cψℓ (z, z
′) =

2

π

∫

dk k2 PR(k)

[
∫ r

0
dr1

r − r1
rr1

TΨ+Φ(k, z1)jℓ (kr1)

]

×

[

∫ r′

0
dr2

r′ − r2
r′r2

TΨ+Φ(k, z2)jℓ (kr2)

]

, (3.7)

where jℓ denotes a spherical Bessel function of order ℓ, r = ηo − η is the comoving distance

and analogously for r′, r1, r2. Above and hereafter, we define z = z(r), z′ = z(r′), etc..

Starting from the definitions in Eq. (3.1), we can write Eq. (2.1) in ℓ space in the form

M̃(zs, ℓ) ≃ A(0)(ℓ) +
4
∑

i=1

A(i)(ℓ) +
∑

i+j≤4, 1≤i≤j

A(ij)(ℓ) +
∑

i+j+k≤4, 1≤i≤j≤k

A(ijk)(ℓ)

+A(1111)(ℓ) , (3.8)

where, on the right hand side, we drop the redshift dependence for simplicity. In terms of

the Fourier transform of the Weyl potential, the deflections angle up to order three and out

to redshift zs can be written as

θa(1)(x) =
i

π

∫

d2ℓ

∫ rs

0
dr′

rs − r′

rs r′
ℓaΦW (r′, ℓ)e−iℓ·x (3.9)

θa(2)(x) =
i

π2

∫

d2ℓ1

∫

d2ℓ2

∫ rs

0
dr′

rs − r′

rs r′

(

ℓa1ℓ1bΦW (r′, ℓ1)e
−iℓ1·x

)

×

∫ r′

0
dr′′

r′ − r′′

r′ r′′
ℓb2ΦW (r′′, ℓ2)e

−iℓ2·x (3.10)

– 7 –



θa(3)(x) =
i

π3

∫ rs

0
dr′

rs − r′

rs r′

∫

d2ℓ1

∫

d2ℓ2

∫

d2ℓ3

×

[

ℓa1ℓ1cℓ
c
2ℓ2dℓ

d
3ΦW (r′, ℓ1)

∫ r′

0
dr′′

r′ − r′′

r′ r′′
ΦW (r′′, ℓ2)

×

∫ r′′

0
dr′′′

r′′ − r′′′

r′′ r′′′
ΦW (r′′′, ℓ3)

+
1

2
ℓa1ℓ1cℓ1dℓ

c
2ℓ
d
3ΦW (z′, ℓ1)

∫ r′

0
dr′′

r′ − r′′

r′ r′′
ΦW (r′′, ℓ2)

×

∫ r′

0
dr′′′

r′ − r′′′

r′ r′′′
ΦW (r′′′, ℓ3)

]

e−i(ℓ1+ℓ2+ℓ3)·x (3.11)

Using these results one easily obtains the ℓ space expressions for the terms A(i....). We present

all of them in Appendix A.

4 Lensed angular power spectrum: analytical results

Let us now compute the lensed angular power spectrum C̃M
ℓ using the results of the previous

section and of Appendix A. First of all, one can easily see that

〈M̃(ℓ) ¯̃M(ℓ ′)〉 = 〈A(ℓ)Ā(ℓ ′)〉 , (4.1)

where we set

A(ℓ) = A(0)(ℓ) +

4
∑

i=1

A(i)(ℓ) +
∑

i+j≤4, 1≤i≤j

A(ij)(ℓ) +
∑

i+j+k≤4, 1≤i≤j≤k

A(ijk)(ℓ) +A(1111)(ℓ) .

(4.2)

We now introduce C
(i..., j...)
ℓ defined as follows

δ
(

ℓ − ℓ
′
)

C
(ij...,ij...)
ℓ = 〈A(ij...)(ℓ)Ā(ij...)(ℓ ′)〉 ,

δ
(

ℓ − ℓ
′
)

C
(ij...,i′j′...)
ℓ = 〈A(ij...)(ℓ)Ā(i′j′...)(ℓ ′)〉+ 〈A(i′j′...)(ℓ)Ā(ij...)(ℓ ′)〉 , (4.3)

where the last definition holds when the coefficients (ij . . .) and (i′j′ . . .) are different. The

factor δ (ℓ − ℓ
′) is a consequence of statistical isotropy. Omitting terms of higher than fourth

order in the Weyl potential and terms that vanish as a consequence of Wick’s theorem (odd

number of Weyl potentials), we obtain

C̃M
ℓ = CM

ℓ + C
(0,11)
ℓ + C

(1,1)
ℓ + C

(0,13)
ℓ + C

(0,22)
ℓ + C

(0,112)
ℓ + C

(0,1111)
ℓ

+C
(1,3)
ℓ + C

(2,2)
ℓ + C

(1,12)
ℓ + C

(1,111)
ℓ + C

(2,11)
ℓ + C

(11,11)
ℓ (4.4)

where C
(0,0)
ℓ ≡ CM

ℓ is the unlensed power spectrum and C
(0,11)
ℓ and C

(1,1)
ℓ are the well-known

leading order corrections given by

C
(0,11)
ℓ = −CM

ℓ (zs)

∫

d2ℓ1
(2π)2

(ℓ1 · ℓ)
2 Cψℓ1(zs, zs) , (4.5)

C
(1,1)
ℓ =

∫

d2ℓ1
(2π)2

[(ℓ − ℓ1) · ℓ1]
2 Cψ|ℓ−ℓ1|

(zs, zs)C
M
ℓ1 (zs) . (4.6)
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The next-to-leading order corrections can be evaluated using the expressions for the

deflection angle up to third order given in the previous section and inserting them in the

definition of the A(i··· )’s (see Appendix A). The expressions for these somewhat lengthy

higher order corrections are also given in Appendix A.

5 Lensed angular power spectrum: Limber approximation

In order to numerically evaluate the new higher order lensing contributions to the CMB tem-

perature anisotropies, calculated in the previous section, we apply the Limber approxima-

tion [51–53]. The Limber approximation is valid at large ℓ and, because lensing is appreciable

only for ℓ > 100, this is an excellent approximation for this paper.

Following [54], the Limber approximation can be written as

2

π

∫

dk k2 f(k)jℓ (kx1) jℓ (kx2) ≃
δD(x1 − x2)

x21
f

(

ℓ+ 1/2

x1

)

, (5.1)

where f(k) should be a smooth, not strongly oscillating function of k which decreases suffi-

ciently rapidly for k → ∞. (More precisely, f(k) has to decrease faster than 1/k for k > ℓ/x.)

