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Abstract: Preserving soil quality and increasing soil water availability is an important challenge
to ensure food production for a growing global population. As demonstrated by several studies,
conservative crop management, combined with soil cover and crop diversification, can significantly
reduce soil and water losses. The aim of this review is to evaluate the spread of smart solutions
to perform conservation agriculture (CA) well in the Mediterranean Basin, taking into account the
evolution of the strategies and the machines used to perform conservative tillage systems in different
contexts in the last 30 years, as well as the effects induced by their adoption on the productivity of
herbaceous and horticultural crops, weed control and economic feasibility, in comparison with those
obtained utilizing conventional techniques based on soil inversion.

Keywords: conservation agriculture; smart technologies; soil conservation; agricultural machinery;
weed management; tillage; herbaceous and horticultural crops

1. Introduction

A vital part of humanity’s global life support system consists of both agricultural and
non-agricultural soils. Countering the multiple threats to which soil is exposed (desertifi-
cation, erosion, reduction of organic matter, compaction, waterproofing, contamination,
salinization, flooding and landslides) is a shared commitment at international level. It
was explicitly foreseen by the agreements of the 1992 Rio de Janeiro summit and by those
of the following years, but it is also mentioned among the United Nations Sustainable
Development Goals of 2015 [1]. In this respect, In September 2015 more than 150 interna-
tional leaders met at the United Nations to contribute to global development, promoting
human welfare and protect the environment. The community of states has adopted Agenda
2030 to sustainable development, promoting 17 Sustainable Development Goals (SDGs)
and 169 sub-goals. These goals take up issues of fundamental importance for sustainable
development such as tackling climate change and building peaceful societies by the year
2030. All countries should contribute to achieve the goals based on their capacity. As is the
case with other natural resources, soils are subjected to a dangerous pressure that leads to
consequent organic carbon losses, salinization, compaction and erosion [2]. Moreover, soil
resources degradation negatively affects environmental, economic and social aspects at
various intensities. In fact, soil is a non-renewable resource, and must be preserved for the
well-being of our planet as it is exposed to the risk of very rapid degradation processes
but has very long regeneration times. The need to preserve soil resources and to maintain
the functionality of its numerous ecosystem services is also recognized by the European
Union (EU), as the effects linked to the increase in soil degradation are also manifested

Agronomy 2021, 11, 106. https://doi.org/10.3390/agronomy11010106 https://www.mdpi.com/journal/agronomy

https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0003-2312-3460
https://doi.org/10.3390/agronomy11010106
https://doi.org/10.3390/agronomy11010106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agronomy11010106
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/2073-4395/11/1/106?type=check_update&version=1


