
The Road towards Predictable Automotive
High-Performance Platforms

Falk Rehm1, Jörg Seitter1, Jan-Peter Larsson3, Selma Saidi2, Giovanni Stea4, Raffaele Zippo5,4,
Dirk Ziegenbein1, Matteo Andreozzi3, and Arne Hamann1

1Robert Bosch GmbH, Germany, firstname.lastname@de.bosch.com
2Technical University of Dortmund, Germany, firstname.lastname@tu-dortmund.de

3Arm, UK, firstname.lastname@arm.com
4University of Pisa, Italy, firstname.lastname@unipi.it

5University of Florence, Italy, firstname.lastname@unifi.it

Abstract—Due to the trends of centralizing the E/E architec-
ture and new computing-intensive applications, high-performance
hardware platforms are currently finding their way into auto-
motive systems. However, the SoCs currently available on the
market have significant weaknesses when it comes to providing
predictable performance for time-critical applications. The main
reason for this is that these platforms are optimized for average-
case performance. This shortcoming represents one major risk
in the development of current and future automotive systems. In
this paper we describe how high-performance and predictability
could (and should) be reconciled in future HW/SW platforms. We
believe that this goal can only be reached in a close collaboration
between system suppliers, IP providers, semiconductor companies,
and OS/hypervisor vendors. Furthermore, academic input will be
needed to solve remaining challenges and to further improve initial
solutions.

I. INTRODUCTION

There is a clear trend in the automotive domain to a new
paradigm of centralized E/E architectures where large portions
of formerly separated functionalities running on dedicated
ECUs are integrated on centralized vehicle integration plat-
forms (VIP) [1]. At the same time, novel computation and data
intensive algorithms, like for instance, predictive maintenance
or automated driving (AD) functionalities are deployed on these
centralized high-performance platforms.

In order to satisfy the tremendous demand of ”centralized”
computing power, heterogeneous Systems-on-Chip (SoCs) are
currently increasingly deployed in automotive systems. These
SoCs are µP-based featuring a variety of integrated specialized
accelerators including GPUs and FPGAs. Examples for these
class of SoCs include NXP’s S32V vision processor family, or
the Tegra series offered by Nvidia.

Compared to traditionally used micro-controllers, these het-
erogeneous SoCs are highly parallel and feature complex
memory systems composed of multiple levels of on-chip
shared SRAM memories (caches or scratch-pads) and off-chip
DRAMs. Obviously, the increased complexity of the memory
system that is shared between multiple execution engines on
the SoC leads to a strong performance correlation between
parallel executed applications [2]. For the programmer required
data is transparently available through virtual address spaces,

however, it is in practice stored in different (shared) memory
locations with different access latencies that are dynamically
influenced by complex access and caching schemes as well as
mechanisms for ensuring data coherency and consistency. For
instance, in [2] it has been shown that the average (sequential)
read access latency can vary by a factor of up to 8x on a Nvidia
Tegra X1 platform.

Looking especially at mixed-criticality systems with high
ASIL levels it becomes clear that shared hardware resources,
such as a memory subsystem with caches and DRAM, must
be controlled to ensure predictable performance and achieve
freedom from interference in space and time as requested by
ISO26262. While spatial separation can be controlled e.g. with
a hypervisor and Memory Management Units (MMU/MPU),
resource efficient temporal isolation providing timing pre-
dictability while maintaining performance is much harder to
achieve.

In this paper, we discuss different ideas involving a combina-
tion of software mechanisms (Section II) and hardware features
(Section III) to address the problem of providing predictable
performance on embedded automotive high-performance plat-
forms. To achieve this, we believe that a close collaboration
is necessary between system suppliers, IP providers, semi-
conductor companies, and OS/hypervisor vendors. Moreover,
for specific parts and setups, methods from formal perfor-
mance modeling and analysis can be part of the solution in
order to understand performance effects and derive sensible
system configurations (Section IV). To guarantee performance
for complex applications, multiple shared resources of a SoC
must be orchestrated and configured adequately (e.g. the inter-
connect and the memory controller). Furthermore, resources
are arbitrated and configured independently of each other,
although the overall system performance is strongly influenced
by interactions and correlations between multiple resources.
This ”non-composability” makes the system-wide configuration
an extremely challenging and time consuming task. As possible
way out, we discuss the idea of admission control borrowed
from the networking domain [3] that has the potential to
greatly simplify achieving predictable performance in complex



Fig. 1. Three classes of centralized automotive E/E architectures. While
domain-centralized and domain-fusion order embedded ECUs according to
their function domain, vehicle-centralized architectures order embedded ECUs
according to their mounting position in the vehicle.

SoCs considering a sequence of heterogeneous shared resources
accessed in an end-to-end fashion (Section V).

II. PERFORMANCE PREDICTABILITY IN UPCOMING
CENTRALIZED AUTOMOTIVE E/E ARCHITECTURES

The traditional decentralized automotive E/E architectures
are the result of multiple years of evolution of vehicle func-
tionality. By using dedicated hardware for additional and possi-
bly optional functionalities, decentralized architectures enabled
and/or followed the distributed development paradigm between
vehicle manufactures and suppliers. They allow the structural
partitioning of the vehicle system into functional domains. On
the one hand, this is important for the planning, design and
implementation of vehicle functionality in a parallel setup to
minimize organizational interfaces. On the other hand, the cor-
responding functional partitioning (one function - one control
unit) limits the functional interfaces and integration effects to
the communication networks.