Using this approximation, one obtains Limber-approximated Cℓ as follows, see also [55]

CWℓ (z, z′) =
1

2π

∫

dk k2 PR(k) [TΨ+Φ(k, z)jℓ (kr)]
[

TΨ+Φ(k, z
′)jℓ

(

kr′
)]

=
δ (r′ − r)

r2
1

4
PR

(

ℓ+ 1/2

r

)[

TΨ+Φ

(

ℓ+ 1/2

r
, z

)]2

, (5.2)

and, from Eq. (3.7), we find for the power spectrum of the lensing potential

Cψℓ (z, z
′) = 4

∫ r

0
dr1

r − r1
r1

∫ r′

0
dr2

r′ − r2
r2

CWℓ (z1, z2)

= Θ
(

r′ − r
)

∫ r

0
dr1

(r − r1) (r
′ − r1)

r r′ r41
PR

(

ℓ+ 1/2

r1

)[

TΨ+Φ

(

ℓ+ 1/2

r1
, z1

)]2

+Θ
(

r − r′
)

∫ r′

0
dr1

(r − r1) (r
′ − r1)

r r′ r41
PR

(

ℓ+ 1/2

r1

)[

TΨ+Φ

(

ℓ+ 1/2

r1
, z1

)]2

,

(5.3)

where Θ is the Heaviside step function. When z = z′ the result (5.3) simplifies to

Cψℓ (z, z) =

∫ r

0
dr1

(r − r1)
2

r2 r41
PR

(

ℓ+ 1/2

r1

)[

TΨ+Φ

(

ℓ+ 1/2

r1
, z1

)]2

. (5.4)

This is in agreement with the corresponding results of Ref. [54]. In [54] is also shown that

the Limber-approximated Cψℓ ’s at equal redshift are a very good approximation already for

ℓ > 20. We assume here that this is still true when we consider Cψℓ at two different redshifts.
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Using the Limber-approximated Cℓ’s given in Eqs. (5.2) and (5.3) in the analytical

results of the previous section, the expressions simplify considerably. As an example, let us

study C
(13)
ℓ and C

(22)
ℓ . Inserting Eq. (5.2) in Eq. (A.11), we find

C
(0,13)
ℓ (zs) = −2CM

ℓ (zs)

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

(ℓ1 · ℓ) (ℓ2 · ℓ) ℓ
2
2 (ℓ2 · ℓ1)

×

∫ rs

0
dr′

rs − r′

rs r′

∫ r′

0
dr′′

r′ − r′′

r′ r′′
Cψℓ1(zs, z

′′)

×
δ (r′ − r′′)

r′2
PR

(

ℓ2 + 1/2

r′

)[

TΨ+Φ

(

ℓ2 + 1/2

r′
, z′
)]2

+2CM
ℓ (zs)

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

(ℓ2 · ℓ) ℓ
2
2 (ℓ2 · ℓ1) (ℓ1 · ℓ)

×

∫ rs

0
dr′

rs − r′

rs r′
Cψℓ1(zs, z

′)

∫ r′

0
dr′′

r′ − r′′

r′ r′′

×
δ (r′ − r′′)

r′2
PR

(

ℓ2 + 1/2

r′

)[

TΨ+Φ

(

ℓ2 + 1/2

r′
, z′
)]2

+CM
ℓ (zs)

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

(ℓ1 · ℓ)
2 (ℓ1 · ℓ2)

2

×

∫ rs

0
dr′

rs − r′

rs r′

∫ rs

0
dr′′

rs − r′′

rs r′′
Cψℓ2(z

′′, z′′)

×
δ (r′ − r′′)

r′2
PR

(

ℓ1 + 1/2

r′

)[

TΨ+Φ

(

ℓ1 + 1/2

r′
, z′
)]2

, (5.5)

which simplifies to

C
(0,13)
ℓ (zs) = CM

ℓ (zs)

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

(ℓ1 · ℓ)
2 (ℓ1 · ℓ2)

2

×

∫ rs

0
dr′

(rs − r′)4

r2s r
′4

Cψℓ2(z
′, z′)PR

(

ℓ1 + 1/2

r′

)[

TΨ+Φ

(

ℓ1 + 1/2

r′
, z′
)]2

.(5.6)

The first two terms in Eq. (5.5) vanish due to the δ(r′ − r′′) acting on the kernel r′−r′′

r′ r′′ .

Similarly, using Eq. (5.2) in Eq. (A.12) we obtain

C
(0,22)
ℓ (zs) = −CM

ℓ (zs)

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

(ℓ · ℓ1)
2 (ℓ1 · ℓ2)

2

×

∫ rs

0
dr′

(rs − r′)2

r2s r
′4

Cψℓ2(z
′, z′)PR

(

ℓ1 + 1/2

r′

)[

TΨ+Φ

(

ℓ1 + 1/2

r′
, z′
)]2

.(5.7)

It is easy to check that C
(0,22)
ℓ ≡ −C

(0,13)
ℓ within the Limber approximation.

Similar cancellations occur when using Eq. (5.2) to evaluate the terms C
(0,1111)
ℓ , C

(1,3)
ℓ ,

C
(2,2)
ℓ , C

(1,111)
ℓ , and C

(11,11)
ℓ . These cancellations are most probably the result of a consistency

relation: large angle inhomogeneities cannot affect the spectrum on small angles as they

just correspond to an isotropic Universe at a slightly different temperature. Some of the

cancellations have also been found in [46]. For the same reason, also the terms in C
(0,112)
ℓ
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cancel perfectly within the Limber approximation. Furthermore, because of the Limber

approximation, we can always use Eqs. (5.3) and (5.4) when evaluating the power spectrum

of the lensing potential. All the remaining non-vanishing C
(0,ijk...)
ℓ and C

(ij,i′j′)
ℓ are presented

in the next section.

6 Lensed angular power spectrum: final results

In order to interpret properly corrections from different terms, let us classify the higher order

non-null C
(...)
ℓ in three different groups.

6.1 First group

In this first group we collect the next-to-leading order contributions only contain first order

deflection angles θa(1). These are given by

C
(0,1111)
ℓ =

1

4

(

C
(0,11)
ℓ

)2

CM
ℓ

, (6.1)

coming from 〈θa(1)θb(1)θc(1)θd(1)〉〈∇a∇b∇c∇dMM̄〉 ,

C
(1,111)
ℓ =−

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

[(ℓ − ℓ1) · ℓ1]
2 (ℓ2 · ℓ1)

2CM
ℓ1 (zs)C

ψ
|ℓ−ℓ1|

(zs, zs)C
ψ
ℓ2
(zs, zs),(6.2)

coming from 〈θa(1)θb(1)θc(1)θd(1)〉〈∇aM∇b∇c∇dM̄〉 ,

C
(11,11)
ℓ1

=
1

4

(

C
(0,11)
ℓ

)2

CM
ℓ

+
1

2

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

{[(ℓ − ℓ1 + ℓ2) · ℓ1] (ℓ1 · ℓ2)}
2 CM

ℓ1 (zs)

×Cψ|ℓ−ℓ1+ℓ2|
(zs, zs)C

ψ
ℓ2
(zs, zs) , (6.3)

coming from 〈θa(1)θb(1)θc(1)θd(1)〉〈∇a∇bM∇c∇dM̄〉 .