Agronomy 2021, 11, 106 2 of 22

to significant areas in Europe, although with some diversification among the different
countries [3,4]. Consistent with the principles of efficient growth in the use of resources,
therefore, the EU promotes effective initiatives to reduce erosion and increase the amount
of soil organic matter [5]. The EU also reiterates the need to contain the soil degradation in
the 7th General Program of Action on the Environment until 2020. In agricultural contexts,
these significant threats are often correlated to soil tillage intensity. Indeed, intensive agri-
culture, characterized by conventional tillage, consisting in interventions at relevant soil
depth always including soil inversion (i.e., ploughing, digging, etc.), is connected with high
input levels, has negative impacts such as water loss, freshwater pollution due to nitrate
leaching, biodiversity fade and soil erosion increase [6]. Conservation agriculture (CA)
could be considered as an important part of integrated soil management and has shown to
be a valid technique to prevent all types of soil erosion [7]. One of the main targets of CA is
the limited use of soil tillage without soil inversion, since it can contribute to improving
soil conditions and the efficient use of water resources and nutrients [8]. In addition to
reduced soil disturbance, according to intrinsic soil conditions and relative availability
of water resources, CA also provides for maintenance of organic substance, through the
occurrence of crop residues, cover crops and also crop rotation with at least three different
crops [9]. CA joins the largely accepted concepts of sustainability both in terms of envi-
ronment and socio-economic features. Sustainable soil management not only is coherent
with the indications of CA, but also shows the need to counteract negative externalities
and degradation phenomena of soil. These are shown with different intensities in many
areas of the world, with the aim of reaching land degradation neutrality and containing
the rise of the average temperature of the atmosphere at 1.5 ◦C by 2030 [10,11]. The need
of soil safeguarding is strategic for several independent reasons: food production, water
availability, biodiversity maintenance, organic matter increase, carbon sequestration, and
improvement of environmental resilience contrasting climatic changes. At global level, soil
degradation causes a loss of up to 50,000 km2 year−1 of arable land, with a reduction of soil
of about 24 billion t year−1 [12]. Furthermore, soil degradation induced by human activities
increases global warming and would be responsible for about one fifth of carbon emissions
into the atmosphere from 1850 to 1998 [13]. CA represents an efficient alternative capable
of improving a sustainable agro-ecological approach to resource-conserving agricultural
production. As stated by Sims et al. [14], CA is a response to sustainable land management,
environmental protection and climate change adaptation and mitigation. Baker et al. [15]
defined conservation tillage and conservation agriculture as terms commonly given to
no-tillage, minimum tillage and/or ridge tillage, denoting that these inclusive practices
have a conservation goal of some nature. Usually, the retention of at least 30% ground
cover by residues after seeding or planting characterizes the lower limit of classification
for conservation tillage or conservation agriculture, but other conservation objectives in-
clude conservation of money, labour, time, fuel, earthworms, soil water, soil structure and
nutrients. Thus, residue levels alone do not adequately describe all conservation tillage
or conservation agricultural practices and benefits. Moreover, CA systems, comprising
no or minimum mechanical soil disturbance, organic mulch soil cover and crop species
diversification, are practiced globally on about 157 M ha, corresponding to about 11%
of field cropland, and Europe and Africa are the developing continents in terms of CA
adoption and uptake [16]. Other authors argue that the tendency of CA in preserving
the environment (including the reduction of soil erosion) and improving soil properties
cannot be underestimated [17,18]. The potential of CA to mitigate the effects of climate
changes and extreme weather events was highlighted also by De Lucas et al. [19] and Deli-
gios et al. [20]. However, despite these positive effects, soil conservation practices are not
always adopted although the spreading of CA is often correlated to an economic incentive
for the farmer [2]. In Europe the acceptance of conservation tillage is quite slow because the
culture of soil conventional and soil inversion tillage is often deeply rooted among many
farmers [21]. Moreover, as stated by Acevedo [22], farmers tend to adopt practices that
produce tangible results rather than practices that may lead to improvements of a more
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abstract environmental nature, such as biodiversity. The challenge could be to develop
adoptable innovations that help environmental conservation while representing a tangible
advantage for the farmers. Furthermore, the reduction of crop yields if no additional
inputs are provided and the increase of machinery and agrochemicals costs, that overcomes
savings in fuel and labour costs, are another reason for the slow adoption of CA practices.
In the temperate zone of large-scale mechanised agriculture, the direct benefits of the
implementation of conservation agriculture and/or other soil conservation measures are
often marginal to justify a real change of a single farmer. The local agro-ecological system
could be able to stimulate a more rapid adoption of soil conservation measures even if the
studies reported by some authors indicate that there are few influences on its adoption that
can be applied universally [6]. Smallholder agriculture in North-African countries does
not have access to agricultural credit and has a limited technical know-how. In farming
areas that lack water, holistic interventions performed by CA practices can promote a safe
environment with zero environmental and human hazards. This latter is regarded as a
“panacea” to achieve food security and the requested optimal performance in agricultural
production [18]. Current threats require advanced analysis of best-fit solutions for agri-
cultural technologies to serve also smallholder farmers’ needs. Climate smart agriculture
(CSA) defined as agricultural practices that sustainably improve production, resilience of
production systems, and reduce greenhouse gas emissions is required to overcome climate
extremes and variability [23]. Smart agricultural technologies are essential to advance the
development, productivity, and sustainability of the crops and several steps have been
taken to deploy novel agricultural technologies to farmers also by agricultural enterprises.
During the past three decades, there has been an increasing cognisance that technologies
need to be fitted to the environmental conditions of farmers including sustainability goals
and reduction of climate changes. Although not having a unique policy of soil protection,
the EU has been committed to defining a thematic strategy for soil protection since 2002 [24].
The attention placed by the European Union has significantly increased over the last few
years and with the 2003 reform, conditionality measures assume a key role together with
the Good Agronomic and Environmental Practices (BCAAs), established by the individual
member states under the Common Agricultural Policy (CAP). The BCAAs aim to limit the
erosive phenomena affecting agricultural soils, improve organic matter in soils and prevent
compaction phenomena. Within the CAP, in addition to the agri-environmental measures,
the EU has recognized the possibility to exclude ploughing of agricultural land, among
the interventions aimed at reducing tillage. The objective of the strategy is soil protection
through a sustainable use able to guarantee the fulfilling of various functions of which
the environmental, social, economic and cultural values are recognized. In particular, the
interventions aim at mitigating both the natural soil degradation processes and those due
to human activities. However, the lack of a common strategic political framework, capable
of integrating and coordinating the various European and national legislative initiatives,
limits the effectiveness of the numerous interventions for soil protection promoted by the
EU and by member states [25]. Therefore, one of the most effective tools for sustainable
soil management in Europe is represented by the CAP [26]. The objective of improving
soil management in the context of the CAP has been further supported over the past few
years, combining soil conservation measures with those of conservation agriculture, which
constitute an element of further interest in view of the CAP post 2020. Furthermore, the
inclusion of greenhouse gas emissions and absorptions caused by land use and land-use
change and forestry are the specific topic in the EU 2030 climate and energy framework,
which aims to enhance actions targeted at sustainable soil management also taking into
consideration the soil tillage [27]. Currently, the sustainable use of soil is covered in some
measures foreseen by the rural development programs for the 2014–2020 period and mainly
under measure 10. This measure concerns agro-climate environmental payments, with
which agricultural farms are encouraged to adopt environmentally sustainable actions and
cultivation interventions. Among these actions are also recognized those related to soil
tillage management, not only in relation to the control of erosion phenomena, but also
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in relation to the practices aimed at reducing compaction risks, improving soil structure.
Thus, the conservation and low input practices in energy terms, including sod-seeding,
minimum tillage and cover cropping, became practices able to obtain direct and indirect
positive effects on sustainable soil management. The conservation and low input practices
improve soil quality, increase organic matter and reduce the risks of soil erosion [28]. The
purpose of this review is to verify the spread of smart solutions to perform CA well in
the Mediterranean Basin, the evolution of the techniques and the machines used and their
setting up as well as the results achieved in different contexts and the effects induced on soil
quality and on the productivity of different herbaceous and horticultural crops. Finally, the
examination of some aspects related to the economic feasibility of the adoption of machines
and strategies for CA could lead to the definition of a broad knowledge framework, useful
to supporting and directing lawmakers’ choices.

2. Smart Strategies and Innovative Agricultural Machinery for a Conservation
Management of Herbaceous and Horticultural Crops
2.1. From Conservation Agriculture to Precision Conservation Management

As already presented in the previous paragraph, CA is based on the integrated man-
agement of soil, water and agricultural resources in order to reach a sustainable agricultural
production in ecological, economical, and social terms. Despite some resistance concern-
ing the management aspects (i.e., weed control) and absence of adequate drills, planters
and transplanters, the adoption of conservation practices represents great potential for
herbaceous and horticultural crops. The adoption of “recommended agricultural practices”
is a solution to the environmental issues and to achieve global food security [29]. Such
practices would include use of conservation tillage, growing cover crops, using bio-solids
and amendments, enhancing soil fertility through judicious use of fertilizers and adopting
precision farming and water conservation. Over the years the concept of CA has assumed
connotations progressively more linked to the concept of precision CA and to new tech-
nologies aimed at performing specific agronomic practices, considering the real needs
of crops. Berry et al. [30] proposed “Precision Conservation Management Zones” like a
viable combination of site-specific management zones and precision conservation man-
agement zones in order to maximize resource use efficiency, soil and water conservation
and economic returns. The authors referred to a significant maximisation of N efficiency of
corn crops without reducing grain yield and minimisation of NO3-N leaching and offsite
transport of N by means of the use of the Global Navigation Satellite System (GNSS),
remote sensing and geographic information systems (GIS) tools. Moreover, precision con-
servation management will benefit from novel advances in the areas of telecommunications
and micro-technology that can contribute to enhance real-time information. A few years
later, other studies [31–33] have expanded the definition of precision conservation to a
developing science based on the new geospatial technology (i.e., map analysis, spatial
statistics, surface modelling, spatial data mining). These technologies allow to link a system
from a site-specific location to a field, a set of fields (farm), or a regional scale in order
to identify landscape risk areas, make management decisions, implement conservation
practices and enhance crop production. In this regard, some studies carried out in NE
Italy have investigated farm economic net return and environmental aspect [34] of three
different conservation tillage practices (NIT—non-inversion tillage, MT—minimum tillage
and NT—no-tillage). These operations were performed at variable intensity within pre-
defined two management zones of a maize field in NE Italy: an area with a consistently
higher yield and another one with a consistently lower yield. The overall results suggest
that NT, employing a double-disk no-till planter, resulted in being a method with a lower
environmental impact due to higher soil carbon sequestration and lower nitrate leaching.
Moreover, the adoption of site-specific NT within the two different areas was more econom-
ically sound than all other tillage practices uniformly performed in the field. Nevertheless,
claims of increased profitability from measuring, mapping, and site-specific management
have in many instances fallen short, conditioning farmers to be more sceptical of precision
agriculture. By contrast, Kitchen [35] demonstrated that the use of computers and sensors
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for real-time decisions in cropping systems could represent a new way of agricultural
management to achieve conservation and other environmental benefits. As an example, the
sensor system could predict about 66% of the variation in soil organic matter within fields
but also a side-by-side field assessment of two on-the-go soil compaction sensor systems
could be capable of sensing compaction at various soil depths.