This architectural approach obviously results in a very close
link between hardware and software since relocation of func-
tionality is not an architectural driver. While decentralized
architectures have carried the industry so far, new architectural
drivers have appeared as automotive megatrends: electrified,
autonomous, connected and shared are the keywords that de-
scribe future expectations to a vehicle that must be backed
by the E/E architecture. Centralized E/E architectures (Fig. 1)
bring the opportunity of cost and weight savings by reducing
the number of control units and promise to reduce complexity
in comparison to a distributed E/E architecture. However,
the complexity of managing distributed logic with dedicated
resources is merely replaced by the complexity of managing
centralized logic on hardware with shared resources [1].

In addition, the centralization leads to software categories to
be facilitated on a central control unit which range from real-
time safety-critical embedded software all the way up to ”app”-
like software that come with the concept of being rather easily
updated in field without negative side effects to other co-located
functionality. In this mixed-criticality setting, predictable per-
formance and the isolation of applications from each other
w.r.t. space and time is mandatory. This can be achieved by
actively managing the quality of service (QoS) and limiting the
contention and interference on shared resources. Unfortunately,
the currently available COTS platforms are rather optimized for
high average performance and offer only coarse-grain support
for configuring Quality of Service (QoS) for various shared
resources, for instance, the interconnect or the DRAM. In order
to achieve predictable performance, one has, thus, to resort to
software-based methods.

While spatial isolation is well supported, e.g. on the level of
POSIX processes, several software measures have been intro-
duced to limit the temporal interference on levels of scheduling,
cache partitioning and memory bandwidth regulation.

Scheduling is concerned with the distribution of CPU
resources to applications. In comparison to the well-
established priority-based scheduling approaches, reservation-
based scheduling approaches show advantages in offering
composable QoS guarantees to applications while allowing
more flexibility than TDMA-based scheduling [4]. In general,
partitioned scheduling, i.e. the pinning of application processes
to cores, shows better predictability than global scheduling
in multi-core settings as interference effects can be better
localized. However, this approach has limitations as well, since
an many SoCs the CPU cores are allocated in clusters of
multiple cores (usually 2 or 4). These clusters provide shared
infrastructure e.g the L2 cache. So pinning a process on one
core of a cluster still will not resolve the interference from the
other core on caused on the L2 cache if there are not possi-
bilities to partition the cache. Extreme isolation mechanisms
such as a ”stop-the-world” approach, where the execution of
ASIL-D safety application on a single CPU core will stall all
other cores in the system during that time in order to generate
a single-core equivalent scenario, are not adequate due to their
performance penalty.

The previously mentioned issue of interference through
caches can be addressed with cache coloring (e.g., [5]) using the
fact that (depending on the organization of the cache) certain
address ranges will map to the same cache line. Choosing the
mapping of virtual memory pages to physical pages with this
in mind on one hand performance optimal memory allocation
can be done and on the other hand a partitioning of the
cache is possible. This is coming with the price of a factual
smaller cache for each partition and additionally fine-grained
page-mapping that can cause side-effects in terms of page-
table walks. Cache coloring can be supported by software on
operating system or hypervisor level or a cache partitioning is
supported by novel HW mechanisms such as ARM DynamiQ,
see Section III-A.

In order to address interference topics outside of a CPU



cluster, e.g. the access to DRAM, performance counters in-
tegrated in the SoC can be used to actively limit the number of
requests and reserve memory bandwidths on the level of cores,
hypervisor partitions or single applications using software-
based mechanisms such as Memguard [6]. This is an effective
mechanism to limit interference. However, the more fine-
granular the objects to be isolated get, the higher the overhead
becomes. This overhead could be reduced, if the SoC exposed
more information, e.g., on the source of a particular request,
or implemented fine-grained resource partitioning mechanisms
than in current SoCs (where QoS mechanisms are available on
cluster level if at all) directly in HW, see Section III-B.

All these concepts are sophisticated approaches with their
individual drawbacks, such that their stand-alone configuration
is already quite intricate for an industrial practitioner in real-
world application scenarios. However, there are additionally
interactions between these mechanisms. If you, e.g., use cache
coloring to reserve cache for real-time critical applications in
order to prevent cache thrashing by non-real-time applications,
you effectively reduce the cache size for all applications. This
could in turn lead to more DRAM traffic which will increase
the DRAM interference also towards the real-time applications.
Finding an optimal configuration for these interacting mecha-
nisms is highly dependent on the characteristics of applications
and the HW platform. Thus, automated profiling as well as
sophisticated configuration tooling is required. Considering
updates at run-time

In addition to these quantitative dependencies between these
resources, the different resources (e.g., interconnect and mem-
ory) need also to be available at the same time in order to avoid
interference due to resource contention. An approach to solve
this, is the end-to-end admission control presented in Section V.

III. RESOURCE CONTENTION AVOIDANCE MECHANISMS IN
HIGH-PERFORMANCE ARM-BASED SYSTEMS

Hardware can do more to help software reduce contention in
shared resources by providing mechanisms that enable tighter
observability and controllability of the behaviour of individual
workloads than current software-based approaches are able to
achieve.