More generally, corrections due to the first order deflection angles can be considered

beyond the small deflection angle approximation in a non-perturbative sense [6, 9, 10]. Indeed,

by using the Gaussianity of θa(1), exponentiation allows to sum all the corrections coming

only from the first order deflection angles non-perturbatively. This approach is based on

the property that a Gaussian stochastic variable y is completely determined by its 2-point

statistics, and it is easy to verify that for a Gaussian variable 〈eiy〉 = e−〈y2〉/2. Hence, the

correction to the correlation function ξ(r) due to lensing from a Gaussian δθ can be taken

into account as follows:

ξ̃(r) = 〈M̃(x)M̃(x+ r)〉 = 〈M(x+ δθ)M(x+ r+ δθ′)〉

=

∫

d2ℓ

(2π)2
CM
ℓ eiℓ·r〈eiℓ·(δθ−δθ

′)〉 =

∫

d2ℓ

(2π)2
CM
ℓ eiℓ·re−〈[ℓ·(δθ−δθ′)]2〉/2 . (6.4)

In the approach used in present public CMB codes like camb2 [56] and class3 [57, 58],

to compute the expectation value 〈
[

ℓ ·
(

δθ − δθ′
)]2

〉 one assume δθ = θ
(1) and defines the

2http://camb.info
3http://class-code.net
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matrix

Aab (r) = 〈θ(1)a (x) θ
(1)
b (x+ r)〉 =

∫

d2ℓ

(2π)2
ℓaℓbC

ψ
ℓ e

ir·ℓ , (6.5)

where we have used Eqs. (2.5) and (2.6). Statistical isotropy constrains the matrix (Aab) to

be of the form

Aab (r) =
1

2
A0 (r) δab −A2 (r)

(

rarb
r2

−
1

2
δab

)

, (6.6)

with

A0 (r) =

∫

dℓ ℓ3

2π
Cψℓ J0 (rℓ) (6.7)

and

A2 (r) =

∫

dℓ ℓ3

2π
Cψℓ J2 (rℓ) . (6.8)

Here J0 and J2 are the Bessel functions of order zero and two. Therefore we find

〈
[

ℓ ·
(

δθ − δθ′
)]2

〉 = ℓ2 (A0 (0)−A0 (r) +A2 (r) cos (2φ)) , (6.9)

where cos (φ) = r̂ · ℓ̂. With this, the lensed power spectrum finally becomes

C̃
M (1)
ℓ =

∫

drrJ0 (ℓr)

∫

d2ℓ′

(2π)2
CM
ℓ′ e

−iℓ′·r exp

[

−
ℓ′2

2
(A0 (0)−A0 (r) +A2 (r) cos (2φ))

]

.

(6.10)

The solution (6.10) captures the full correction, from first order deflection angles alone, to

the unlensed CM
ℓ for arbitrary large ℓ, since the first order perturbation angle is fully re-

summed [6, 9, 10]. On the other hand, as pointed out before, since deflections angles are

typically of the order of arc minutes, the small deflection angle approximation is sufficient

for about ℓ . 2500. This is also shown in Fig. 1, where we compare the correction on the

unlensed CM
ℓ obtained considering only the leading correction in the small-deflection angle

approximation given in Eqs. (4.5) and (4.6) with the correction obtained taking into account

the re-summed contributions considering only θa(1) (see Eq. (6.10)). As we see from this

figure, for ℓ & 1500 the correction from the resummed lensing, Eq. (6.10), is about 25%

smaller than the one obtained at lowest order, Eqs. (4.5) and (4.6), while the difference is

even smaller for lower multipoles ℓ. In general, we observe that keeping only the first term of

the sum, which corresponds to the leading term of the small-deflection angle approximation,

we obtain always the right order of magnitude of the correction for ℓ . 2500, and it is a

good approximation at even smaller ℓ. Since the higher order deflections angles are so much

smaller, we expect the lowest order approximation to be significantly better at higher order.

We stress again that the exact relation between the lensing potential Cψℓ and the lensed

CMB power spectrum of Eq. (6.10) takes into account only the non-perturbative contribution

coming from the first order deflection angles, and it is valid because θa(1) has Gaussian

statistic.
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Figure 1. Corrections due to θa(1). The red curve refers to first order terms given in Eqs. (4.5)

and (4.6), ∆Cℓ = C
(11)
ℓ +C

(1,1)
ℓ , while black curve takes into account the fully re-summed first order

contribution ∆Cℓ = C̃
M (1)
ℓ − CM

ℓ . This result is well known and can be found also e.g. in [9].

Going to higher order, taking into account post-Born corrections, generates further

terms which lead to non-Gaussian contributions to the deflection angle. In Ref. [39] post-

Born corrections have been studied only via a generalization of Eq. (6.10), which takes into

account both the higher order correction to the power spectrum of lensing potential CΨΨℓ
and of the curl potential CΩΩ

ℓ . This generalization is still based on the assumption that

δθ has a Gaussian statistic and uses the relation 〈eiy〉 = e−〈y2〉/2 for the full non-Gaussian

deflection angle. This is obviously not correct beyond linear order in the deflection angle. One

consequence of using the generalization of Eq. (6.10) to account for the post-Born corrections

to CM
ℓ is that only contributions with even power of δθ are considered. Contributions related

to the non-Gaussian statistics of δθ, which appear in the terms with an odd number of

deflection angles generated by Taylor expanding 〈eiℓ·(δθ−δθ
′)〉, are neglected.

In the following, we divide our leading post-Born corrections, which are not taken into

account in the first group, into a second and a third group. The second group corresponds

to the terms that are present also if δθ would have a Gaussian statistics beyond linear order.

These would be the first terms of the tentative re-summation performed in [39]. While the

third group contains the leading terms (in the perturbative number of gravitational poten-

tials) of the non-Gaussian post-Born correction, which contain an odd number of deflection

angles and are therefore not considered in the re-summation of Ref. [39], and in general in

previous research.

Following the result shown in Fig. 1 for the corrections related only to θ(1), we assume

that the small-deflection angle approximation holds also for the post-Born higher order cor-
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rections that we determine in the following up to ℓ ≃ 2500. Since higher order corrections

are smaller than the first order ones, we believe that this is a safe assumption.

