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Abstract. In this short note we correct the statement of the main result of

[1]. That paper presented the rational cohomology ring of a toric arrangement

by generators and relations. One of the series of relations given in [1] is indexed
over the set circuits in the arrangement’s arithmetic matroid. That series of

relations should however be indexed over all sets X with |X| = rk(X) + 1. Be-

low we give the complete and correct presentation of the rational cohomology
ring.

We state the correct version of [1, Theorem 6.13]:

Theorem 1. Let A be an essential toric arrangement. The rational cohomology
algebra of the complement H∗(M(A),Q) is isomorphic to the algebra E with

• Set of generators eW,A;B, where W ranges over all layers of A, A is a
set generating W and B is disjoint from A and such that A t B is an
independent set; the degree of the generator eW,A;B is |A tB|.
• The following types of relations:

– For any two generators eW,A;B, eW ′,A′;B′ ,

eW,A;BeW ′,A′;B′ = 0

if A tB tA′ tB′ is a dependent set, and otherwise

eW,A;BeW ′,A′;B′ = (−1)`(A∪B,A
′∪B′)

∑
L∈π0(W∩W ′)

eL,A∪A′;B∪B′ . (1)

– For every linear dependency
∑
i∈E niχi = 0 with ni ∈ Z, a relation∑

i∈E
nieT,∅;{i} = 0. (2)

– For every subset X ⊆ E where rk(X) = |X| − 1 write X = C t
F with C the unique circuit in X. Consider the associated (unique)
linear dependency

∑
i∈C niχi = 0 with ni ∈ Z, and for every connected
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component L of ∩i∈XHi a relation∑
j∈C

∑
A,B⊂X
A⊇F

X=AtBt{j}
|B| even
W⊇L

(−1)|A≤j |cB
m(A)

m(A ∪B)
eW,A;B = 0 (3)

where, for all i ∈ C, ci := sgnni, cB =
∏
i∈B ci.

The only difference between Theorem 1 and [1, Theorem 6.13] consists in eq. (3)
that hold not only for every circuit C but also for all X with |X| = rk(X)+1. This
difference is important as shown in the following example.

Example 2. Consider the central toric arrangement in T = (C∗)3 given by the
four hypertori H1 = {x = 1}, H2 = {y = 1}, H3 = {xy = 1}, and H4 = {xy−1z3 =
1}. The zero-dimensional layers are the points p = (1, 1, 1), q = (1, 1, ζ3), and
r = (1, 1, ζ23 ). Let W be the layer H1 ∩H2 ∩H3. The relations given by (3) are the
following:

ωW,{1,2} − ωW,{1,3} + ωW,{2,3} + ψ1ψ2 − ψ1ψ3 − ψ2ψ3 = 0

ωs,{1,2,4} − ωs,{1,3,4} + ωs,{2,3,4} +
1

3
ψ1ψ2ω4 −

1

3
ψ1ψ3ω4 −

1

3
ψ2ψ3ω4 = 0

for all s = p, q, r. Notice that the relation in degree two does not imply the relations
in degree three.

The proof of Theorem 1 is the same as in [1] with the following corrections (see
also the preprint arXiv:1806.02195v3).

Let X ⊆ E with |X| = rk(X)+1, then X can be written uniquely as CtF where
C is a circuit and F = X \C. Theorem 6.12 of [1] holds in a wider generality: the
set C does not need to be a circuit but can be any X ⊆ E with |X| = rk(X) + 1.
It can be proven by choosing a suitable separating cover of X: for i ∈ C define
ai = m(X)

∏
j∈C\{i}m(C \ {j}) and ai = m(X) for i ∈ F . Let Λ(X) be the lattice

generated by χi

ai
for all i ∈ X, it defines a covering πU : U → T of tori (cf. [1,

Definition 6.6]).
Lemmas 6.3, 6.4, 6.5, 6.7, 6.8, and 6.10 of [1] should be corrected by changing

C with X and with minor changes in their proofs. The proof of [1, Theorem 6.12]
needs an extra step: let L be a connected component of

⋂
i∈X Hi and p a point in

L, we use the relation (12) of [1] in the torus U to obtain:∑
j∈C

∑
A,B⊂C

C=AtBt{j}
|B| even

(−1)|A≤j |ηUA,B(q)cB = 0.

for all q ∈ π−1U (p). We multiply this equation by ηUF,∅(q), and using the equality

ηUA,B(q)ηUF,∅(q) = (−1)|F≤j |+`(C,F )ηUAtF,B(q) we obtain:∑
j∈C

∑
A,B⊂X
A⊇F

X=AtBt{j}
|B| even

(−1)|A≤j |ηUA,B(q)cB = 0.

This corrects the proof of [1, Theorem 6.12].
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In the proof of Theorem 6.13 it was claimed that the old relations allow one
to write each eW,A;B in term of generators with A a no-broken-circuit set. In the
following we prove the claim by using the new relations.

Indeed if A contains a broken-circuit A1 ⊆ A, i.e. A1 = C \min(C) for a circuit
C, consider the relation (3) for X = C ∪ A: it expresses the element eW,A;B as
a linear combination of some eW ′,A′;B′ with |A′| < |A| or with |A′| = |A| and A′

lexicographically smaller than A. We have inductively proved the claim.
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