Such hardware mechanisms can be broadly classified into
three groups:

1) Identification mechanisms that allow software to label
traffic flows in the system, for example labelling traffic
belonging to a particular workload or virtual machine

2) Monitoring mechanisms that allow software to observe
the behaviour of traffic flows within the shared resources
they pass through, for example in terms of their cache
occupancy or bandwidth utilisation

3) Control mechanisms that allow software to configure
differential treatment of flows in shared resources, for
example by restricting cache occupation or influencing
arbitration policies in networks-on-chip (NoCs)

In the following paragraphs, we provide an overview of two
Arm technologies that implement hardware-based mechanisms.
We will illustrate how the DynamIQ Shared Unit (DSU) and

Fig. 2. Assignment of partition groups to schemeIDs in the DynamIQ Shared
Unit L3 Cluster Partition Control Register

Memory System Partitioning and Monitoring (MPAM) archi-
tecture extension can help reduce resource contention.

A. The DynamIQ Shared Unit

DynamIQ is a compute cluster technology that allows com-
patible cores to be integrated into a heterogeneous or homo-
geneous cluster alongside a DynamIQ Shared Unit (DSU).
The DSU is a subsystem that includes an optional shared L3
cache, control logic, and external interfaces [7]. Processors that
can form DynamIQ clusters include Cortex-A78 [8], Cortex-
A76AE [9] and Cortex-A65 [10].

The L3 cache in the DSU is shared between all processors
in the cluster, and the DSU supports hardware-based cache
partitioning to mitigate the risk of contention of data flows
in the cache. [7]

1) Scheme ID: The identification mechanism in the DSU
cache partitioning scheme is based on software-configurable
scheme IDs. Scheme IDs are comprised of 3 bits, allowing
software agents to be assigned into one of 8 scheme ID groups.
Scheme IDs can be set by privileged system software such as
operating systems or hypervisors. Hypervisors can delegate a
subset of scheme IDs to virtualised guest operating systems and
restrict their use of other scheme IDs by configuring mask and
override registers that replace part of the scheme ID set by the
guest operating system with equivalent override bits controlled
by the hypervisor.

2) L3 partitioning: The L3 cache in a DSU is 12- or 16-way
set-associative and is logically split into 4 partition groups of
3 or 4 ways each. Each group can be configured in one of two
ways:

• Private to a scheme ID. This prevents allocations by other
scheme IDs into the group

• Unassigned. This allows the ways within the group to be
allocated by any scheme ID

Partitioning is configured by writing into a 32-bit register,
where each register bit corresponds to a combination of scheme
ID and partition group. Setting a bit in this register indicates
that a group is private to the corresponding scheme ID, and a
group for which none of the bits have been set is deemed to
be unassigned. Figure 2 shows the mapping of partition groups
to scheme IDs within the register.

The DSU partitioning mechanism can provide isolation be-
tween up to 4 traffic flows. As an example of a possible
configuration, consider a system with a hypervisor running two
virtual machines (VMs). The VMs run, respectively, a Real-
Time Operating System (RTOS) with two real-time workloads,



and a general-purpose operating system (GPOS). The hypervi-
sor assigns itself the schemeID 7 (0b111), the GPOS VM the
scheme ID 0 (0b000), and the RTOS VM the two schemeIDs
2 (0b010) and 3 (0b011). Assignment of schemeIDs within
the real-time VM is delegated to the RTOS using an override
mask of 0b110 and an override value of 0b01x. The GPOS
VM can be prevented from unilaterally changing its schemeID
by setting an override mask of 0b111.

The L3 cache is then partitioned between the hypervisor,
GPOS VM and RTOS VM by writing the value 0x80004201
into the partition configuration register. This sets partition group
3 to be private to schemeID 7 (the hypervisor), partition group
2 to be private to schemeID 0 (the GPOS VM) and partition
groups 1 and 0 to be private to schemeIDs 2 and 3 (the RTOS
VM).

B. MPAM

The Armv8.4-A Memory System Resource Partitioning and
Monitoring (MPAM) architecture extension is an Arm Archi-
tecture approach to resource contention avoidance. MPAM pro-
vides workload identification of memory traffic throughout the
system, as well as standard monitoring and control interfaces
for observation of workload performance and apportioning of
system resources like cache capacity and memory bandwidth.
[11] MPAM identifiers can be attached to memory system
requests from CPUs [11] or to device traffic going through
a System Memory Management Unit (SMMU) [12].

1) Identification: Identification in MPAM is based on two
types of identifiers:

• Partition Identifiers (PARTID) that identify the partition
that generated a particular request for the purpose of
monitoring and control

• Performance Monitoring Group (PMG) identifiers that
identify agents within a partition for the purpose of
monitoring

For example, an operating system can assign a PARTID to a
workload to control its usage of a shared cache. The workload
may be comprised of multiple operating system processes or
execution threads, each of them possibly assigned an individual
PMG within the PARTID. This allows a control policy to
be applied to the entire workload, while monitoring can be
performed at the granularity of individual processes or threads.

2) PARTID spaces: PARTIDs exist in one of four spaces:

• Physical non-secure PARTIDs for non-virtualised non-
secure software

• Virtual non-secure PARTIDs for virtualised non-secure
software

• Physical secure PARTIDs for non-virtualised secure soft-
ware

• Virtual secure PARTIDs for virtualised secure software

The security space of a PARTID is determined by the
TrustZone security state of the agent that made the request.
The security space is encoded in an additional MPAM NS
bit alongside the PARTID and PMG. Restricting the ability of
non-secure software to set control policies that apply to secure

software mitigates the risk of side-channel information leaks
between the secure and non-secure world.