6.2 Second group

In this second group we study the leading post-Born corrections, which come from the de-

flection angles up to third order when these appear in pairs like 〈θa(2)θb(2)〉 and 〈θa(1)θb(3)〉.

They are given by

C
(1,3)
ℓ = −

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

[(ℓ − ℓ1) · ℓ1]
2 [(ℓ − ℓ1) · ℓ2]

2 CM
ℓ1 (zs)

×

∫ rs

0
dr′

(rs − r′)2

r2s r
′4

Cψℓ2(z
′, z′)

×PR

(

|ℓ − ℓ1|+ 1/2

r′

)[

TΨ+Φ

(

|ℓ − ℓ1|+ 1/2

r′
, z′
)]2

, (6.11)

coming from 〈θa(1)θb(3)〉〈∇aM∇bM̄〉 ,

C
(2,2)
ℓ =

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

[(ℓ − ℓ1 + ℓ2) · ℓ1]
2 [(ℓ − ℓ1 + ℓ2) · ℓ2]

2 CM
ℓ1 (zs)

×

∫ rS

0
dr′

(rs − r′)2

r2s r
′4

Cψℓ2(z
′, z′)

×PR

(

|ℓ − ℓ1 + ℓ2|+ 1/2

r′

)[

TΨ+Φ

(

|ℓ − ℓ1 + ℓ2|+ 1/2

r′
, z′
)]2

, (6.12)

coming from 〈θa(2)θb(2)〉〈∇aM∇bM̄〉 .

Contrary to C
(0,13)
ℓ and C

(0,22)
ℓ , the two contributions above do not exactly cancel. On the

other hand, in the range of integration for which |ℓ − ℓ1 + ℓ2| ≃ |ℓ − ℓ1|, i.e. when ℓ2 is

small, the two above integrands are nearly identical. This leads to a significant but not exact

cancellation between C
(1,3)
ℓ and C

(2,2)
ℓ .

The physical interpretation of this is that for |ℓ − ℓ1| ≫ ℓ2 a deflection angle related to

the ℓ2 acts like a ’global rotation’ which has no effect on the lensing corrections to the CMB

power spectrum. Therefore, all the contributions from |ℓ − ℓ1| ≫ ℓ2 cancel. This can be

considered as a ’consistency relation’ for the lensing corrections to the CMB power spectrum.

Similar cancellations have also been found in [46].

Actually, each term appearing in the lensing corrections has a ’counter term’ which

exactly cancels it in this limit. In Fig. 2 we show two examples of this partial cancellation

which reduces the final result at large ℓ up to two orders of magnitude.
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Figure 2. Left panel: we show the partial cancellation of the second group. ∆Cℓ = C
(1,3)
ℓ (black

curve), ∆Cℓ = C
(2,2)
ℓ (green curve) and the sum of them (red curve). Negative parts are dashed. The

cancellation reduces the final result by about a factor of 700 for ℓ ∼ 2500. Right panel: we show the

partial cancellation of the third group. ∆Cℓ = C(1,12) (black curve), ∆Cℓ = C(2,11) (green curve), and

the sum of them (blue curve). Negative parts are dashed. The cancellation reduces the final result

by about a factor of 50 for ℓ ∼ 2500.

6.3 Third group

In this third group we consider terms with three deflection angles which do not vanish due

to the non-Gaussian statistic of θa(2). These are the following two contributions

C
(1,12)
ℓ = −2

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

(ℓ1 · ℓ2) [(ℓ − ℓ1) · ℓ2] [(ℓ − ℓ1) · ℓ1]
2

×CM
ℓ1 (zs)

∫ rs

0
dr′

(rs − r′)2

r2s r
′4

PR

(

|ℓ − ℓ1|+ 1/2

r′

)

×

[

TΨ+Φ

(

|ℓ − ℓ1|+ 1/2

r′
, z′
)]2

Cψℓ2
(

zs, z
′
)

, (6.13)

coming from 〈θa(1)θb(1)θc(2)〉〈∇aM∇b∇cM̄〉 ,

C
(2,11)
ℓ = 2

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

(ℓ1 · ℓ2) [(ℓ − ℓ1 + ℓ2) · ℓ2] [(ℓ − ℓ1 + ℓ2) · ℓ1]
2

×CM
ℓ1 (zs)

∫ rs

0
dr′

(rs − r′)2

r2s r
′4

PR

(

|ℓ − ℓ1 + ℓ2|+ 1/2

r′

)

×

[

TΨ+Φ

(

|ℓ − ℓ1 + ℓ2|+ 1/2

r′
, z′
)]2

Cψℓ2
(

zs, z
′
)

, (6.14)

coming from 〈θa(2)θb(1)θc(1)〉〈∇aM∇b∇cM̄〉 .

We note that, also in this case, in the range of integration for which |ℓ − ℓ1 + ℓ2| ≃ |ℓ − ℓ1|

the two above integrands are nearly identical and the corresponding contributions to C
(1,12)
ℓ

and C
(2,11)
ℓ partially cancel.

The physical explanation of this cancelation is the same as in the second group. How-

ever, in this group the integral from the domain where cancellation happens, |ℓ − ℓ1| ≫ ℓ2
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contributes less and the cancellation is more than an order of magnitude less significant than

for the second group. This is clearly visible in Fig. 2 above.

It is interesting to notice that the terms included in the second group do contribute

to the lensing and curl potentials in the post-Born approximation, and they are considered

already in [39] (modulo a possible sign error), but the terms of the third group do not appear

in these potentials, they are new contributions.

We can now write the fully corrected lensed CMB temperature anisotropy power spec-

trum in the form

C̃M
ℓ = C̃

M (1)
ℓ +∆C

(2)
ℓ +∆C

(3)
ℓ (6.15)

where

∆C
(2)
ℓ = C

(1,3)
ℓ + C

(2,2)
ℓ (6.16)

∆C
(3)
ℓ = C

(1,12)
ℓ + C

(2,11)
ℓ . (6.17)

Here the C̃
M (1)
ℓ term denotes the well known resummed correction from the first order

deflection angle given in Eq. (6.10), while ∆C
(2)
ℓ and ∆C

(3)
ℓ denote the post-Born corrections

from the second and third group respectively.

6.4 Numerical Results

In this subsection we show the numerical evaluation of the results given above, considering

both linear and non-linear (Halofit model [48, 49]) power spectra for the gravitational po-

tential. More precisely, here and above the figures have been generated with the following

cosmological parameters h = 0.67, ωcdm = 0.12, ωb = 0.022 and vanishing curvature. The

primordial curvature power spectrum has the amplitude As = 2.215 × 10−9, the pivot scale

kpivot = 0.05 Mpc−1, the spectral index ns = 0.96 and no running, compatible with [2]. The

Bardeen transfer function TΦ+Ψ has been computed with class [58], using Halofit [49] for

the non-linear case.