2.2. Tillage and Planting

Soil tillage is a crucial aspect in CA crop management and the latter can be realised
with three main soil management practices related to NT, MT and ridge tillage (RT) tech-
niques [17]. While NT (also called zero-tillage) management practices are well defined, the
definition of MT (also named reduced tillage) represents a remarkable variety of machines
and operative solutions, which also prevent an unambiguous evaluation on their efficacy
in realising the agro-environmental advantages of the CA. With this aim, in Italy, a study
of Lovarelli and Bacenetti [36] showed that seedbed preparation for arable crops com-
pleted with two implements (one for primary and one for secondary soil tillage) instead
of three (e.g., one for primary and two for secondary soil tillage) resulted in a reduction
of environmental impact. The best results were obtained with low energy-consumptive
operations as MT practices, whereas the main contributor to the environmental load was
the use of a subsoiler before seedbed preparation. But more in general, as is well known,
they demonstrated that environmental burden is principally due to the number of repeti-
tions of secondary soil tillage. In this context, the CA practices (e.g., NT, MT) represent a
solution also to preserve natural resources and reduce environmental and economic costs
of agricultural activities.

No-tillage (NT) is just one of the principles of CA and is based on the achievement
of a new balance between physical, chemical and biological soil elements. It was devel-
oped in the second post-war period, with the introduction of weed control by means of
glyphosate. It provides for sowing directly on crop residues of the previous crop left on the
soil. Therefore, this technique provides suitable seed drills, planters and transplanters ca-
pable of depositing the seeds and covering them in conditions of no tilled soil, so realizing
a direct seeding/planting also called sod seeding, in which usually 30–100% of the surface
remains covered with plant residues [37,38]. Although some researchers have emphasized
differences in soil disturbance between NT and direct drilling, the latter term commonly
includes the sod-seeding practice which is a typical sowing of NT practices [39]. NT plays
a key role in CA systems and NT research is still active in several countries of Europe
and there has also been an increasing attention to suitable machines for these practices.
According to a recent study [40], there are 46 planters intended for NT management having
a working width ranged from 1.2 to 6.5 m, a mass between 1200 to 9000 kg. There is a
great variability of these seeding machines because the available models have different
designs of the soil-engaged working elements (furrow). In comparison with other types
of seeder, they involve greater economic investments. Yezekyan et al. [40] showed that
planting implicates more pressure on the furrows if there is a presence of residues, meaning
a higher effort for the machine itself and a minimum required power ranging from 5.9 kW
to 21.5 kW for each meter of working width. Working width plays a significant direct role
on no-tillage machines performances. To reduce the residual interference towards sowing,
weeding, nitrogen nutrition and the control of plant and animal parasites, crop residue
management is an aspect of fundamental importance in conservation tillage and especially
in NT practices. For this reason, it requires specific skills and the use of adequate machines
as well as adequate machines. The setting and adjustment of seed drills, precision planters
and transplanters play a decisive role in ensuring the efficiency of sowing. Moreover,
the choice of the right set of components, the adjustment of the loading pressure and the
working depth are aspects to be considered according to specific pedological conditions
and characteristics of the crop residues [16]. Sometimes, drilling and planting may be the
key limitation to change to no-tillage farming [39,41]. Modifying drills, planters and trans-
planters used in conventional tillage farming has generally not been very successful and in
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the worst case it was very ineffective and stimulated weed growth. Planting depth can be
difficult to manage because of the machine’s increased weight and the opening generated
by the fluted cutting disc [42]. No-till drills and planters equipped with rubber ground
wheels that allow adjustment of height and depth bands on the coulter and “V” openers
can also help to reduce planting depth difficulties using precision agriculture technologies.
In order to maximise potential yield, seed placement close to ideal sowing depth must be
assured [15,43]; but seed placement accuracy is especially critical with no-till sowing into
dry soil [44]. This is linked to the negative relationship between soil mechanical resistance
and seed depth placement; but also, penetration resistance is lowest with very wet soils and
it increases with clay content [43]. In particular, the performance of seeders and planters
should be improved by getting better calibration systems for depth control or precision
regulation by the worker, in relation to field conditions. Several studies were carried out
to assess the performance of furrow openers, which can differ in type, correlating to soil
and working conditions. Single-disc furrow openers (ballasted, notched, flat or wavy type)
are generally used on no-till seeders because they enter properly into the soil and have
suitable cutting of residues under different residue and soil conditions (Figure 1).
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Figure 1. No-tillage (NT) drill Directa 2.5 m wide at work in Sicily on soil covered by chopped crop residues (a) and detail
of the working tools constituted by ballasted discs (b).