The PARTIDs that memory requests are labelled with are
termed physical PARTIDs (pPARTIDs). MPAM also provides
for virtual PARTIDs (vPARTIDs) in order to allow hypervisors
to delegate a subset of pPARTIDs to a guest operating system.
Each guest OS can then manage its own contiguous vPARTID
space, and vPARTIDs are automatically translated back into
pPARTIDs using mapping system registers [11] or translation
tables [12] under hypervisor control.

3) Monitoring: MPAM provides two standard monitoring
interfaces, both of which are optional:

• Cache-storage usage monitors that report the cache utili-
sation for a given PARTID and PMG

• Memory-bandwidth usage monitors that report the number
of bytes transferred for a given PARTID and PMG

Up to 216 monitors of each type can be implemented by each
memory system resource. Monitors can be configured to filter
requests by type, for example read or write, and by a choice
of PARTID and PMG or PARTID only. MPAM monitors can
optionally support capture registers that hold the monitor value
after a capture event, allowing the values in multiple registers at
a given point in time to be frozen and then read out sequentially.
Capture events can be external to a resource, for example driven
by a timer interrupt, or generated locally by writing into a
capture register.

4) Control interfaces: MPAM provides 6 types of standard
control interfaces, all of which are optional:

• Cache-portion partitioning
• Cache maximum-capacity partitioning
• Memory-bandwidth portion partitioning
• Memory-bandwidth minimum and maximum partitioning
• Memory-bandwidth proportional-stride partitioning
• Priority partitioning
Cache-portion partitioning subdivides a cache resource into a

number of portions of equal and fixed size, up to a maximum of
215 portions. The ability of a partition to allocate into a portion
Pn is determined by bit Bn in a memory-mapped cache-portion
bitmap register. This allows flexibility in portion assignment: a
portion can be shared by a group of partitions, be private to a
single partition, or remain open for allocation by any partition.
Figure 3 illustrates an example of an apportioning of a cache
with 8 portions between two PARTIDs, with two private cache
partitions and one shared.

Cache maximum-capacity partitioning limits the ability of
a partition to occupy more than a configurable fraction of
the cache capacity. Cache maximum-capacity partitioning can
be combined with cache-portion partitioning, for example to
restrict the ability of a single partition to occupy all of the
capacity of cache portions that have been made available to
multiple partitions.

Memory-bandwidth portion partitioning subdivides memory
bandwidth into a number of portions (quanta), up to a maximum
of 212 portions. The ability of a partition to use a bandwidth
quantum Qn is determined by bit Bn in a memory-mapped
memory-bandwidth portion bitmap register.



Fig. 3. Example assignment of cache portions to partitions using MPAM cache-
portion partition bitmaps

Memory-bandwidth minimum and maximum partitioning al-
low setting of a minimum guaranteed and maximum permitted
memory bandwidth that is applied to a partition in the presence
of contention.

Memory-bandwidth proportional-stride partitioning is based
on a configurable stride for each partition, permitting a partition
to consume bandwidth in proportion to its own stride relative to
the strides of other partitions that are competing for bandwidth.

Priority partitioning provides a way for resources to expose
partition-based configuration of internal arbitration policies.
These can be used by system software for fine-grained control
over scheduling and arbitration policies in the memory system.

C. Summary

The hardware mechanisms provided by the DSU and by
implementations based on the MPAM architecture offer im-
provements in efficiency and efficacy over software-based re-
source contention avoidance approaches like cache colouring.
By decoupling partitioning from memory management code,
hardware-based cache partitioning imposes fewer restrictions
on memory allocation and permits better utilisation of the
cache and downstream memory resources. In addition to cache
partitioning, MPAM provides several types of control interfaces
that can help limit memory bandwidth contention, for example
in networks-on-chip or memory controllers.

IV. SUPPORTING SYSTEM DESIGN WITH FORMAL
PERFORMANCE ANALYSIS

Systems meant for mission-critical environments, such as
automotive, aeronautical, robotic etc., must be designed so that
they meet pre-specified QoS requirements. In other words, it is
not sufficient that they are found to meet QoS requirements via
ex-post performance analysis, which is usually performed via
simulation, hence having limited coverage. They must instead
meet those requirements by design, ex-ante. This requires in
turn formal methods to be able to infer QoS guarantees from a
behavioral description of the system. In particular, worst-case,
deterministic bounds are the type of guarantees that best lend
themselves to ex-ante formal certification, since they do not rely
on assumptions on possible statistical patterns of a system’s
input, which might in turn not be verified in an operational
environment. This is also important for design considerations:
if you have a formal method to characterize the worst-case
behavior of a system, you can use it during its design phase
(e.g., to tune its parameters) so as to obtain a desired behavior.

As far as QoS is concerned, the most important bounds are on
the backlog, which allows system builders to dimension buffer
space at the elements so as to avoid losses, and on the delay,
which allows them to compute component-wise or end-to-end
guarantees on the response time of an application.