In Fig. 3 we plot the relative correction ∆C
(2)
ℓ /C̃

M(1)
ℓ to the lensed temperature anisotropy

spectrum given in Eq. (6.10) obtained when considering the post-Born correction of the sec-

ond group, Eqs. (6.11) and (6.12), assuming linear and non-linear power spectra. This

correction is the post-Born contribution, coming from deflection angles up to third order,

that is present in a generalization of Eq. (6.10) as performed in [39]. As a consequence, this

is the effect that should be compared with the result given in [39]. This comparison shows

how in [39] the corresponding contribution is overestimated by two orders of magnitude. This

overestimation is probably due to the sign error pointed out in Section 2.

In Fig. 4 we plot the relative correction ∆C
(3)
ℓ /C̃

M(1)
ℓ to the lensed temperature anisotropy

spectrum given in Eq. (6.10) obtained when we consider the post-Born correction from the

third group, Eqs. (6.13) and (6.14), both for linear and non-linear power spectra. This cor-

rection is the first non-Gaussian contribution coming from θa(2). This contribution is not

considered in [39], and in general when the next-to-leading order corrections are evaluated
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Figure 3. The correction with respect to the standard lensed temperature power spectrum C̃
M(1)
ℓ ,

given in Eq.(6.10), from the second group of terms ∆C
(2)
ℓ (see Eq. (6.16)), for linear (red curve) and

non-linear (black curve) power spectra.

via the amplification matrix and using the relation 〈eiy〉 = e−〈y2〉/2. But, as can be seen com-

paring Figs. 3 and 4, this contribution is more than one order of magnitude larger than the

total contribution from the second group. Each individual term of this group is about a factor

of two larger than the terms of the second group. But more importantly, the cancellation is

more than one order of magnitude less pronounced at argued above.

Figs. 3 and, especially, Fig. 4 are the main results of this paper. Our new contribution

shown in Fig. 4, which is neglected in [39], dominates the terms of the second group by more

of one order of magnitude.

The full result is presented in Fig. 5. In this figure we show the corrections to the lensed

power spectrum C̃
M(1)
ℓ from the nonlinearities of the matter power spectrum, we plot

(

(C̃
M(1)
ℓ )non−lin − (C̃

M (1)
ℓ )lin

)

/(C̃
M(1)
ℓ )lin ,

from the post-Born corrections, we plot
(

(∆C
(2)
ℓ )lin + (∆C

(3)
ℓ )lin

)

/(C̃
M(1)
ℓ )lin ,

and from both post-Born corrections and a non-linear power spectrum, we plot
(

(C̃
M(1)
ℓ )non−lin + (∆C

(2)
ℓ )non−lin + (∆C

(3)
ℓ )non−lin − (C̃

M (1)
ℓ )lin

)

/(C̃
M(1)
ℓ )lin .

As one can see, including a non-linear power spectrum is much more important than the

post-Born correction. The post-Born correction increases from 0.01% at ℓ ∼ 1000 to 0.05%

for ℓ ≃ 2500, while the non-linearities give corrections of up to 1% at ℓ = 2500.
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Figure 4. The correction with respect to the standard lensed temperature power spectrum C̃
M(1)
ℓ ,

given in Eq.(6.10), from the third group of terms ∆C
(3)
ℓ (see Eq. (6.17)), for linear (red curve) and non-

linear (black curve) power spectrum. This correction is the first non-Gaussian contribution coming

from θa(2).
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Figure 5. Correction to the lensed C̃
M(1)
ℓ , evaluated with a linear power spectrum and given in

Eq. (6.10), due to the non-linear matter power spectrum (Halofit model, red curve), the terms beyond

the Born approximation (∆Cℓ = ∆C
(2)
ℓ +∆C

(3)
ℓ , green curve) and both (blue curve).

Finally, in Fig. 6 we plot the corrections to the unlensed CM
ℓ ’s due to resummed θa(1),

post-Born contribution from Eqs. (6.11) and (6.12), and post-Born non-Gaussian contribution

– 18 –



from Eqs. (6.13) and (6.14), for both linear power spectrum and Halofit model. As one can

see the non-Gaussian part (third group) is always the most relevant post-Born correction in

going beyond the first order deflection angles contribution. Nevertheless, these post-Born

corrections are below cosmic variance, as we can see from Fig. 7. There we plot the ratio

∆Cℓ/σℓ, where

σℓ ≡

√

2

2ℓ+ 1
CM
ℓ (6.18)

is the cosmic variance. We have taken into account only the linear power spectrum because we

are just interested in comparing the orders of magnitude of these different effects. Lensing

corrections are detectable if this ratio is larger than 1. Within the range in ℓ where our

approximations hold (ℓ ≤ 2500), post-Born corrections are smaller than cosmic variance by

two orders of magnitude. In order to pass this threshold one would have to combine several

hundred ℓ-values into one bin.
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Figure 6. Corrections to the unlensed CM
ℓ ’s due to resummed θa(1) (∆Cℓ = C̃

M (1)
ℓ − CM

ℓ , black

curve), the second group (∆Cℓ = ∆C
(2)
ℓ , red curve) and the third group (∆Cℓ = ∆C

(3)
ℓ , blue curve)

for the linear matter power spectrum (left panel) and the Halofit model (right panel). Dashed lines

are negative parts. As we can see from these figures, the non-Gaussian part is the most relevant

post-Born correction in going beyond the first order deflection angles contribution, for both linear

and Halofit models.

7 Conclusions

In this work we have evaluated the impact of going beyond the Born approximation on the

lensed CMB temperature power spectrum. We postpone the study of this effect on E and

B-mode polarization for a forthcoming paper.

The evaluation of the post-Born lensing correction on the unlensed CM
ℓ is performed

in the small deflection angle approximation. This has the drawback that it is reliable only

for multipole ℓ . 2500, but it allows us to consistently take into account the non-Gaussian

nature of cosmological perturbation theory beyond the linear level. In fact, in the previous

literature [39], the evaluation of post-Born correction was performed using a non-perturbative

re-summation based on the hypothesis that also the non-linear part of the deflection angle δθ
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Figure 7. The ratios of the lensing corrections and the cosmic variance σℓ ≡
√

2
2ℓ+1C

M
ℓ for the

resummed θa(1) (∆Cℓ = C̃
M (1)
ℓ −CM

ℓ , black curve), the second group (∆Cℓ = ∆C
(2)
ℓ , red curve) and

the third group (∆Cℓ = ∆C
(3)
ℓ , blue curve) for the linear power spectrum (dashed parts are negative

values). The straight black line is the detectability threshold ∆Cℓ/σℓ = 1. The post-Born corrections

are below the cosmic variance by two orders of magnitude up to ℓ = 2500.

has Gaussian statistics, needed to use the relation 〈eiy〉 = e−〈y2〉/2 valid only for a Gaussian

stochastic variable y. This is of course no longer valid when we go beyond linear order, to

take into account post-Born corrections to the deflection angle.