As already demonstrated, disc and tilt angles are the most important parameters for
the performance of furrow openers on residues and soil [45–48]. Afify et al. [45] showed
that the best results for a 610 mm disc diameter were obtained at 5◦ and 15◦ angles, while
a 460 mm disc diameter had the lowest draft at a 5◦ tilt angle and 25◦disc angle, in an
indoor soil bin experimental test. Moreover, Malasli and Celik [48] reported that a rise
in disc angle from 0◦ to 20◦ reduces draft, side and vertical forces, i.e., an increasing tilt
angle causes the specific vertical, draft and side forces to grow. The 7.5◦ and 10◦ tilt
angles mostly offer better results than 5◦, 2.5◦ and 0◦. Other studies demonstrated that
a more vertical load for single and double-disc furrow openers in pneumatic seed drills
used for NT practices in two different field conditions (clay-loam and loamy soil) leads to
enhanced machine performance in Turkey. In particular, planting depth and seed spacing
uniformity, mean emergence time and percentage of emergence of both furrow openers
were increased by increasing down-force [47]. As concerns the type of furrow opener, no-till
seeders with hoe-type gave better sowing performance and seed emergence in comparison
to the no-till seeders with disc- and wing hoe type furrow openers under 12 cm (short)
stubble of common vetch and standing stubble conditions in Turkey [49]. As highlighted
before, maintenance of residue cover on the surface is a fundamental requirement for CA
aims. In this regard, a recent review on performances of different residue management
units of NT sowing systems confirmed that smooth disc coulters, finger row cleaners,
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and their combinations can retain more than the minimum residue cover recommended
for NT systems. Moreover, the selection of the appropriate residue management units
and machinery settings reduces blockage and allows for correct placement of seed and
improved seed-soil contact [50]. Nowadays, drill and planter development has progressed
to supply acceptable seed placement into the soil in many different conditions, both for
row and precision sowing. New technologies are now proposed as optional equipment to
improve machines performances, as satellite systems (Global Navigation Satellite System),
seed counting devices, integrated infrared sensors, down force controllers [40], but their
spreading in the Mediterranean areas is still very slow. In Italy, actually NT is not a
common practice in horticulture because of low yields that are commonly associated with
soil compaction, reduced nitrogen availability and high weed encroachment. During
the last few years, specific transplanters have been designed and built in order to assure
an appropriate furrow opening, plant deposition and furrow closure with the right soil
compaction. However, most no-till transplanters have been developed as prototypes and
have been tested only by researchers [42,51–53]. Thus, these machines are not available
on the market for farmers [42]. One of the first trials on NT transplanters was carried
out by Morse et al., [54] using a subsurface tiller-transplanter (SSS-T) developed by B&B
No-Till (Laurel Fork, VA), in collaboration with Virginia Polytechnic Institute. Although
this prototype was designed and realized in the Mediterranean Basin, it is necessary to
describe this machine, as it was the first prototype of NT transplanter realized. The SSS-T
consists of two components and combines subsurface soil loosening and transplanting.
This allows soil compaction to be reduced and transplantation in a single operation. The
SSS-T has a single subsurface tiller placed in front of a double disk shoe to operate with low
soil disturbance in conditions of high surface residues [54]. Frasconi et al., [42], assessed
the performance of a vegetable transplanter in both tilled and no-till soils. To allow the
machine work properly in no-tilled soils, the authors modified a commercial manually
fed vegetable transplanter [55]. To cut the cover crop residues, a 30 cm smooth coulter
(manufactured by OFAS S.p.a., Mussolente, Vicenza, Italy) was installed directly under
the frame. Furthermore, two types of shank opener (ripper shank opener and chisel shank
opener) with two different points (nose point and winged point) were tested in order to
evaluate the best combination of tools. In this way, the machine allows a wide furrow to be
opened to facilitate the seedlings establishment. The combination of ripper shank openers
and straight nose points provides the low power requirement for the machine, making this
combination of tools the most suitable for no-till soils (Figure 2).