Network Calculus (NC, [13]) is a theory for computing
such bounds, which has been originally devised for QoS in
the Internet (laying the foundations for the IntServ and Diff-
Serv architectures), and has later found applications in several
domains, including avionic networks, time-sensitive networks,
industrial Ethernet. Recently, in the embedded and real-time
systems domain a variant of network calculus called real-time
calculus is used. In the latter, the worst-case service offered
to a flow by a component is modeled as a function of time,
called service curve. By comparing a service curve with an
arrival curve, that bounds from the above the traffic generated
by that flow over time, bounds on the backlog and delay can
easily be computed. The strength of NC lies in the fact that
service curves are composable: one can determine an end-to-
end service guarantee by composing per-node service curves.
Being able to characterize systems as service curves is the
fundamental (and certainly non-trivial) step that allows one -
on one hand – to design systems that meet pre-specified worst-
case performance guarantees, and – on the other – to setup
service negotiation frameworks (e.g., admission control, route
computation, resource reservation etc.) between an application
and the underlying system.

A. Worst-case analysis of a FR-FCFS DRAM controller

In this section, it is shown how to compute worst-case delay
(WCD) guarantees in a DRAM controller. The DRAM is a
shared resource, where contention among different masters
may affect performance and jeopardize deadlines. A First-
Ready, First-Come-First-Served (FR-FCFS) DRAM controller
is chosen as an example to show how to compute a service
curve for a read request arriving at the latter. To do so, first
an upper bound on its WCD [14] is computed. Furthermore,
it is shown that this upper bound is not overly pessimistic by
computing a lower bound too and that the gap between the
upper and lower bound is null to negligible in practical cases.
It is worth noting that:

• The method described below can be applied to any mem-
ory technology (e.g., DDR3, DDR4, LPDDR4, etc.), by
just changing the values of the timing parameters;

• deriving both bounds is computationally inexpensive (mil-
liseconds at most), hence could also be done online if
required (e.g., for admission control).

A DRAM module is used by multiple devices, that send their
read and write requests to a controller. The latter arbitrates
requests and schedules DRAM commands. The system is
pictured in Fig. 4

In order to capture the worst-case behavior, some assump-
tions need to be made, concerning all the mechanisms that
have been devised over the years to improve the average case:
therefore it is assumed that no short-circuit between reads and
writes occur (i.e., read requests whose response is already in a



Fig. 4. Model of the FR-FCFS DRAM controller

pending write, hence could be answered without going to the
DRAM); it is also assumed that all requests target the same
bank, hence the controller must serve them sequentially. The
focus is on read requests (instead of writes) since the former
are on the critical path for the master requesting them, whereas
the latter are not, and can be deferred. An FR-FCFS controller
maintains a separate queue for reads and writes, and alternates
between serving one queue or the other, also scheduling refresh
commands periodically. One must distinguish “row miss” and
“row hits” read requests (hereafter misses and hits for short).
The former pay a higher time overhead, since a “row open”
command has to be issued before being able to serve these
requests. For this reason, while misses are scheduled FCFS in
the read queue, hits are promoted to the front of the read queue.
The above prioritization is limited to a maximum of Ncap (this
is necessary to avoid starvation of misses). Moreover, switching
between the read and write queues incurs a time overhead,
hence frequent switching should be avoided. The FR-FCFS
controller serves writes in a batch, according to a watermark
policy, pictured in Fig. 5. The relevant parameters are the
high and low watermark thresholds, Whigh,Wlow, and the write
batch length Nwd. When in read mode, the controller switches
to serving writes when either of the following conditions holds:

1) The read queue is empty, and there are at least Wlow

write requests in queue;
2) There are at least Whigh write requests in queue.

When in write mode, the controller switches to serving reads
when either of the following conditions holds:

1) The read queue is empty, and write queue is below
max(Wlow −Nwd, 0);

2) The read queue is not empty, and Nwd writes have been
served.

In a worst-case scenario the read queue is never empty, hence
both conditions 1 can be neglected without loss of generality.
The only relevant parameters are Whigh and Nwd. Last, refresh
operations are needed to avoid loss of data at the DRAM. It is
assumed that they are scheduled when a refresh timer expires,
after the completion of the ongoing read or write request.

The aim is to bound the delay that a read miss experiences,
as a function of its position in the read queue. Call tN the time
at which a read miss entering the read queue at the Nth position
is scheduled. The curve that joins points (tN , N) is a service
curve for this system, hence can be used in a compositional
analysis to obtain end-to-end performance metrics. The alert

Fig. 5. Watermark policy for read/write switching.

reader can easily see that the rate at which writes arrive at the
system will impact time tN . If that rate is too high, a periodic
pattern of one read miss followed by a batch of Nwd writes
will soon establish, interrupted only by occasional refreshes.
Based on the above pattern, one could clearly establish a crude,
pessimistic upper bound with pen and paper. However, this will
not be representative of working conditions: masters tend not to
exhibit patterns of unlimited writes; physical rate limiters (e.g.,
token buckets) are often employed at the entrance of a shared
network, to avoid congestion; the interconnection network has a
finite capacity, hence acts as an implicit rate limiter for memory
requests anyway. Thus, knowledge of the write arrival rate at the
controller in the computation of the upper and lower bound is
integrated. This allows to compute tighter bounds, at the price
of complicating the analysis. A general – and enforceable –
model for limited arrival rates in NC is the token bucket shaper,
with arbitrary but known parameters burst and rate. The burst
parameter b (the vertical offset) models the fact that concurrent
requests may arrive near-simultaneously. This happens, e.g.,
because of different masters sending requests that arrive at the
DRAM controller back-to-back, even though each individual
master is rate-limited. The rate parameter r (the slope of the
line) is the aggregate average rate of the masters that are using
the DRAM. The fact that a process R(t) is upper bounded by a
token bucket shaper with a shaping curve α(τ) = b+rτ , τ > 0,
implies that ∀τR(t+τ) ≤ α(τ)+R(t). In other words, the only
legitimate processes are those that never intersect the shaping
curve. Besides being a useful model for an aggregate traffic
process, a token bucket shaper can be practically implemented
in hardware (all it takes is a buffer and a timer). At a high
level, the algorithm consists of the following steps:

1) Compute the time TN it takes to serve N read misses.
2) Add the time TH that it takes to schedule Ncap read hits

back-to-back. This is because the time that it takes to
serve a batch of hits is convex with their number, hence
scheduling them back-to-back generates the largest delay.
Note that this may lead to an unrealistic schedule (hence,
an upper bound on the WCD), since there is no guarantee
that a gap large enough may exist between two write
batches to schedule Ncap read hits. Call T = TN + TH .

3) Compute the largest number of write batches that can be
scheduled within T , and add their time overhead to T ;

4) Compute the largest number of refreshes that can be
scheduled within T , and add their overhead to T .

Steps 3 and 4 – which only involve trivial algebra – must be
iterated until T converges to a stable value. This is because



TABLE I
DRAM TIMING PARAMETERS (NS)

DDR3 1600
tCK 1.25

tBurst 5
tRCD 13.75
tCL 13.75
tRP 13.75

tRAS 35
tRRD 6
tXAW 30
tRFC 260
tWR 15

tWTR 7.5
tRTP 7.5
tRTW 2.5
tCS 2.5

tREFI 7800
tXP 6
tXS 270

TABLE II
UPPER AND LOWER BOUNDS ON THE WCD (NS)

Write rate Lower bound Upper bound
4 Gbps 1971.711 1977.542
5 Gbps 2957.983 2963.814
6 Gbps 3934.259 3950.086
7 Gbps 5886.811 6908.902

every time that T is increased, new write batches or refreshes
may be included, that had not been considered at the previous
step. Convergence is reached within few iterations. Once T has
converged, assume that the read miss under study (the N th) is
at the end of the schedule, and mark (T,N) as a point in the
service curve.

Note that, if the above algorithm computes a feasible sched-
ule, delay T is the WCD (since it is both an upper bound
and a lower bound on the WCD itself). Otherwise, it can be
complemented via a lower bound that benchmarks it. As a
lower bound, one computed using steps 1, 3, and 4 above is
used, and scheduling Ncap hits as soon as possible, possibly
partitioning them among several batches. A bound on the
maximum difference between the lower and upper bound can
be computed, which is O(Ncap). The two bounds are in fact
quite near.

Table II reports the lower and upper bounds computed assum-
ing a DDR3 DRAM, with parameters taken from a DDR3-1600
4 Gbit datasheet, also reported in Table I. Controller parameters
are Whigh = 55, Nwd = 16, and Ncap = 16. The write arrival
rate varies between 4 and 7 Gbps, assuming a burst of 8.

The results clearly show that the bounding algorithms are
very effective, except when the write rate is very high (last
line). Through them, one can compute a service curve for
the DRAM technology being used, that can be composed
with other guarantees (e.g., a WCD on the transit of the
interconnection network) to compute end-to-end guarantees a
priori. Moreover, one can design controllers with appropriate
parameter values (e.g., Whigh, Nwd, Ncap), so as to meet pre-
specified guarantees. The result of the last line shows that the
bounding algorithms have room for improvement.

V. ADMISSION CONTROL FOR GUARANTEEING E2E QOS
IN MPSOCS

MPSoCs feature a large number of tightly-coupled shared
resources. In order to conduct memory accesses, an application
in MPSoCs must generally acquire several shared (interconnect
and memory) resources with independent arbiters and often
provided by different vendors. Each shared resource may be
further divided into sub-resources (i.e., sub-arbiters). For in-
stance, many modern MPSoCs are equipped with Networks-
on-Chips (NoCs) featuring wormhole-switching and multi-
stage arbitration (e.g. iSLIP). DRAMs feature as well complex
internal hierarchical structure. They are composed of multiple
modules which are further structured in a number of banks
used to store data. Each bank contains a matrix-like structure
where data is located along with a row buffer. The matrix-like
structure is not visible to the memory controller and all data
exchanges are performed through the corresponding row buffer.

Conventional network and memory resources do not take
into account interference between different threads/applications
when making scheduling decisions and resources are not re-
served in advance. Each router is conducting its arbitration
locally, i.e. packets are switched as soon as they arrive and
ongoing transmissions compete for link bandwidth and buffer
space, and independently from other routers. Memory accesses
are translated by the memory controller into internal DRAM
commands used to access data and read/write from row buffers.
Commercial off-the-shelf memory controllers are optimized for
the average-case performance and for this they rely on the
open-row policy. First-ready first-come-first-serve (FR-FCFS)
scheduling policy is often used as mentioned in the previous
section to prioritize memory requests accessing the same neigh-
boring memory region (i.e. same row) over other requests to
maximize row-hit rate, and thereby performance.

The granularity of application requests is therefore often
different from the shared resources’ granularity of arbitration.
While applications issue data transmissions (cache lines or
DMA), routers arbitrate among data flits and packets, and
memory controllers schedule internal DRAM commands. An
application data transmission is decomposed into a number of
smaller flits or packets and internal DRAM commands. This
results in a complex spectrum of direct and indirect interference
between data streams which may jeopardize predictability and
endanger system safety.