The contributions to the lensed temperature power spectrum coming from the non-

Gaussian nature of the deflection angle are given in Eqs. (6.13) and (6.14). This is a new effect

not taken into account in the past literature, and it turns out to be the leading contribution

when compared with the contribution given in Eqs. (6.11) and (6.12), i.e., the contribution

that will be appear also in the re-summation performed in [39].

From a quantitative point of view the non-Gaussian contribution from Eqs. (6.13)

and (6.14) is more than one order of magnitude larger of the one given in Eqs. (6.11)

and (6.12), see Fig. 6. This gives a correction that oscillates and becomes close to 0.05%

for multipoles between 2000 and 2500. This result corrects the one of [39], which is on the

one hand incomplete and on the other hand overestimates the contributions from the second

group by about two order of magnitude. (The fact that the result by [39] is similar to the one

from Eqs. (6.11) and (6.12) without cancellation, hints to the fact that the overestimation is

probably due to the sign error pointed out in Sect. 2.)

Looking at Fig. 5 we also note that the non-linear matter power spectrum changes the

lensed temperature spectrum much more (by about 1% for ℓ ∼ 2500), than the post-Born
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corrections.

The magnitude of the correction from going beyond the Born approximation evaluated

here is relatively small and, at the present, not detectable in CMB experiments. On the other

hand, its dominant contribution originates from a new effect, neglected in [39], and similar

contributions could be more significant, in particular, for B-mode polarization. This is the

subject of a future paper.

Note Added. While we were finalizing this manuscript another study of the effect of

post-Born lensing corrections on CMB temperature anisotropies has appeared in [46]. Our

analytical results for higher order deflection angles and the amplification matrix [40] are

in agreement with the ones used in [46]. This means that we also agree on the post-Born

corrections to the lensing and curl potential power spectra. As a consequence, we also obtain

results consistent with the ones presented in [46] considering the contribution to add to the

unlensed CM
ℓ coming from the terms which we call the second group, 〈θa(1)θb(3)〉〈∇aM∇bM̄〉

and 〈θa(2)θb(2)〉〈∇aM∇bM̄〉, which is the first contribution of the re-summed series probably

used in [46] to evaluate post-Born contribution. Regarding this contribution, we also agree

with [46] that some mistakes are present in [39] which overestimates the correction.

On the other hand, like [39], also in [46] the assumption that the lensing potential is

Gaussian leads the authors to neglect contributions coming from an odd number of deflection

angles. In fact, despite mentioning that non-Gaussianity from post-Born corrections can

give an additional contribution, this contribution is not evaluated in [46]. Due to the non-

Gaussian nature of higher order perturbations this contribution does not vanish beyond linear

order and is given by the terms which we call third group, 〈θa(1)θb(1)θc(2)〉〈∇aM∇b∇cM̄〉

and 〈θa(2)θb(1)θc(1)〉〈∇aM∇b∇cM̄〉. This leads in [46] to an underestimation of the total

correction from post-Born effects by at least one order of magnitude.
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A A(i....)(ℓ) and C
(i....,j....)
ℓ terms

In ℓ−space we obtain the following useful expressions for the lensing corrections to the CMB

temperature fluctuations up to forth order:

A(1)(ℓ) =
1

2π

∫

d2x θa(1)∇aM eiℓ·x

=
1

π

∫

d2ℓ2 [(ℓ − ℓ2) · ℓ2]

∫ rs

0
dr′

rs − r′

rs r′
ΦW (r′, ℓ − ℓ2)M(rs, ℓ2) , (A.1)

A(2)(ℓ) =
1

2π

∫

d2x θa(2)∇aM eiℓ·x

= −
1

π2

∫

d2ℓ2

∫

d2ℓ3 [(ℓ + ℓ2 − ℓ3) · ℓ3] [(ℓ + ℓ2 − ℓ3) · ℓ2]

∫ rs

0
dr′

rs − r′

rs r′

×

∫ r′

0
dr′′

r′ − r′′

r′ r′′
ΦW (r′, ℓ + ℓ2 − ℓ3)Φ̄W (r′′, ℓ2)M(rs, ℓ3) , (A.2)

A(11)(ℓ) =
1

2π

∫

d2x
1

2
θa(1)θb(1)∇a∇bMeiℓ·x

= −
1

2

1

π2

∫

d2ℓ2

∫

d2ℓ3 [(ℓ + ℓ2 − ℓ3) · ℓ3] (ℓ2 · ℓ3)

×

∫ rs

0
dr′

rs − r′

rs r′

∫ rs

0
dr′′

rs − r′′

rs r′′
ΦW (r′, ℓ + ℓ2 − ℓ3)Φ̄W (r′′, ℓ2)M(rs, ℓ3) ,

(A.3)

A(3)(ℓ) =
1

2π

∫

d2x θa(3)∇aM eiℓ·x

=
1

π3

∫

d2ℓ2

∫

d2ℓ3

∫

d2ℓ4 {[(ℓ − ℓ2 − ℓ3 − ℓ4) · ℓ4] [(ℓ − ℓ2 − ℓ3 − ℓ4) · ℓ2]

× (ℓ2 · ℓ3)

∫ rs

0
dr′

rs − r′

rs r′

∫ r′

0
dr′′

r′ − r′′

r′ r′′

∫ r′′

0
dr′′′

r′′ − r′′′

r′′ r′′′

×ΦW (r′, ℓ − ℓ2 − ℓ3 − ℓ4)ΦW (r′′, ℓ2)ΦW (r′′′, ℓ3)M(rs, ℓ4)

+
1

2
[(ℓ − ℓ2 − ℓ3 − ℓ4) · ℓ4] [(ℓ − ℓ2 − ℓ3 − ℓ4) · ℓ2] [(ℓ − ℓ2 − ℓ3 − ℓ4) · ℓ3]