Also Kornecki and Price [56] used a similar solution outside of the Mediterrean Basin,
modifying a single row No-Till plug transplanter (RJ Equipment®, Blenheim, ON, Canada
N0P 1A0) to assess the feasibility of more sustainable vegetable production practices. This
trial was able to directly transplant cash crop seedlings in different high cover crop residues.
The vegetable transplanter was equipped with a custom designed subsoiling shank in
order to mitigate soil compaction and with row cleaners (YetterTM, PO BOX 358 109 S.
McDonough, Colchester, IL 62,326 USA) to manage cover crop residues and facilitate
transplanting. Despite volumetric soil moisture content being higher where cover crops
were used, yields of cash crops were consistently higher for the CT system compared
with NT system. However, intermediate forms of non-ploughing or non-inversion tillage,
such as MT, have been adopted more readily than NT and are sometimes suggested as a
preliminary practice before starting NT [38].
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Minimum tillage (MT) represents those practices carried out at 10 cm maximum, able
to obtain a good seedbed and maintain crop residues for about 30% of total surface. Often,
under this definition are also included those practices carried out at higher depths and
with more invasive machines. In this sense, it seems more appropriate to define reduced
tillage practices (or even limited tillage or surface tillage or non-inversive tillage), meaning
all those techniques that provide for a reduction in the number and intensity of soil tillage
compared to the traditional seed-bed preparation. The traditional techniques include deep
ploughing (conducted at a soil depth ranging from 25–30 cm and more than 50 cm) and
numerous other tillage interventions (conducted with rigid or elastic tine or disc harrows,
rotating harrows and/or rotating hoe, etc.) for refining clods (i.e., conventional tillage) [15].
As an alternative to the MT practices, RT provides to a primary tillage and sowing confined
to the formation of raised ridges or beds in rows often on a contour. It is mainly used for
maize and soybean cultivation and is currently interesting for its Precision Agriculture
applications. RT is a specific soil management practice that requires wide row crops and
also the use of specific machinery. For this reason, RT is confined to small areas of the
Mediterranean Basin where wide row crops are grown. Conversely, in the US and in
Australia, RT is a more widespread technique. Other types of conservation tillage concern
zone tillage (or even strip tillage (ST)) and mulch tillage. The first consists in a primary
partial-width tillage (i.e., full-width tillage, tillage conducted over the entire soil surface;
partial-width tillage, tillage conducted over a proportion of the soil surface) for row crops
confined to bands of 15 cm width and 5–8 cm depth, separated by bands of undisturbed
soil, to form a seedbed for each row (Figures 3 and 4). This practice also refers to the general
tilling of much wider strips of land (100 or more meters wide) on the contour, separated
by wide fallowed strips, as an erosion control measure based on tillage [15]. Mulch tillage
(or even stubble mulching, trash farming, sod farming, live mulch system) represents a
form of full-width shallow primary tillage used prior to crop planting and provides a
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high percentage of crop residues retained at the soil surface [37]. A study carried out in
Turkey [57] compared five different tillage and sowing methods for maize: (i) MT including
tillage with a rotary tiller at a depth of 15 cm and final preparation with a scraper in twice;
(ii) band tillage including band tillage with a crop rotary tiller at a depth of 15 cm and final
preparation with the float in twice; (iii) RT including tillage with a disc harrow at a depth of
18 cm creating ridges with a lister and final preparation with the ridge float in once; (iv) NT
including direct sowing in the previous crop residue by using a no-tillage planter; and (v)
conventional tillage without stubble, including stubble burning, tillage with a disc harrow
at a depth of 18 cm in twice and final preparation with the float in twice. Results showed
that MT represents the best practice also compared with Band Tillage and RT, according to
the significant environmental benefits that can be obtained with the adoption of a reduced
tillage system; while the lowest work time and fuel consumption were observed in the
NT practice. Moreover, the findings of this study stated that the highest productivity was
in MT, followed by NT, CT, RT and BT. Most of the literature on strip tillage concerning
field trials was carried out in Northern USA and Canada and then has been validated for
soils and climates different from the Mediterranean area. Few studies have been carried
out for Southern Europe environments. Gemtos et al. [58] used a strip tiller with a rotary
tool to prepare a seedbed for cotton. Stathakos et al. [59] used a heavy cultivator-ridger at
0.27 m depth for primary tillage, a ground driven rotary cultivator-ridger at 0.09 m depth
and a roller packer-ridger for seedbed preparation with a working width of 1.92 m. The
results of these two research projects showed that RT could offer some advantages like
reduced energy requirements, reduced costs and higher yields than CT. However, cotton
is not a widespread crop in Mediterranean areas. In the same period, six tillage methods
for sunflower crop were tested and compared in South-eastern Turkey to investigate the
effects of CT, RT and NT practices on sunflower yield and fuel consumption. In particular,
RT was carried out by different machines: (i) disc harrow + float + direct seeding machine;
(ii) rotary strip tiller + float + direct seeding machine; (iii) cultivator + float + ridge tillage
+ direct seeding machine; and (iv) cultivator + float + direct seeding machine. The fuel
consumption was higher and the field efficiency lowest in CT practices as compared to
the other tillage managements. In particular, the lowest consumption was recorded with
strip tillage practices (11.6 L ha−1) and NT (6.6 L ha−1) [60]. Some years later, a row crop
rotary hoe with C-type blades was used to obtain different strip widths, during a two-year
field experiment in Turkey by Altikat [61]. The aim was to assess the effects of strip width
and tractor forward speed on sowing uniformity of maize and sunflower. The findings
revealed strip width was not affected by sowing uniformity while the most acceptable
tractor speed was 0.5 m s−1 (1.8 km h−1) for both crops. A study by Trevini et al. [62] was
carried out to evaluate strip tillage compared to other soil tillage techniques, MT and NT
aimed at maize seedbed preparation in the Po valley (Italy) as a representative crop and
environment for Italian and Southern Europe intensive agriculture. The test was carried
out by an original passive-tool implement for strip tillage, MT at a working depth of 25 cm
and 35 cm, and NT. Concerning the strip tillage machine, each working unit consisted of
a sequence of row cleaner (to clean the seeding line from clods and residues), adjustable
rubber wheel (to detect soil surface and keep a constant working depth) and cutting disc,
shank with tine plus a couple of side closing discs (to contain the clods within the strip)
and a final roll (to break clods and firm the seedbed). The results showed that strip tillage
allowed a seedbed preparation not different from MT but moved less soil volumes, left
higher ground residue cover, produced similar total biomass and grain yields. All these
differences imply well-known economic and environmental benefits. At the same time,
the authors proved that maize growth and yield were also quite high for NT, and this
raises questions about the actual convenience of soil tilling instead of drilling directly on
undisturbed soil. Benincasa et al. [63] compared three tillage-sowing treatments in order
to develop hybrid machines to strip till and sow: (i) strip tillage plus volumetric band
(0.1 m wide) seeding carried out by a Claydon Hybrid 6 M at inter axle spacing of 0.6 m
and with 35 kg ha−1 of seeds; (ii) NT plus precision line planting carried out by a sod
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planter Kinze 3100 at row distance of 0.71 m; (iii) strip tillage plus precision line planting
carried out by a strip tiller Khun Striger at inter axle spacing of 0.71 m plus the Kinze
3100 and precision sod planter Kinze 3100. The research starts from the observation that a
solution for developing a hybrid machine to strip-till and sow all crops, without affect crop
performances, could be realised by regulating row spacing together with moving from line
to banded seed placement. The results showed that a silage maize crop can achieve good
crop performances when cultivated by strip tillage practices associated with volumetric
band seeding. Moreover, the authors stated that similar results could be provided for high-
density crops like winter cereals by realizing environmental and economic benefits due to a
reduction of the machinery pool and an optimization of operational crop management [57].
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The agricultural machines industry is also producing new implements used to gen-
erate basins and reservoirs that apparently have some advantages over those used in CA
practices, especially under sprinkler irrigation systems in the Mediterranean countries [64].
In order to prevent surface runoff and soil erosion, combined implements were developed
in the last few years. These machines can control weeds mechanically, apply fertilizers and
perform a furrow diking operation in a single passage. Although it is possible to find in
the market different types of these machines, there are no published studies about their
real field performance [64]. Regarding the management of horticultural crops under MT
and particularly strip tillage, Brainard and Noyes [65] compared the effects of CT and ST
on carrot yields and quality. ST produced equivalent or even greater carrot yields and
equivalent or lower summer annual weed densities compared to CT, demonstrating that ST
can be a valid tool for improving carrot production. Haramoto et al. [66] tested CT and ST
in combination with an oat cover crop to evaluate the differences of cabbage yields. At the
end of both years of the trial, no differences were observed in cabbage yields, proving that
ST production systems associated with cover crops may be used without compromising
crop yields. An important study regarding the use of strip tillage was conducted out of the
Mediterrean Basin by Licht and Kaisi [67] at Iowa State University to assess strip tillage
effects on seedbed soil temperatures and soil properties. For their study, Licht and Kasi
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used a four-row rotor tiller with blades 13 cm long and curved 5 cm at the end, with a
soil disturbance of 20 cm in width and 10–15 cm in depth. Soil temperature was slightly
higher with ST compared to NT (1.2–1.4 ◦C) and contributed to improve plant emergence.
Soil moisture was also slightly higher with ST. Overstreet and Hoyt [68] used a Bush Hog
RoTill (Bush Hog, Selma, AL, United States of America-USA) to strip-till their plots in
order to assess biological and physical soil properties in the region from row to interrow.
The Bush Hog RoTill strip-tiller had a subsoil shank adjusted to a depth of 20 to 23 cm to
remove compaction in the root zone just under the row, creating strips 20 to 30 cm wide
at the surface. The results suggest that there is no gradient effect for biological activity
in ST systems from row to interrow for organically managed systems. Another study
carried out in the United States [69] compared two muskmelon (Cucumis melo) production
systems: ST on a rolled cover crop of cereal rye (Secale cereale) and CT with plastic mulch.
Soils managed with ST were cooler and had more moisture. However, marketable yields
were reduced slightly with ST. Jokela [70], tested organic NT and ST, compared with CT
for the production of organic bell pepper and broccoli using a Hiniker 6000 strip tiller
(Hiniker Co., Mankato, MN, USA). Jokela [70] also used a cover crop mixture of cereal rye
(Secale cereale L.) and hairy vetch (Vicia villosa Roth) seeded on all plots and tilled in CT or
rolled with a roller-crimper in NT and ST before planting in spring. The effects of NT and
ST on crop yields varied during the two years of the trial. ST and NT reduced broccoli
yield during the first year, but during the second year there was no difference with CT.
Pepper yields behaved inversely, with no differences during the first year and a reduced
production for ST and NT during the second year of the trial.
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2.3. Weed Control