Approaches like traffic shaping and memory throttling us-
ing rate control is a well known method to support quality-
of-service. However, applying rate control on an end-to-end
fashion in the presence of multiple heterogeneous resources
operating at different granularity requires fine grain synchro-
nization and proper configuration of individual shapers to meet
global QoS requirements dictated by a given application. This
is even more complex if dynamic adaptation is considered to
comply with changes in the state of the system like the number
of applications and changes in their requirements. Hence, there
is a need for abstractions to map QoS requirements from
applications to resources, and orchestrate the configuration of
regulation parameters for provided resources services.



Fig. 6. A logical view of E2E admission control considering different resources
services (i.e. regulation rates) configured by the resource manager (RM) for
shared resources.

Admission control can be used as an alternative method to
provide applications with a global resource arbitration. It allows
to decouple the data layer where transmission is performed,
from the control layer responsible for allocation and arbitration
of available resources. The idea of admission control is not new,
it is often used in the IT domain in combination with Software-
Defined Networking (SDN) to implement routing processes that
are more dynamic and efficient than physical ones implemented
in network switches [3]. It has been used in different existing
work to provide real-time capabilities and ease adaptation and
re-configuration [15].

In [16], admission control was applied to provide real-time
guarantees for (mixed) critical communication and memory
traffic in MPSoC. The proposed approach provides an overlay
network built on top of existing NoC architectures. Whenever
an applications is granted admission, E2E access allocation of a
sequence of shared network and memory resources is achieved.
This control layer has a global view of current traffic in the
network and can adapt dynamically the rate control at which
running applications can access shared resources to the state of
the system [17].

In order to support admission control, standard NoC archi-
tectures are extended by introducing local supervisors, called
clients at each node. The role of clients is to prevent non-
authorized accesses, adjust the access rates to the NoC for each
application, release the NoC resources (inform the RM when-
ever an application terminates), and prevent unbounded NoC
accesses. The clients can be implemented fully in software or
as an independent hardware module controlling accesses before
they arrive to the network interface to allow the integration with
existing commercially available components.

At each source node, a monitor regulates the rate with which
the source can inject traffic in the NoC. This regulation is
performed dynamically (at run-time) according to the system
load i.e. the number of simultaneously active applications using
a special scheduling unit called Resource Manager (RM). The
RM has a knowledge about the global state of the NoC (i.e.,
which sender is active) and which resources are occupied.
Using these information, the RM may decrease or increase

Fig. 7. Adaptive resource services defined by the RM as traffic injection rates
according to the system mode [17].

the injection rates for a particular node, as depicted in Fig 7,
dynamically depending on the current system mode. Each mode
is defined by the number of currently active applications, and
determines the minimum time separating every two transmis-
sions issued from the same application. The mechanism is
capable of enforcing symmetric guarantees where transmission
rates decrease uniformly for all applications along with the in-
creasing number of senders running in parallel (system mode).
Non-symmetric guarantees where transmission rates depend not
only on the current system mode but also on the application’s
importance can also be enforced. The non-symmetric mode can
be used in a mixed-criticality system to maintain the critical
application guarantees while reducing best effort traffic.

Dynamic rate regulation is performed using a protocol-
based access layer implemented within the existing NoC ar-
chitecture. The protocol consists of four control messages:
activation (actMsg), termination (terMsg), stop (stopMsg) and
configuration (confMsg). The RM must be informed about
the activation and termination of each application. Therefore,
whenever an application is activated and trying to conduct the
first transmission its request is trapped by the client. It remains
blocked until acknowledged by the RM with a confMsg.
Later, the corresponding client sends an activation message
to the RM. Similarly, when a client detects the termination
of an application it issues a terMsg message to the RM. The
activation and termination messages are processed by the RM
in their arrival order. Each of them initiate the transition of
the system to a different mode. Before changing the rates,
the RM sends to the clients supervising active applications, a
stop message (stopMsg) to block all accesses to the NoC from
the corresponding node. Clients then waits for the confMsg
communicating the current system mode. After receiving the
confMsg, clients adjust the rate and unblock transmissions.
Note that a trade-off analysis is required at design time to
determine the overhead of the synchronization protocol and the
frequency at which mode changes can be performed to support
dynamics.

Providing end-to-end guarantees across computation and
communication resources often requires complex analysis ap-
proaches, such as compositional performance analysis [18],
[19] for the worst-case end-to-end timing behavior. By de-
coupling the data layer where transmission is performed from
the control layer responsible for allocation and arbitration of
available resources, data transfers are established and scheduled



at a higher logical level before applications acquire access
to physical shared resources. Arbitration between multiple
applications is then shifted from individual (sub) resources
to a centralized control unit which has a global view of
the system (i.e. both applications and resources). This allows
to simplify analytical timing analysis models used to bound
interference effects and compute timing guarantees on the
the E2E latency of individual transmissions. Bounding the
timing effects of shared resources requires a careful analy-
sis of requests arrival (that determine interference) at every
resource and its corresponding scheduling/arbitration policy.
With admission control, interference analysis can account for
applications requests arrival at the centralized control unit
instead of individual flits/packets/commands arrival at every
(sub) resource. Therefore, reducing the complexity of coupling
different resources timing analysis which usually leads to
pessimistic formal guarantees or decreased performance and
utilization.