×

∫ rs

0
dr′

rs − r′

rs r′

∫ r′

0
dr′′

r′ − r′′

r′ r′′

∫ r′

0
dr′′′

r′ − r′′′

r′ r′′′

×ΦW (r′, ℓ − ℓ2 − ℓ3 − ℓ4)ΦW (r′′, ℓ2)ΦW (r′′′, ℓ3)M(rs, ℓ4)
}

, (A.4)
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A(12)(ℓ) =
1

2π

∫

d2x θa(1)θb(2)∇a∇bM eiℓ·x

=
1

π3

∫

d2ℓ2

∫

d2ℓ3

∫

d2ℓ4 [(ℓ − ℓ2 − ℓ3 − ℓ4) · ℓ4] (ℓ4 · ℓ2) (ℓ3 · ℓ2)

×

∫ rs

0
dr′

rs − r′

rs r′

∫ rs

0
dr′′

rs − r′′

rs r′′

∫ r′′

0
dr′′′

r′′ − r′′′

r′′ r′′′

×ΦW (r′, ℓ − ℓ2 − ℓ3 − ℓ4)ΦW (r′′, ℓ2)ΦW (r′′′, ℓ3)M(rs, ℓ4) , (A.5)

A(111)(ℓ) =
1

2π

∫

d2x
1

6
θa(1)θb(1)θc(1)∇a∇b∇cM eiℓ·x

=
1

6

1

π3

∫

d2ℓ2

∫

d2ℓ3

∫

d2ℓ4 [(ℓ − ℓ2 − ℓ3 − ℓ4) · ℓ4] (ℓ2 · ℓ4) (ℓ3 · ℓ4)

×

∫ rs

0
dr′

rs − r′

rs r′

∫ rs

0
dr′′

rs − r′′

rs r′′

∫ rs

0
dr′′′

rs − r′′′

rs r′′′

×ΦW (r′, ℓ − ℓ2 − ℓ3 − ℓ4)ΦW (r′′, ℓ2)ΦW (r′′′, ℓ3)M(zs, ℓ4) , (A.6)

A(22)(ℓ) =
1

2π

∫

d2x
1

2
θa(2)θb(2)∇a∇bM eiℓ·x

=
1

2

1

π4

∫

d2ℓ2

∫

d2ℓ3

∫

d2ℓ4

∫

d2ℓ5 [(ℓ − ℓ2 − ℓ3 − ℓ4 − ℓ5) · ℓ5]

× [(ℓ − ℓ2 − ℓ3 − ℓ4 − ℓ5) · ℓ2] (ℓ5 · ℓ3) (ℓ3 · ℓ4)

∫ rs

0
dr′

rs − r′

rs r′

×

∫ r′

0
dr′′

r′ − r′′

r′ r′′

∫ rs

0
dr′′′

rs − r′′′

rs r′′′

∫ r′′′

0
dr′′′′

r′′′ − r′′′′

r′′′ r′′′′

×ΦW (r′, ℓ − ℓ2 − ℓ3 − ℓ4 − ℓ5)ΦW (r′′, ℓ2)ΦW (r′′′, ℓ3)ΦW (r′′′′, ℓ4)M(rs, ℓ5) ,

(A.7)

A(13)(ℓ) =
1

2π

∫

d2x θa(1)θb(3)∇a∇bM eiℓ·x

=
1

π4

∫

d2ℓ2

∫

d2ℓ3

∫

d2ℓ4

∫

d2ℓ5 {[(ℓ − ℓ2 − ℓ3 − ℓ4 − ℓ5) · ℓ5] (ℓ2 · ℓ5)

× (ℓ2 · ℓ3) (ℓ3 · ℓ4)

∫ rs

0
dr′

rs − r′

rs r′

∫ rs

0
dr′′

rs − r′′

rs r′′

∫ r′′

0
dr′′′

r′′ − r′′′

r′′ r′′′

×

∫ r′′′

0
dr′′′′

r′′′ − r′′′′

r′′′ r′′′′
ΦW (r′, ℓ − ℓ2 − ℓ3 − ℓ4 − ℓ5)ΦW (r′′, ℓ2)

×ΦW (r′′′, ℓ3)ΦW (r′′′′, ℓ4)M(rs, ℓ5)

+
1

2
[(ℓ − ℓ2 − ℓ3 − ℓ4 − ℓ5) · ℓ5] (ℓ2 · ℓ5) (ℓ2 · ℓ3) (ℓ2 · ℓ4)

∫ rs

0
dr′

rs − r′

rs r′

×

∫ rs

0
dr′′

rs − r′′

rs r′′

∫ r′′

0
dr′′′

r′′ − r′′′

r′′ r′′′

∫ r′′

0
dr′′′′

r′′ − r′′′′

r′′ r′′′′

×ΦW (r′, ℓ − ℓ2 − ℓ3 − ℓ4 − ℓ5)ΦW (r′′, ℓ2)ΦW (r′′′, ℓ3)ΦW (r′′′′, ℓ4)M(rs, ℓ5)
}

,

(A.8)
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A(112)(ℓ) =
1

2π

∫

d2x
1

2
θa(1)θb(1)θc(2)∇a∇b∇cM eiℓ·x

= −
1

2

1

π4

∫

d2ℓ2

∫

d2ℓ3

∫

d2ℓ4

∫

d2ℓ5 [(ℓ − ℓ2 − ℓ3 − ℓ4 − ℓ5) · ℓ5] (ℓ2 · ℓ5)

× (ℓ5 · ℓ3) (ℓ3 · ℓ4)

∫ rs

0
dr′

rs − r′

rs r′

∫ rs

0
dr′′

rs − r′′

rs r′′

×

∫ rs

0
dr′′′

rs − r′′′

rs r′′′

∫ r′′′

0
dr′′′′

r′ − r′′′′

r′ r′′′′

×ΦW (r′, ℓ − ℓ2 − ℓ3 − ℓ4 − ℓ5)ΦW (r′′, ℓ2)ΦW (r′′′, ℓ3)ΦW (r′′′′, ℓ4)M(rs, ℓ5) ,

(A.9)

A(1111)(ℓ) =
1

2π

∫

d2x
1

24
θa(1)θb(1)θc(1)θd(1)∇a∇b∇c∇dM eiℓ·x

=
1

24

1

π4

∫

d2ℓ2

∫

d2ℓ3

∫

d2ℓ4

∫

d2ℓ5 [(ℓ − ℓ2 − ℓ3 − ℓ4 − ℓ5) · ℓ5]

× (ℓ2 · ℓ5) (ℓ3 · ℓ5) (ℓ4 · ℓ5)

∫ rs

0
dr′

rs − r′

rs r′

∫ rs

0
dr′′

rs − r′′

rs r′′

∫ rs

0
dr′′′

rs − r′′′

rs r′′′

×

∫ rs

0
dr′′′′

rs − r′′′′

rs r′′′′
ΦW (r′, ℓ − ℓ2 − ℓ3 − ℓ4 − ℓ5)ΦW (r′′, ℓ2)ΦW (r′′′, ℓ3)

×ΦW (r′′′′, ℓ4)M(rs, ℓ5) . (A.10)

We do not write the term associated to θ
a(4)
s because its contribution to the angular power

spectrum of lensed CMB temperature anisotropies vanishes at fourth order. This is a con-

sequence of statistical isotropy analogous to what happens to the second order contribution

coming from θ
a(2)
s , which has been shown to vanish in [37].