Reduced or no-tillage practices may increase weed spreading due to the lower soil dis-
turbance compared to CT practices [71]. Despite adopting crop rotations that significantly
reduce weeds pressure and avoid replacement flora selection, weed control issues are exac-
erbated by MT practices due to seeds accumulation in superficial soil layers. Weed flora
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in arable fields is strongly affected by agronomic practices such as tillage and fertilization
management and some weed species are promoted by NT or RT. A seven-year study carried
out in South Italy on a long-term durum wheat–faba bean rotation showed clear evidences
that the effect of tillage on the overall weed community was more evident than that of
nitrogen supply [71]. Combining NT techniques and cover crops either as living or dead
mulch, Antichi et al. [72] tested the performance of an innovative organic and conservation
vegetable system. The trial consisted of a three-year field experiment on savoy cabbage
(Brassica oleracea var. sabauda L. cv. Famosa F1, Bejo), spring lettuce (Lactuca sativa L. cv.
Justine, Clause), fennel (Foeniculum vulgare Mill. Cv. Montebianco F1, Olter), and summer
lettuce (L. sativa L. cv. Ballerina RZ, Rijk Zwaan) crop rotation. The termination of cover
crops (CC) as well as the management of crop residues and living mulch was implemented
by rolling with a roller crimper alternated with flaming (Figure 5) [73].
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The results confirmed that cover crops could be valuable tools in conservative low-
input systems, however crop yields and N uptake were significantly affected. These
findings confirm that while some weed species could be inhibited in conservation tillage
systems, more often weed infestation is a severe issue under conservation tillage, affecting
crop yield. Furthermore, the effects of tillage systems on weeds happened to be site-specific
and can get some advantages and disadvantages [74]. In this regard, weed management is a
key issue hindering strip tillage adoption. A reason can be found in the high weed survival
and reproduction in the untilled portion. However, annual, biennial, and perennial weeds
have a different behaviour under strip tillage. The development of strategies involving high
temperatures of about 55 ◦C, used to kill the weeds by destroying the cell wall structures,
is prevalent in European countries. Flaming offers the best control for broad-leaved weeds,
whereas grasses are less susceptible; it has shown good results after weed emergence
prior to crop emergence in potato, sugar beet, carrot, and cayenne pepper crops. In other
studies, corn and sorghum were tolerant to flaming, whereas soybean and sunflower were
susceptible. Steam and hot water are considered safer than flaming and without side
effects, so their use is considered in precision weed management strategies and sustainable
methods in European countries. Conversely, low-tech devices and flaming are effective
for controlling weeds and are cheap, thus easily accessible also for farmers managing
small/medium farms. Since the choice of the machines depends on crops, weeds and
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soil, and since yield losses should be avoided, a low-tech and low-cost device such as an
intra-row cultivator equipped with a manual guidance system could be successfully used
on herbaceous crops. Moreover, flaming in the intra-row could also be a valid alternative
to mechanical tools working in the rows and could be integrated with inter-row cultivators
for weed management in heat-tolerant crops. Weed harrowing can be used in narrow-row
herbaceous crops. Intelligent camera-based systems capable of guiding mechanical and/or
thermal weeding devices are effective but still too expensive to be transferred to small
farms that prefer to adopt low-tech and low-cost solutions [74]. While herbicide-based
weed control may be both biologically efficient and economically effective, this occurs
not without environmental and labour costs. For these reasons new technologies and
strategies for controlling crop weeds using automated robotic control could be applied
also in CA. The findings of Blasco et al. [75] relating to a non-chemical weed controller for
vegetable crops were derived from a cooperative French-Spanish project. This is made up of
a robotic end-effector that killed weeds by producing an electrical discharge of 15 kV. Two
machine vision systems were used. The first machine vision system was a colour camera to
detect weeds in real time and discriminate between soil and plant pixels using a simple
algorithm. The second machine vision system was a monochromatic camera connected
to a specific processing unit to provide trajectory information for the end-effector when
positioning the electrical probe to kill weeds. In a field test, the machine vision system
was able to correctly detect 84% of the weeds by their size and 99% of the lettuce plants.
The positioning errors were lower than expected, which could be explained by the low
speed of the machine and the smoothness of the ground. The authors concluded that a
considerable amount of research was conducted on various machine vision techniques
for weed detection and identification with a species classification accuracy in the range
of 65–95%. However, the most common source of error was due to occlusion between
crop and weed and leaf appearance was sometimes distorted by environmental conditions
(wind, insect or weather damage, water or nutrient stress, shadows). An integrated weed
management based on advanced non-conventional strategies could be a pragmatic option
in smart and modern agriculture.