VI. CONCLUSION

In this paper we discussed current efforts in the auto-
motive industry to use high-performance hardware platforms
for mixed-criticality and time-critical applications in high-
integration scenarios. We argued, that due to shortcomings
of available platforms in the market, software mechanisms
are currently the only way to retroactively equip them with
required predictable performance. Furthermore, we presented
upcoming ARM technologies, namely DynamIQ and MPAM,
that when used in future IPs will greatly contribute to overcome
the explained disadvantages of purely software-based measures.
Due to these developments, we are confident that a close coop-
eration between system suppliers, IP providers, semiconductor
companies, and OS/hypervisor vendors will enable future auto-
motive HW/SW platforms that combine high-performance with
predictability.

In addition, research is needed to further enhance the cur-
rently envisioned initial solutions. While it is desirable to have
formal analyses for configuring system components and give
formal guarantees at design-time, the lack of open specifica-
tions and the complexity of industrial-grade components often
lead to overly pessimistic analytic bounds which prevent the
wide-spread use of formal analysis. We showcased that for
individual components, such as a FR-FCFS DRAM controller,
it is in principle possible to derive tight performance bounds.
However, as interacting heterogeneous components are consid-
ered, end-to-end formal analysis is highly complex and hardly
feasible. Approaches such as admission control mechanisms
can allow to simplify the system view on tightly-coupled shared
hardware resources and simplify formal performance analysis.

REFERENCES

[1] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and M. Wolf.
Special session: Future automotive systems design: Research challenges
and opportunities. In International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 1–7, 2018.

[2] R. Cavicchioli, N. Capodieci, and M. Bertogna. Memory interference
characterization between CPU cores and integrated GPUs in mixed-
criticality platforms. In 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 1–10, 2017.

[3] J. Leguay, L. Maggi, M. Draief, S. Paris, and S. Chouvardas. Admission
control with online algorithms in SDN. In IEEE/IFIP Network Operations
and Management Symposium (NOMS), pages 718–721, 2016.

[4] A. Hamann, S. Saidi, D. Ginthoer, C. Wietfeld, and D. Ziegenbein.
Building end-to-end iot applications with qos guarantees. In 2020 57th
ACM/IEEE Design Automation Conference (DAC), 2020.

[5] Y. Ye, R. West, Z. Cheng, and Y. Li. COLORIS: A dynamic cache
partitioning system using page coloring. In 23rd International Conference
on Parallel Architecture and Compilation Techniques (PACT), pages 381–
392, 2014.

[6] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory bandwidth reservation system for efficient performance isolation
in multi-core platforms. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 55–64, 2013.

[7] Arm DynamIQ Shared Unit Technical Reference Manual, October 2019.
Version r4p1. https://developer.arm.com/documentation/100453/0401.

[8] Arm Cortex-A78 Core Technical Reference Manual, May 2020. Version
r1p1. https://developer.arm.com/documentation/101430/0101.

[9] Arm Cortex-A76AE Core Technical Reference Manual, October 2018.
Version r0p0. https://developer.arm.com/documentation/101392/0000.

[10] Arm Cortex-A65 Core Technical Reference Manual, February 2019.
Version r1p1. https://developer.arm.com/documentation/100439/0101.

[11] Arm Architecture Reference Manual Supplement Memory System Re-
source Partitioning and Monitoring (MPAM) for Armv8-A, July 2020.
Version B.b. https://developer.arm.com/documentation/ddi0598/latest/.

[12] Arm System Memory Management Unit Architecture Specification,
SMMU architecture version 3, August 2020. Version D.a.
https://developer.arm.com/documentation/ihi0070/da.

[13] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet, volume 2050 of Lecture
Notes in Computer Science. Springer, 2001.

[14] Matteo Andreozzi, Frances Conboy, Giovanni Stea, and Raffaele Zippo.
Heterogeneous systems modelling with adaptive traffic profiles and its
application to worst-case analysis of a DRAM controller. In 44th IEEE
Annual Computers, Software, and Applications Conference, COMPSAC
2020, Madrid, Spain, July 13-17, 2020, pages 79–86. IEEE, 2020.

[15] Guy Durrieu, Gerhard Fohler, Gautam Gala, Sylvain Girbal, Daniel
Gracia Pérez, Eric Noulard, Claire Pagetti, and Simara Pérez. DREAMS
about reconfiguration and adaptation in avionics. In ERTS 2016, Toulouse,
France, January 2016.

[16] A. Kostrzewa, S. Saidi, L. Ecco, and R. Ernst. Dynamic admission control
for real-time networks-on-chips. In 21st Asia and South Pacific Design
Automation Conference, ASP-DAC 2016, pages 719–724. IEEE, 2016.

[17] Adam Kostrzewa, Sebastian Tobuschat, Rolf Ernst, and Selma Saidi.
Safe and dynamic traffic rate control for networks-on-chips. In Tenth
IEEE/ACM International Symposium on Networks-on-Chip, NOCS 2016,
Nara, Japan, August 31 - September 2, 2016, pages 1–8. IEEE, 2016.

[18] Robin Hofmann, Leonie Ahrendts, and Rolf Ernst. CPA: compositional
performance analysis. In Soonhoi Ha and Jürgen Teich, editors, Handbook
of Hardware/Software Codesign, pages 721–751. Springer, 2017.

[19] Arvind Easwaran and Insup Lee. Compositional schedulability analysis
for cyber-physical systems. SIGBED Rev., 5(1):6, 2008.