The above expressions can be used to calculate the higher order lensing corrections to the

temperature power spectrum (see Eq. 4.3). After some algebra, and omitting contributions

that vanish after angular integrations, we obtain

C
(0,13)
ℓ = −8CM

ℓ (zs)

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

(ℓ1 · ℓ) (ℓ2 · ℓ) ℓ
2
2 (ℓ2 · ℓ1)

×

∫ rs

0
dr′

rs − r′

rs r′

∫ r′

0
dr′′

r′ − r′′

r′ r′′
Cψℓ1(zs, z

′′)CWℓ2 (z
′′, z′)

+8CM
ℓ (zs)

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

(ℓ2 · ℓ) ℓ
2
2 (ℓ2 · ℓ1) (ℓ1 · ℓ)

×

∫ rs

0
dr′

rs − r′

rs r′
Cψℓ1(zs, z

′)

∫ r′

0
dr′′

r′ − r′′

r′ r′′
CWℓ2 (z

′′, z′)

+4CM
ℓ (zs)

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

(ℓ1 · ℓ)
2 (ℓ1 · ℓ2)

2

×

∫ rs

0
dr′

rs − r′

rs r′

∫ rs

0
dr′′

rs − r′′

rs r′′
CWℓ1 (z

′, z′′)Cψℓ2(z
′′, z′′) , (A.11)
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C
(0,22)
ℓ = −4CM

ℓ (zs)

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

(ℓ · ℓ1)
2 (ℓ1 · ℓ2)

2

×

∫ rs

0
dr′

rs − r′

rs r′

∫ rs

0
dr′′

rs − r′′

rs r′′
CWℓ1 (z

′, z′′)Cψℓ2(z
′, z′′) , (A.12)

C
(0,1111)
ℓ =

1

4
CM
ℓ (zs)

[
∫

d2ℓ1
(2π)2

(ℓ1 · ℓ)
2Cψℓ1(zs, zs)

]2

, (A.13)

C
(1,3)
ℓ = 8

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

(ℓ2 · ℓ1) ℓ
2
2 [(ℓ − ℓ1) · ℓ2] [(ℓ − ℓ1) · ℓ1] C

M
ℓ1 (zs)

×

∫ rs

0
dr′

rs − r′

rs r′

∫ r′

0
dr′′

r′ − r′′

r′ r′′
CWℓ2 (z

′, z′′)Cψ|ℓ−ℓ1|
(z′′, zs)

−8

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

[(ℓ − ℓ1) · ℓ1] (ℓ2 · ℓ1) ℓ
2
2 [(ℓ − ℓ1) · ℓ2] C

M
ℓ1 (zs)

×

∫ rs

0
dr′

rs − r′

rs r′
Cψ|ℓ−ℓ1|

(z′, zs)

∫ r′

0
dr′′

r′ − r′′

r′ r′′
CWℓ2 (z

′, z′′)

−4

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

[(ℓ − ℓ1) · ℓ1]
2 [(ℓ − ℓ1) · ℓ2]

2 CM
ℓ1 (zs)

×

∫ rs

0
dr′

rs − r′

rs r′
Cψℓ2(z

′, z′)

∫ rs

0
dη′′

rs − r′′

rs r′′
CW|ℓ−ℓ1|

(z′, z′′) , (A.14)

C
(2,2)
ℓ = 4

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

[(ℓ + ℓ2 − ℓ1) · ℓ1]
2 [(ℓ + ℓ2 − ℓ1) · ℓ2]

2 CM
ℓ1 (zs)

×

∫ rs

0
dr′

rs − r′

rs r′

∫ rs

0
dr′′

rs − r′′

rs r′′
CW|ℓ+ℓ2−ℓ1|

(z′, z′′)Cψℓ2(z
′′, z′)

−16

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

(ℓ1 · ℓ2) [(ℓ + ℓ1 − ℓ2) · ℓ2] [(ℓ + ℓ1 − ℓ2) · ℓ1]
2

×CM
ℓ2 (zs)

∫ rs

0
dr′

rs − r′

rs r′

∫ r′

0
dr′′

r′ − r′′

r′ r′′

×

∫ rs

0
dr′′′

rs − r′′′

rs ′′′
CWℓ1 (z

′′, z′′′)

∫ r′′′

0
dr′′′′

r′′′ − r′′′′

r′′′ r′′′′
CW|ℓ+ℓ1−ℓ2|

(z′, z′′′′) ,

(A.15)

C
(1,12)
ℓ = −8

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

(ℓ2 · ℓ1) [(ℓ − ℓ1) · ℓ2] [(ℓ − ℓ1) · ℓ1]
2CM

ℓ1 (zs)

×

∫ rs

0
dr′

rs − r′

rs r′
Cψℓ2(zs, z

′)

∫ rs

0
dr′′

rs − r′′

rs r′′
CW|ℓ−ℓ1|

(z′′, z′) , (A.16)
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C
(1,111)
ℓ = −

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

[(ℓ − ℓ1) · ℓ1]
2 (ℓ2 · ℓ1)

2 CM
ℓ1 (zs)C

ψ
|ℓ−ℓ1|

(zs, zs)C
ψ
ℓ2
(zs, zs) ,

(A.17)

C
(2,11)
ℓ = 8

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

[(ℓ + ℓ1 − ℓ2) · ℓ2]
2 (ℓ1 · ℓ2) [(ℓ + ℓ1 − ℓ2) · ℓ1]

×CM
ℓ2 (zs)

∫ rs

0
dr′

rs − r′

rs r′
Cψℓ1(zs, z

′)

∫ rs

0
dr′′

rs − r′′

rs r′′
CW|ℓ+ℓ1−ℓ2|

(z′, z′′) , (A.18)

C
(11,11)
ℓ = CM

ℓ (zs)

[

1

2

1

(2π)2

∫

d2ℓ1 (ℓ1 · ℓ)
2 Cψℓ1(zs, zs)

]2

+
1

2

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

{[(ℓ + ℓ1 − ℓ2) · ℓ2] (ℓ1 · ℓ2)}
2 CM

ℓ2 (zs)

×Cψ|ℓ+ℓ1−ℓ2|
(zs, zs)C

ψ
ℓ1
(zs, zs) . (A.19)
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