2.4. Cover Cropping

Sustainable weed management involves numerous practices, such as crop rotation,
cover crops, cultivations, weeding, flaming, biocontrol, weed seed predation, smoother
crops, competition, mulching, natural herbicides and allelopathy [76–78]. In particular,
CC provide advantages such as protection from soil erosion, enrichment of soils nutrient,
contrast to compaction, control of soil moisture and organic matter increase, which are
included within CA principles. The use of CC positively influences aggregation of soil
particles and bio-geo-chemical cycles of carbon and nitrogen, determining an indirect
effect on crop productivity. Moreover, the use of different plant species as cover crops,
which alternate in time on the same plot, allows a different root depth (and therefore a
distribution of new humus), with important effects on physical and chemical fertility [79].
CC practices also improve the N recycling at the agroecosystem level [80]. CC also prevent
soil temperatures reaching high values, especially in hot and dry environments, and protect
the soil from erosion [81], leaching, compaction and surface crusting phenomena, favouring
water retention and infiltration and stability of aggregates [82]. Also, Perego et al. [83],
in a 3-year test on 20 farms in the Po Valley found an improvement of soil characteristics
with conservative practices compared to conventional ones. Massaccesi et al. [84], found
a higher total organic C and higher concentration of microbial communities in the soil
after three years of mulch-based cropping system. However, the adoption of cover crops
involves management and economic issues that should provide for a perfect integration
between main and catch crops. Also, CC management costs should be minimized, in order
to optimise the agronomic and environmental outcome also in terms of biodiversity [85].
The NT practices can help to reduce costs and may give the possibility to seed the CC
together with the harvesting of the previous crop. This is accomplished by means of
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combined harvesters equipped for a spread distribution of the seed immediately after the
cutting bar and, therefore, before the straw falls on the ground. This practice, however,
must forecast a certain soil moisture but also the possibility of chopping the straw to ensure
crop germination and growth. In an integrated management approach, combining flaming
and roller crimpers could be a viable solution to avoid using herbicides for cover crop
termination [73]. Going into detail, CC termination and transformation in dead mulch can
be successfully carried out by performing open flaming after rolling with a crimper roll.
Moreover, flaming can be used to perform weed control in the inter-row space of the crops.
For this purpose, a Clemens crimper roll and a MAITO (Maito srl, Arezzo, Italy) flamer
equipped with four 0.5 m wide open burners can be used [73]. Another strategy to minimize
CC management costs could be to use small autonomous machines such as autonomous
mowers. Small autonomous machines in agriculture provide several advantages as a
consequence of their low energy consumption, reduced ground pressure, low functioning
overlap, and cost [86]. Sportelli et al. [87] found that autonomous mowers moving with
random trajectories can efficiently work in narrow spaces such as horticultural fields
(Figure 6). Furthermore, the high mowing frequency allowed control of weeds requiring
a significant lower amount of primary energy and lower CO2 emissions compared with
conventional management systems [88].
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3. Evaluation of the Agronomic Performance of the Application of the Smart Strategies
and Innovative Agricultural Machinery Used for Conservation Agriculture (CA)
3.1. Crop Yield

Many studies have been carried out in Mediterranean areas to compare the effects
of several conservation tillage practices with those of conventional ones on yields of
cereals, legumes, etc. These studies showed inconsistent yield results, as well as significant
differences from one year to the other and from one site to the other, showing that crop
response to specific practices could differ as a function of soil type and other associated
management practices [89–95]. Moreover, the findings of these studies suggest that the
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adoption of soil conservation tillage is practicable for different cropping systems that reach
equivalent or better performances than CT.

By referring to the period examined (2000–2019), one of the oldest studies in these
concerns has shown that MT with a rototiller was the most sustainable practice because
of the increase of wheat grain yield (Triticum aestivum L.) and the improvement of soil
physical properties over the long term compared with CT and MT with disc in Turkey [96].
In Central Italy, an experiment carried out on maize and soybean compared conventional
mouldboard ploughing (CT), MT (by using two orthogonal rotary harrow passes for every
year), RT (ridging with a 0.7 m spacing using a furrow opener and annually restored by
means of a light ridging pass on the following years) and NT. This experiment showed that
no significant differences due to soil tillage were found for grain yield and irrigation water
use efficiency, except for soybean in only one year, in which yields and irrigation water
use efficiency were 59% higher on conservation tillage treatments compared with CT [89].
Ruisi et al. [94] carried out a set of experiments in the South of Italy (Sicily Region) during
20 years in order to compare the effects of NT practices and CT on the productivity and
quality of durum wheat. They showed that, in the semiarid Mediterranean environments,
the factor that most affects wheat productivity is soil water availability, which is greater
for the crop in NT than in CT. For these reasons, the yield differences between NT and CT
noted during the trial were related to the water stress level suffered by wheat during its
growing period. In particular, the regression analysis revealed the superiority of the NT
approach over the CT technique with respect to the tillage practices when grain yields were
low and, conversely, an advantage of CT in the opposite case. On average, no differences in
yield were observed between the two tillage techniques as reported in other studies carried
out in similar environmental conditions [90,91,93]. Moreover, in order to emphasise the
potential of the NT technique, the authors suggest that the farmer needs to: (i) adopt a
rational crop sequence, because a cumulative detrimental effect of NT with time was found
for continuous wheat cultivation, probably as a consequence of the progressive increase
in the incidence of certain residue-born pathogens of wheat; and (ii) with respect to the
system managed with CT, increase the rate of N fertiliser to compensate for the lower N
availability in the soil that occurs in NT versus CT (as a consequence of both the reduction
of the rate of mineralisation of the organic matter and the increase in N losses) [94]. A
similar study carried out in Spain by Lampurlanés et al. [97] demonstrates that under
semi-arid rain-fed conditions, soil water storage increases with the use of conservation
tillage systems, being amplified with the degree of aridity of the site, leading to a greater
crop yield. A study of Canakci et al. [44] was carried out in Turkey with the aim of assessing
performances of a no-till seeder equipped with a double disc-type furrow opener, under
dry and wet soil conditions using maize (Zea mays L.), cotton (Gossypium hirsutum L.),
and soybean (Glycine max L.) seeds sown following wheat (Triticum aestivum). The results
showed that the percentage of emergence of soybean plants in dry soil conditions was
low while the percentage of emergence of maize and soybean in wet soil was higher.
Also, sowing depth uniformity was better in wet soil than in dry soil. In general, there
was acceptable data variability for sowing maize and cotton in dry and wet soils and for
soybean into wet soil as concerns evaluated indices (mean emergence time, percentage of
emergence, multiple index, miss index, quality of feed index, precision index of horizontal
distribution pattern, and sowing depth uniformity). The study of Troccoli et al. [95] reports
findings from national and international scientific literature and also some results of a
long-term experimentation conducted in the South of Italy (Puglia Region). This study
shows the effects of CA on crop yields show controversial results but, in general, yields are
less than in CT with mouldboard ploughing. Sometimes NT can produce equivalent or
greater yields than CT especially in dry climates [91,98–100]. This means that CA should
not lead to yield penalties [16]. However, the different environmental conditions and the
time of transition from conventional agriculture to the permanent state of CA strongly
affect the grain yields. However, Ceccanti et al. [101] found a significantly higher level of
bioactive compounds in leafy vegetables in a short-term experiment with a CA cropping
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system. These results greatly support CA practices despite yield losses. At the same
time, soil properties could benefit from CA practices. Organic matter increases with CA
and, consequently, increase underground water quality, reducing erosion processes and
improving soil moisture retention. In this way also biodiversity is higher with NT than
CT [95,102]. In France, Legrand et al. [102] highlighted the species richness and evenness
significantly higher in fields under MT practices than in fields under CT, despite the fact
that the core microbiota was similar between fields under these two practices. Other studies
carried out in southern Italy [103] showed that no significant differences were revealed
between the soil tillage treatments on Brassica carinata in terms of soil fertility comparing
CT and MT. In particular, the CT practices included mouldboard ploughing (40–45 cm
deep) and both disk harrowing and vibrating tine cultivation; the MT practices involved
two disk harrowing events with at least 7 days between them and just one instance of
vibrating tine cultivation (10–15 cm deep). In the context of sustainable agriculture, the
results of this study show that it is possible to sustain Brassica production and increase
some nutrients in the soil with organic amendments (e.g., sewage sludge followed by the
application of compost) and reduced tillage. Concerning bulk density, the findings are
different. Some studies have reported a strong increase in bulk density with NT compared
to mouldboard ploughing while others found similar bulk density values with CT and NT
systems. Due to the rearrangement of soil sand particle aggregates by biological processes
and by the action of coulters and shanks of no-till seeders and planters coulters, the layer
from 0 to about 7 cm appears less compact than the underlying layers [95]. Moreover, other
studies demonstrated that soil compaction values were frequently greater in NT systems
than in CT, especially in the top layer. A field trial carried out in southern Italy, on a clay
soil at the 10th year of NT, showed that usually NT had cone index values slightly higher
than CT, excluding dry conditions and the thin soil layer (0–0.15 m) when NT soil looked
to be less compact than CT [95]. The results of a study carried out in the North of Italy,
alternating autumn and winter crops, provide insights on yields, CO2 emissions and SOC.
In particular, SOC oxidation rates were overall lower under NT as well as the greatest
reduction in CO2 emissions. These results underline the benefits of NT adoption in terms
of soil fertility preservation and CO2 emissions mitigation also thanks to the lower number
of passes required by NT practices and the higher working capacity of machinery used
in NT. By contrast, NT practices achieved higher emissions from pesticides and sowing
operations [41]. A study aimed at investigating the effects of CT, RT and NT practices on
sunflower yields in South-eastern Turkey showed that sunflower yields and agronomic
properties were significantly affected by tillage methods. In fact, the highest yields were
found in CT methods and lowest yields were found in RT practices carried out by means
of cultivator + float + direct seeding machine [60]. For the success of CA techniques and
particularly of NT (transplanting on no tilled soil), in addition to a proper use of specific
on purpose transplanter, there is a clear need to optimize the choice of the cover crops
and to define and apply at best methods to terminate and transform them in dead mulch.
These findings have been highlighted by the results obtained in horticultural crops by
several authors in very recent field experiments on the use of a CA and organic agriculture
management carried out in Italy (at the Universities of Pisa and Perugia). Moreover, there
is also the need to set up strategies based upon the adoption of thermal and mechanical
treatments able to guarantee good weed management after the transplanting [104].

3.2. Economic Feasibility

The estimation of production costs represents the most complex part of the economic
evaluation given numerous variables to be considered. The technical analysis of production
processes has shown that the main operation affected by changes in the transition from
CT to CA is that concerning soil tillage. For this reason, the evaluation of the economic
convenience between the two management systems should focus on this item. The first
element of difference between CT and CA is represented by the reduction of interactions
between operating machines and soil, limited to direct sowing in case of sod seeding. In
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terms of economical profitability, MT or NT may substantially reduce crop production costs,
as mechanised tillage is a rather costly technique including fuel, labour and machinery costs.
In the grain production systems, relative benefits of CA depend on the difference between
the costs of soil tillage vs. the cost of chemical herbicides applied before sowing [95]. The
reduced use of machines translates into savings due to the reduction of wear, fuel, lubricant
and working time saving. In particular, experimental results confirm that, in general, the
adoption of sowing on land allows significant savings to be attributed to lower (from
35% to 80%) fuel consumption, a reduction (from 40% to 60%) of time and labour costs
(hours/machine and labour, spare parts and maintenance). Cost reduction is largely due to
oil and energy saving [105]. Food and Agriculture Organization-FAO [8] reports economic
benefits related also to labour savings and machinery depreciation, and some other authors
report CA benefits on investments efficiency and productivity [106]. Labour requirements
are generally reduced allowing farmers to save on time, fuel and machinery costs [16].
Apart from the agronomic and environmental benefits, this economic advantage proves to
be a strategic element for the survival of many farms that face a globalized market with
the prospect of a decrease in product prices and an uncertain international policy. In a
recent study carried out in farms in central Italy that have long used cereal systems, it has
been possible to verify that economic savings can be achieved by conservative agronomic
practices compared to conventional ones, varying between 50 and 80 euros per ton of grain
produced [107]. The economic convenience is strictly related to the machinery used. The
technology currently available allows direct seeding to be carried out with specific seed
drills that do not require any preparation of the seed bed. These machines are specifically
designed to work on undisturbed soil in the presence of crop residues, equipped with
appropriate devices for the prevention of seeding compacting and furrow closing, with re-
covering units and compressor parts, to guarantee regular plant emergence. According to
Scopel et al. [108], for both resource use efficiency and socio-economic results, the situation
becomes more favourable after some years of conservation agriculture application when
systems stabilise. A comparative field experiment, based on direct measurements of data
about machinery and production factors used, was carried out in the north of Italy, one
of the main areas of rice production in Europe. The results showed that the adoption of
conservative techniques led to significant savings on production costs, thanks to reduced
work time (−47% for MT and −61% for NT less) and to lower mechanisation costs (−42%
for MT and −58% for NT) in comparison with CT practices. Moreover, the reduction in
fuel consumption (−48% for MT and −63% for NT) means reduction of emissions and
environmental impacts [109].

4. Conclusions

The present review has led to the selection of several papers to highlight the impor-
tance of these issues in cropping systems, although more should be done in this research
field. The studies taken into account in this paper were focused upon herbaceous and horti-
cultural crops since they can be considered key food-products being highly representative
of the Mediterranean agro-economy. Farmers play a crucial role in contributing to improv-
ing and increasing the sustainability and productivity of herbaceous and horticultural crops
by means of the adoption of smart solutions for their conservative cultivation. However,
farmers often find barriers such as inadequate policies, commodity based subsidies, direct
farm payments, unavailability of appropriate machines (in many countries of the world)
and suitable weed control practices to facilitate weed and vegetation management (espe-
cially for large scale farms in developing countries). Farmers are at the centre of any process
of change that involves natural resources. For this reason they need to be encouraged
and guided through appropriate incentives and governance practices to conserve natural
ecosystems and their biodiversity, minimizing the negative impact that agriculture can
have on the environment.

Future research activities are certainly needed to fully explore the potentialities of
conservation and organic agriculture and precision farming, and to drive the transition
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process from conventional agriculture to an innovative management connected with the
application of conservation, organic and precision farming techniques.
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